• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Zero-Sequence Current Suppression Strategy for Open-End Winding Permanent Magnet Synchronous Motor Based on Model Predictive Control

    2020-10-27 08:15:06LIUHuashan劉華山LIJie李杰YAOFei姚飛
    關(guān)鍵詞:李杰華山

    LIUHuashan(劉華山)1,2,LIJie(李杰)1,YAOFei(姚飛)1,2*

    1 College of Information Science and Technology, Donghua University, Shanghai 201620, China2 Engineering Research Center of Digitized Textile & Apparel Technology, Ministry of Education, Shanghai 201620, China

    Abstract: Compared with the traditional three-phase star connection winding, the open-end winding permanent magnet synchronous motor (OW-PMSM) system with a common direct current(DC) bus has a zero-sequence circuit, which makes the common-mode voltage and the back electromotive force (EMF) harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit, and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system. A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM. Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model, the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation. Then zero-sequence loop constraints are established, so as to suppress the zero-sequence current. In the end, the control strategy proposed in this paper is verified by simulation experiments.

    Key words: open-end winding permanent magnet synchronous motor (OW-PMSM); zero-sequence current; harmonic; model predictive current control; common-mode voltage

    Introduction

    A permanent magnet synchronous motor (PMSM) has the advantages of high power density, flexible control and reliable operation, which is widely used in electric power related fields, such as electric vehicle and aerospace[1]. The open-end winding PMSM (OW-PMSM) means that the neutral point of the traditional three-phase star connection winding is opened, and adopts two inverters on both ends of winding. According to the direct current(DC) bus connection style, the OW-PMSM system can be divided into common DC bus topology and isolated DC bus topology[2-3], as shown in Fig. 1. Compared with the PMSM with star connection winding, the PMSM with open-end winding can provide higher power and effectively improve the utilization ratio of a DC bus[4].

    In recent years, scholars in Zhejiang University and Harbin Institute of Technology continue to study the topology structures and the control strategy of the OW-PMSM. Most of the control strategies for the OW-PMSM are the migration and the improvement of traditional PMSM control strategies, such as direct torque control (DTC)[5-6]and field-oriented control (FOC)[7-8]. As a new control strategy, model predictive control (MPC) was gradually applied in the field of power electronic control. Compared with DTC and FOC, MPC is simple in calculation and parameter configuration, and fast in dynamic response[9]. MPC is divided into finite control sets-MPC (FCS-MPC) and continuous control sets-MPC (CCS-MPC)[10-15]. The FCS-MPC does not need a modulator and is widely used because of fully using the limited number of space voltage vectors.

    (a) Common DC bus topology

    (b) Isolated DC bus topology

    The system of OW-PMSM with a common DC bus has no neutral points because two buses are connected in parallel. So the system has a zero-sequence loop, and the zero-sequence current is generated under the action of common-mode voltage and the back electromotive force(EMF) harmonic. The presence of the zero-sequence current leads to additional energy loss and heating, and the zero-sequence current will cause torque ripple, which adversely affects the system operating efficiency and stability[16]. Therefore, suppressing the zero-sequence current in OW-PMSM system is one of the important research contents. In order to suppress the zero-sequence current, Somasekharetal.[17-18]used the strategy with an additional auxiliary switch to eliminate the common-mode voltage to inhibit the action of the zero-sequence current. But it is more complicated when the additional auxiliary switch is adopted, and it is adverse to the flexibility and stability of the control system. In Ref. [19], during the process of space vector modulation, only the voltage vectors which do not generate common-mode voltage are selected, so as to suppress the effect of the zero-sequence current. However, there is a serious shortage of DC bus voltage utilization. Nianetal.[20]designed zero-sequence current closed-loop regulation. The proportional resonant (PR) regulator is used to compensate the common-mode voltage on the resistance inductance, so as to achieve the purpose of suppressing the zero-sequence current by compensating the common-mode voltage and the back EMF harmonic. But this closed loop control strategy of the zero-sequence loop is complex in designing, difficult in parameter configuration, large in computation and so on.

    In order to suppress the zero-sequence current in the common DC bus OW-PMSM system, this article analyzes the zero-sequence circuit through building a mathematical model of the OW-PMSM, and designs an improved model predictive current control strategy with fully using the advantages of multi-objective constraints of MPC. Then, the zero-sequence current can be suppressed by controlling zero-sequence voltage and back EMF harmonic reasonably. At last, the simulation experiments are done to prove the effectiveness of the proposed control algorithm.

