• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Method for Detecting Fluff Quality of Fabric Surface Based on Support Vector Machine

    2020-10-27 08:15:14LINQiangqiang1JINShoufeng1MAQiurui

    LINQiangqiang1,2,JINShoufeng1,2,MAQiurui

    1 College of Mechanical and Electrical Engineering, Xi’an Polytechnic University , Xi’an 710048, China2 Key Laboratory of Modern Intelligent Textile Equipment, Xi’an Polytechnic University, Xi’an 710048, China3 College of Fashion and Art of Design, Xi’an Polytechnic University, Xi’an 710048, China

    Abstract: In order to improve the accuracy of using visual methods to detect the quality of fluff fabrics, based on the previous research, this paper proposes a method of rapid classification detection using support vector machine(SVM). The fabric image is acquired by the principle of light-cut imaging, and the region of interest is extracted by the method of grayscale horizontal projection. The obtained coordinates of the upper edge of the fabric are decomposed into high frequency information and low frequency information by wavelet transform, and the high frequency information is used as a data set for training. After experimental comparison and analysis, the detection rate of the SVM method proposed in this paper is higher than the previously proposed back propagation (BP) neural network and particle swarm optimization BP (PSO-BP) neural network detection methods, and the accuracy rate can reach 99.41%, which can meet the needs of industrial testing.

    Key words: wool fabric; machine vision; support vector machine (SVM) ; optical imaging

    Introduction

    In recent years, people’s pursuit of clothing style and comfort has been continuously improved. The raising process (such as erosion and brushing) is currently the most commonly used industrial method to change the fabric style and comfort. The fluff fabrics have different styles after fluffing, so manual inspection requires a lot of time and efforts.

    At present, machine vision is widely used in various inspection industries[1-3]. At the same time, it is also widely used in the detection of fabric fuzzing and pilling. Dongetal.[4]applied the edge detection algorithm to calculate the area of the pilling area, and used the area as the evaluation level. Maketal.[5]used Gabor function filters that can match multiple levels to detect fabric defects. Jingetal.[6]used mean shift filter algorithm, wavelet transform and neural network fusion algorithm to effectively extract the detailed features of fabric defects. Lietal.[7]used directional gradient histogram and low rank decomposition algorithm to achieve rapid separation of fabric defects, and effectively extracted the features of fabric defects. Yangetal.[8]used the two-dimensional Otsu algorithm to quickly detect fabric defects while effectively retaining the edge information of the fabric image. Heetal.[9]proposed a window skip morphology method for texture fabric defect detection algorithm. The detection speed of this method exceeded 80 m/min, and the defect detection accuracy was 0.1 mm. Kim and Ppar[10]took advantage of the periodicity of the fabric texture and used Fourier transform to transform the fabric image into the frequency domain, and completed the effective segmentation of the fabric surface pilling in the frequency domain. Wangetal.[11]applied wavelet transform and Gabor filtering to realize the segmentation of fabric hairballs. Zhouetal.[12]established the fabric fuzzing and grading evaluation index on the basis of completing the image segmentation of the fabric in the frequency domain. There is less evaluation of the fluffing state of the fleece fabric, and the measurement theory and method are not perfect. Therefore, it has not been widely used in practical industrial production. And in response to the actual needs of a company’s project, it is necessary to test whether the produced fluff fabric is qualified. It is of great significance to propose methods for detecting fluff quality of fabric surface.

    Support vector machine(SVM) was the first proposed in Ref.[13]. It is not only suitable for classification, but also for nonlinear regression. The main calculation idea is to use classification hyperplane for classification and regression[14]. It is widely used in different fields such as risk warning[15], fault detection[16], and medical detection[17].

    In order to improve the efficiency of fabric inspection, experimental visual inspection replaces manual inspection. In this paper, a rapid recognition inspection is proposed based on the method of SVM classification. We obtained the fabric image through the light-cut imaging and the region of interest by grayscale horizontal projection. Then the edge coordinates of the fabric are decomposed by wavelet transform, using high frequency information as the training data set, the qualified fabric label is 1, and the unqualified fabric label is 0. The fabric is detected through the trained SVM classifier.

