• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of particle size on the breaking of aluminum particle shells

    2022-08-01 06:02:06TianYiWang王天一ZhengQingZhou周正青JianPingPeng彭劍平YuKunGao高玉坤andYingHuaZhang張英華
    Chinese Physics B 2022年7期
    關(guān)鍵詞:英華周正

    Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青),?, Jian-Ping Peng(彭劍平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(張英華)

    1School of Civil and Resource Engineering,University of Science and Technology Beijing,Beijing 100083,China

    2Zhaojin Mining Industry Co.,Ltd,Zhaoyuan 265400,China

    Keywords: aluminum particle,shell–core structure,thermal stress,shell-breaking

    1. Introduction

    Aluminum has attracted an intense interest over the years due to its high activity and high energy density in explosives and propellants.[1–6]Natural aluminum particles have a shell–core structure and are wrapped in a layer of amorphous alumina at room temperature.[7–11]Breaking the shell is a prerequisite for energy release. Therefore, mastering the shellbreaking mechanism is very important in order to study the ignition and combustion of aluminum powder.[12,13]

    The crystal transformation of the alumina shell has an important effect on shell-breaking. Eisenreich[14,15]noted that the alumina shell undergoes a crystal transformation in a hightemperature environment, but the dynamic relationship between crystal transformation and the alumina shell has not been explained. Others have conducted more in-depth research into the relationship between crystal transformation and shell-breaking. Trunov[16–18]used x-ray diffraction(XRD)to study the crystal transformation of the alumina shell due to the heating process. It showed that the shell breaking is caused by the transformation of amorphous alumina intoγ-Al2O3(the new formedγ-Al2O3layer increases in density and decreases in volume,and cannot completely cover the aluminum core,resulting in shell breaking). However,the thermal stress caused by the different thermal expansion coefficients of the aluminum core and the alumina shell in a high-temperature environment has not been considered. Lipkin[19]also found that the transformation of the less-dense monoclinic crystal structureθ-Al2O3into the close-packed structureα-Al2O3is accompanied by a volume shrinkage of 10% and that this volume shrinkage during crystal transformation causes shell breaking.[20]Guo[21,22]used differential scanning calorimetry,thermogravimetric analysis and XRD to analyze the crystal transformation of aluminum powder at temperatures of up to 660°C. The experimental results showed that during this process, the crystal lattice arrangement, volume, and density of the alumina shell changed, leading to the destruction of the alumina shell and even shell breaking. Khan[23]also believed that crystal transformation was one of the main factors in shell breaking. Although crystal transformation is an important cause of shell breaking, its impact on shell breaking has not been quantitatively considered.

    However, others hold different views on the main factors responsible for shell breaking. Levitas[24–26]believed that shell breaking was due to stress overload caused by the difference between the thermal expansion coefficient of the aluminum core (23.0×10-6) and that of the alumina shell(8.6×10-6). However,the influence of thermal stress on the shell-breaking process has not been quantitatively analyzed.Some researchers also studied the relationship between the thermal stress of aluminum particles and temperature. Dudi[7]used an in-situ transmission electron microscope(TEM)to estimate the relationship between thermal stress and the temperature of 100 nm aluminum particles by analyzing changes in lattice distance. However,since TEM cannot observe micronscale particles, his method of estimating stress cannot be applied to micron-scale aluminum particles. Overall, different scholars have different opinions about the shell-breaking mechanism of aluminum particles, and there is a lack of research that provides quantitative analysis of the thermal stress of aluminum particles in high-temperature environments.

    It appears that the shell-breaking mechanism of aluminum particles is still unclear and that no one has quantitatively explained the reason for shell breaking from a mechanical point of view. Shell breaking is the result of a combination of temperature, particle size, environmental conditions, and other factors, and its process is complex and diverse. Earlier research has described the effect of temperature on shell breaking,but the effect of particle size on shell breaking has rarely been reported. Therefore, COMSOL was used to quantitatively study the causes of shell breaking and the effect of particle size on shell breaking from a mechanical point of view.

