• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Memristor’s characteristics: From non-ideal to ideal

    2023-03-13 09:20:16FanSun孫帆JingSu粟靜JieLi李杰ShukaiDuan段書凱andXiaofangHu胡小方
    Chinese Physics B 2023年2期
    關鍵詞:李杰

    Fan Sun(孫帆), Jing Su(粟靜), Jie Li(李杰), Shukai Duan(段書凱), and Xiaofang Hu(胡小方)

    College of Artificial Intelligence,Southwest University,Chongqing 400715,China

    Keywords: memristor,non-ideal characteristic,genetic algorithm,path planning

    1.Introduction

    Memristors are non-volatile analog memories whose resistance values (conductance value) change with external excitations.[1]Since the advent of the first memristor prepared by Hewlett and Packard(HP)in 2008,[2]memristors have been widely used in the field of neuromorphic computing.[3-7]The ion migration phenomenon in memristors is very similar to the neurotransmitter spreading process in neurosynapses and is widely used in neural networks for synaptic functions.Joet al.proposed that synaptic weight regulation behavior could be simulated by manipulating the ion migration process in the memristor.[8]

    The most significant advantage of memristors is that it has both non-volatile and the ability to perform matrix multiplication calculations in parallel.Matrix multiplication calculation is the core calculation in all kinds of neural networks.Therefore, memristors are considered to be devices with the characteristics of “memory computing integration” and have the potential to break the bottleneck of the traditional von Neumann architecture storage wall.Since memristors can greatly accelerate the forward inference process of neural networks,various research and applications of memristors in the field of neuromorphic computing are emerging.Wuet al.built an allhardware composition of a store-and-calculate fusion computing architecture and deployed a convolutional neural network by integrating multiple memristor arrays to achieve recognition of handwritten digits.[9]Chenet al.revisited various properties of memristors and predicted the unobserved property,which is the pseudo-polarity reversibility property.[10]

    Although memristors have great advantages in the field of neuromorphic computing, it is undeniable that they also have some drawbacks (non-ideal characteristics), such as nonlinearity, asymmetry, conductance drift, and fewer intermediate states,[11]which limit the further development of memristors in the field of neuromorphic computing.Researchers have compensated for the negative impacts of these drawbacks by improving the algorithms or designing special circuits.[12-17]However, the complexity has also been increased and brings additional energy consumption and time delays.

    Everything has two sides, and memristors are no exception.It is interesting to study whether the non-ideal characteristics of memristors can become ideal in specific applications,which is the inspiration for this paper.Randomness and variation are the main tones among the many non-ideal characteristics of memristors.Genetic algorithm(GA)is a method that simulates the biological evolutionary process, using a computer language to describe phenomena such as genetic variation in biological evolution.[18-20]These phenomena are full of unpredictable variations,which are similar to the main tone of the non-ideal properties of memristors.

    In this paper,the non-ideal characteristics of the memristor are used to restore the biological evolutionary behavior in GA, and the related circuit is designed, based on which the path planning algorithm based on the memristor network is implemented.

    The rest of this paper is organized as follows.Section 2 introduces the theory related to memristors and GA.Section 3 describes the GA and path planning based on memristive networks.Section 4 contains the experimental examples and simulation results.Finally,Section 5 outlines the conclusions.

    2.Related theory

    2.1.Memristive network

    A typical memristor network consists of a memristor crossbar array and related circuits,as shown in Fig.1.

    Fig.1.Memristive network architecture diagram.

    The memristors used in this paper are generated and manufactured by Knowm, which is a self-directed type of memristors.[21]The voltage pulses generated by the analogto-digital converter(ADC)are able to change the conductance value of the memristor.The operation to increase the memristor conductance value is SET,and the operation to decrease the memristor conductance value is RESET.In addition,since the conductance value of the memristor can only express positive values, the characterization of a single message needs to be expressed using the conductance difference between the two memristors.[6]The transimpedance amplifier (TIA) and the digital-to-analog converter(DAC)are used to obtain the conductance value of the memristor.In addition, by converting the weights of the neural network to conductance values and combining them with Kirchhoff’s law,the memristor crossbar array can perform matrix multiplication operations in parallel.