    1 Technical Solutions

    The raising process is the finishing process of the fabric, which directly affects the style and quality of the fabric. Fabric fluffing is a dynamic physical change process. As shown in Fig. 1(a), the raising roller wrapped with the hairpin cloth is circumferentially distributed on the cylinder, and the raised fabric is close to the cylinder, due to the two traction rollers between the cloth. There is a speed difference in the cloth, and the fabric has a certain tension on the surface of the raising roller. The raising roller rotates with the cylinder at the same time as the rotation. Due to the relative movement between the raising roller and the raised fabric, the raising action can be produced. The resulting raised fabric is shown in Fig.1(b), and there are four typical fabrics provided by the company. Among them, sample 1, sample 2 and sample 3 are qualified, which are tested by

    (a) Process of fluff fabric

    (b)Typical samples provided by enterprises

    the enterprise factory, and sample 4 is the unqualified fabric. According to the needs of enterprises, this paper needs to test whether the above four types of fabrics are qualified.

    The vision acquisition system uses the AVT GE1050 industrial camera with a resolution of 1 024×1 024 pixels. The lens is a computar lens with a focal length of 8 mm.Through the raising process, the dense fluff with a certain thickness is formed on the surface of the fabric. In order to obtain information on the thickness and distribution of the fluff on the surface of the fabric, the principle of light-cut imaging shown in Fig. 2 is used in this paper. The camera and the strip light source are placed on both sides of the fabric under test. The strip light source is placed directly under the roller to make the light tangent to the axial contour edge of the roller. The use of background light imaging can avoid interference with the surface texture and color characteristics of the fabric. The fabric is coated on the surface of the roller and rotates at a constant speed with the roller. When the film is rotated to the shooting position, the thickness and distribution of the fluff on the surface of the fabric are the most obvious under the tension of the roller. The image size obtained by applying the device is 1 024×1 024 pixels.

    Fig. 2 Principle of light-cut imaging

    2 Experiments

    2.1 Region of interest extraction

    The size of the collected fluff fabric image is 1 024×1 024 pixels, but the fluff fabric only occupies 100 pixels in the vertical direction, and the remaining 924 pixel values of the sound system are all useless areas. The size of the area of interest for extracting the fabric is only 1 024× 100 pixels.

    According to the characteristics of the collected fabric image, the gray value of the fluff area is larger than the other areas. This paper uses the accumulation method of the horizontal gray value to obtain the ROI of fluff fabrics. The maximum value of the gray value accumulation is taken as the apex of the crop. The interception process is shown in Fig. 3. The calculation formula of horizontal gray value accumulation is shown as[18]

    (1)

    whereCk(j) is the grayscale accumulated value,j= 1,2, …,M;Mis the vertical size of the image, andMis 1 024 pixels;fk(i,j) is the gray value at the point (i,j).

    2.2 Feature extraction

    After obtaining the region of interest in the fabric image, the image is pre-processed by filtering to eliminate noise caused during the acquisition process. After binarizing the image, the principle of Freeman chain code is used to extract the coordinates of the upper edge of the fabric[19]. The binarization process is shown in Fig. 4.

    Fig. 3 Region of interest extraction

    Fig. 4 Grayscale histogram

    Wavelet transform plays a very important role in the time domain and frequency domain transform, and wavelet transform also plays a huge role in the image processing process[20-22]. After comparison, the upper edge coordinate features of the fabric are decomposed by wavelet, and the accuracy obtained by using high frequency information to train the neural network is

    higher than the coordinate training set[18]. Therefore, this paper continues to use the high frequency information after wavelet transform as the data set. And the label of qualified fabric is recorded as 1. The label of unqualified fabric is recorded as 0. The process of edge information on the fabric of wavelet transform is shown in Fig. 5.

    Fig. 5 Wavelet decomposition of edge information

    It can be seen from Fig. 5 that, after a layer of wavelet decomposition, the high frequency information is significantly different from the original coordinate information and the low frequency information, the data of the high frequency information is evenly distributed on both sides of 0, and the characteristic fluctuation is obvious. This is because the wavelet analysis breaks the upper edge into two parts: low frequency information and high frequency information. Low frequency information is a slow-changing part; high frequency information is a rapidly changing part (such as jumping from black to white), which reflects the details of image coordinates. Therefore, it is more suitable to train SVM as a training set.