    2. Finite element model

    Figure 1(a) shows that a natural aluminum particle has a shell–core structure. The aluminum particles used in military and industrial applications are in the micron size range(10 μm–100 μm). To obtain an accurate structural model of the shell–core structure model,the shell thicknesses of 10 μm–100 μm aluminum particles were measured using the gas volume method,[27]as shown in Fig.1(b). Based on the results,a calculation model for aluminum particles was established, as shown in Fig.1(c).

    Fig. 1. (a) Aluminum particle HR-TEM image. (b) Relationship between the particle size of a micron-scale aluminum particle and alumina shell thickness.[28] (c)Finite element model of the shell–core structure.

    A solid heat conduction model and a solid mechanics model inside COMSOL are coupled into a multi-physics field for this research. The heat transfer and thermal expansion equations built into COMSOL are used as the control equations for aluminum and alumina,as shown below:

    whereρis the density,CPis the constant pressure heat capacity,Tis the temperature,tis time,Qis the absorbed heat,?is the Laplace operator, andkis the coefficient of thermal conductivity.

    The thermal expansion control equation is

    whereEthis the thermal strain,αis the coefficient of thermal expansion,T0is the initial temperature, andTis the current temperature.

    The physical properties of aluminum and alumina are shown in Tables 1 and 2.

    During the heating process, the alumina shell undergoes crystal transformation,which leads to a change of density.The crystal transformation of the alumina shell can be divided into four stages,[16]but in the temperature range of 0°C–650°C,only the first two stages of crystal transformation should be considered, as shown in Fig. 2. The thermal expansion coefficient of alumina (α) was corrected to indirectly realize the simulation of the crystal transformation process during the heating process. Here,αis modified as

    whereαis the coefficient of thermal expansion andρAl2O3is the density of alumina.

    Fig.2. Relationship between the density of alumina and temperature.

    Table 1. Physical properties of aluminum.[2]

    Table 2. Physical properties of alumina.[29]

    Fig. 3. (a) The quality of the mesh. (b) Relationship between the time step and the reciprocal step. (c) The relationship between the number of iterations and the error of the solver.

    In order to ensure the accuracy of the model, the mesh quality and the convergence of the model were verified, as shown in Figs. 3(a)–3(c). It can be seen from Fig. 3(a) that the overall quality of the mesh is good,and there are no cells with poor quality. Figure 3(b)shows that as the time step increases,the reciprocal step size tends to be stable and there is no growth fluctuation, indicating that the transient solver has better convergence.Figure 3(c)shows that the error of the heat transfer and solid mechanics solvers fluctuates in the range of 5×10-5–200×10-5,which is an acceptable error.

    Dudi[7]usedin-situtechniques to analyze the relationship between aluminum lattice distances and temperature. The results showed that the maximum pressure of an aluminum core with a particle size of 100 nm at 600°C is 0.051 GPa. In order to verify the accuracy of the aluminum particle model, a model with the same particle size and alumina shell thickness parameters was established(the particle size was 100 nm and the thickness of the alumina shell was 4.6 nm). The simulation results show that the maximum pressure of the aluminum core at 600°C is 0.044 GPa. Compared with the experimental results,the error of the simulation results is 13.72%.

    3. Results analysis

    3.1. Heating process of micron-scale aluminum particles

    The environmental temperature is 650°C,and the initial temperature of the aluminum particle is 0°C.Figure 4 shows the temperature distribution of a 100 μm aluminum particle over time.

    Fig.4. Temperature distribution of a 100 μm aluminum particle at different time.

    Fig.5. (a)Relationship between the minimum temperature of a 100 μm aluminum particle and time. (b)Relationship between the thermal stability time and the particle’s size.