    2.2.Genetic algorithm

    GA is a heuristic algorithm inspired by Darwin’s theory of natural evolution,which selects the best individuals to solve the problem by continuously updating iterations.The general process of GA is to encode and initialize the population for the problem, set the fitness function, and use crossover, selection and variation operators for evolution,as schematically shown in Fig.2.

    GA evaluates the different individuals in the population by means of a fitness function.A higher score means that the individual is better and also means that there is a greater chance of staying in the evolutionary process.In addition,genetic variation and crossover will result in the creation of new individuals in the population,which increases the diversity of individuals in the population.Through many iterations, the inferior individuals in the population will be gradually eliminated,and the superior individuals will be retained.

    Fig.2.Classical genetic algorithm process diagram.

    3.Genetic algorithms and path planning based on memristive networks

    The conductance value of the memristor can be programmed to change and be maintained for a long time,so the conductance value of the memristor can represent different information.In this paper, a 5×5 map is used as an example to map the different conductance values of the memristor to the coordinates in the map,and Fig.3 shows how the conductance values of the memristor are mapped to the coordinates in the map.Each memristor in the 1×5 memristor array corresponds to a particular row in the map, by dividing the conductance values of the memristors into different levels(in this paper, the conductance values of the memristors are divided into five different levels), and the different levels correspond to the values of the lateral coordinates in the map.

    The diversity of biological populations increases the probability of the emergence of good individuals in the population.In this paper, we simulate the diversity of biological populations by generating a large number of individuals through a random method.In the initialization process of the genetic algorithm,random pulses(random width,number,and amplitude)are applied to the memristors in the memristor network, making the conductance values of the memristors located at different levels, and the conductance values of the memristors represent a certain coordinate in the map,and the different coordinates are combined to form a path.It should be noted that the paths generated in the initialization phase are not necessarily connected,and the following equation is used to determine whether two coordinates are neighboring each other on the map.If the two coordinates are not neighboring,it is necessary to insert a new coordinate between the two coordinates and repeat the determination using the equation until the path is in a connected state.

    GA accompanies the evolution of biological populations,and meritocracy is an important criterion for the continuity of individuals in this evolutionary process.In this paper, different paths from the starting point to the end point correspond to different individuals in the biological population,and the different paths are evaluated by the fitness function,and the fitness function is given in the following equation.

    Fig.3.Relationship between the conductance values of the memristor array and the map coordinate values.

    Here,f1denotes the evaluation from the perspective of path distance, and a shorter distance means a better path;f2denotes the evaluation from the perspective of smoothness of the path, and a smoother path means a better path;αandβdenote the weights of distance and smoothness, respectively.The fitness value of a path is taken into consideration in both aspects.In the iterative process,the fitness score of each individual will be calculated repeatedly,and the roulette algorithm is used to restore superiority and inferiority in biological evolution.A higher fitness means a higher probability that the individual will be retained in the iterative process.

    Genetic variation is an important step in GA, which not only ensures the diversity of individuals but also gives the possibility for the emergence of even better individuals.Genetic variation possesses unpredictable and random properties,which are similar to the non-ideal characteristics of memristors.By applying random pulses to the memristor, it is able to make the conductance value of the memristor change randomly and thus generate different paths, which is consistent with the generation of new individuals by a mutation in traditional GA.We have

    The path planning algorithm based on the memristive network is shown in Table 1.

    Table 1.The path planning algorithm based on the memristive network.

    Figure 4 shows the peripheral circuit structure of the path planning algorithm based on the memristor network.The circuit generates the specified pulses (width, polarity, number,and amplitude) by controlling the DAC, and the pulse stimulation causes a change in the conductance value of the memristor, and the current flowing through the memristor can be measured by the TIA and ADC,and the conductance value of the memristor can be obtained by using Ohm’s law.

    Fig.4.(a) The circuit structure of the memristive network-based path planning algorithm.(b)Physical circuit system.

