• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of particle size on the breaking of aluminum particle shells

    2022-08-01 06:02:06TianYiWang王天一ZhengQingZhou周正青JianPingPeng彭劍平YuKunGao高玉坤andYingHuaZhang張英華
    Chinese Physics B 2022年7期
    關(guān)鍵詞:英華周正

    Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青),?, Jian-Ping Peng(彭劍平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(張英華)

    1School of Civil and Resource Engineering,University of Science and Technology Beijing,Beijing 100083,China

    2Zhaojin Mining Industry Co.,Ltd,Zhaoyuan 265400,China

    Keywords: aluminum particle,shell–core structure,thermal stress,shell-breaking

    1. Introduction

    Aluminum has attracted an intense interest over the years due to its high activity and high energy density in explosives and propellants.[1–6]Natural aluminum particles have a shell–core structure and are wrapped in a layer of amorphous alumina at room temperature.[7–11]Breaking the shell is a prerequisite for energy release. Therefore, mastering the shellbreaking mechanism is very important in order to study the ignition and combustion of aluminum powder.[12,13]

    The crystal transformation of the alumina shell has an important effect on shell-breaking. Eisenreich[14,15]noted that the alumina shell undergoes a crystal transformation in a hightemperature environment, but the dynamic relationship between crystal transformation and the alumina shell has not been explained. Others have conducted more in-depth research into the relationship between crystal transformation and shell-breaking. Trunov[16–18]used x-ray diffraction(XRD)to study the crystal transformation of the alumina shell due to the heating process. It showed that the shell breaking is caused by the transformation of amorphous alumina intoγ-Al2O3(the new formedγ-Al2O3layer increases in density and decreases in volume,and cannot completely cover the aluminum core,resulting in shell breaking). However,the thermal stress caused by the different thermal expansion coefficients of the aluminum core and the alumina shell in a high-temperature environment has not been considered. Lipkin[19]also found that the transformation of the less-dense monoclinic crystal structureθ-Al2O3into the close-packed structureα-Al2O3is accompanied by a volume shrinkage of 10% and that this volume shrinkage during crystal transformation causes shell breaking.[20]Guo[21,22]used differential scanning calorimetry,thermogravimetric analysis and XRD to analyze the crystal transformation of aluminum powder at temperatures of up to 660°C. The experimental results showed that during this process, the crystal lattice arrangement, volume, and density of the alumina shell changed, leading to the destruction of the alumina shell and even shell breaking. Khan[23]also believed that crystal transformation was one of the main factors in shell breaking. Although crystal transformation is an important cause of shell breaking, its impact on shell breaking has not been quantitatively considered.

    However, others hold different views on the main factors responsible for shell breaking. Levitas[24–26]believed that shell breaking was due to stress overload caused by the difference between the thermal expansion coefficient of the aluminum core (23.0×10-6) and that of the alumina shell(8.6×10-6). However,the influence of thermal stress on the shell-breaking process has not been quantitatively analyzed.Some researchers also studied the relationship between the thermal stress of aluminum particles and temperature. Dudi[7]used an in-situ transmission electron microscope(TEM)to estimate the relationship between thermal stress and the temperature of 100 nm aluminum particles by analyzing changes in lattice distance. However,since TEM cannot observe micronscale particles, his method of estimating stress cannot be applied to micron-scale aluminum particles. Overall, different scholars have different opinions about the shell-breaking mechanism of aluminum particles, and there is a lack of research that provides quantitative analysis of the thermal stress of aluminum particles in high-temperature environments.

    It appears that the shell-breaking mechanism of aluminum particles is still unclear and that no one has quantitatively explained the reason for shell breaking from a mechanical point of view. Shell breaking is the result of a combination of temperature, particle size, environmental conditions, and other factors, and its process is complex and diverse. Earlier research has described the effect of temperature on shell breaking,but the effect of particle size on shell breaking has rarely been reported. Therefore, COMSOL was used to quantitatively study the causes of shell breaking and the effect of particle size on shell breaking from a mechanical point of view.

    2. Finite element model

    Figure 1(a) shows that a natural aluminum particle has a shell–core structure. The aluminum particles used in military and industrial applications are in the micron size range(10 μm–100 μm). To obtain an accurate structural model of the shell–core structure model,the shell thicknesses of 10 μm–100 μm aluminum particles were measured using the gas volume method,[27]as shown in Fig.1(b). Based on the results,a calculation model for aluminum particles was established, as shown in Fig.1(c).