    The heating rate of the aluminum particle is a process that changes from fast to slow, as shown in Fig. 5(a). This is because as time increases,there is a decrease in the temperature difference between the inside of the aluminum particle and the environment. Figure 5(b)shows that the thermal stability time(the time required for the minimum temperature of the aluminum particle to reach 645°C)of 10 μm–100 μm aluminum particles is in the range of 0.15 μs–11.44 μs. The fitting relationship between the thermal stability time and the particle size is as follows:

    wheretis the thermal stability time anddis the size of the aluminum particle.

    3.2. Thermal stress of micron-scale aluminum particles

    Figure 6 shows the compressive stress distribution of the aluminum particle.It can be seen from the figure that the maximum compressive stress of 20 μm–70 μm aluminum particles is concentrated on two lines of 45°and 135°.

    Fig.6. Compressive stress distribution of aluminum particles with different particle sizes at 10 μs.

    Figure 7(a) shows that the maximum compressive stress first increases slightly and then decreases rapidly, reaching a maximum at a particle size of 60 μm. This is because the maximum compressive stress is determined by the minimum temperature of the aluminum particles and the ratioRtogether. The lower the minimum temperature, the smaller the maximum compressive stress,and the greater the ratioR,the greater the maximum compressive stress. It can be seen from Fig.7(b)that when the particle size is less than 60 μm,the minimum temperature decreases slightly,while the ratioRincreases greatly. The increase in the ratioRhas a greater impact on the maximum compressive stress than the decrease in the minimum temperature. Therefore,the maximum compressive stress increases, reaching its maximum value at around 60 μm. When the particle size is 60 μm–100 μm, the minimum temperature decreases greatly, and the ratioRincreases relatively slowly. Therefore,the maximum compressive stress shows a downward trend,and the decline is extremely large.

    Fig.7. (a)The relationship between particle size and compressive stress. (b)The effect of the particle size on the ratio R and the minimum temperature of the aluminum particle.

    In a high-temperature environment, the compressive stress of the alumina shell will change.The compressive stress arises from the expansion and extrusion caused by the different thermal expansion coefficients inside and outside the shell and the crystal transformation of the alumina shell. Figure 8 shows that the growth rate of compressive stress on the inner and outer surfaces gradually slows down and then stabilizes.However,the compressive stress on the outer surface increases slightly faster;this is because the change in compressive stress originates from the change in the temperature field.A distance corresponding to the shell thickness (about 50 nm) separates the inner surface and the outer surface,and it takes some time(less than 0.1 μs) for the temperature fields of the inner and outer surfaces to equalize. As the temperature fields stabilize, the compressive stress also tends to stabilize. This also proves that the change of compressive stress originates from the change in the temperature field. The ratioRis 556–1808 for particle sizes of 10 μm–100 μm. The larger the ratio, the greater the expansion extrusion effect.

    Fig. 8. (a) Relationship between compressive stress on the inner surface of alumina shell and time. (b)Relationship between compressive stress on the outer surface of alumina shell and time.

    Figure 9 shows the tensile stress distribution of aluminum particles with different particle sizes at 10 μs. It can be seen from Figs.6 and 9 that the extreme value for the distribution of the tensile stress is roughly the same as the extreme value for the distribution of the compressive stress.Figure 10 shows that when the particle size is less than 50 μm,the tensile stress first increases rapidly and then stabilizes;when the particle size is greater than 50 μm, the tensile stress first increases rapidly and then the growth rate slows down. This proves that both the tensile stress and the compressive stress originate from the change of the temperature field(the growth rate changes from fast to slow). It can be seen from Figs. 8 and 10 that with the change of particle size, the maximum compressive stress varies little,but the maximum tensile stress varies greatly.

    Table 3. Comprehensive analysis of the structural response.

    Fig.9. Tensile stress distribution of aluminum particles of different sizes at 10 μs.

    Fig.10. (a)Relationship between tensile stress and time for the inner surface of alumina shell. (b)Relationship between tensile stress and time for the outer surface of alumina shell.