    4.Experiment

    The Knowm memristor mechanism depends on the movement of Ag+into the active layer of the device to change the resistance of the device, and the Ag+content in the channel determines the resistance of the device.In addition,the active layer of the Knowm memristor consists of Ge2Se3.[21]

    Figure 5 shows the variation of the conductance value of the Knowm memristor under 30 SET pulses and 30 RESET pulses.The data for the tests are obtained by the circuit designed in Fig.4.

    Fig.5.Conductance changes of the memristor during 30 SET and 30 RESET pulse modulation.

    Figure 6 shows the variation of the memristor conductance value under 500 random pulses(random width,number,and amplitude).Due to the non-ideal characteristics of the memristor,the variation of the memristor conductance value is completely random and unpredictable,which is the necessary condition for the memristor to be able to restore phenomena such as genetic variation in GA.The yellow dashed lines in Fig.6 indicate the splitting lines of the different levels of the memristor conductance values.

    Fig.6.Conductance changes of the memristor during 500 random pulses modulation.

    Fig.7.The conductivity of the memristor network in the ideal path state.

    The path planning in this paper takes a 5×5 map as an example,and before the experiment,the conductance value of the memristor is controlled at five different levels by applying different pulses to it.The best paths and the conductance values of the five amnesic resistors are shown in Fig.7, which also illustrates that the peripheral circuit system constructed in this paper has the necessary conditions to find the optimal paths.

    The GA requires multiple iterations in the search for the optimal solution.We read the changes in the memristor conductance values during the iterations(four times in total)and plotted the corresponding paths.

    In addition,the values ofαandβin the fitness function are both 0.5.

    Figure 8 shows the iterative process of the path with the starting and terminal points labeled.It should be noted that the above iterative process is plotted after reading the resistance value of the memristor through the circuit.During the iterative process, the paths gradually evolve from the initial complex to the simple direction, which shows that the path search algorithm based on the memristor network designed in this paper is effective.

    Fig.8.Evolution of the coordinates corresponding to the memristor resistance value in the path planning algorithm.

    5.Conclusion

    In summary, we have studied the non-ideal characteristics of memristors,used the non-ideal characteristics of memristors to restore the basic operators in genetic algorithms,designed and implemented the relevant peripheral circuits, and implemented a path planning algorithm based on memristor networks on this basis.The simulation results show that the non-ideal characteristics of the memristor can simulate the biological evolutionary behavior in the GA, and the path planning algorithm based on the memristor network can search for a better path after several iterations.This shows that it is possible to make the non-ideal characteristics of the memristor into ideal characteristics by thinking backward.This study can provide a new way of thinking for the practical application of the non-ideal characteristics of the memristor.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.61976246 and U20A20227),the Natural Science Foundation of Chongqing, China (Grant No.cstc2020jcyj-msxm X0385), and the National Key R&D Program of China (Grant Nos.2018YFB130660 and 2018YFB1306604).