    Fig. 1. (a) Aluminum particle HR-TEM image. (b) Relationship between the particle size of a micron-scale aluminum particle and alumina shell thickness.[28] (c)Finite element model of the shell–core structure.

    A solid heat conduction model and a solid mechanics model inside COMSOL are coupled into a multi-physics field for this research. The heat transfer and thermal expansion equations built into COMSOL are used as the control equations for aluminum and alumina,as shown below:

    whereρis the density,CPis the constant pressure heat capacity,Tis the temperature,tis time,Qis the absorbed heat,?is the Laplace operator, andkis the coefficient of thermal conductivity.

    The thermal expansion control equation is

    whereEthis the thermal strain,αis the coefficient of thermal expansion,T0is the initial temperature, andTis the current temperature.

    The physical properties of aluminum and alumina are shown in Tables 1 and 2.

    During the heating process, the alumina shell undergoes crystal transformation,which leads to a change of density.The crystal transformation of the alumina shell can be divided into four stages,[16]but in the temperature range of 0°C–650°C,only the first two stages of crystal transformation should be considered, as shown in Fig. 2. The thermal expansion coefficient of alumina (α) was corrected to indirectly realize the simulation of the crystal transformation process during the heating process. Here,αis modified as

    whereαis the coefficient of thermal expansion andρAl2O3is the density of alumina.

    Fig.2. Relationship between the density of alumina and temperature.

    Table 1. Physical properties of aluminum.[2]

    Table 2. Physical properties of alumina.[29]

    Fig. 3. (a) The quality of the mesh. (b) Relationship between the time step and the reciprocal step. (c) The relationship between the number of iterations and the error of the solver.

    In order to ensure the accuracy of the model, the mesh quality and the convergence of the model were verified, as shown in Figs. 3(a)–3(c). It can be seen from Fig. 3(a) that the overall quality of the mesh is good,and there are no cells with poor quality. Figure 3(b)shows that as the time step increases,the reciprocal step size tends to be stable and there is no growth fluctuation, indicating that the transient solver has better convergence.Figure 3(c)shows that the error of the heat transfer and solid mechanics solvers fluctuates in the range of 5×10-5–200×10-5,which is an acceptable error.

    Dudi[7]usedin-situtechniques to analyze the relationship between aluminum lattice distances and temperature. The results showed that the maximum pressure of an aluminum core with a particle size of 100 nm at 600°C is 0.051 GPa. In order to verify the accuracy of the aluminum particle model, a model with the same particle size and alumina shell thickness parameters was established(the particle size was 100 nm and the thickness of the alumina shell was 4.6 nm). The simulation results show that the maximum pressure of the aluminum core at 600°C is 0.044 GPa. Compared with the experimental results,the error of the simulation results is 13.72%.

    3. Results analysis

    3.1. Heating process of micron-scale aluminum particles

    The environmental temperature is 650°C,and the initial temperature of the aluminum particle is 0°C.Figure 4 shows the temperature distribution of a 100 μm aluminum particle over time.

    Fig.4. Temperature distribution of a 100 μm aluminum particle at different time.

    Fig.5. (a)Relationship between the minimum temperature of a 100 μm aluminum particle and time. (b)Relationship between the thermal stability time and the particle’s size.

    The heating rate of the aluminum particle is a process that changes from fast to slow, as shown in Fig. 5(a). This is because as time increases,there is a decrease in the temperature difference between the inside of the aluminum particle and the environment. Figure 5(b)shows that the thermal stability time(the time required for the minimum temperature of the aluminum particle to reach 645°C)of 10 μm–100 μm aluminum particles is in the range of 0.15 μs–11.44 μs. The fitting relationship between the thermal stability time and the particle size is as follows:

    wheretis the thermal stability time anddis the size of the aluminum particle.

    3.2. Thermal stress of micron-scale aluminum particles

    Figure 6 shows the compressive stress distribution of the aluminum particle.It can be seen from the figure that the maximum compressive stress of 20 μm–70 μm aluminum particles is concentrated on two lines of 45°and 135°.

    Fig.6. Compressive stress distribution of aluminum particles with different particle sizes at 10 μs.

    Figure 7(a) shows that the maximum compressive stress first increases slightly and then decreases rapidly, reaching a maximum at a particle size of 60 μm. This is because the maximum compressive stress is determined by the minimum temperature of the aluminum particles and the ratioRtogether. The lower the minimum temperature, the smaller the maximum compressive stress,and the greater the ratioR,the greater the maximum compressive stress. It can be seen from Fig.7(b)that when the particle size is less than 60 μm,the minimum temperature decreases slightly,while the ratioRincreases greatly. The increase in the ratioRhas a greater impact on the maximum compressive stress than the decrease in the minimum temperature. Therefore,the maximum compressive stress increases, reaching its maximum value at around 60 μm. When the particle size is 60 μm–100 μm, the minimum temperature decreases greatly, and the ratioRincreases relatively slowly. Therefore,the maximum compressive stress shows a downward trend,and the decline is extremely large.

