• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial*

    2021-11-23 07:28:18YingHuaWang王英華JieLi李杰ZhengGaoDong董正高YanLi李妍andXuZhang張旭
    Chinese Physics B 2021年11期
    關(guān)鍵詞:李妍英華李杰

    Ying-Hua Wang(王英華) Jie Li(李杰) Zheng-Gao Dong(董正高) Yan Li(李妍) and Xu Zhang(張旭)

    1School of Physics and Physical Engineering,Shandong Provincial Key Laboratory of Laser Polarization and Information Technology,Qufu Normal University,Qufu 273165,China

    2Gr¨unberg Research Centre,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    3School of Physics,Southeast University,Nanjing 211189,China

    Keywords: metamaterial,multi-band,asymmetric transmission,polarization conversion

    1. Introduction

    Metamaterials and metasurfaces have become an important research field because they present powerful capacities for manipulating the fundamental properties of the propagating electromagnetic waves due to the flexible design of subwavelength geometric shapes and sizes.[1,2]In addition, acoustic metamaterials are also proposed to investigate the transmission spectra and sound insulation performance.[3,4]Since the proposal of the concept of metamaterials,several novel structures have been reported, ranging from microwave to optical regimes,such as I-shaped metamaterials,split-ring resonators,L-shaped metallic antennas, and S-shaped holes.[5-9]Since then, many studies have paid attention to focusing beams,[10]creating orbital angular momentum,[11]and manipulating the polarization states,phases,and modes of TE/TM waves.[12,13]In 2007, Zhouet al.proposed an I-shaped metamaterial to manipulate the polarization of electromagnetic waves and achieved complete conversion between two perpendicular linear polarizations.[9]In 2020, broadband linear-to-circular polarization conversion was realized among reflected waves.[14]In addition, metamaterials have been used to realize perfect absorption,circular dichroism,optical activity,and the asymmetric transmission(AT)effect.[15-20]

    In recent decades, the AT effect has garnered increasing attention. To realize outstanding and tunable AT effects in linearly and circularly polarized plane waves, several studies have been conducted, such as changing the shapes of symmetry-broken chiral metastructures,[21,22]increasing the layers of the proposed nanobars,[23,24]and tilting the rectangular nanoholes.[25]With regard to circularly polarized plane waves, high-efficiency broadband and dualband AT effects have been studied and realized from microwave to optical regimes,[20,26-28]and tunable AT effects have also been realized by integrating the graphene layers with metamaterials.[29-31]With regard to linearly polarized plane waves, several studies have focused on enhancing the efficiency and broadening the band of the AT effect. In these studies,the AT effect in the microwave regime achieved better results than those in the optical regime. For instance, dualband, broadband, and multi-band AT effects have been realized in the microwave regime with high efficiency.[21,32,33]In comparison with the microwave regime, most studies on the near-infrared regime have realized the broadband or dual-band AT effect with low efficiencies.[33-35]For example,Zhang realized both circularly and linearly polarized AT effects using one-layer metamaterials, but the AT values were about 0.1.[25,29]To increase the AT values, more works paid attention to bi-layer metamaterials,then I-L-shaped,S-shaped,split ring-shaped Ω-shaped metamaterial, and many other metamaterials were proposed, and the AT values increased to 0.8.[35-40]For further increases in AT effects,multilayer metamaterial has also been proposed and the AT values have been increased to 0.9. But here, the multilayer metamaterials increase the complexity and difficulty of the fabrication process,so it is necessary to enhance and broaden the AT effects using bi-layer metamaterials.[24,41,42]In previous works, the dualband AT effect has also been realized by bi-layer metamaterial with a maximum of about 0.75,[8,32,43,44]but a few studies have reported the multi-band AT effect and its tunable properties. According to the multi-band absorption, multi-band polarization conversion, and multi-band circular dichroism and other multi-band electromagnetic effects, we know that it is useful to study the multi-band AT effect on the near-infrared regime.[45-47]

    In this study, we propose a bi-layer windmill-shaped metamaterial and numerically investigate the multi-band AT effect and its tunable properties using the finite-difference time-domain method. In comparison with the split-ring resonator, the windmill-shaped resonators can motivate and enhance more resonant modes. Consequently, the simulated results demonstrate that the AT values are greater than 0.5 at 195,260, and 309 THz. Moreover, the high-efficiency AT effects can be flexibly tuned by modulating the geometric parameters of the proposed metamaterial.For instance,the bandwidth can be tuned by changing the sizes,whereas the polarization state of the transmitted plane wave can be tuned by changing the gap between the first and second layers. The additional operating frequency bands and tunable properties provide more application possibilities for the AT effect in the future.