    The characteristic of the dbNwavelet is that the order of the vanishing moment increases with the increase of the order (sequenceN), where in the higher the vanishing moment, the better the smoothness, the stronger the localization ability of the frequency domain, and the better the band division effect, and db1 is used as the wavelet base for decomposition[23].

    The high frequency information of qualified fabrics and unqualified fabrics is shown in Fig.6. The high frequency information distribution bandwidth of qualified fabrics is narrow, appearing as needles, while the high frequency information bandwidth of unqualified fabrics is wide, appearing as columns. It can be seen from Fig. 6 that the high frequency information of qualified fabrics is evenly distributed, which is quite different from the high frequency information of unqualified fabrics, so it can be identified and detected by SVM.

    (a) Qualified fabric with db1 filter

    (b) Unqualified fabric with db1 filter

    The size of the obtained data set is 2 058×601, of which 200 groups are used for testing, and the remaining part is used as a training group for training.

    2.3 SVM detection models

    The structure of the SVM is shown in Fig.7. SVM uses the hinge loss function to calculate empirical risk and adds a regularization term to the solution system to optimize structural risk. It is a classifier with sparsity and robustness. SVM can perform non-linear classification through the kernel method, which is one of the common kernel learning methods.

    Fig. 7 Structure of SVM

    As shown in Fig. 7,bis the bias of SUM andKis the kernel function. There are four main types.

    K(x,xi)=(γxTxi+r)p,γ>0,

    (4)

    K(x,xi)=exp(-γ‖x-xi‖2),γ>0,

    (5)

    K(x,xi)=xTxi,

    (6)

    K(x,xi)=tanh(γxTxi+r) ,

    (7)

    wherer>0. Equation(4) is a polynomial kernel function, Eq. (5) is a radial basis kernel function, Eq.(6) is a linear kernel function, and Eq.(7) is a two-layer perceptron kernel function.

    3 Results and Discussion

    The svmtrain function in the libsvm toolbox is used for training. The main parameters of this function are kernel function -t, penalty function -c, and kernel function parameter -g. Different kernel functions are used for training, and the results are shown in Table 1.

    Table 1 Comparison of different kernel functions

    In Table 1, we obtain that when the kernel function is radial basis function, the detection accuracy is the highest, but the penalty function -cand kernel function parameter -gare not calculated, and we randomly assign values to -cand -g.

    In order to select the optimal kernel function parameter -gand penalty parameter -c, the particle swarm optimization (PSO) algorithm is used to optimize the SVM. The speed parametersC1 andC2 of the PSO acceleration algorithm are 1.5 and 1.7, the number of iterations is 200, and the number of population is 20. The process of PSO to optimize SVM is shown in Fig. 8.

    Fig. 8 Optimization process

    The PSO process is shown in Fig. 9.

    Fig. 9 The best parameter fitness curve

    After optimizing the SVM through PSO, it can be obtained that when the SVM training parameter is “accuracy [PSO method] (parametersC1=1.5,C2=1.7, termination algebra=200, population pop=20), best parameter of svmtrain -c=0.281 24, -g=829.314, CV accuracy=100%” , the detection accuracy is the maximum, and the actual classification and predicted classification chart of the test set is shown in Fig. 10.

    Fig.10 SVM test results

    When selecting a data set, this article uses artificially judged fabrics for data collection, and then uses the algorithm proposed in this article to compare the detection results with manual labor. The evaluation criteria are mainly based on manual evaluation results. In the previous research process, we applied the back propagation (BP) neural network and the BP neural network optimized by the PSO algorithm to detect the fluff fabric[23-24]. Although the detection accuracy is high, there are still some errors, so this paper proposes to apply the SVM algorithm for detection . The selected data set is exactly the same as the data set applied by the first two methods. In addition, it only takes 0.001 3 s to detect a single image using the SVM method. The detection accuracy of the three methods is shown in Table 2.

    Table 2 Test results for each category

    4 Conclusions

    In order to improve the detection accuracy of fluff fabrics, this paper proposes the application of SVM classification methods to achieve detection based on previous research. After experimental verification, the SVM classification method proposed in this paper can meet the detection of qualified and unqualified fabrics.

    (1) Using the method of gray scale horizontal projection, the maximum position of the projection is taken as the midpoint of the segmentation, and the region of interest of the pile fabric image is obtained. The high frequency information extracted from the upper edge of the fabric is used as a training sample to obtain a training data set.