    Fig.7. (a)The relationship between particle size and compressive stress. (b)The effect of the particle size on the ratio R and the minimum temperature of the aluminum particle.

    In a high-temperature environment, the compressive stress of the alumina shell will change.The compressive stress arises from the expansion and extrusion caused by the different thermal expansion coefficients inside and outside the shell and the crystal transformation of the alumina shell. Figure 8 shows that the growth rate of compressive stress on the inner and outer surfaces gradually slows down and then stabilizes.However,the compressive stress on the outer surface increases slightly faster;this is because the change in compressive stress originates from the change in the temperature field.A distance corresponding to the shell thickness (about 50 nm) separates the inner surface and the outer surface,and it takes some time(less than 0.1 μs) for the temperature fields of the inner and outer surfaces to equalize. As the temperature fields stabilize, the compressive stress also tends to stabilize. This also proves that the change of compressive stress originates from the change in the temperature field. The ratioRis 556–1808 for particle sizes of 10 μm–100 μm. The larger the ratio, the greater the expansion extrusion effect.

    Fig. 8. (a) Relationship between compressive stress on the inner surface of alumina shell and time. (b)Relationship between compressive stress on the outer surface of alumina shell and time.

    Figure 9 shows the tensile stress distribution of aluminum particles with different particle sizes at 10 μs. It can be seen from Figs.6 and 9 that the extreme value for the distribution of the tensile stress is roughly the same as the extreme value for the distribution of the compressive stress.Figure 10 shows that when the particle size is less than 50 μm,the tensile stress first increases rapidly and then stabilizes;when the particle size is greater than 50 μm, the tensile stress first increases rapidly and then the growth rate slows down. This proves that both the tensile stress and the compressive stress originate from the change of the temperature field(the growth rate changes from fast to slow). It can be seen from Figs. 8 and 10 that with the change of particle size, the maximum compressive stress varies little,but the maximum tensile stress varies greatly.

    Table 3. Comprehensive analysis of the structural response.

    Fig.9. Tensile stress distribution of aluminum particles of different sizes at 10 μs.

    Fig.10. (a)Relationship between tensile stress and time for the inner surface of alumina shell. (b)Relationship between tensile stress and time for the outer surface of alumina shell.

    Table 3 shows the shell–core relationships of aluminum particles with different particle sizes, the shell-breaking response time for compressive stress, the shell-breaking response time for tensile stress,and the direct cause of the shellbreaking response. The tensile strength of alumina is between 35.5 MPa and 53.1 MPa.[30]In this paper, 35.5 MPa was used as the tensile strength of alumina,and the compressive strength of alumina is 2600 MPa.[31]The time required for the compressive stress to reach the compressive strength is the compressive stress shell-breaking response time. Similarly, the time required for the tensile stress to reach the tensile stress strength is the tensile shell-breaking response time.The smaller value of the two is the shell-breaking response time. Therefore,the shell-breaking response times of 10 μm–100 μm aluminum particles are in the range of 0.08 μm–2.69 μs.

    Figure 11 shows the relationship between the shellbreaking response time and the particle size of the aluminum particle. The fitting relationship is as follows:

    wheretis the shell-breaking response time (μs) anddis the particle size of the aluminum particle(μm).

    Fig. 11. Relationship between particle size and the shell-breaking response time.

    4. Conclusion

    In this paper,the relationship between the thermal stability time,the shell-breaking response time,and the particle size was obtained. The conclusions are as follows:

    (i)As the particle size of the aluminum particle increases,the thermal stability time does not follow a process of uniform growth, but a process that is fast and then slow. The thermal stability times of aluminum particles with particle sizes of 10 μm–100 μm are in the range of 0.15 μs–11.44 μs.

    (ii)The direct cause of shell-breaking has an obvious relationship with the particle size, and there is a particle size boundary (80 μm): when the aluminum particle size is less than 80 μm,the direct cause of shell-breaking is compressive stress overload; when the particle size is between 80 μm and 100 μm,the direct cause is tensile stress overload.