    1 Mathematical Model of OW-PMSM with Common DC Bus

    In order to analyze the topological characteristics of the OW-PMSM system and suppress the zero-sequence current, it is necessary to establish a mathematical model containing zero-sequence components of the OW-PMSM system. Figure 1(a) shows the topology structure of the OW-PMSM system with a common DC bus. Under the assumption that the motor winding and the magnetic circuit are symmetric, and hysteresis loss and eddy current loss are ignored, the mathematical model of the OW-PMSM system in the three-phase static coordinate system can be obtained as

    (1)

    where,umandim(m=a,b,c) are phase voltages and phase currents ofa,bandcphases, respectively;Ris the winding resistance;LandMrepresent the self-inductance and mutual inductance of winding, respectively;Sx(x=a1,a2,b1,b2,c1,c2) represents the switching function of the inverter 1 and the inverter 2, and satisfies:

    (2)

    Generally, the mathematical model of PMSM in the three-phase static coordinate system is complicated for our control system design. In order to simplify the control system design and make our control more convenient and flexible, the mathematical model in the three-phase static coordinate system needs to be converted to the two-phase rotating coordinate system. Thus, the mathematical model of the OW-PMSM system can be obtained as

    (3)

    where,ux,ixandLx(x=d,q, 0) represent thed-axis,q-axis and 0-axis components of voltage, current and inductance in the rotating coordinate system, respectively;θrepresents the electric angle;ωrepresents the electric angular velocity;ψrepresents the flux chain.

    According to Eq. (3), the equivalent circuit of the zero-sequence loop of the OW-PMSM system with the common DC bus can be obtained, as shown in Fig. 2. In Fig. 2,u01andu02are the common-mode voltages generated by the inverter 1 and the inverter 2, respectively; 3ωψ3fsin(3θ) is the harmonic amplitude of the third inverse EMF.

    Fig. 2 Equivalent circuit of zero-sequence loop

    As for the OW-PMSM system, due to the effect of the zero-sequence current, the electromagnetic torque will generate harmonic pulsation, and its torqueTecan be expressed as

    (4)

    where,ea,ebandecrepresent three opposite electromotive forces in the three-phase static coordinate system;ed,eqande0representd-axis,q-axis and 0-axis components in thedq0 rotation coordinate system;ωrrepresents mechanical angular velocity;Cabc-dq0denotes theabc-dq0 coordinate transformation matrix.

    Substituting Eq. (3) into Eq. (4), a simplified mathematical model can be obtained:

    wherepnrepresents the pole log of the motor. It can be seen from Eq. (6) that the electromagnetic torque contains six harmonic components, which is not conducive to the stable operation of the system.

    2 Zero-Sequence Current Suppression Based on MPC

    2.1 Zero common-mode voltage suppression strategy based on MPC

    Zero common-mode voltage model predictive current control (ZCV-MPCC) means that the resultant voltage vector does not contain zero-sequence components during the model predictive current control. The common-mode voltage at the machine end of the OW-PMSM system can be expressed as

    u0=u01-u02.

    (7)

    That is, the zero-sequence component of the phase voltage of the motor depends on the zero-sequence component of the output voltage of the two inverters.

    By analyzing the common-mode voltage generated when each voltage vector acts (shown in Table 1), it can be seen that the common-mode voltage is 0 when the vector vertex is located on the middle hexagon (HJLNQS) (shown in Fig. 3). In order to control the magnitude of the zero-sequence voltage component in a zero-sequence loop, only non-zero voltage vectors and zero vectors which do not generate common-mode voltage can be selected. The control block diagram is shown in Fig. 4, where PI means proportion integration regulator.

    Fig. 3 Voltage vector of OW-PMSM

    Table 1 Common-mode voltage generated by different voltage vectors

    Fig. 4 Block diagram of ZCV-MPCC system for OW-PMSM

    The mathematical model of OW-PMSM in thedq0 rotating coordinate system is discretized, and the predictive model can be obtained as

    (8)

    where,ix(k+1) andix(k)(x=d,q) represent thedq0-axis currents at the next moment and the current moment, respectively;ux(k+1) andux(k)(x=d,q) represent thedq-axis components under the action of different voltage vectors at the next moment and the current moment, respectively.

    Then, the value function can be designed as

    Ji=[id(k+1)-id(k)]2+[iq(k+1)-iq(k)]2,

    (9)

    Therefore, the value function can be approximated as

    (10)

    Different voltage vectors can get different value functionsJi.By comparing different value functions, the voltage vector that makes the value function minimum is obtained, and the voltage vector is applied to the next period of time, so that the predicted current can always track the given value of the current and achieve the purpose of fast and accurate control.

    2.2 Expected common-mode voltage suppression strategy based on MPC

    In the zero-sequence loop of the OW-PMSM system, the zero-sequence component is obvious not only the common-mode voltage output by the inverters, but also the back EMF harmonic generated by the motor, especially the third harmonic. In ZCV-MPCC, the influence of the common-mode voltage generated by the inverters on the zero-sequence current is considered. The control strategy is simple and flexible. The expected common-mode voltage model predictive current control(ECV-MPCC) takes the influence of the third harmonic of back EMF harmonics into account.