    (2) Construct the SVM classification detection model, mark the label of qualified fabric as 1 and the label of unqualified fabric as 0, and apply PSO to optimize the parameters of SVM to obtain the best training parameters.

    (3) After experimental verification, the accuracy of the detection method of SVM proposed in this paper is 99.41%, and the accuracy of detection is higher than that of BP neural network and PSO-BP neural network.

    (4) In the following research, we plan to collect pile fabric data under various production conditions, and then apply SVM to classify, in order to achieve faster fabric defect detection. In addition, we plan to collect dynamic data sets and build a three-dimensional model of the fabric to improve the visualization of the fabric.

    精品国产国语对白av| tube8黄色片| 美女福利国产在线| 国产97色在线日韩免费| 在线观看午夜福利视频| 亚洲久久久国产精品| 日本五十路高清| 欧美人与性动交α欧美软件| 黄色丝袜av网址大全| 99香蕉大伊视频| 日韩大码丰满熟妇| 亚洲熟妇熟女久久| 国产一区在线观看成人免费| 在线观看www视频免费| 91大片在线观看| 久久久国产成人免费| 亚洲一码二码三码区别大吗| 亚洲精品粉嫩美女一区| avwww免费| 成人国产一区最新在线观看| 纯流量卡能插随身wifi吗| 亚洲专区字幕在线| 亚洲 欧美一区二区三区| 黄色丝袜av网址大全| 国产麻豆69| 一区二区三区精品91| 成人免费观看视频高清| 久久天堂一区二区三区四区| 一级a爱片免费观看的视频| 日韩免费av在线播放| 妹子高潮喷水视频| 黑人操中国人逼视频| 国产精品 欧美亚洲| 女人精品久久久久毛片| 精品久久久久久电影网| 色94色欧美一区二区| 国产欧美日韩一区二区三| 麻豆成人av在线观看| 国产精品98久久久久久宅男小说| 国产激情欧美一区二区| 欧美另类亚洲清纯唯美| 国产97色在线日韩免费| 欧美成狂野欧美在线观看| 黄频高清免费视频| 丰满的人妻完整版| 一a级毛片在线观看| 妹子高潮喷水视频| 搡老熟女国产l中国老女人| 国产在线精品亚洲第一网站| 成熟少妇高潮喷水视频| 在线av久久热| 18禁裸乳无遮挡免费网站照片 | 午夜成年电影在线免费观看| 久久这里只有精品19| 久久精品亚洲av国产电影网| 国产精品自产拍在线观看55亚洲 | 欧美国产精品一级二级三级| 国产成人免费观看mmmm| 久久九九热精品免费| 亚洲国产精品一区二区三区在线| 亚洲av美国av| 亚洲片人在线观看| 久久人人97超碰香蕉20202| 国产精品久久久久成人av| 国产成人免费无遮挡视频| 午夜久久久在线观看| 少妇的丰满在线观看| 日韩有码中文字幕| tocl精华| 亚洲熟妇熟女久久| 久久久精品免费免费高清| 人人妻,人人澡人人爽秒播| 黄色 视频免费看| 亚洲中文字幕日韩| 国产精品一区二区精品视频观看| 国产在视频线精品| 国内久久婷婷六月综合欲色啪| 欧美黄色淫秽网站| 18禁裸乳无遮挡免费网站照片 | 亚洲三区欧美一区| 