    (iii) As the particle size increases, the shell-breaking response time follows a pattern of initial rapid increase, then a slow increase, and finally stability. The breaking response times of aluminum particles with particle sizes of 10 μm–100 μm are in the range of 0.08 μs–2.69 μs.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant No.11802160).

    猜你喜歡
    英華周正
    Floquet spectrum and universal dynamics of a periodically driven two-atom system
    On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
    Empirical Likelihood for Partially Linear Models Under Associated Errors
    Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial*
    Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings?
    李偉賢、葉子康、周已程、周正男作品
    大觀(2020年9期)2020-01-25 16:24:08
    勻變速直線運(yùn)動(dòng)規(guī)律應(yīng)用中的一類典型易錯(cuò)題
    QUANTILE ESTIMATION WITH AUXILIARY INFORMATION UNDER POSITIVELY ASSOCIATED SAMPLES?
    How to Teach English Reading Effectively
    模仿簽名
    故事林(2013年19期)2013-05-14 17:30:18
    亚洲欧美一区二区三区黑人| 一二三四在线观看免费中文在| 少妇的丰满在线观看| 叶爱在线成人免费视频播放| 精品亚洲乱码少妇综合久久| 亚洲欧美精品综合一区二区三区| 我要看黄色一级片免费的| 青青草视频在线视频观看| tocl精华| 国产福利在线免费观看视频| 国产成人精品在线电影| 久久婷婷成人综合色麻豆| 法律面前人人平等表现在哪些方面| 狠狠狠狠99中文字幕| 国产在线免费精品| 十八禁网站免费在线| 国产高清视频在线播放一区| 丰满迷人的少妇在线观看| 欧美乱妇无乱码| 天天影视国产精品| 亚洲全国av大片| 亚洲国产成人一精品久久久| 国产精品一区二区精品视频观看| 啦啦啦在线免费观看视频4| 国产精品欧美亚洲77777| 中文字幕人妻熟女乱码| 免费观看av网站的网址| 性高湖久久久久久久久免费观看| 久久国产精品男人的天堂亚洲| 我的亚洲天堂| 国产一区二区在线观看av| 黄片大片在线免费观看| 一区二区三区精品91| 国产免费av片在线观看野外av| 麻豆成人av在线观看| 美国免费a级毛片| 搡老乐熟女国产| 亚洲成国产人片在线观看| 后天国语完整版免费观看| 精品免费久久久久久久清纯 | 丝袜美足系列| 国产精品亚洲av一区麻豆| 国产免费福利视频在线观看| 国产伦理片在线播放av一区| 国产欧美日韩精品亚洲av| 欧美激情 高清一区二区三区| 99精品欧美一区二区三区四区| 女人高潮潮喷娇喘18禁视频| 一边摸一边做爽爽视频免费| 99九九在线精品视频| 男女高潮啪啪啪动态图| 99久久国产精品久久久| 亚洲精华国产精华精| 90打野战视频偷拍视频| 国产不卡av网站在线观看| 乱人伦中国视频| 日韩中文字幕欧美一区二区| 日韩免费高清中文字幕av| 人人澡人人妻人| 婷婷丁香在线五月| 久久香蕉激情| a级毛片在线看网站| 精品国产一区二区三区久久久樱花| 亚洲,欧美精品.