    According to the OW-PMSM zero-sequence equivalent circuit, the magnitude of zero-sequence current depends on the common-mode voltage and the third harmonic of the back EMF generated by the inverters. Effectively reducing the circuit voltage of the zero-sequence circuit can reduce the zero-sequence current correspondingly. Therefore, the ECV-MPCC aims to select an appropriate voltage vector through model predictive control to make the expected common-mode voltage output of the inverters interact with the third harmonic of the back EMF, so as to reduce the zero-sequence loop voltage and suppress the zero-sequence current. The control system block diagram is shown in Fig. 5.

    Fig. 5 Block diagram of ECV-MPCC system for OW-PMSM

    According to the equivalent circuit of the zero-sequence circuit, if the circuit voltage of the zero-sequence circuit is zero, the zero-sequence current will not be generated. Therefore, the condition of the circuit voltage is zero:

    u01-u02+3ωψ3fsin(3θ)=0.

    (11)

    Therefore, the zero-sequence loop voltage is zero, and the zero-sequence current generated is also zero when the magnitude of the common-mode voltage generated by the inverters is the same as the magnitude of the third harmonic of the back EMF. Obviously, it is necessary to select the appropriate voltage vector and the action time to synthesize the voltage vector, and generate the desired common-mode voltage vector to match the third harmonic of the back EMF.

    The vector action time calculation adopts thedq0-axis current dead-beat tracking. That is, it is considered that the current values at the two consecutive sampling points are equal, which is equal to the given value of thedq0-axis current.

    (12)

    where,sdmandsqm(m=0,i,j) are thedq0-axis slopes ofu0,udanduq;sxi,sxjandsx0represent the slopes of the voltage vectors which are selected;ti,tjandt0are the acting time of voltage vectors, and the acting time satisfies:

    Ts=ti+tj+t0.

    (13)

    Combined with the mathematical model of the OW-PMSM system in thedq0 rotating coordinate system, the slope can be calculated as

    (14)

    (15)

    (16)

    By substituting the formulas (14)-(16) into the dead-beat model, the acting time can be calculated as

    (17)

    (18)

    t0=Ts-ti-tj.

    (19)

    The expected resultant voltage vectors in six sectors can be obtained by calculating and selecting the voltage vectors in six sectors and their acting time.

    Vn=viti+vjtj+vztz,

    (20)

    whereVnrepresents the expected voltage vector synthesized in each sector,n=1, 2, …, 6.

    The voltage component of synthetic voltage vectors atdq-axis can be calculated, and the predictive current at next sampling time can be obtained by bringing the voltage component of synthetic voltage vectors atdq-axis into the prediction model. Then, the value function is given to evaluate and select the optimal synthetic voltage vector. Therefore, the value function is redesigned by adding zero-sequence current constraint:

    (21)

    Since the vector action time is given in advance and evaluated in the value function, the corresponding optimal acting voltage vector and its action time can be obtained through the rolling optimization of the value function. At the same time, zero-sequence current weight is added in the value function evaluation process, and the constraint of zero-sequence current is fully considered, so that the obtained optimal voltage vector and its action time can well meet the requirements of zero-sequence current suppression.

    3 Simulation

    In order to validate the proposed zero-sequence current suppression strategy based on MPC, simulation experiments are carried out using the Matlab/Simulink platform. Under the control strategy proposed in this paper, the three-phase current waveform and the total harmonic distortion (THD), zero-sequence circuit current and common-mode voltage waveform, zero-sequence current and common-mode voltage comparison, and the electromagnetic torque waveform are obtained. The simulation results are shown in Figs. 6-9, respectively.

    (a) Before zero-sequence current suppression

    (b) ZCV-MPCC

    (c) ECV-MPCC

    Figure 6 presents the three-phase output current waveform and the current THD (ITHD) under three different control strategies when the speed is 750 r/min. As can be seen from Fig. 6, the output current waveform can be improved to a certain extent, and the quality of current is improved when the ZCV-MPCC is used. The current distortion is significantly improved and THD is significantly reduced when using the ECV-MPCC, which fully proves the effectiveness of the ECV-MPCC.

    Figure 7 presents the zero-sequence current waveform and common-mode voltage under three different control strategies when the speed is 750 r/min. In this paper the zero-sequence current under different voltage vectors and action times is measured as an index to measure the suppression strength of zero-sequence current. It can be seen from Fig. 7 that the current of the zero-sequence loop decreases obviously after the zero-sequence current control strategy is adopted, and the common-mode voltage is compatible with the control strategy adopted. The common-mode voltage of the OW-PMSM system using ZCV-MPCC is zero. The common-mode voltage using ECV-MPCC is adapted to the back EMF harmonic, and generates the certain common-mode voltage to interact with it in different sampling times, which plays a role in suppressing the zero-sequence current.