    2. Design and structure

    Firstly,we discuss the principles of the bi-layer windmillshaped metamaterial design. When a linearly polarized plane wave is propagating in the +zdirection, the illuminated and transmitted electric field can be given by[48,49]

    According to Eqs.(8)-(10)we can getTxx=Tyy. In addition,the windmill arms play an important role in inducing and enhancing multi-band resonances.[50]As a result, the bi-layer windmill-shaped resonator can result in a multi-band AT effect for only linearly polarized plane waves.[48-50]

    Fig.1. (a)A unit cell of bi-layer windmill-shaped resonators with blue and red arrows indicating the forward and backward incidences,respectively. (b)and(c)The first and second layers of the unit cell.

    Based on the design principles the bi-layer windmillshaped resonator is proposed and shown in Fig.1. Figure 1(a)presents the perspective view of a unit cell of this resonator,where the two windmill-shaped metallic layers are separated(g= 70 nm) by a silicon oxide dielectric spacer layer with a permittivity ofεsio2=2.1. The windmill-shaped metallic layers are made of silver with a Drude-type dispersion, for which the plasma and collision frequencies areωp=1.367×107rad/s andγ=7.73×1013rad/s,respectively,and the highfrequency bulk permittivityε∞=6.0. The blue and red arrows indicate that thex- andy-polarized plane waves propagate along the forward (+z) and backward (?z) directions,respectively. Figures 1(b)and 1(c)respectively show the first and second layers of the windmill-shaped resonators with the periodp=500 nm. The other geometric parameters of the windmill-shaped resonator are set ast=40 nm,w=80 nm,d=100 nm,ands=50 nm.

    3. Results and discussion

    Fig. 2. Simulated transmission coefficients of windmill-shaped resonators,when x-and y-polarized plane waves incident along the(a)forward and(b)backward directions, respectively. I, II, and III show three resonances at 195 THz,260 THz,and 309 THz,respectively.

    By studying the geometric parameters of the windmillshaped metamaterial,we found that the multi-band AT can be flexibly tuned. First, Fig. 4(a) shows that the sizescan easily tune resonant modes II and III,i.e.,whensincreases from 0 nm to 140 nm, the AT parameters decrease from 0.72 to 0.Meanwhile, the AT parameters increase from 0 to 0.72, and the operation bands of the AT are also broadened in resonant mode III.In addition, Fig.4(b)shows that the gapgbetween the first and second layers can tune resonant modes I and III,i.e., whengincreases from 40 nm to 250 nm, the AT parameters decrease. A new resonant mode IV is induced whengis increased. Resonant mode IV results in opposite polarization conversions and the AT phenomenon at 343 THz, where thex-polarized incident plane wave can be transformed into ay-polarized output plane wave when it propagates in the backward direction and the maximum AT parameter is?0.6 wheng=190 nm.In other words,wheng=190 nm,thex-polarized incident plane wave can pass through this bi-layer windmillshaped metamaterial along the backward(?z)direction,which is opposite to resonant modes I,II,and III.

    Fig.3. (a)and(b)The calculated total transmittances for x-and y-polarized excitations propagating along the forward and backward directions. (c)The AT parameters for the designed windmill-shaped resonators. Solid and hollow triangular lines correspond to the AT of the x- and y-polarized plane waves,respectively.