韩国av一区二区三区四区| 国产人伦9x9x在线观看| 免费看日本二区| 非洲黑人性xxxx精品又粗又长| 啪啪无遮挡十八禁网站| 九九热线精品视视频播放| 岛国视频午夜一区免费看| 国产精品av视频在线免费观看| 午夜福利18| 91av网一区二区| 午夜福利18| 无遮挡黄片免费观看| 精品国产亚洲在线| 婷婷精品国产亚洲av| 亚洲av二区三区四区| 又紧又爽又黄一区二区| 国产精品国产高清国产av| 在线播放无遮挡| 成人永久免费在线观看视频| 精品人妻一区二区三区麻豆 | 淫秽高清视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产精品一及| 中文字幕人妻丝袜一区二区| 国产乱人视频| 在线观看av片永久免费下载| 日韩免费av在线播放| 亚洲专区中文字幕在线| 12—13女人毛片做爰片一| 国语自产精品视频在线第100页| 天天一区二区日本电影三级| 无限看片的www在线观看| 窝窝影院91人妻| 亚洲天堂国产精品一区在线| 精品99又大又爽又粗少妇毛片 | 国产精品一区二区三区四区免费观看 | 亚洲国产精品成人综合色| 国产一区二区三区在线臀色熟女| 欧美性猛交黑人性爽| 搡老妇女老女人老熟妇| 成人特级av手机在线观看| 麻豆国产97在线/欧美| 久久香蕉国产精品| 国产91精品成人一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩无卡精品| 国产三级在线视频| 亚洲欧美日韩无卡精品| 亚洲自拍偷在线| 欧美av亚洲av综合av国产av| 欧美日本亚洲视频在线播放| 无遮挡黄片免费观看| 精品人妻1区二区| 色在线成人网| 啦啦啦免费观看视频1| 男人舔女人下体高潮全视频| 久久99热这里只有精品18| 国产伦精品一区二区三区视频9 | 亚洲av熟女| 母亲3免费完整高清在线观看| 日本 欧美在线| 欧美成人a在线观看| 最近在线观看免费完整版| 毛片女人毛片| 18禁黄网站禁片午夜丰满| 日本撒尿小便嘘嘘汇集6| 欧美黄色淫秽网站| 免费看日本二区| 国产成人啪精品午夜网站| svipshipincom国产片| 天堂影院成人在线观看| 国产精品一区二区免费欧美| 国产成人av激情在线播放| 亚洲欧美日韩高清在线视频| av福利片在线观看| 熟女电影av网| 麻豆久久精品国产亚洲av| 久久久久久人人人人人| 午夜福利在线观看免费完整高清在 | 男人舔女人下体高潮全视频| 久久精品夜夜夜夜夜久久蜜豆| 久久精品夜夜夜夜夜久久蜜豆| 一区福利在线观看| 丰满人妻一区二区三区视频av | 啦啦啦免费观看视频1| 欧美又色又爽又黄视频| 无遮挡黄片免费观看| 亚洲精品色激情综合| 久久99热这里只有精品18| 欧美黑人欧美精品刺激| 香蕉av资源在线| 久久中文看片网| 久久中文看片网| 亚洲国产欧洲综合997久久,| 99热只有精品国产| 国产精品精品国产色婷婷| 久久精品91无色码中文字幕| 热99re8久久精品国产| 成熟少妇高潮喷水视频| 欧美日韩一级在线毛片| 啪啪无遮挡十八禁网站| 俺也久久电影网| 男插女下体视频免费在线播放| 国产亚洲av嫩草精品影院| 久久久色成人| 两人在一起打扑克的视频| 首页视频小说图片口味搜索| 婷婷丁香在线五月| www.熟女人妻精品国产| 天堂影院成人在线观看| 天堂网av新在线| 精品国内亚洲2022精品成人| 中文字幕av在线有码专区| 国产亚洲精品av在线| 亚洲最大成人中文| 国产毛片a区久久久久| 在线天堂最新版资源| 国产免费一级a男人的天堂| 嫩草影视91久久| 人人妻,人人澡人人爽秒播| 欧美av亚洲av综合av国产av| 亚洲在线自拍视频| 亚洲av成人精品一区久久| 淫妇啪啪啪对白视频| 国产亚洲精品综合一区在线观看| 日韩成人在线观看一区二区三区| 色在线成人网| 日韩欧美一区二区三区在线观看| 亚洲,欧美精品.