    (a) Before zero-sequence current suppression

    (b) ZCV-MPCC

    (c) ECV-MPCC

    Figure 8 presents the change trend of zero-sequence current amplitude and THD. It can be seen that the control of the zero-sequence current is more effective as the model predictive current control design deepens. The above trends fully demonstrate the effectiveness and the superiority of the new model predictive current control strategy.

    (a) Amplifude of zero-sequence current

    (b) THD of three-phase current

    Figure 9 shows the torque waves of OW-PMSM in different working conditions, and the torque response changes when the load is suddenly added or reduced. By comparison, it can be seen that the torque ripple is obviously reduced after the adoption of the new control strategy, and the torque has a good response speed when the load changes, which fully demonstrates the effectiveness and good dynamic response of the control strategy proposed in this paper.

    (a) Electromagnetic torque before zero-sequence current suppression

    (b) Electromagnetic torque of ECV-MPCC

    4 Conclusions

    As a new topological structure, OW-PMSM can provide a higher utilization ratio of the DC bus, the three-phase current is independent, so the control is more flexible. Therefore, it has a good research and application prospect. In this paper, the problem of the zero-sequence current of the OW-PMSM system with a common DC bus was studied, and a new predict current control measurement was proposed. Compared with using the voltage vector that does not generate the common-mode voltage to suppress the zero-sequence current, the new model predictive current control algorithm can improve the utilization rate of the DC bus. The new model predictive current control can effectively suppress the generation of the zero-sequence current, reduce the torque ripple, and improve the operation stability of the OW-PMSM system. Compared with the traditional vector control used in the OW-PMSM system, the new model predictive current control has better dynamic response.