    To understand the physical mechanism of the multi-band AT phenomenon, we studied the surface current distributions of this bi-layer windmill-shaped metamaterial in resonant modes I, II, III, and IV. The horizontal red arrows in Figs.5(a)-5(c)represent thex-polarized incident plane wave.Figure 5(a) shows that resonant mode I at 195 THz is induced by a design that is parallel to the split arms. Figure 5(b)shows that resonant mode II at 260 THz is induced by the center split rings, identical to the traditional split-ring resonators(SRRs)without windmill-shaped arms.[21,43,49,52]The surface current passes through the spilledsand results in a magnetic dipole resonance; thus, resonant mode II can be easily tuned by changing the size ofs. Figure 5(c) shows that resonant mode III at 309 THz is also induced by the design of the windmill-shaped arms, in contrast to resonant mode I, where the surface focuses on the two corners of the L-shaped arms,which are included and parallel to the split arms; therefore,the parameterscan tune resonant mode III. In other words,resonant modes I,II,and III are induced by anx-polarized incident plane wave propagating in the forward direction,resulting in thex-polarized plane wave passing through the bi-layer windmill-shaped metamaterial along the forward (+z) direction and transformation to they-polarized output plane wave.Figure 5(d) shows that resonant mode IV at approximately 343 THz is induced when they-polarized incident plane wave propagates in the forward direction, and the surface current distributions are localized on the L-shaped arms, which are perpendicular to the spilled arms. In addition,resonant mode IV can only be activated when the gapgincreases and thexpolarized incident plane wave can only pass through the metamaterial along the backward(?z)direction,which results in a negative AT parameter in resonant mode IV in Fig.4(b).

    Fig.4. The tunable AT effect by changing the(a)spilled width s and(b)gap g between the first and second layers.

    Fig.5.Current distributions of the multi-band resonant modes at polarization conversion peaks for forwarding propagation. (a)-(c)Simulated current distributions at 195,260,and 309 THz for x-polarized incidence. (d)Simulated current distributions at 343 THz for y-polarized incidence.

    Finally, we also consider the effect of the geometric parameterspanddon the AT parameter. In Fig. 6(a), when the periodpincreases from 500 nm to 800 nm, the couplings among neighboring periods decrease,and thus the resonances in modes I, II, and III are weakened, which results in a decrease in the AT parameters. In Fig. 6(b), we first setp=500 nm,but setd=0 nm and 100 nm. Whend=0 nm,the traditional SRRs without windmill-shaped arms are substituted for our bi-layer windmill-shaped metamaterial,and consequently,the AT parameter only appears at 260 THz(resonant mode II). Further, whendis increased to 200 nm, the period also increases and,consequently,the AT parameter decreases.

    Fig. 6. Calculated AT parameters of the bi-layered windmill-shaped splitring resonators for different(a)periods p and(b)windmill arm distances d.

    4. Conclusion

    In this study, we proposed a bi-layer windmill-shaped metamaterial that is different from traditional SRRs,as it can induce more resonant modes and result in multi-band AT in linearly polarized plane waves.The AT parameters reach 0.58,0.74,and 0.62 at 195,260,and 309 THz,respectively.Furthermore,the multi-band AT can be tuned freely by changing the geometric parameterssandg. Wheng=190 nm, a reversed AT was realized at 343 THz with the AT parameter reaching?0.6. To further understand the physical mechanism,the surface current distributions of this bi-layer windmill-shaped metamaterial are presented for the underlying resonant modes I,II,III,and IV,respectively. It is believed that the multi-band AT effects will be applied as polarization rotators and switches in the field of optical nano-devices.