    Table 3 shows the shell–core relationships of aluminum particles with different particle sizes, the shell-breaking response time for compressive stress, the shell-breaking response time for tensile stress,and the direct cause of the shellbreaking response. The tensile strength of alumina is between 35.5 MPa and 53.1 MPa.[30]In this paper, 35.5 MPa was used as the tensile strength of alumina,and the compressive strength of alumina is 2600 MPa.[31]The time required for the compressive stress to reach the compressive strength is the compressive stress shell-breaking response time. Similarly, the time required for the tensile stress to reach the tensile stress strength is the tensile shell-breaking response time.The smaller value of the two is the shell-breaking response time. Therefore,the shell-breaking response times of 10 μm–100 μm aluminum particles are in the range of 0.08 μm–2.69 μs.

    Figure 11 shows the relationship between the shellbreaking response time and the particle size of the aluminum particle. The fitting relationship is as follows:

    wheretis the shell-breaking response time (μs) anddis the particle size of the aluminum particle(μm).

    Fig. 11. Relationship between particle size and the shell-breaking response time.

    4. Conclusion

    In this paper,the relationship between the thermal stability time,the shell-breaking response time,and the particle size was obtained. The conclusions are as follows:

    (i)As the particle size of the aluminum particle increases,the thermal stability time does not follow a process of uniform growth, but a process that is fast and then slow. The thermal stability times of aluminum particles with particle sizes of 10 μm–100 μm are in the range of 0.15 μs–11.44 μs.

    (ii)The direct cause of shell-breaking has an obvious relationship with the particle size, and there is a particle size boundary (80 μm): when the aluminum particle size is less than 80 μm,the direct cause of shell-breaking is compressive stress overload; when the particle size is between 80 μm and 100 μm,the direct cause is tensile stress overload.

    (iii) As the particle size increases, the shell-breaking response time follows a pattern of initial rapid increase, then a slow increase, and finally stability. The breaking response times of aluminum particles with particle sizes of 10 μm–100 μm are in the range of 0.08 μs–2.69 μs.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant No.11802160).