    猜你喜歡
    李杰
    A spintronic memristive circuit on the optimized RBF-MLP neural network
    基于SPSS軟件建立ARIMA模型
    客聯(lián)(2022年3期)2022-05-31 04:28:08
    Effect of megapore particles packing on dielectric barrier discharge, O3 generation and benzene degradation
    Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial*
    人民海軍首次海戰(zhàn)
    源流(2021年11期)2021-03-25 10:32:07
    小胖熊半夜歷險記
    Zero-Sequence Current Suppression Strategy for Open-End Winding Permanent Magnet Synchronous Motor Based on Model Predictive Control
    ?。楱#镅酲耍颞Γ?多duō 多duo
    Numerical investigation of the time-resolved bubble cluster dynamics by using the interface capturing method of multiphase flow approach*
    The gas jet behavior in submerged Laval nozzle flow *
    久久 成人 亚洲| 亚洲专区中文字幕在线 | 最新的欧美精品一区二区| 国产成人91sexporn| 久久97久久精品| 亚洲自偷自拍图片 自拍| 一级a爱视频在线免费观看| 少妇的丰满在线观看| 国产伦人伦偷精品视频| 女人久久www免费人成看片| 美女中出高潮动态图| 国产淫语在线视频| 国产不卡av网站在线观看| av视频免费观看在线观看| 国产精品香港三级国产av潘金莲 | 涩涩av久久男人的天堂| 一个人免费看片子| 日韩欧美一区视频在线观看| 极品少妇高潮喷水抽搐| 波多野结衣av一区二区av| 国产午夜精品一二区理论片| 捣出白浆h1v1| 黄频高清免费视频| 狂野欧美激情性xxxx| 亚洲国产最新在线播放| 亚洲av在线观看美女高潮| 岛国毛片在线播放| 一区二区av电影网| 最近手机中文字幕大全| 国产亚洲精品第一综合不卡| 中文字幕另类日韩欧美亚洲嫩草| 一本色道久久久久久精品综合| 王馨瑶露胸无遮挡在线观看| 高清在线视频一区二区三区| 免费女性裸体啪啪无遮挡网站| 操美女的视频在线观看| 日本欧美国产在线视频| 久久精品熟女亚洲av麻豆精品| 肉色欧美久久久久久久蜜桃| 狂野欧美激情性xxxx| 一本久久精品| 国产精品麻豆人妻色哟哟久久| 久久国产精品大桥未久av| 久久久精品国产亚洲av高清涩受| 好男人视频免费观看在线| 亚洲国产欧美日韩在线播放| 亚洲中文av在线| 精品国产乱码久久久久久小说| 欧美另类一区| 黄片播放在线免费| 国产亚洲av高清不卡| 欧美变态另类bdsm刘玥| 亚洲欧美一区二区三区黑人| 国产成人一区二区在线| 永久免费av网站大全| av又黄又爽大尺度在线免费看| 一本久久精品| 一级爰片在线观看| 中文天堂在线官网| 国产视频首页在线观看| 一二三四在线观看免费中文在| 日韩一区二区视频免费看| 永久免费av网站大全| 亚洲精品国产一区二区精华液| 一本大道久久a久久精品| 国产野战对白在线观看| 满18在线观看网站| 制服人妻中文乱码| 亚洲国产欧美日韩在线播放| 美女高潮到喷水免费观看| 日韩伦理黄色片| 一二三四中文在线观看免费高清| av在线老鸭窝| 人成视频在线观看免费观看| svipshipincom国产片| 