    猜你喜歡
    李妍英華李杰
    Influence of particle size on the breaking of aluminum particle shells
    Empirical Likelihood for Partially Linear Models Under Associated Errors
    人民海軍首次海戰(zhàn)
    源流(2021年11期)2021-03-25 10:32:07
    小胖熊半夜歷險(xiǎn)記
    Zero-Sequence Current Suppression Strategy for Open-End Winding Permanent Magnet Synchronous Motor Based on Model Predictive Control
    小xiǎo雪xuě人rén 多duō 多duo
    論一顆蛀牙的長成
    大眾健康(2019年9期)2019-10-11 04:06:12
    M id-infrared supercontinuum generation and itsapp lication on all-opticalquantization with different inputpulses*
    QUANTILE ESTIMATION WITH AUXILIARY INFORMATION UNDER POSITIVELY ASSOCIATED SAMPLES?
    What’s the Future of Paper Books(節(jié)選)
    国产久久久一区二区三区| 97超视频在线观看视频| 又大又黄又爽视频免费| 一区二区av电影网| 99久久中文字幕三级久久日本| 在线观看三级黄色| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品一区蜜桃| 秋霞伦理黄片| 国产精品一区二区性色av| 国产精品一及| 春色校园在线视频观看| 久久久久久久亚洲中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 亚洲第一区二区三区不卡| 亚洲怡红院男人天堂| 亚洲,一卡二卡三卡| 成年免费大片在线观看| 免费看光身美女| 国产午夜福利久久久久久| 日韩不卡一区二区三区视频在线| 精品久久久久久久末码| 国产在线一区二区三区精| 九草在线视频观看| 最新中文字幕久久久久| videossex国产| 欧美高清性xxxxhd video| 免费大片黄手机在线观看| 街头女战士在线观看网站| 国产亚洲最大av| 成年人午夜在线观看视频| 亚洲av成人精品一区久久| 99精国产麻豆久久婷婷| 又大又黄又爽视频免费| 日韩免费高清中文字幕av| 别揉我奶头 嗯啊视频| 色综合色国产| 久久久成人免费电影| 啦啦啦中文免费视频观看日本| 成人无遮挡网站| 高清毛片免费看| 国产欧美亚洲国产| 国产午夜精品久久久久久一区二区三区| 99久久精品热视频| 青青草视频在线视频观看| 亚洲最大成人手机在线| 国产一级毛片在线| 成人高潮视频无遮挡免费网站| 一区二区三区精品91| 国产视频首页在线观看| 超碰97精品在线观看| 亚洲性久久影院| 欧美亚洲 丝袜 人妻 在线| 欧美另类一区| 亚洲精品中文字幕在线视频 | 国产亚洲一区二区精品| 久久久久国产网址| 日韩中字成人| 亚洲va在线va天堂va国产| 日日啪夜夜爽| 国内精品美女久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久久久久丰满| 欧美最新免费一区二区三区| 99热网站在线观看| 久久久久网色| 日韩成人伦理影院| 最新中文字幕久久久久| 亚洲四区av| 国产日韩欧美在线精品| 国产极品天堂在线| 日本av手机在线免费观看| 