| 国产精品日韩av在线免费观看| 天天添夜夜摸| 久久亚洲真实| tocl精华| 日本撒尿小便嘘嘘汇集6| 蜜桃久久精品国产亚洲av| 精品一区二区三区av网在线观看| 亚洲成av人片在线播放无| 久久久久国产精品人妻aⅴ院| 欧美区成人在线视频| 91久久精品电影网| 国产成人系列免费观看| 免费av毛片视频| 亚洲精品国产精品久久久不卡| 日本免费a在线| 日本黄色视频三级网站网址| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人久久性| 一级a爱片免费观看的视频| 99精品欧美一区二区三区四区| 乱人视频在线观看| 中国美女看黄片| 中文字幕精品亚洲无线码一区| 亚洲国产中文字幕在线视频| 国产欧美日韩精品一区二区| 亚洲欧美日韩东京热| 国内精品美女久久久久久| 村上凉子中文字幕在线| 黄色女人牲交| 久久久久久国产a免费观看| 91在线精品国自产拍蜜月 | 窝窝影院91人妻| 国产毛片a区久久久久| 99久久久亚洲精品蜜臀av| 亚洲国产精品sss在线观看| 国产精品一区二区三区四区久久| 嫩草影院精品99| 免费在线观看成人毛片| 久久精品国产综合久久久| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品亚洲一区二区| 精品国产三级普通话版| 亚洲精品粉嫩美女一区| 男女视频在线观看网站免费| bbb黄色大片| 国产高清videossex| netflix在线观看网站| 在线a可以看的网站| 久久久久亚洲av毛片大全| 欧美午夜高清在线| 叶爱在线成人免费视频播放| 男插女下体视频免费在线播放| 国产69精品久久久久777片| 日本一本二区三区精品| 一个人看视频在线观看www免费 | 男插女下体视频免费在线播放| 亚洲avbb在线观看| www日本在线高清视频| 精品人妻偷拍中文字幕| 久久中文看片网| 日本 欧美在线| 日本撒尿小便嘘嘘汇集6| 免费人成在线观看视频色| 黄色日韩在线| 国产午夜精品久久久久久一区二区三区 | 两人在一起打扑克的视频| 欧美最黄视频在线播放免费| 手机成人av网站| 亚洲成人精品中文字幕电影| 日韩欧美三级三区| 久久6这里有精品| 熟女人妻精品中文字幕| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国内精品久久久久久久电影| 精品久久久久久久久久免费视频| 熟妇人妻久久中文字幕3abv| 12—13女人毛片做爰片一| 九九久久精品国产亚洲av麻豆| 天天添夜夜摸| 亚洲av免费高清在线观看| 精品午夜福利视频在线观看一区| 看黄色毛片网站| 又紧又爽又黄一区二区| 久久人人精品亚洲av| 深夜精品福利| 亚洲七黄色美女视频| 少妇人妻精品综合一区二区 | 日韩精品中文字幕看吧| 国产精品久久久久久久电影 | 老司机午夜十八禁免费视频| 亚洲在线自拍视频| 成年版毛片免费区| 无遮挡黄片免费观看| 亚洲熟妇熟女久久| 亚洲最大成人手机在线| 性欧美人与动物交配| 看黄色毛片网站| 波多野结衣高清无吗| 国产精品三级大全| 观看免费一级毛片| 色老头精品视频在线观看| 国产成人系列免费观看| 黄色视频,在线免费观看| 黄色片一级片一级黄色片| 美女被艹到高潮喷水动态| 一区二区三区激情视频| 午夜免费观看网址| 免费看十八禁软件| 亚洲avbb在线观看| 国产午夜精品论理片| 波多野结衣高清无吗| 麻豆国产97在线/欧美| 久久午夜亚洲精品久久| xxx96com| 三级国产精品欧美在线观看| 日韩欧美三级三区| 久久久久九九精品影院| 国产精品永久免费网站| 国产精品一区二区三区四区免费观看 | 高清在线国产一区| 老熟妇乱子伦视频在线观看| 97人妻精品一区二区三区麻豆| 最近视频中文字幕2019在线8| 在线免费观看不下载黄p国产 | 欧美黑人欧美精品刺激| 一本久久中文字幕| 国产成人av激情在线播放| 1000部很黄的大片| 亚洲熟妇熟女久久| 午夜福利视频1000在线观看| 国产在视频线在精品| 免费无遮挡裸体视频| 精华霜和精华液先用哪个| 男女之事视频高清在线观看| 丰满人妻熟妇乱又伦精品不卡| 手机成人av网站| 一区福利在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲第一电影网av| 欧美区成人在线视频| 亚洲,欧美精品.