    猜你喜歡
    李杰華山
    Adaptive Neural Network Control for Euler-Lagrangian Systems with Uncertainties
    A spintronic memristive circuit on the optimized RBF-MLP neural network
    Effect of megapore particles packing on dielectric barrier discharge, O3 generation and benzene degradation
    詠華山
    人民海軍首次海戰(zhàn)
    源流(2021年11期)2021-03-25 10:32:07
    小胖熊半夜歷險(xiǎn)記
    隨王履登華山
    崢嶸歲月:毛澤東在東華山
    文史春秋(2020年1期)2020-03-16 13:13:32
    ?。楱#镅酲耍颞Γ?多duō 多duo
    The gas jet behavior in submerged Laval nozzle flow *
    老司机福利观看| 亚洲中文字幕一区二区三区有码在线看 | 日韩欧美 国产精品| 日韩欧美一区二区三区在线观看| 黄频高清免费视频| 国产69精品久久久久777片 | 日本 欧美在线| 亚洲欧美激情综合另类| 欧美日本视频| 男女午夜视频在线观看| 99在线人妻在线中文字幕| www.www免费av| 国产激情久久老熟女| 无限看片的www在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧洲综合997久久,| 好男人在线观看高清免费视频| 国产精品 欧美亚洲| 又黄又爽又免费观看的视频| 国产精品久久久久久亚洲av鲁大| 19禁男女啪啪无遮挡网站| 国产亚洲av嫩草精品影院| svipshipincom国产片| 国产毛片a区久久久久| 色在线成人网| 极品教师在线免费播放| 亚洲欧美激情综合另类| 亚洲无线观看免费| 精品人妻1区二区| 天堂√8在线中文| 免费观看的影片在线观看| 99久久成人亚洲精品观看| 手机成人av网站| 亚洲成人中文字幕在线播放| 69av精品久久久久久| 色综合欧美亚洲国产小说| 成人永久免费在线观看视频| 国产精品久久久av美女十八| 日日干狠狠操夜夜爽| 国产成人欧美在线观看| 搞女人的毛片| 国内揄拍国产精品人妻在线| 国模一区二区三区四区视频 | 亚洲精品美女久久av网站| 禁无遮挡网站| 国产成人av激情在线播放| 日本黄色视频三级网站网址| 亚洲熟妇中文字幕五十中出| 午夜精品久久久久久毛片777| 亚洲在线观看片| 亚洲电影在线观看av| 国产精品,欧美在线| 一本久久中文字幕| 免费观看精品视频网站| 悠悠久久av| 老汉色av国产亚洲站长工具| 一级作爱视频免费观看| 中文字幕av在线有码专区| ponron亚洲| 99在线人妻在线中文字幕| 麻豆成人午夜福利视频| 亚洲av中文字字幕乱码综合| 亚洲真实伦在线观看| av在线天堂中文字幕| 老司机午夜十八禁免费视频| 国产成+人综合+亚洲专区| 亚洲自拍偷在线| 91av网站免费观看| 中出人妻视频一区二区| 黄色成人免费大全| 欧美黑人欧美精品刺激| 女警被强在线播放| 国产伦在线观看视频一区| 亚洲成人精品中文字幕电影| av视频在线观看入口| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩瑟瑟在线播放| 日韩欧美一区二区三区在线观看| 真人一进一出gif抽搐免费| 亚洲欧美日韩高清在线视频| 国产爱豆传媒在线观看| 久久中文字幕人妻熟女| 校园春色视频在线观看| 在线观看66精品国产| 国产精品一及| 麻豆国产av国片精品| 成人一区二区视频在线观看| 又粗又爽又猛毛片免费看| a级毛片a级免费在线| 日本撒尿小便嘘嘘汇集6| 欧美日本视频| 日韩 欧美 亚洲 中文字幕| 91久久精品国产一区二区成人 | 国产欧美日韩精品一区二区| 国产野战对白在线观看| 夜夜爽天天搞| 最新美女视频免费是黄的| 一区二区三区激情视频| 亚洲精品国产精品久久久不卡| bbb黄色大片| 国产亚洲精品av在线| 天天躁狠狠躁夜夜躁狠狠躁| 久久天躁狠狠躁夜夜2o2o| 欧美大码av| 三级国产精品欧美在线观看 | 婷婷亚洲欧美| 18禁国产床啪视频网站| 一进一出抽搐动态| 欧美精品啪啪一区二区三区| 国产91精品成人一区二区三区| 欧美乱妇无乱码| 天堂av国产一区二区熟女人妻| 成人国产一区最新在线观看| 岛国在线免费视频观看| 国内久久婷婷六月综合欲色啪| 三级男女做爰猛烈吃奶摸视频| 久久中文看片网| 精品一区二区三区视频在线 | 神马国产精品三级电影在线观看| 国产高清有码在线观看视频| 国产高清三级在线| 亚洲精品在线观看二区| 亚洲黑人精品在线| 日韩大尺度精品在线看网址| 免费看a级黄色片| 岛国在线免费视频观看| 国内精品久久久久精免费| www.