一个人观看的视频www高清免费观看| a级毛色黄片| 特级一级黄色大片| 亚洲美女视频黄频| 国内精品宾馆在线| a级一级毛片免费在线观看| 久久久亚洲精品成人影院| 97在线视频观看| 免费在线观看成人毛片| 人妻制服诱惑在线中文字幕| av免费在线看不卡| 亚洲欧美中文字幕日韩二区| 久久久久久久久久成人| 九九久久精品国产亚洲av麻豆| 六月丁香七月| 欧美97在线视频| 成人毛片a级毛片在线播放| 777米奇影视久久| 中文乱码字字幕精品一区二区三区| 欧美一级a爱片免费观看看| 我的老师免费观看完整版| 国产av不卡久久| 人妻少妇偷人精品九色| 免费看光身美女| 成人国产麻豆网| 好男人视频免费观看在线| 中文字幕制服av| 国产白丝娇喘喷水9色精品| 菩萨蛮人人尽说江南好唐韦庄| 国产在视频线精品| 午夜免费观看性视频| 精品人妻偷拍中文字幕| 午夜免费鲁丝| 久久精品国产鲁丝片午夜精品| 精品国产露脸久久av麻豆| 日韩大片免费观看网站| 日韩一区二区三区影片| 五月开心婷婷网| 久久精品国产自在天天线| 大片免费播放器 马上看| av黄色大香蕉| 亚洲精品视频女| 深爱激情五月婷婷| 精品人妻一区二区三区麻豆| 天天躁夜夜躁狠狠久久av| 国产亚洲最大av| 亚洲精品456在线播放app| 亚洲色图av天堂| 高清日韩中文字幕在线| 日韩一区二区三区影片| 九草在线视频观看| 亚洲av福利一区| 熟女人妻精品中文字幕| 色综合色国产| 夫妻午夜视频| 久久久久久久国产电影| 国产高潮美女av| 亚洲av电影在线观看一区二区三区 | 永久网站在线| 听说在线观看完整版免费高清| 如何舔出高潮| 制服丝袜香蕉在线| 天美传媒精品一区二区| 久久久久久久亚洲中文字幕| 黄片无遮挡物在线观看| 国产亚洲精品久久久com| 久久这里有精品视频免费| 免费高清在线观看视频在线观看| 亚洲,一卡二卡三卡| 中文在线观看免费www的网站| 在线看a的网站| 欧美另类一区| 中文字幕人妻熟人妻熟丝袜美| 身体一侧抽搐| av国产精品久久久久影院| 国产大屁股一区二区在线视频| 91久久精品电影网| 一二三四中文在线观看免费高清| 成人一区二区视频在线观看| 男女下面进入的视频免费午夜| 亚洲高清免费不卡视频| 女的被弄到高潮叫床怎么办| 国精品久久久久久国模美| 日本午夜av视频| 亚洲最大成人中文| 久久国产乱子免费精品| 高清av免费在线| 久久ye,这里只有精品| 久久97久久精品| 日韩 亚洲 欧美在线| 18禁动态无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 亚洲自拍偷在线| 大片电影免费在线观看免费| 国语对白做爰xxxⅹ性视频网站| 狠狠精品人妻久久久久久综合| 18+在线观看网站| 亚洲精品aⅴ在线观看| 国产黄色免费在线视频| 国产一区二区亚洲精品在线观看| 久久久久网色| 男女无遮挡免费网站观看| 91久久精品电影网| 国产男女内射视频| 亚洲va在线va天堂va国产| 久久精品国产a三级三级三级| 国产成人freesex在线| 少妇被粗大猛烈的视频| 超碰av人人做人人爽久久| 免费在线观看成人毛片| 尤物成人国产欧美一区二区三区| 91狼人影院| 亚洲精品视频女| 久久久久久久午夜电影| 五月天丁香电影| 亚洲天堂国产精品一区在线| 老司机影院毛片| 亚洲欧洲国产日韩| 在线观看国产h片| 亚洲欧美一区二区三区国产| 午夜精品一区二区三区免费看| 99精国产麻豆久久婷婷| 国产伦精品一区二区三区视频9| 天美传媒精品一区二区| 干丝袜人妻中文字幕| 亚洲性久久影院| 精品人妻视频免费看| 深爱激情五月婷婷| a级毛色黄片| 欧美高清成人免费视频www| 中文欧美无线码| 我要看日韩黄色一级片| 麻豆乱淫一区二区| 国产毛片在线视频| 草草在线视频免费看| 国产淫语在线视频| 国产av码专区亚洲av| 亚洲av.av天堂| 少妇猛男粗大的猛烈进出视频 | 国产白丝娇喘喷水9色精品| 精品人妻视频免费看| 国产高清国产精品国产三级 | 国产视频内射| 亚洲av中文字字幕乱码综合| 22中文网久久字幕| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩另类电影网站 | 99热全是精品| 在线精品无人区一区二区三 | 亚洲精品久久久久久婷婷小说| 久久久久精品久久久久真实原创| 免费观看的影片在线观看| 直男gayav资源| 欧美区成人在线视频| 美女国产视频在线观看| 一二三四中文在线观看免费高清| av在线app专区| 成人亚洲欧美一区二区av| 一级毛片 在线播放| 精品久久久久久久末码| 精品人妻一区二区三区麻豆| 国产老妇女一区| 99热国产这里只有精品6| av在线天堂中文字幕| 狂野欧美激情性bbbbbb| 成人一区二区视频在线观看| 1000部很黄的大片| 2018国产大陆天天弄谢| 麻豆成人午夜福利视频| 午夜精品一区二区三区免费看| 国产精品一区二区性色av| 97超视频在线观看视频| 久久久色成人| 日韩电影二区| 欧美精品一区二区大全| 日本猛色少妇xxxxx猛交久久| 亚洲国产色片| 亚洲在久久综合| 午夜激情久久久久久久| 国产日韩欧美亚洲二区| 久久国产乱子免费精品| 99热这里只有是精品在线观看| 夜夜看夜夜爽夜夜摸| 日本av手机在线免费观看| 亚洲丝袜综合中文字幕| 亚州av有码| 久热久热在线精品观看| av播播在线观看一区| 五月天丁香电影| 人人妻人人澡人人爽人人夜夜| 狂野欧美激情性xxxx在线观看| 国产高清三级在线| 亚洲国产精品专区欧美| 成年av动漫网址| 婷婷色麻豆天堂久久| 99久久精品国产国产毛片| 久久鲁丝午夜福利片| 欧美另类一区| 久久这里有精品视频免费| av免费在线看不卡| 国产乱人偷精品视频| 街头女战士在线观看网站| 亚洲欧美中文字幕日韩二区| 亚洲电影在线观看av| 久久精品久久精品一区二区三区| 高清视频免费观看一区二区| 国产精品爽爽va在线观看网站| 欧美一级a爱片免费观看看| 亚洲美女视频黄频| 国产欧美日韩一区二区三区在线 | 久热久热在线精品观看| 亚洲精品乱码久久久久久按摩| 高清欧美精品videossex| 国产成人精品福利久久| 国产黄片视频在线免费观看| 国产成人一区二区在线| 日韩强制内射视频| 秋霞伦理黄片| 有码 亚洲区| 国产大屁股一区二区在线视频| 精品久久久久久久久亚洲| 午夜激情福利司机影院| 成人毛片60女人毛片免费| 亚洲精品影视一区二区三区av| 中国美白少妇内射xxxbb| 日本猛色少妇xxxxx猛交久久| 丝袜喷水一区| 国产精品秋霞免费鲁丝片| 一级av片app| 国产乱人视频| 老司机影院成人| av天堂中文字幕网| 欧美xxxx黑人xx丫x性爽| 久久鲁丝午夜福利片| 18禁在线播放成人免费| 欧美高清成人免费视频www| 高清av免费在线| 国产高清三级在线| 少妇人妻久久综合中文| 亚洲av在线观看美女高潮| 精华霜和精华液先用哪个| 久久久久性生活片| 亚洲av国产av综合av卡| 少妇熟女欧美另类| 久久久久久九九精品二区国产| 久久久久九九精品影院| 夜夜看夜夜爽夜夜摸| 精品久久久久久久末码| 三级男女做爰猛烈吃奶摸视频| 久久6这里有精品| 亚洲无线观看免费| 久久综合国产亚洲精品| 亚洲无线观看免费| 国产综合精华液| 欧美变态另类bdsm刘玥| 久久精品综合一区二区三区| 成人午夜精彩视频在线观看| 国国产精品蜜臀av免费| 中文字幕久久专区| 九色成人免费人妻av| 97在线人人人人妻| 免费电影在线观看免费观看| 麻豆乱淫一区二区| 肉色欧美久久久久久久蜜桃 | 欧美三级亚洲精品| 最近中文字幕高清免费大全6| 97在线人人人人妻| 最近最新中文字幕免费大全7| 久久精品国产亚洲av天美| 26uuu在线亚洲综合色| 成人二区视频| 日韩中字成人| 