| 亚洲最大成人手机在线| 日韩大尺度精品在线看网址| 色哟哟哟哟哟哟| 噜噜噜噜噜久久久久久91| 在线观看日韩欧美| 欧美高清成人免费视频www| 一级a爱片免费观看的视频| 久久久色成人| 亚洲无线观看免费| 婷婷六月久久综合丁香| 高清毛片免费观看视频网站| 日韩欧美国产在线观看| 91久久精品电影网| 亚洲av电影在线进入| 欧美中文日本在线观看视频| 搞女人的毛片| 3wmmmm亚洲av在线观看| 国产精品 国内视频| 精品午夜福利视频在线观看一区| 757午夜福利合集在线观看| 亚洲成人中文字幕在线播放| 51午夜福利影视在线观看| 美女高潮的动态| www日本在线高清视频| 国产不卡一卡二| 天天躁日日操中文字幕| 精品久久久久久成人av| av天堂中文字幕网| 日韩欧美一区二区三区在线观看| 免费看十八禁软件| 国产高清三级在线| 我的老师免费观看完整版| 日本免费a在线| 成熟少妇高潮喷水视频| 亚洲色图av天堂| 精品国产三级普通话版| 黄片大片在线免费观看| 美女被艹到高潮喷水动态| 伊人久久大香线蕉亚洲五| 乱人视频在线观看| 亚洲一区高清亚洲精品| 天天一区二区日本电影三级| 国内揄拍国产精品人妻在线| 日本一二三区视频观看| 怎么达到女性高潮| 国产爱豆传媒在线观看| 欧美zozozo另类| 精品日产1卡2卡| 国产亚洲精品久久久久久毛片| 女生性感内裤真人,穿戴方法视频| 亚洲av不卡在线观看| 特级一级黄色大片| 午夜a级毛片| www.www免费av| 国产激情欧美一区二区| 男人舔奶头视频| 亚洲av第一区精品v没综合| 久久伊人香网站| 999久久久精品免费观看国产| 国产国拍精品亚洲av在线观看 | 国内久久婷婷六月综合欲色啪| 国产乱人伦免费视频| 中文字幕人妻丝袜一区二区| 在线看三级毛片| 国产精品一区二区三区四区免费观看 | 免费看光身美女| 亚洲av美国av| 在线观看日韩欧美| 久久久久国产精品人妻aⅴ院| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩高清专用| 亚洲成av人片在线播放无| 国内揄拍国产精品人妻在线| 免费在线观看成人毛片| 精品国产超薄肉色丝袜足j| 一个人观看的视频www高清免费观看| 真人做人爱边吃奶动态| 一进一出好大好爽视频| 国产97色在线日韩免费| 久久久久久人人人人人| 久久亚洲真实| 免费人成在线观看视频色| 日韩欧美精品v在线| 午夜老司机福利剧场| 欧美最黄视频在线播放免费| 亚洲美女黄片视频| 久久亚洲真实| 国产色婷婷99| 村上凉子中文字幕在线| 制服丝袜大香蕉在线| 亚洲不卡免费看| 欧美日韩综合久久久久久 | 最近最新免费中文字幕在线| 一级毛片女人18水好多| 婷婷精品国产亚洲av在线| av视频在线观看入口| 国产成人av激情在线播放| 亚洲真实伦在线观看| 国产精品久久视频播放| 美女被艹到高潮喷水动态| 欧美在线黄色| 久久久色成人| 内射极品少妇av片p| 岛国视频午夜一区免费看| 成年免费大片在线观看| 亚洲人成网站在线播放欧美日韩| 九色成人免费人妻av| 精品午夜福利视频在线观看一区| 精品一区二区三区视频在线观看免费| 日本在线视频免费播放| 亚洲中文字幕日韩| 嫩草影院精品99| 色尼玛亚洲综合影院| 日韩免费av在线播放| 女人十人毛片免费观看3o分钟| 亚洲在线观看片| 日韩成人在线观看一区二区三区| 男人的好看免费观看在线视频| 中文资源天堂在线| 宅男免费午夜| 亚洲人成伊人成综合网2020| 网址你懂的国产日韩在线| 乱人视频在线观看| 日本三级黄在线观看| 午夜免费成人在线视频| 国产精品久久视频播放| 小蜜桃在线观看免费完整版高清| 午夜a级毛片| 久99久视频精品免费| 婷婷亚洲欧美| 国产亚洲欧美在线一区二区| 亚洲国产中文字幕在线视频| 亚洲 国产 在线| 最近最新免费中文字幕在线| 9191精品国产免费久久| 久久久国产精品麻豆| 