| 在线 av 中文字幕| 国产单亲对白刺激| 精品久久久久久电影网| 操出白浆在线播放| 一区二区av电影网| 久久人妻福利社区极品人妻图片| 久久久精品免费免费高清| 久久久久久久大尺度免费视频| 999久久久精品免费观看国产| 精品国产超薄肉色丝袜足j| 亚洲午夜理论影院| 看免费av毛片| 91精品国产国语对白视频| 热re99久久国产66热| 亚洲欧洲精品一区二区精品久久久| 国产色视频综合| 叶爱在线成人免费视频播放| 亚洲精品国产精品久久久不卡| 女性生殖器流出的白浆| 久久人妻福利社区极品人妻图片| 亚洲av电影在线进入| 国产主播在线观看一区二区| 91成人精品电影| 国产日韩欧美亚洲二区| 精品人妻1区二区| 丁香六月天网| 久久毛片免费看一区二区三区| 十八禁网站免费在线| 99re6热这里在线精品视频| 国产av一区二区精品久久| 国产免费av片在线观看野外av| 国产成人系列免费观看| 国产精品香港三级国产av潘金莲| 日韩欧美一区二区三区在线观看 | 国产亚洲午夜精品一区二区久久| 久久天躁狠狠躁夜夜2o2o| 欧美日韩亚洲综合一区二区三区_| 少妇裸体淫交视频免费看高清 | 欧美激情久久久久久爽电影 | 欧美乱码精品一区二区三区| 国产成人免费无遮挡视频| 国产99久久九九免费精品| 国产成人啪精品午夜网站| 丰满迷人的少妇在线观看| 免费av中文字幕在线| 免费不卡黄色视频| 欧美日韩一级在线毛片| 日韩大码丰满熟妇| 亚洲黑人精品在线| 久久中文字幕人妻熟女| 亚洲精品粉嫩美女一区| 国产不卡av网站在线观看| 亚洲精品久久成人aⅴ小说| 日韩成人在线观看一区二区三区| 国产精品影院久久| 成人永久免费在线观看视频 | 国产不卡av网站在线观看| 99re6热这里在线精品视频| h视频一区二区三区| 老司机靠b影院| 在线观看66精品国产| 国产精品1区2区在线观看. | 午夜激情久久久久久久| 高清毛片免费观看视频网站 | 电影成人av| 日韩欧美一区二区三区在线观看 | 99久久精品国产亚洲精品| 男女下面插进去视频免费观看| 亚洲av电影在线进入| 满18在线观看网站| 最新的欧美精品一区二区| 久久九九热精品免费| 国产精品.久久久| 免费在线观看完整版高清| 精品乱码久久久久久99久播| 久久久精品免费免费高清| 一个人免费看片子| 亚洲精品一二三| 91成年电影在线观看| 美女高潮到喷水免费观看| 国产一区二区三区在线臀色熟女 | 三级毛片av免费| 国产精品偷伦视频观看了| 欧美精品一区二区免费开放| 一区二区av电影网| 日本一区二区免费在线视频| 久久久国产成人免费| 免费在线观看黄色视频的| 三级毛片av免费| svipshipincom国产片| 成人三级做爰电影| av网站在线播放免费| 一级片'在线观看视频| 色综合欧美亚洲国产小说| 高清在线国产一区| 国产一区二区 视频在线| 国产99久久九九免费精品| 久久 成人 亚洲| 99国产精品一区二区三区| 又紧又爽又黄一区二区| 老汉色∧v一级毛片| 精品亚洲成a人片在线观看| 午夜免费成人在线视频| 久久人人97超碰香蕉20202| 999久久久国产精品视频| 18禁观看日本| 乱人伦中国视频| av线在线观看网站| 十八禁高潮呻吟视频| 男女午夜视频在线观看| 午夜福利视频在线观看免费| 无遮挡黄片免费观看| 波多野结衣av一区二区av| 国产一区有黄有色的免费视频| 精品一品国产午夜福利视频| 久久久精品免费免费高清| 另类亚洲欧美激情| 国产一区二区激情短视频| 日韩人妻精品一区2区三区| 久久天躁狠狠躁夜夜2o2o| a级毛片在线看网站| 性高湖久久久久久久久免费观看| 国产男女超爽视频在线观看| 亚洲黑人精品在线| 老司机午夜十八禁免费视频| 免费久久久久久久精品成人欧美视频| 多毛熟女@视频| 啦啦啦视频在线资源免费观看| 中文字幕精品免费在线观看视频| 欧美日韩亚洲高清精品| 日韩欧美国产一区二区入口| 黑人巨大精品欧美一区二区mp4| 国产精品98久久久久久宅男小说| 97人妻天天添夜夜摸| 女人高潮潮喷娇喘18禁视频| 