九九爱精品视频在线观看| 婷婷色综合大香蕉| 成年av动漫网址| 日韩伦理黄色片| 18禁动态无遮挡网站| 亚洲精品日韩av片在线观看| 中文字幕亚洲精品专区| 看非洲黑人一级黄片| 免费看日本二区| 亚洲精品自拍成人| 久久99热6这里只有精品| 蜜臀久久99精品久久宅男| 亚洲成人久久爱视频| 1000部很黄的大片| 国产黄色视频一区二区在线观看| 亚洲激情五月婷婷啪啪| 韩国高清视频一区二区三区| 深夜a级毛片| 美女高潮的动态| 亚洲精品久久久久久婷婷小说| 看十八女毛片水多多多| videossex国产| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久末码| av.在线天堂| 日本一二三区视频观看| 国产成人精品久久久久久| 国产亚洲精品久久久com| 成年女人看的毛片在线观看| 男人和女人高潮做爰伦理| 天堂中文最新版在线下载 | 欧美激情久久久久久爽电影| 男男h啪啪无遮挡| 久久女婷五月综合色啪小说 | 国产成人freesex在线| 免费观看性生交大片5| 看免费成人av毛片| 久久6这里有精品| 伦理电影大哥的女人| 一个人观看的视频www高清免费观看| 少妇高潮的动态图| 欧美成人一区二区免费高清观看| 高清午夜精品一区二区三区| 国产精品熟女久久久久浪| 在线看a的网站| 亚洲欧美中文字幕日韩二区| 国产极品天堂在线| 久热久热在线精品观看| 国产伦精品一区二区三区视频9| 精品亚洲乱码少妇综合久久| av又黄又爽大尺度在线免费看| 精品一区二区三卡| a级毛片免费高清观看在线播放| 国产成人午夜福利电影在线观看| 在线观看美女被高潮喷水网站| 亚洲在久久综合| 女人十人毛片免费观看3o分钟| 国产白丝娇喘喷水9色精品| 王馨瑶露胸无遮挡在线观看| 全区人妻精品视频| 乱系列少妇在线播放| 亚洲精品日韩在线中文字幕| 又爽又黄无遮挡网站| 3wmmmm亚洲av在线观看| 又爽又黄a免费视频| 亚州av有码| 精品视频人人做人人爽| 国产精品精品国产色婷婷| av在线亚洲专区| 精品少妇久久久久久888优播| 大香蕉久久网| 日本一二三区视频观看| 在线观看av片永久免费下载| 性色av一级| 亚洲天堂av无毛| 欧美高清性xxxxhd video| 亚洲av.av天堂| 午夜精品一区二区三区免费看| 国产一区二区亚洲精品在线观看| 高清视频免费观看一区二区| 国产成人a∨麻豆精品| 国产男女超爽视频在线观看| 2021少妇久久久久久久久久久| 中文天堂在线官网| 久久99热6这里只有精品| 亚洲成人中文字幕在线播放| 精品亚洲乱码少妇综合久久| 大片电影免费在线观看免费| 尾随美女入室| 一个人观看的视频www高清免费观看| 欧美区成人在线视频| 老司机影院成人| 亚洲精品自拍成人| 晚上一个人看的免费电影| 九九久久精品国产亚洲av麻豆| 丝袜喷水一区| 91久久精品国产一区二区三区| 亚洲国产精品999| 国产av国产精品国产| 黄色日韩在线| 麻豆成人午夜福利视频| 亚洲欧美精品专区久久| 99久久人妻综合| xxx大片免费视频| 午夜免费男女啪啪视频观看| 深爱激情五月婷婷| av福利片在线观看| 亚洲国产精品成人久久小说| 亚洲自拍偷在线| 别揉我奶头 嗯啊视频| 精品午夜福利在线看| 午夜免费男女啪啪视频观看| 久久热精品热| 51国产日韩欧美| 亚洲精品日韩av片在线观看| 中文在线观看免费www的网站| 少妇的逼好多水| 国产伦在线观看视频一区| 一个人观看的视频www高清免费观看| 亚洲电影在线观看av| 51国产日韩欧美| av免费观看日本| 中文字幕人妻熟人妻熟丝袜美| 日韩av免费高清视频| 国产成人一区二区在线| videossex国产| 中文天堂在线官网| 蜜桃亚洲精品一区二区三区| 久久久久久久久大av| 秋霞伦理黄片| 国产av国产精品国产| 全区人妻精品视频| 免费在线观看成人毛片| 国产伦精品一区二区三区视频9| 欧美97在线视频| 深爱激情五月婷婷| 国产老妇女一区| 国产黄色视频一区二区在线观看| 日韩中字成人| 中文字幕久久专区| 日韩成人av中文字幕在线观看| .