免费人成在线观看视频色| 深夜精品福利| 国产高清videossex| 亚洲乱码一区二区免费版| 久久九九热精品免费| 日本熟妇午夜| 欧美一区二区国产精品久久精品| 黄色丝袜av网址大全| 亚洲精品在线观看二区| 免费观看的影片在线观看| 欧美绝顶高潮抽搐喷水| 亚洲av成人av| 亚洲国产中文字幕在线视频| 欧美+亚洲+日韩+国产| 99riav亚洲国产免费| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲熟妇中文字幕五十中出| 精品99又大又爽又粗少妇毛片 | 国产成人影院久久av| 久久精品国产亚洲av涩爱 | 美女被艹到高潮喷水动态| 黄色女人牲交| 国产精品亚洲av一区麻豆| 国产高潮美女av| 中国美女看黄片| 一个人看视频在线观看www免费 | 亚洲天堂国产精品一区在线| 亚洲成人精品中文字幕电影| 一级作爱视频免费观看| 国产乱人伦免费视频| 国产精品自产拍在线观看55亚洲| 午夜精品一区二区三区免费看| 一级a爱片免费观看的视频| 在线免费观看不下载黄p国产 | 99久久无色码亚洲精品果冻| 18+在线观看网站| 丰满人妻一区二区三区视频av | 9191精品国产免费久久| 亚洲精品色激情综合| 99热这里只有精品一区| 神马国产精品三级电影在线观看| 毛片女人毛片| 亚洲专区国产一区二区| 超碰av人人做人人爽久久 | 亚洲国产高清在线一区二区三| 久久6这里有精品| 熟妇人妻久久中文字幕3abv| 色综合站精品国产| 国产色婷婷99| 精品乱码久久久久久99久播| 蜜桃亚洲精品一区二区三区| 伊人久久大香线蕉亚洲五| 欧美成狂野欧美在线观看| 免费av不卡在线播放| 69人妻影院| 搡老熟女国产l中国老女人| 九色成人免费人妻av| 国产在线精品亚洲第一网站| 男女做爰动态图高潮gif福利片| 国产精品亚洲av一区麻豆| 波多野结衣高清无吗| 麻豆成人午夜福利视频| 中文亚洲av片在线观看爽| 欧美黑人巨大hd| 岛国在线观看网站| 国内毛片毛片毛片毛片毛片| 一级毛片高清免费大全| 波多野结衣高清作品| 国产又黄又爽又无遮挡在线| 久久这里只有精品中国| 狂野欧美激情性xxxx| 国产精品久久久久久亚洲av鲁大| 一级作爱视频免费观看| 国产一级毛片七仙女欲春2| 日韩高清综合在线| 精品福利观看| 亚洲欧美日韩卡通动漫| 国产免费男女视频| 国产精品女同一区二区软件 | 99在线人妻在线中文字幕| 国产成人av激情在线播放| 国产精品免费一区二区三区在线| 色尼玛亚洲综合影院| 久久亚洲精品不卡| 校园春色视频在线观看| 欧美在线黄色| 精品午夜福利视频在线观看一区| 美女大奶头视频| 国产精品久久久久久久久免 | 久久久久久大精品| 国产激情偷乱视频一区二区| 麻豆国产97在线/欧美| 精品国内亚洲2022精品成人| 亚洲18禁久久av| 国产精品野战在线观看| 久久香蕉国产精品| 国产探花在线观看一区二区| 久久久久久久久久黄片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产探花在线观看一区二区| 国产av不卡久久| 成人一区二区视频在线观看| 九色成人免费人妻av| 成人一区二区视频在线观看| 国产国拍精品亚洲av在线观看 | 久久香蕉精品热| 黄片大片在线免费观看| 欧美三级亚洲精品| 日本一二三区视频观看| 动漫黄色视频在线观看| 亚洲成av人片免费观看| 精品一区二区三区视频在线观看免费| 国产亚洲av嫩草精品影院| 国产午夜福利久久久久久| 国产精品嫩草影院av在线观看 | 亚洲精品色激情综合| 夜夜躁狠狠躁天天躁| 长腿黑丝高跟| 99久久精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 国产激情欧美一区二区| 亚洲av日韩精品久久久久久密| 日韩欧美在线乱码| 在线观看美女被高潮喷水网站 | 99久久精品国产亚洲精品| 欧美日本亚洲视频在线播放| 欧美中文日本在线观看视频| 国产一区在线观看成人免费| 99热这里只有精品一区|