亚洲欧美精品综合一区二区三区| 亚洲国产精品999| 久久性视频一级片| 人人妻人人添人人爽欧美一区卜| 999精品在线视频| 欧美日本中文国产一区发布| 亚洲av成人精品一二三区| 美女福利国产在线| av在线app专区| 你懂的网址亚洲精品在线观看| 国产成人欧美在线观看 | 国产一区有黄有色的免费视频| 精品国产乱码久久久久久男人| 日韩大片免费观看网站| 国产精品一区二区精品视频观看| 免费在线观看完整版高清| 成人手机av| 青青草视频在线视频观看| 老司机靠b影院| 国产成人精品福利久久| 操美女的视频在线观看| 9热在线视频观看99| 久久久精品免费免费高清| 电影成人av| 国产片内射在线| 在线观看www视频免费| 精品少妇黑人巨大在线播放| 中文欧美无线码| 观看美女的网站| 欧美亚洲日本最大视频资源| 丝袜美腿诱惑在线| 美女扒开内裤让男人捅视频| 丰满饥渴人妻一区二区三| 国产精品二区激情视频| 精品久久久久久电影网| 国产老妇伦熟女老妇高清| 一区二区日韩欧美中文字幕| 国产极品天堂在线| 国产成人av激情在线播放| 亚洲国产欧美日韩在线播放| 在线天堂最新版资源| 亚洲av福利一区| 久久久久国产精品人妻一区二区| 欧美激情极品国产一区二区三区| 午夜激情久久久久久久| 免费看av在线观看网站| 国产精品av久久久久免费| 各种免费的搞黄视频| 男人爽女人下面视频在线观看| 秋霞伦理黄片| 亚洲色图 男人天堂 中文字幕| 国产av国产精品国产| 黄网站色视频无遮挡免费观看| 精品亚洲成国产av| 51午夜福利影视在线观看| 一级片'在线观看视频| 下体分泌物呈黄色| 涩涩av久久男人的天堂| 国产av码专区亚洲av| 欧美日韩福利视频一区二区| 青青草视频在线视频观看| 久久人人97超碰香蕉20202| 香蕉丝袜av| 亚洲国产中文字幕在线视频| 老司机靠b影院| 久久国产精品大桥未久av| 国产男人的电影天堂91| 欧美成人精品欧美一级黄| 人人妻人人澡人人爽人人夜夜| 成人国产av品久久久| 90打野战视频偷拍视频| 国产成人啪精品午夜网站| 韩国av在线不卡| 成年人免费黄色播放视频| 极品人妻少妇av视频| 无限看片的www在线观看| 一区二区日韩欧美中文字幕| 欧美日韩视频精品一区| 五月天丁香电影| 午夜免费观看性视频| 超色免费av| 啦啦啦视频在线资源免费观看| 极品少妇高潮喷水抽搐| 大香蕉久久成人网| 亚洲精品国产av成人精品| 秋霞伦理黄片| 免费观看a级毛片全部| 亚洲成人手机| 80岁老熟妇乱子伦牲交| 精品一区二区三区四区五区乱码 | 青春草国产在线视频| 黄色一级大片看看| 国产激情久久老熟女| 亚洲精品在线美女| 亚洲av日韩在线播放| 成人18禁高潮啪啪吃奶动态图| 亚洲国产欧美日韩在线播放| 一级片免费观看大全| 欧美日韩视频高清一区二区三区二| 乱人伦中国视频| 国产成人精品无人区| 欧美久久黑人一区二区| 国产一区有黄有色的免费视频| 亚洲av国产av综合av卡| 亚洲成人手机| 亚洲国产精品999| 日韩制服骚丝袜av| 国产乱来视频区| 五月开心婷婷网| 亚洲精品乱久久久久久| 黄色 视频免费看| 香蕉丝袜av| 久久久久人妻精品一区果冻| 少妇精品久久久久久久| 国产一区二区三区av在线| netflix在线观看网站| 免费在线观看视频国产中文字幕亚洲 | 99久久精品国产亚洲精品| 9热在线视频观看99| 捣出白浆h1v1| 男女高潮啪啪啪动态图| 国产亚洲精品第一综合不卡| 日本色播在线视频| 欧美精品亚洲一区二区| 久久久久久久久久久免费av| 青春草亚洲视频在线观看| 熟妇人妻不卡中文字幕| 天天躁夜夜躁狠狠久久av| 一区二区三区四区激情视频| 赤兔流量卡办理| 国产精品秋霞免费鲁丝片| 男人爽女人下面视频在线观看| 中文字幕人妻丝袜一区二区 | 热99久久久久精品小说推荐| 亚洲一级一片aⅴ在线观看| 一边摸一边做爽爽视频免费| 