自偷自拍.com| 亚洲黑人精品在线| 成人欧美大片| 中文字幕人成人乱码亚洲影| 一本一本综合久久| 亚洲国产欧美网| 亚洲成人中文字幕在线播放| 欧美乱妇无乱码| 看黄色毛片网站| 久久久国产欧美日韩av| 男女视频在线观看网站免费| 国产探花在线观看一区二区| 在线视频色国产色| 国产精品久久视频播放| 高潮久久久久久久久久久不卡| 此物有八面人人有两片| 嫩草影院入口| 国产成人精品久久二区二区免费| 国产伦精品一区二区三区视频9 | 成熟少妇高潮喷水视频| 精品不卡国产一区二区三区| 深夜精品福利| 亚洲av熟女| 成人鲁丝片一二三区免费| av黄色大香蕉| 成人高潮视频无遮挡免费网站| 亚洲熟女毛片儿| 国产精品av视频在线免费观看| 欧美一区二区国产精品久久精品| www.www免费av| 成人三级做爰电影| 亚洲av中文字字幕乱码综合| 亚洲电影在线观看av| 国产精品香港三级国产av潘金莲| 露出奶头的视频| 别揉我奶头~嗯~啊~动态视频| 日韩欧美国产在线观看| 757午夜福利合集在线观看| 此物有八面人人有两片| 天堂√8在线中文| 18美女黄网站色大片免费观看| 成人鲁丝片一二三区免费| 国产成人精品久久二区二区免费| 99久久久亚洲精品蜜臀av| 宅男免费午夜| bbb黄色大片| 婷婷亚洲欧美| 综合色av麻豆| 欧美大码av| 午夜免费成人在线视频| 午夜免费激情av| 亚洲国产日韩欧美精品在线观看 | 男女视频在线观看网站免费| 国产欧美日韩精品一区二区| 久久久成人免费电影| 成人av在线播放网站| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久久黄片| 老司机午夜福利在线观看视频| 亚洲电影在线观看av| 黄色视频,在线免费观看| 日韩欧美在线二视频| 国产爱豆传媒在线观看| 久久亚洲真实| 亚洲无线观看免费| 亚洲精品美女久久av网站| 亚洲第一欧美日韩一区二区三区| 免费在线观看影片大全网站| 欧美成人性av电影在线观看| 少妇的逼水好多| 最新中文字幕久久久久 | 中文亚洲av片在线观看爽| 亚洲av电影在线进入| www.熟女人妻精品国产| 男女午夜视频在线观看| 麻豆成人午夜福利视频| av福利片在线观看| 91av网站免费观看| 99久久精品一区二区三区| 国产不卡一卡二| 欧美色视频一区免费| 免费在线观看视频国产中文字幕亚洲| 哪里可以看免费的av片| 99久久综合精品五月天人人| 波多野结衣高清无吗| 麻豆av在线久日| 9191精品国产免费久久| 久久精品影院6| 狂野欧美激情性xxxx| 欧美日韩黄片免| а√天堂www在线а√下载| 91老司机精品| 少妇人妻一区二区三区视频| 欧美日韩福利视频一区二区| 小说图片视频综合网站| 国产伦人伦偷精品视频| 少妇的逼水好多| 久久精品国产清高在天天线| av片东京热男人的天堂| 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站| 国产精品国产高清国产av| 久久香蕉国产精品| 99热这里只有是精品50| 亚洲片人在线观看| 首页视频小说图片口味搜索| 亚洲专区中文字幕在线| 桃红色精品国产亚洲av| 亚洲精品一卡2卡三卡4卡5卡| 久久久精品欧美日韩精品| 国产综合懂色| 男女下面进入的视频免费午夜| 一进一出抽搐动态| 老汉色∧v一级毛片| 日韩av在线大香蕉| 亚洲无线观看免费| 欧美性猛交黑人性爽| 久久久久精品国产欧美久久久| 亚洲真实伦在线观看| 男人和女人高潮做爰伦理| 色老头精品视频在线观看| 欧美性猛交黑人性爽| 国产又黄又爽又无遮挡在线| av欧美777| 99久久精品国产亚洲精品| 中文亚洲av片在线观看爽| 一夜夜www| 日日摸夜夜添夜夜添小说| 久久精品国产亚洲av香蕉五月| 99热6这里只有精品| 日韩中文字幕欧美一区二区| 麻豆av在线久日| 亚洲自偷自拍图片 自拍| 亚洲熟妇熟女久久| 久久国产精品人妻蜜桃| 亚洲成人中文字幕在线播放| 美女高潮的动态| 悠悠久久av| 99国产极品粉嫩在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲专区字幕在线| 国产精品自产拍在线观看55亚洲| 成人欧美大片| 99在线人妻在线中文字幕| 国产av一区在线观看免费| 亚洲欧美日韩无卡精品| 精品一区二区三区四区五区乱码| 久久久久久人人人人人| 精品欧美国产一区二区三| 国产精品一区二区三区四区免费观看 | 亚洲精品中文字幕一二三四区| 一级毛片精品| 国产午夜精品久久久久久| av黄色大香蕉| 在线永久观看黄色视频| 99热这里只有精品一区 | 