国产精品久久| 丝袜脚勾引网站| 少妇人妻一区二区三区视频| 国产亚洲av片在线观看秒播厂| 久久精品综合一区二区三区| 大香蕉久久网| 国产精品久久久久久精品电影小说 | 婷婷色综合大香蕉| 免费少妇av软件| 深爱激情五月婷婷| 国产有黄有色有爽视频| 亚洲精品第二区| 又大又黄又爽视频免费| 欧美潮喷喷水| 日日摸夜夜添夜夜爱| 大话2 男鬼变身卡| 美女视频免费永久观看网站| 色吧在线观看| 色5月婷婷丁香| 一二三四中文在线观看免费高清| 女人久久www免费人成看片| 色播亚洲综合网| 伊人久久精品亚洲午夜| 久久ye,这里只有精品| 亚洲人成网站在线观看播放| 久久久精品94久久精品| 国产精品人妻久久久久久| 久久综合国产亚洲精品| 欧美高清成人免费视频www| 欧美国产精品一级二级三级 | 色播亚洲综合网| 成年版毛片免费区| 午夜福利视频精品| 99久久九九国产精品国产免费| 丝袜美腿在线中文| 一个人看的www免费观看视频| 六月丁香七月| 看十八女毛片水多多多| 好男人视频免费观看在线| 欧美最新免费一区二区三区| 能在线免费看毛片的网站| 你懂的网址亚洲精品在线观看| 性色avwww在线观看| 你懂的网址亚洲精品在线观看| 大香蕉97超碰在线| 午夜福利网站1000一区二区三区| 国产精品久久久久久精品电影小说 | 网址你懂的国产日韩在线| 国产 精品1| 成人国产麻豆网| 人妻 亚洲 视频| 性插视频无遮挡在线免费观看| av网站免费在线观看视频| 狠狠精品人妻久久久久久综合| 精品久久久久久久久av| 三级经典国产精品| 久久精品夜色国产| 美女国产视频在线观看| 亚洲无线观看免费| 亚洲四区av| av免费观看日本| 又黄又爽又刺激的免费视频.| 一级二级三级毛片免费看| 亚洲成色77777| 国产中年淑女户外野战色| 亚洲综合色惰| 人人妻人人爽人人添夜夜欢视频 | 国产亚洲91精品色在线| www.av在线官网国产| 欧美zozozo另类| 交换朋友夫妻互换小说| 蜜桃久久精品国产亚洲av| 国国产精品蜜臀av免费| 国产男女超爽视频在线观看| 青春草国产在线视频| 亚州av有码| 伊人久久精品亚洲午夜| 人妻少妇偷人精品九色| 精品一区二区免费观看| 熟女av电影| 大香蕉97超碰在线| 美女主播在线视频| a级一级毛片免费在线观看| 18禁在线无遮挡免费观看视频| 亚洲av国产av综合av卡| 久久久a久久爽久久v久久| 青青草视频在线视频观看| 麻豆久久精品国产亚洲av| 99热这里只有精品一区| 久久精品综合一区二区三区| 色网站视频免费| 超碰97精品在线观看| 2018国产大陆天天弄谢| 一个人看的www免费观看视频| 日韩一区二区三区影片| 国产精品人妻久久久影院| 国产成人freesex在线| 国产精品一区www在线观看| 久久久成人免费电影| 尾随美女入室| 成年人午夜在线观看视频| 亚洲美女视频黄频| 亚洲国产精品999| 国产老妇伦熟女老妇高清| 搡女人真爽免费视频火全软件| 看黄色毛片网站| 国产亚洲精品久久久com| 欧美bdsm另类| 国产又色又爽无遮挡免| 国产亚洲av嫩草精品影院| 26uuu在线亚洲综合色| 欧美高清成人免费视频www| 2021少妇久久久久久久久久久| 在线观看一区二区三区| 在线播放无遮挡| 中文乱码字字幕精品一区二区三区| 少妇人妻 视频| 国产成人一区二区在线| 麻豆成人午夜福利视频| 亚洲综合色惰| 日韩,欧美,国产一区二区三区| 少妇人妻精品综合一区二区| 色吧在线观看| 国产毛片a区久久久久| 免费在线观看成人毛片| 国产亚洲91精品色在线| 夫妻性生交免费视频一级片| 免费看日本二区| 91久久精品国产一区二区三区| 日本-黄色视频高清免费观看|