亚洲国产精品一区二区三区在线| 嫩草影院入口| 久久亚洲国产成人精品v| 99热网站在线观看| 欧美亚洲日本最大视频资源| 久久久亚洲精品成人影院| 国产1区2区3区精品| 国产精品香港三级国产av潘金莲 | 亚洲 欧美一区二区三区| 免费少妇av软件| 亚洲熟女精品中文字幕| 一二三四在线观看免费中文在| 看十八女毛片水多多多| 亚洲av电影在线观看一区二区三区| 嫩草影视91久久| 亚洲av欧美aⅴ国产| 久久精品久久精品一区二区三区| 人妻 亚洲 视频| 亚洲av成人精品一二三区| 亚洲欧美一区二区三区国产| 国产av码专区亚洲av| 两个人看的免费小视频| 美女午夜性视频免费| 观看av在线不卡| 久久久久网色| 在线天堂中文资源库| 亚洲国产中文字幕在线视频| 午夜福利视频在线观看免费| 日韩精品有码人妻一区| 亚洲欧美日韩另类电影网站| 久久99一区二区三区| 日日爽夜夜爽网站| h视频一区二区三区| 成人毛片60女人毛片免费| 色视频在线一区二区三区| 国产又爽黄色视频| 亚洲伊人久久精品综合| 飞空精品影院首页| 大香蕉久久成人网| 一级a爱视频在线免费观看| 成人免费观看视频高清| 观看美女的网站| 久久婷婷青草| 国产精品人妻久久久影院| 中文字幕制服av| 国产精品 国内视频| 亚洲精品美女久久久久99蜜臀 | 青春草亚洲视频在线观看| 一个人免费看片子| 久久这里只有精品19| 97精品久久久久久久久久精品| 99国产综合亚洲精品| 色视频在线一区二区三区| 成年动漫av网址| 精品一区二区免费观看| 久久久久久人人人人人| 国产黄频视频在线观看| 在线免费观看不下载黄p国产| 免费观看av网站的网址| 好男人视频免费观看在线| 欧美人与善性xxx| 国产激情久久老熟女| 高清在线视频一区二区三区| 视频区图区小说| 韩国高清视频一区二区三区| 亚洲精品视频女| 超碰成人久久| 肉色欧美久久久久久久蜜桃| 一级毛片我不卡| 黄片小视频在线播放| 看非洲黑人一级黄片| 丝袜美足系列| 妹子高潮喷水视频| 免费看不卡的av| 亚洲天堂av无毛| 在线观看三级黄色| 欧美 亚洲 国产 日韩一| 人人妻,人人澡人人爽秒播 | 午夜福利视频在线观看免费| 成人毛片60女人毛片免费| 激情五月婷婷亚洲| 老司机靠b影院| 香蕉丝袜av| 国产片内射在线| 伊人久久大香线蕉亚洲五| 久久精品国产亚洲av高清一级| 国产片内射在线| 晚上一个人看的免费电影| 99国产综合亚洲精品| 国产成人啪精品午夜网站| 超碰97精品在线观看| 天天添夜夜摸| 黑人猛操日本美女一级片| 在线观看人妻少妇| 女人精品久久久久毛片| 涩涩av久久男人的天堂| e午夜精品久久久久久久| 狠狠精品人妻久久久久久综合| 亚洲精品,欧美精品| 9热在线视频观看99| 黄频高清免费视频| 老司机深夜福利视频在线观看 | 不卡视频在线观看欧美| 91老司机精品| 99国产精品免费福利视频| av一本久久久久| 日韩 欧美 亚洲 中文字幕| 国产麻豆69| 丝袜在线中文字幕| 91aial.com中文字幕在线观看| 亚洲精品成人av观看孕妇| 亚洲av欧美aⅴ国产| 99久国产av精品国产电影| 叶爱在线成人免费视频播放| 婷婷色综合www| 久久国产精品大桥未久av| 久久 成人 亚洲| 99国产精品免费福利视频| 国产日韩一区二区三区精品不卡| 午夜免费男女啪啪视频观看| 伦理电影免费视频| kizo精华| 制服人妻中文乱码| 国产成人一区二区在线| 天美传媒精品一区二区| 不卡视频在线观看欧美| 日日爽夜夜爽网站| videosex国产| 亚洲欧美一区二区三区久久| 色94色欧美一区二区| 久久国产亚洲av麻豆专区| 在线精品无人区一区二区三| 国产 精品1| 亚洲美女黄色视频免费看| 亚洲欧美精品综合一区二区三区| 亚洲精品视频女| 国产精品一区二区精品视频观看| 视频在线观看一区二区三区| 国产精品国产三级国产专区5o| 一级,二级,三级黄色视频| 九色亚洲精品在线播放| 