成人av在线播放网站| 久久香蕉精品热| 日日干狠狠操夜夜爽| 黑人操中国人逼视频| 天堂√8在线中文| 午夜久久久久精精品| 欧美在线黄色| 国产v大片淫在线免费观看| 久久欧美精品欧美久久欧美| 一进一出抽搐动态| 亚洲专区中文字幕在线| 国产成人aa在线观看| 午夜福利在线观看免费完整高清在 | 国产精品av视频在线免费观看| 国产69精品久久久久777片 | 国产高清videossex| 美女午夜性视频免费| 亚洲成a人片在线一区二区| 成人av一区二区三区在线看| 1024手机看黄色片| 亚洲中文字幕一区二区三区有码在线看 | 搡老熟女国产l中国老女人| 亚洲熟妇熟女久久| 成人一区二区视频在线观看| 变态另类丝袜制服| 成人欧美大片| 久久精品综合一区二区三区| 99久久精品一区二区三区| 天堂动漫精品| 免费在线观看日本一区| 亚洲av美国av| 91老司机精品| 一二三四社区在线视频社区8| 国产av一区在线观看免费| 在线观看一区二区三区| 成人亚洲精品av一区二区| 精品久久久久久,| bbb黄色大片| 国产高潮美女av| 香蕉国产在线看| 亚洲熟女毛片儿| 麻豆av在线久日| 国产乱人伦免费视频| 黄频高清免费视频| 757午夜福利合集在线观看| 91av网站免费观看| 国产精品乱码一区二三区的特点| 亚洲性夜色夜夜综合| 丁香六月欧美| 久久久国产精品麻豆| 丁香六月欧美| 噜噜噜噜噜久久久久久91| 国产激情欧美一区二区| 久久久久久久午夜电影| 少妇的逼水好多| 久久久久久国产a免费观看| 免费观看精品视频网站| 国产精品九九99| 怎么达到女性高潮| 国产一区二区激情短视频| 亚洲 欧美一区二区三区| 天堂动漫精品| 可以在线观看毛片的网站| 老汉色av国产亚洲站长工具| 国产伦精品一区二区三区四那| АⅤ资源中文在线天堂| 一级毛片高清免费大全| 国产精品日韩av在线免费观看| 免费在线观看日本一区| 国产精品日韩av在线免费观看| 精品国内亚洲2022精品成人| 床上黄色一级片| 成人一区二区视频在线观看| 成人特级av手机在线观看| 国产欧美日韩精品一区二区| 综合色av麻豆| 国产精品99久久久久久久久| 亚洲精品中文字幕一二三四区| 一个人看视频在线观看www免费 | 国产精品久久电影中文字幕| 国产主播在线观看一区二区| 天堂影院成人在线观看| 亚洲av免费在线观看| xxx96com| 麻豆国产97在线/欧美| 99精品在免费线老司机午夜| 九九热线精品视视频播放| 日韩欧美在线乱码| 偷拍熟女少妇极品色| 欧美乱码精品一区二区三区| 免费观看人在逋| 特级一级黄色大片| 亚洲aⅴ乱码一区二区在线播放| 成人高潮视频无遮挡免费网站| 最近最新中文字幕大全免费视频| 国产精品一区二区精品视频观看| 男人的好看免费观看在线视频| 亚洲 欧美 日韩 在线 免费| 国产欧美日韩一区二区精品| 日韩免费av在线播放| 一级作爱视频免费观看| 午夜福利在线在线| 又爽又黄无遮挡网站| 亚洲国产精品999在线| 狂野欧美激情性xxxx| 91av网一区二区| 色av中文字幕| 国产私拍福利视频在线观看| 人妻丰满熟妇av一区二区三区| 床上黄色一级片| 一区二区三区国产精品乱码| 少妇裸体淫交视频免费看高清| 一个人看视频在线观看www免费 | 制服人妻中文乱码| 五月玫瑰六月丁香| 国产成人精品久久二区二区免费| 黄频高清免费视频| 国产精品一区二区精品视频观看| 国产精华一区二区三区| 999久久久国产精品视频| 99热6这里只有精品| 2021天堂中文幕一二区在线观| 欧美丝袜亚洲另类 | 中文在线观看免费www的网站| 99久久精品热视频| 久久久久久久久免费视频了| 久久久久久久午夜电影| 成人永久免费在线观看视频| 男女视频在线观看网站免费| 动漫黄色视频在线观看| 国产成人一区二区三区免费视频网站| 精品久久久久久,| 午夜福利成人在线免费观看| 18禁国产床啪视频网站| 日日摸夜夜添夜夜添小说| 国产一区二区三区在线臀色熟女| 成人高潮视频无遮挡免费网站| 天天躁日日操中文字幕| 欧美三级亚洲精品| 三级毛片av免费| av中文乱码字幕在线| 狂野欧美激情性xxxx| 亚洲片人在线观看| 午夜精品一区二区三区免费看| 国产一区二区在线av高清观看| 9191精品国产免费久久| 欧美在线一区亚洲| 亚洲电影在线观看av| 熟女人妻精品中文字幕| 午夜影院日韩av| 午夜福利成人在线免费观看| 97超视频在线观看视频| 中文字幕av在线有码专区| 日本免费a在线| 老司机在亚洲福利影院| 免费观看的影片在线观看| 日韩免费av在线播放| e午夜精品久久久久久久| 欧美在线黄色| 日本一本二区三区精品| or卡值多少钱| 曰老女人黄片| 精品欧美国产一区二区三| 男人舔奶头视频| 老司机午夜福利在线观看视频| 亚洲美女视频黄频| 欧美最黄视频在线播放免费| 国产精品精品国产色婷婷| 