国产精品免费一区二区三区在线 | 大片电影免费在线观看免费| 免费av中文字幕在线| 人人澡人人妻人| www日本在线高清视频| 日本黄色视频三级网站网址 | 女人高潮潮喷娇喘18禁视频| 亚洲成av片中文字幕在线观看| 在线天堂中文资源库| 亚洲人成77777在线视频| 亚洲国产欧美一区二区综合| 欧美日韩视频精品一区| 操出白浆在线播放| 伦理电影免费视频| 欧美性长视频在线观看| 成人av一区二区三区在线看| 国产一区二区三区视频了| 一二三四在线观看免费中文在| 下体分泌物呈黄色| 久久久久久久国产电影| 久久中文看片网| 国产一区有黄有色的免费视频| 亚洲成人免费av在线播放| 在线永久观看黄色视频| 国产三级黄色录像| 人成视频在线观看免费观看| 别揉我奶头~嗯~啊~动态视频| 欧美一级毛片孕妇| 超碰成人久久| 一个人免费看片子| 人人妻人人爽人人添夜夜欢视频| 午夜福利免费观看在线| 狠狠婷婷综合久久久久久88av| 中国美女看黄片| 热99re8久久精品国产| 欧美黄色淫秽网站| 午夜成年电影在线免费观看| 精品国内亚洲2022精品成人 | 这个男人来自地球电影免费观看| 在线观看免费午夜福利视频| 最新在线观看一区二区三区| 一级毛片电影观看| 亚洲精品av麻豆狂野| 久久精品亚洲熟妇少妇任你| 老司机靠b影院| 久久久国产欧美日韩av| 日韩欧美三级三区| 亚洲av日韩在线播放| 精品一区二区三区四区五区乱码| 亚洲色图综合在线观看| 天天躁日日躁夜夜躁夜夜| 精品亚洲成a人片在线观看| 日韩精品免费视频一区二区三区| 久久精品人人爽人人爽视色| 麻豆国产av国片精品| 青青草视频在线视频观看| 国产精品久久久久久精品电影小说| 日韩制服丝袜自拍偷拍| 美女高潮喷水抽搐中文字幕| 1024视频免费在线观看| 欧美中文综合在线视频| 欧美人与性动交α欧美软件| 在线观看66精品国产| 国产视频一区二区在线看| 三上悠亚av全集在线观看| 少妇被粗大的猛进出69影院| 51午夜福利影视在线观看| 两人在一起打扑克的视频| 大片免费播放器 马上看| 老汉色∧v一级毛片| 人妻 亚洲 视频| 五月开心婷婷网| 视频在线观看一区二区三区| 十分钟在线观看高清视频www| 真人做人爱边吃奶动态| 激情视频va一区二区三区| 国产精品免费一区二区三区在线 | 男女午夜视频在线观看| 欧美激情极品国产一区二区三区| 亚洲五月婷婷丁香| 国产精品一区二区在线不卡| 免费日韩欧美在线观看| 自线自在国产av| 女人久久www免费人成看片| 麻豆国产av国片精品| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品一卡2卡三卡4卡5卡| 老汉色∧v一级毛片| 日韩免费av在线播放| 热99久久久久精品小说推荐| 51午夜福利影视在线观看| 国产单亲对白刺激| 亚洲自偷自拍图片 自拍| 欧美亚洲日本最大视频资源| 国产精品久久久av美女十八| 女人久久www免费人成看片| 日韩大码丰满熟妇| 久久久国产一区二区| 精品卡一卡二卡四卡免费| 国产日韩欧美视频二区| 久久国产精品男人的天堂亚洲| 十八禁网站免费在线| 久久九九热精品免费| 丰满人妻熟妇乱又伦精品不卡| 国产成人av激情在线播放| 老熟妇乱子伦视频在线观看| 伊人久久大香线蕉亚洲五| 亚洲成人国产一区在线观看| 国产精品 国内视频| 国产精品成人在线| 午夜成年电影在线免费观看| 国产精品一区二区精品视频观看| 欧美黑人精品巨大| 亚洲精品自拍成人| 国产极品粉嫩免费观看在线| 男女高潮啪啪啪动态图| 久久影院123| 9热在线视频观看99| 精品人妻在线不人妻| 久久性视频一级片| 中文字幕av电影在线播放| 999精品在线视频| 亚洲精品美女久久久久99蜜臀| tocl精华| 亚洲精品久久午夜乱码| 黄网站色视频无遮挡免费观看| 欧美激情 高清一区二区三区| 99国产综合亚洲精品| 大香蕉久久成人网| 日韩一卡2卡3卡4卡2021年| 久久影院123| 老司机深夜福利视频在线观看| 欧美在线黄色| 夜夜爽天天搞| 久久久久久久久免费视频了| 另类精品久久| 欧美黑人精品巨大| 国产免费福利视频在线观看| 