视频在线观看一区二区三区| 亚洲熟女毛片儿| 亚洲av国产av综合av卡| 性色av一级| 飞空精品影院首页| 欧美人与性动交α欧美精品济南到| 麻豆精品久久久久久蜜桃| 最新的欧美精品一区二区| 少妇 在线观看| 男女边摸边吃奶| 老司机在亚洲福利影院| 亚洲av国产av综合av卡| www日本在线高清视频| 免费观看人在逋| 亚洲欧美清纯卡通| 在线看a的网站| 欧美国产精品va在线观看不卡| 国产av码专区亚洲av| 午夜福利影视在线免费观看| 制服丝袜香蕉在线| 日韩免费高清中文字幕av| 一级毛片黄色毛片免费观看视频| 国产精品嫩草影院av在线观看| 免费女性裸体啪啪无遮挡网站| av电影中文网址| 香蕉丝袜av| 免费在线观看视频国产中文字幕亚洲 | 国产乱人偷精品视频| 国产成人91sexporn| 新久久久久国产一级毛片| 操美女的视频在线观看| 搡老岳熟女国产| 久久久国产一区二区| 久久狼人影院| 中文字幕最新亚洲高清| a级片在线免费高清观看视频| av天堂久久9| 另类亚洲欧美激情| 色视频在线一区二区三区| 国产一区二区三区综合在线观看| 男男h啪啪无遮挡| 大码成人一级视频| 亚洲图色成人| 国产精品亚洲av一区麻豆 | 国产亚洲午夜精品一区二区久久| 少妇被粗大的猛进出69影院| 青青草视频在线视频观看| 精品人妻熟女毛片av久久网站| 亚洲av电影在线观看一区二区三区| 久久av网站| 最近中文字幕高清免费大全6| 黄色视频不卡| 一本久久精品| 成人毛片60女人毛片免费| 777久久人妻少妇嫩草av网站| 亚洲精品自拍成人| 久久久久久免费高清国产稀缺| 男人操女人黄网站| 自线自在国产av| 操美女的视频在线观看| 国产一区有黄有色的免费视频| 大片电影免费在线观看免费| 国产av一区二区精品久久| 国产视频首页在线观看| 男女床上黄色一级片免费看| 精品少妇内射三级| 国产av码专区亚洲av| 在现免费观看毛片| 久久免费观看电影| 妹子高潮喷水视频| 久久久精品国产亚洲av高清涩受| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产一区二区| 国产午夜精品一二区理论片| 日本爱情动作片www.在线观看| 久久久久久久久久久免费av| 免费在线观看视频国产中文字幕亚洲 | 国产xxxxx性猛交| 午夜久久久在线观看| 亚洲欧美成人精品一区二区| 国精品久久久久久国模美| 午夜福利免费观看在线| 不卡av一区二区三区| 老鸭窝网址在线观看| 最近的中文字幕免费完整| 免费人妻精品一区二区三区视频| 久久久久久人妻| 一级毛片 在线播放| 国产免费又黄又爽又色| 成人影院久久| 国产精品.久久久| 一本大道久久a久久精品| 亚洲av欧美aⅴ国产| 日韩中文字幕欧美一区二区 | 久久国产亚洲av麻豆专区| 丝袜美腿诱惑在线| 丝袜在线中文字幕| 亚洲一区二区三区欧美精品| 久久久精品区二区三区| 亚洲国产av影院在线观看| 在线观看一区二区三区激情| 国产亚洲最大av| 91精品三级在线观看| 亚洲婷婷狠狠爱综合网| 人成视频在线观看免费观看| 国产精品久久久久久精品古装| 成人国产麻豆网| 欧美av亚洲av综合av国产av | 久久久久精品人妻al黑| 一本久久精品| 亚洲精品日韩在线中文字幕| 中文字幕亚洲精品专区| 一本色道久久久久久精品综合| h视频一区二区三区| 人人澡人人妻人| 午夜福利免费观看在线| 一边摸一边抽搐一进一出视频| 国产极品天堂在线| 韩国精品一区二区三区| 一边亲一边摸免费视频| 久久久久精品人妻al黑| 中文字幕精品免费在线观看视频| 亚洲一区二区三区欧美精品| 久久久久久久大尺度免费视频| 色婷婷av一区二区三区视频| 久久久精品免费免费高清| 色视频在线一区二区三区| 成人亚洲欧美一区二区av| 下体分泌物呈黄色| 婷婷色综合大香蕉| 在线观看一区二区三区激情| 欧美久久黑人一区二区| 欧美日韩综合久久久久久| 