欧美激情久久久久久爽电影| 给我免费播放毛片高清在线观看| www.www免费av| 国产伦在线观看视频一区| 免费搜索国产男女视频| 精品一区二区三区视频在线观看免费| 国产成人一区二区三区免费视频网站| 国产真人三级小视频在线观看| 久久久久精品国产欧美久久久| 长腿黑丝高跟| 国产熟女xx| 久久久久久久精品吃奶| 国产极品精品免费视频能看的| 亚洲欧美日韩高清专用| 色在线成人网| 久久午夜综合久久蜜桃| 成人特级av手机在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 俺也久久电影网| 男人舔女人的私密视频| 成人三级做爰电影| 国产精品一区二区三区四区久久| 中文资源天堂在线| 麻豆av在线久日| 午夜视频精品福利| 少妇的丰满在线观看| 日韩欧美一区二区三区在线观看| 国产激情偷乱视频一区二区| 岛国在线免费视频观看| 国内精品美女久久久久久| 亚洲成a人片在线一区二区| 久久精品夜夜夜夜夜久久蜜豆| 久久热在线av| 中文字幕熟女人妻在线| 一个人看的www免费观看视频| tocl精华| 国产精品久久久av美女十八| 男女那种视频在线观看| 嫩草影院精品99| 国产精品一区二区精品视频观看| 亚洲人成电影免费在线| 国产一区二区在线观看日韩 | 欧美乱码精品一区二区三区| 中国美女看黄片| 亚洲 国产 在线| 校园春色视频在线观看| АⅤ资源中文在线天堂| 少妇熟女aⅴ在线视频| 国产亚洲精品久久久com| 国产精品久久久久久亚洲av鲁大| 日本在线视频免费播放| 成人特级av手机在线观看| 欧美不卡视频在线免费观看| 成人av在线播放网站| 巨乳人妻的诱惑在线观看| 精品久久久久久久久久免费视频| 我要搜黄色片| 国产极品精品免费视频能看的| 国产亚洲欧美98| 宅男免费午夜| 欧美日韩国产亚洲二区| 日韩高清综合在线| 国产三级在线视频| 两个人看的免费小视频| 久久中文字幕人妻熟女| 成人特级黄色片久久久久久久| 免费在线观看亚洲国产| 午夜免费观看网址| 91九色精品人成在线观看| 午夜福利在线观看吧| 91字幕亚洲| 熟女少妇亚洲综合色aaa.| 19禁男女啪啪无遮挡网站| 亚洲va日本ⅴa欧美va伊人久久| 两性夫妻黄色片| 无遮挡黄片免费观看| 午夜久久久久精精品| 国产精品自产拍在线观看55亚洲| 精品不卡国产一区二区三区| av片东京热男人的天堂| 丰满人妻一区二区三区视频av | 国产亚洲av高清不卡| 三级毛片av免费| 国产免费av片在线观看野外av| 国产成人精品久久二区二区免费| 免费看十八禁软件| 国产野战对白在线观看| 91老司机精品| 日本a在线网址| 一区二区三区高清视频在线| 婷婷丁香在线五月| 国产精品九九99| 老司机在亚洲福利影院| 中文字幕精品亚洲无线码一区| 在线永久观看黄色视频| 国产熟女xx| 久久性视频一级片| 啦啦啦免费观看视频1| 啦啦啦韩国在线观看视频| cao死你这个sao货| 97碰自拍视频| 最新美女视频免费是黄的| 少妇裸体淫交视频免费看高清| 国产极品精品免费视频能看的| 99久国产av精品| 九色成人免费人妻av| 国产毛片a区久久久久| 国产成人aa在线观看| 久久99热这里只有精品18| 成人精品一区二区免费| 色精品久久人妻99蜜桃| 最好的美女福利视频网| 亚洲欧美日韩高清在线视频| 亚洲aⅴ乱码一区二区在线播放| 大型黄色视频在线免费观看| svipshipincom国产片| 听说在线观看完整版免费高清| 亚洲 欧美 日韩 在线 免费| 欧美一级毛片孕妇| 欧美一区二区国产精品久久精品| 又紧又爽又黄一区二区| 女人被狂操c到高潮| 亚洲精品美女久久av网站| 亚洲色图av天堂| 欧美色欧美亚洲另类二区| 岛国视频午夜一区免费看| 欧美精品啪啪一区二区三区| 国产麻豆成人av免费视频| 久久天堂一区二区三区四区| 亚洲自偷自拍图片 自拍| 成人av在线播放网站| 在线永久观看黄色视频| 又黄又粗又硬又大视频| 1024手机看黄色片| 男女做爰动态图高潮gif福利片| 人人妻人人看人人澡| 青草久久国产| 啦啦啦免费观看视频1| 少妇的逼水好多| 久久性视频一级片| 男人舔女人下体高潮全视频| 欧美高清成人免费视频www| 男人的好看免费观看在线视频| www日本黄色视频网| 国产成人精品久久二区二区免费| 亚洲五月婷婷丁香| 在线观看一区二区三区| 亚洲成av人片在线播放无| 亚洲色图 男人天堂 中文字幕| 热99在线观看视频| 国产伦在线观看视频一区| 成人性生交大片免费视频hd| 欧美午夜高清在线| 亚洲欧美日韩东京热| 午夜激情福利司机影院| 深夜精品福利| 国产精品99久久99久久久不卡| 国产亚洲欧美98| 国产一区二区在线av高清观看| 久久香蕉精品热| 亚洲av电影不卡..在线观看| 天天添夜夜摸| 日韩欧美 国产精品| 一本精品99久久精品77|