    猜你喜歡
    英華周正
    Floquet spectrum and universal dynamics of a periodically driven two-atom system
    On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
    Empirical Likelihood for Partially Linear Models Under Associated Errors
    Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial*
    Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings?
    李偉賢、葉子康、周已程、周正男作品
    大觀(2020年9期)2020-01-25 16:24:08
    勻變速直線運(yùn)動(dòng)規(guī)律應(yīng)用中的一類典型易錯(cuò)題
    QUANTILE ESTIMATION WITH AUXILIARY INFORMATION UNDER POSITIVELY ASSOCIATED SAMPLES?
    How to Teach English Reading Effectively
    模仿簽名
    故事林(2013年19期)2013-05-14 17:30:18
    亚洲一级一片aⅴ在线观看| 国产69精品久久久久777片| 男人舔女人的私密视频| av视频免费观看在线观看| 久久久久久伊人网av| 天美传媒精品一区二区| 妹子高潮喷水视频| 中国美白少妇内射xxxbb| 欧美精品人与动牲交sv欧美| 久久久国产一区二区| 亚洲综合精品二区| 老熟女久久久| 国产欧美亚洲国产| 亚洲欧美成人综合另类久久久| 91久久精品国产一区二区三区| 大香蕉97超碰在线| 乱人伦中国视频| www.av在线官网国产| 欧美亚洲 丝袜 人妻 在线| 国产精品免费大片| 日韩 亚洲 欧美在线| 蜜桃国产av成人99| av视频免费观看在线观看| 成人毛片60女人毛片免费| 人人妻人人澡人人看| 免费大片18禁| 亚洲欧美一区二区三区国产| 精品视频人人做人人爽| 男女啪啪激烈高潮av片| 制服人妻中文乱码| 亚洲精品中文字幕在线视频| 大香蕉久久网| 日韩精品有码人妻一区| 卡戴珊不雅视频在线播放| 丝袜在线中文字幕| 亚洲经典国产精华液单| 日韩大片免费观看网站| 日本欧美国产在线视频| 精品一品国产午夜福利视频| 亚洲一区二区三区欧美精品| 9色porny在线观看| 999精品在线视频| 中国美白少妇内射xxxbb| 欧美亚洲 丝袜 人妻 在线| 欧美精品av麻豆av| 黄色 视频免费看| 午夜福利,免费看| 丝袜人妻中文字幕| 夫妻午夜视频| 侵犯人妻中文字幕一二三四区| 亚洲三级黄色毛片| 大话2 男鬼变身卡| 亚洲国产欧美在线一区| 亚洲欧美中文字幕日韩二区| 久久久精品免费免费高清| 成人毛片60女人毛片免费| 各种免费的搞黄视频| 九色成人免费人妻av| 男人爽女人下面视频在线观看| 丝袜在线中文字幕| 99国产精品免费福利视频| 亚洲精品日韩在线中文字幕| 在线观看国产h片| 少妇熟女欧美另类| 久久毛片免费看一区二区三区| 欧美精品一区二区大全| 欧美日韩视频高清一区二区三区二| 人妻少妇偷人精品九色| 国产毛片在线视频| 日本wwww免费看| 91精品伊人久久大香线蕉| 久久久久久人妻| 女人久久www免费人成看片| 99热国产这里只有精品6| 黄色毛片三级朝国网站| 丁香六月天网| 久久女婷五月综合色啪小说| 亚洲av日韩在线播放| 欧美人与性动交α欧美精品济南到 | 777米奇影视久久| 亚洲精品国产色婷婷电影| 最近中文字幕高清免费大全6| 日本欧美国产在线视频| 三上悠亚av全集在线观看| 国产精品一二三区在线看| 亚洲,一卡二卡三卡| 一级毛片我不卡| 国产精品一区www在线观看| 超碰97精品在线观看| av黄色大香蕉| 日韩视频在线欧美| 