黄色视频在线播放观看不卡| 中文字幕人妻熟女乱码| 国产色婷婷99| 国产成人av激情在线播放| 99精国产麻豆久久婷婷| 亚洲五月色婷婷综合| 久久久久精品久久久久真实原创| 日韩视频在线欧美| 人人澡人人妻人| 欧美日韩综合久久久久久| 亚洲欧美一区二区三区国产| 国产国语露脸激情在线看| 亚洲第一av免费看| 国产一区二区 视频在线| 亚洲人成77777在线视频| 国产 精品1| 中文字幕人妻熟女乱码| 亚洲国产看品久久| 久久精品久久精品一区二区三区| 制服丝袜香蕉在线| 亚洲av综合色区一区| 中国三级夫妇交换| 亚洲,欧美精品.| 99九九在线精品视频| 久久天躁狠狠躁夜夜2o2o | 免费高清在线观看日韩| 国产精品99久久99久久久不卡 | 男人添女人高潮全过程视频| 看免费av毛片| 最近最新中文字幕大全免费视频 | 黄色视频不卡| 亚洲欧美中文字幕日韩二区| 婷婷色综合大香蕉| 男女无遮挡免费网站观看| 国产成人av激情在线播放| 亚洲成人av在线免费| 少妇人妻精品综合一区二区| 日本色播在线视频| 日韩视频在线欧美| 久久97久久精品| 亚洲一码二码三码区别大吗| 女人被躁到高潮嗷嗷叫费观| 一边亲一边摸免费视频| av有码第一页| 国产黄色视频一区二区在线观看| 少妇人妻 视频| 秋霞伦理黄片| 精品少妇内射三级| 亚洲av国产av综合av卡| 亚洲少妇的诱惑av| 亚洲国产精品一区三区| 人体艺术视频欧美日本| 国产精品99久久99久久久不卡 | 国产免费又黄又爽又色| 亚洲色图综合在线观看| 纵有疾风起免费观看全集完整版| 久久久久久久大尺度免费视频| 日韩av免费高清视频| 老汉色av国产亚洲站长工具| 男人爽女人下面视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 午夜精品国产一区二区电影| av网站在线播放免费| 岛国毛片在线播放| 国产精品99久久99久久久不卡 | 秋霞伦理黄片| 丝袜美足系列| 欧美日韩成人在线一区二区| 欧美av亚洲av综合av国产av | 久久人妻熟女aⅴ| 亚洲精品国产区一区二| 啦啦啦在线观看免费高清www| 亚洲精品美女久久久久99蜜臀 | 国产av一区二区精品久久| 丝袜美足系列| 免费人妻精品一区二区三区视频| 少妇精品久久久久久久| av国产精品久久久久影院| 欧美精品一区二区大全| 999久久久国产精品视频| 可以免费在线观看a视频的电影网站 | 老司机在亚洲福利影院| 国产精品秋霞免费鲁丝片| 丰满乱子伦码专区| 国产高清不卡午夜福利| 一区二区三区激情视频| 777米奇影视久久| 不卡视频在线观看欧美| 丝袜脚勾引网站| 国产精品秋霞免费鲁丝片| 亚洲成人国产一区在线观看 | 日本欧美视频一区| 黄色毛片三级朝国网站| 婷婷色麻豆天堂久久| 国产亚洲av片在线观看秒播厂| 天美传媒精品一区二区| 男的添女的下面高潮视频| 嫩草影视91久久| 国产日韩一区二区三区精品不卡| 亚洲欧美一区二区三区黑人| 男人舔女人的私密视频| 国产高清国产精品国产三级| 狠狠婷婷综合久久久久久88av| 国产精品蜜桃在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲人成77777在线视频| 亚洲精品在线美女| 熟女少妇亚洲综合色aaa.| 日韩熟女老妇一区二区性免费视频| 久久久久国产精品人妻一区二区| 国产成人免费观看mmmm| 老汉色av国产亚洲站长工具| 一二三四在线观看免费中文在| 日日撸夜夜添| 在线天堂中文资源库| 在线免费观看不下载黄p国产| 亚洲精品乱久久久久久| 精品酒店卫生间| 亚洲熟女毛片儿| av网站在线播放免费| 老司机影院毛片| 国产一级毛片在线| 久久久精品94久久精品| 狠狠婷婷综合久久久久久88av| 三上悠亚av全集在线观看| 男女高潮啪啪啪动态图| 男女之事视频高清在线观看 | 秋霞伦理黄片| 日韩免费高清中文字幕av| 看非洲黑人一级黄片|