色婷婷av一区二区三区视频| 国产1区2区3区精品| 老司机靠b影院| 性高湖久久久久久久久免费观看| 日本撒尿小便嘘嘘汇集6| 又黄又粗又硬又大视频| 美女午夜性视频免费| 男女下面插进去视频免费观看| 老司机午夜福利在线观看视频 | 999久久久国产精品视频| 久久精品人人爽人人爽视色| 精品一区二区三区四区五区乱码| 久久99热这里只频精品6学生| 97人妻天天添夜夜摸| 亚洲视频免费观看视频| 国产黄频视频在线观看| 青青草视频在线视频观看| 精品亚洲乱码少妇综合久久| 香蕉丝袜av| 国产亚洲午夜精品一区二区久久| 国产在视频线精品| 纯流量卡能插随身wifi吗| 啦啦啦 在线观看视频| 日本av免费视频播放| 午夜福利视频精品| 精品亚洲成a人片在线观看| 男女床上黄色一级片免费看| 一边摸一边抽搐一进一小说 | 老司机午夜十八禁免费视频| 美国免费a级毛片| 天天躁狠狠躁夜夜躁狠狠躁| 满18在线观看网站| 一进一出抽搐动态| 中文字幕精品免费在线观看视频| 亚洲精品久久成人aⅴ小说| 丝瓜视频免费看黄片| 亚洲成人免费av在线播放| 丝袜美腿诱惑在线| 久久久久久亚洲精品国产蜜桃av| 咕卡用的链子| 天天躁狠狠躁夜夜躁狠狠躁| 一夜夜www| 国产亚洲欧美精品永久| 五月天丁香电影| 国产精品香港三级国产av潘金莲| av网站免费在线观看视频| √禁漫天堂资源中文www| 成人特级黄色片久久久久久久 | www.999成人在线观看| 中文欧美无线码| 日日摸夜夜添夜夜添小说| 丁香六月天网| 免费观看av网站的网址| av片东京热男人的天堂| 国产免费视频播放在线视频| 黄色成人免费大全| kizo精华| 在线观看免费午夜福利视频| 美国免费a级毛片| 国产免费av片在线观看野外av| 高清毛片免费观看视频网站 | 成年版毛片免费区| 精品乱码久久久久久99久播| 欧美日韩福利视频一区二区| 丝袜美足系列| 欧美av亚洲av综合av国产av| 久久精品人人爽人人爽视色| 精品熟女少妇八av免费久了| 亚洲午夜理论影院| 国产深夜福利视频在线观看| 亚洲七黄色美女视频| 精品少妇久久久久久888优播| 日本五十路高清| 午夜福利在线观看吧| 99精品在免费线老司机午夜| 天天躁夜夜躁狠狠躁躁| 成人亚洲精品一区在线观看| 久久精品国产99精品国产亚洲性色 | 99久久99久久久精品蜜桃| 精品亚洲成国产av| 麻豆国产av国片精品| 国产精品一区二区精品视频观看| 欧美日本中文国产一区发布| 国产成人免费观看mmmm| 国产精品久久久久久精品电影小说| 男女床上黄色一级片免费看| 日韩一卡2卡3卡4卡2021年| 激情在线观看视频在线高清 | 精品视频人人做人人爽| 亚洲熟女精品中文字幕| 国产亚洲欧美在线一区二区| 高清视频免费观看一区二区| 777米奇影视久久| 欧美 日韩 精品 国产| 男女之事视频高清在线观看| 老司机福利观看| 又紧又爽又黄一区二区| 久久久水蜜桃国产精品网| 国产一区二区在线观看av| 女性被躁到高潮视频| a级片在线免费高清观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看舔阴道视频| 亚洲精品久久成人aⅴ小说| 大香蕉久久成人网| 午夜日韩欧美国产| 啦啦啦免费观看视频1| 国产精品偷伦视频观看了| 精品高清国产在线一区| 欧美在线黄色| 美女主播在线视频| 我要看黄色一级片免费的| 人人妻人人爽人人添夜夜欢视频| 免费在线观看黄色视频的| 在线十欧美十亚洲十日本专区| 深夜精品福利| 成人三级做爰电影| 国产高清视频在线播放一区| 嫁个100分男人电影在线观看| 国产精品久久久久久精品电影小说| 成人免费观看视频高清| 国产精品秋霞免费鲁丝片| 天堂俺去俺来也www色官网| 亚洲熟妇熟女久久| 亚洲免费av在线视频| 亚洲欧美日韩另类电影网站| 美女高潮喷水抽搐中文字幕| 成人国产av品久久久| 涩涩av久久男人的天堂| tocl精华| 侵犯人妻中文字幕一二三四区| 国产精品.