高清视频免费观看一区二区| 成年人免费黄色播放视频| 久久99一区二区三区| 日韩av不卡免费在线播放| 久久精品久久久久久噜噜老黄| 亚洲国产欧美在线一区| av国产精品久久久久影院| 免费日韩欧美在线观看| 丰满饥渴人妻一区二区三| 亚洲欧美色中文字幕在线| 高清视频免费观看一区二区| 看非洲黑人一级黄片| videossex国产| 老女人水多毛片| 永久网站在线| 97在线视频观看| 久久人人爽人人片av| 国产毛片在线视频| 亚洲欧洲国产日韩| 国产老妇伦熟女老妇高清| 另类亚洲欧美激情| 国产一区二区在线观看日韩| 亚洲国产最新在线播放| 久久精品aⅴ一区二区三区四区 | 欧美精品一区二区大全| 9色porny在线观看| 乱人伦中国视频| 国产成人精品久久久久久| 又粗又硬又长又爽又黄的视频| 色婷婷久久久亚洲欧美| 久久亚洲国产成人精品v| av福利片在线| 夜夜骑夜夜射夜夜干| 青春草视频在线免费观看| 久久久久久久久久人人人人人人| 看非洲黑人一级黄片| 亚洲,一卡二卡三卡| av女优亚洲男人天堂| 一区二区日韩欧美中文字幕 | 国产免费一区二区三区四区乱码| 国产精品麻豆人妻色哟哟久久| 纵有疾风起免费观看全集完整版| 日本av手机在线免费观看| 久久久久久人妻| 天堂中文最新版在线下载| 国产精品免费大片| 香蕉精品网在线| 亚洲av电影在线进入| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品日本国产第一区| 亚洲精华国产精华液的使用体验| 国产麻豆69| 大香蕉97超碰在线| 人人妻人人爽人人添夜夜欢视频| 七月丁香在线播放| 国产日韩欧美视频二区| 欧美日韩综合久久久久久| 国产成人精品婷婷| 香蕉精品网在线| 香蕉丝袜av| 国产精品三级大全| 成年av动漫网址| 大话2 男鬼变身卡| 黄色毛片三级朝国网站| 成人午夜精彩视频在线观看| 极品人妻少妇av视频| 国产精品嫩草影院av在线观看| 久久毛片免费看一区二区三区| 欧美人与性动交α欧美精品济南到 | 国产高清国产精品国产三级| 亚洲精品一区蜜桃| 日产精品乱码卡一卡2卡三| 最近中文字幕高清免费大全6| 国产亚洲av片在线观看秒播厂| 男的添女的下面高潮视频| 亚洲情色 制服丝袜| 久久人人97超碰香蕉20202| 天堂中文最新版在线下载| 成人18禁高潮啪啪吃奶动态图| 久久久久久久大尺度免费视频| 久久女婷五月综合色啪小说| 亚洲av电影在线观看一区二区三区| 亚洲国产成人一精品久久久| 久久免费观看电影| 久久精品国产综合久久久 | 日本av手机在线免费观看| 精品亚洲成国产av| 午夜av观看不卡| 午夜老司机福利剧场| 久久精品aⅴ一区二区三区四区 | 国国产精品蜜臀av免费| 久久精品国产a三级三级三级| 成人毛片60女人毛片免费| 日韩成人av中文字幕在线观看| 伊人久久国产一区二区| 波多野结衣一区麻豆| 精品久久久精品久久久| 久久毛片免费看一区二区三区| 国产欧美日韩综合在线一区二区| 少妇高潮的动态图| 精品久久国产蜜桃| 国产欧美日韩一区二区三区在线| 看十八女毛片水多多多| 搡老乐熟女国产| 自线自在国产av| 伊人亚洲综合成人网| 亚洲欧美日韩卡通动漫| 亚洲第一av免费看| 免费播放大片免费观看视频在线观看| 97精品久久久久久久久久精品| 欧美老熟妇乱子伦牲交| 日本wwww免费看| 少妇人妻精品综合一区二区| 少妇高潮的动态图| av一本久久久久| 久久人人97超碰香蕉20202| 欧美精品人与动牲交sv欧美| 国产日韩一区二区三区精品不卡| 日韩一区二区三区影片| 少妇精品久久久久久久| 人人澡人人妻人| 国产亚洲精品久久久com| 国产无遮挡羞羞视频在线观看| 国产午夜精品一二区理论片| 中文字幕人妻丝袜制服| 亚洲av.av天堂| 久久精品国产综合久久久 | 久久人妻熟女aⅴ| 精品久久久久久电影网| 日本爱情动作片www.