久久久| 午夜成年电影在线免费观看| 午夜两性在线视频| 大陆偷拍与自拍| 50天的宝宝边吃奶边哭怎么回事| 啦啦啦免费观看视频1| 一区二区av电影网| 午夜两性在线视频| 亚洲av电影在线进入| 99久久精品国产亚洲精品| 亚洲五月色婷婷综合| 久久精品人人爽人人爽视色| 亚洲精品乱久久久久久| 久热爱精品视频在线9| 日韩有码中文字幕| 国产深夜福利视频在线观看| 一区二区三区激情视频| 搡老熟女国产l中国老女人| avwww免费| 桃红色精品国产亚洲av| 99久久99久久久精品蜜桃| kizo精华| e午夜精品久久久久久久| 老司机靠b影院| 亚洲人成电影观看| 不卡av一区二区三区| 他把我摸到了高潮在线观看 | 大香蕉久久网| cao死你这个sao货| 国产1区2区3区精品| 亚洲专区中文字幕在线| 一区二区三区精品91| 成年人午夜在线观看视频| 成在线人永久免费视频| 91大片在线观看| 精品一品国产午夜福利视频| 一本—道久久a久久精品蜜桃钙片| 成人国产一区最新在线观看| 国产精品久久久久成人av| 精品人妻熟女毛片av久久网站| 国产亚洲午夜精品一区二区久久| 少妇精品久久久久久久| 国产精品秋霞免费鲁丝片| 午夜视频精品福利| 两性夫妻黄色片| 黄色成人免费大全| 久久中文字幕人妻熟女| 精品卡一卡二卡四卡免费| 99精品欧美一区二区三区四区| 欧美大码av| 啦啦啦免费观看视频1| 国产欧美日韩综合在线一区二区| av免费在线观看网站| 亚洲七黄色美女视频| 一区二区三区国产精品乱码| 日韩三级视频一区二区三区| 人人澡人人妻人| 80岁老熟妇乱子伦牲交| 777米奇影视久久| 丝袜喷水一区| 国产国语露脸激情在线看| 亚洲中文字幕日韩| 一边摸一边抽搐一进一小说 | aaaaa片日本免费| 在线亚洲精品国产二区图片欧美| 中文欧美无线码| 国产精品99久久99久久久不卡| 男女之事视频高清在线观看| 丰满少妇做爰视频| 亚洲av电影在线进入| 看免费av毛片| 99re6热这里在线精品视频| 搡老乐熟女国产| 国产91精品成人一区二区三区 | 一区福利在线观看| 亚洲成国产人片在线观看| 精品亚洲乱码少妇综合久久| 国产精品美女特级片免费视频播放器 | 中文亚洲av片在线观看爽 | 丝袜美腿诱惑在线| 十八禁人妻一区二区| 老司机在亚洲福利影院| 啪啪无遮挡十八禁网站| 免费日韩欧美在线观看| 51午夜福利影视在线观看| 亚洲自偷自拍图片 自拍| 久久人妻福利社区极品人妻图片| 窝窝影院91人妻| a级片在线免费高清观看视频| 国产精品久久电影中文字幕 | 日韩免费高清中文字幕av| 欧美激情 高清一区二区三区| 啦啦啦 在线观看视频| 一级片'在线观看视频| 搡老岳熟女国产| 免费看十八禁软件| 精品久久蜜臀av无| 建设人人有责人人尽责人人享有的| 免费黄频网站在线观看国产| 亚洲人成伊人成综合网2020| 在线观看www视频免费| 交换朋友夫妻互换小说| 欧美精品啪啪一区二区三区| 肉色欧美久久久久久久蜜桃| 五月天丁香电影| 日韩有码中文字幕| 国产精品久久久人人做人人爽| 精品高清国产在线一区| 欧美亚洲 丝袜 人妻 在线| 丁香六月天网| 久久久久久久久免费视频了| 大型av网站在线播放| 纯流量卡能插随身wifi吗| 亚洲国产中文字幕在线视频| 亚洲av日韩精品久久久久久密| 国产精品98久久久久久宅男小说| 亚洲国产av新网站| 1024香蕉在线观看| 无限看片的www在线观看| 成年人黄色毛片网站| 日韩精品免费视频一区二区三区| 免费在线观看日本一区| 欧美在线一区亚洲| 好男人电影高清在线观看| 久久影院123| 一夜夜www| 国产高清视频在线播放一区| 欧美中文综合在线视频| 国产精品一区二区在线观看99| 在线观看免费视频日本深夜| 可以免费在线观看a视频的电影网站| 老汉色av国产亚洲站长工具| 一二三四在线观看免费中文在| 色婷婷av一区二区三区视频| 人人妻人人爽人人添夜夜欢视频| 一边摸一边抽搐一进一出视频| 热99re8久久精品国产| 一进一出好大好爽视频| 女人爽到高潮嗷嗷叫在线视频| 免费观看a级毛片全部| 国产精品久久久人人做人人爽| 亚洲自偷自拍图片 自拍| 国产欧美日韩综合在线一区二区| a级片在线免费高清观看视频| 欧美激情久久久久久爽电影 | 99热国产这里只有精品6| 乱人伦中国视频|