在线观看| 激情视频va一区二区三区| 在线观看免费视频网站a站| 老司机影院毛片| 中国三级夫妇交换| 一二三四中文在线观看免费高清| 国产日韩欧美视频二区| 亚洲人成网站在线观看播放| 国产免费福利视频在线观看| 国产一区二区在线观看av| 少妇熟女欧美另类| 最近最新中文字幕大全免费视频 | 香蕉丝袜av| 欧美日韩视频高清一区二区三区二| 午夜影院在线不卡| 色婷婷av一区二区三区视频| 亚洲五月色婷婷综合| 老司机影院毛片| 久久综合国产亚洲精品| 少妇精品久久久久久久| 国产一区二区在线观看av| 人妻系列 视频| 在线天堂最新版资源| 亚洲国产av新网站| 婷婷成人精品国产| 日本黄大片高清| 亚洲色图综合在线观看| 免费看不卡的av| 久久久久久伊人网av| 亚洲av综合色区一区| 熟女电影av网| 两个人看的免费小视频| 成人午夜精彩视频在线观看| 亚洲综合色网址| 纯流量卡能插随身wifi吗| 亚洲一区二区三区欧美精品| 9热在线视频观看99| 久久久久久久久久久免费av| 久久人人爽av亚洲精品天堂| 一个人免费看片子| 精品国产一区二区久久| 18禁动态无遮挡网站| 婷婷色麻豆天堂久久| av电影中文网址| 在线天堂中文资源库| 亚洲精品国产色婷婷电影| 国产亚洲精品第一综合不卡 | 久久精品国产鲁丝片午夜精品| 2022亚洲国产成人精品| a 毛片基地| 插逼视频在线观看| 亚洲综合色网址| 国产成人aa在线观看| 国产成人精品在线电影| 久久人人爽人人爽人人片va| 99热这里只有是精品在线观看| av.在线天堂| 久久韩国三级中文字幕| 免费在线观看完整版高清| 777米奇影视久久| 亚洲国产精品国产精品| 伊人亚洲综合成人网| 婷婷色综合www| 久久鲁丝午夜福利片| 黑人猛操日本美女一级片| 乱码一卡2卡4卡精品| 69精品国产乱码久久久| 国产精品国产三级国产专区5o| 日本-黄色视频高清免费观看| 国精品久久久久久国模美| 尾随美女入室| 夫妻午夜视频| 日韩一区二区视频免费看| 亚洲综合色惰| 日日啪夜夜爽| 搡女人真爽免费视频火全软件| 亚洲精品中文字幕在线视频| 香蕉国产在线看| 午夜激情av网站| 国产熟女欧美一区二区| 亚洲国产最新在线播放| 99精国产麻豆久久婷婷| 丰满少妇做爰视频| 99精国产麻豆久久婷婷| 咕卡用的链子| 日韩熟女老妇一区二区性免费视频| 国产综合精华液| 18+在线观看网站| av又黄又爽大尺度在线免费看| 如何舔出高潮| 1024视频免费在线观看| 亚洲色图综合在线观看| 午夜福利乱码中文字幕| 如日韩欧美国产精品一区二区三区| 亚洲国产最新在线播放| 黑人巨大精品欧美一区二区蜜桃 | 一级黄片播放器| 日本黄大片高清| 一本久久精品| 欧美日韩综合久久久久久| 卡戴珊不雅视频在线播放| 捣出白浆h1v1| 久久久久久久精品精品| a级片在线免费高清观看视频| 国产成人精品婷婷| 成年动漫av网址| 亚洲成国产人片在线观看| av黄色大香蕉| 日韩大片免费观看网站| 午夜影院在线不卡| 久久人人爽人人爽人人片va| 久久婷婷青草| 久久久精品94久久精品| 亚洲欧美成人精品一区二区| 国产片内射在线| 久久这里有精品视频免费| 午夜激情久久久久久久| 欧美97在线视频| 国产精品国产三级国产av玫瑰| 中文字幕免费在线视频6| 国产一区二区三区av在线| 免费黄色在线免费观看| 只有这里有精品99| 999精品在线视频| 亚洲美女黄色视频免费看| 亚洲精品第二区| 中文天堂在线官网| 少妇 在线观看| 一级,二级,三级黄色视频| 亚洲精品久久午夜乱码| 少妇的逼水好多| 国产激情久久老熟女| 美女中出高潮动态图| 99久久中文字幕三级久久日本| 欧美成人午夜免费资源| 女人精品久久久久毛片| 国产成人精品一,二区| 色婷婷av一区二区三区视频| 久久久a久久爽久久v久久| 黄片无遮挡物在线观看| 在线亚洲精品国产二区图片欧美| 一区二区av电影网| 久久精品国产鲁丝片午夜精品| 亚洲国产av新网站| av在线老鸭窝| 欧美精品国产亚洲| 午夜视频国产福利| 久久ye,这里只有精品| 80岁老熟妇乱子伦牲交| 久久ye,这里只有精品| 国产成人午夜福利电影在线观看| 久久午夜综合久久蜜桃| 亚洲精品美女久久久久99蜜臀 | 久久韩国三级中文字幕| 国产又爽黄色视频| 天天操日日干夜夜撸| 亚洲精品日韩在线中文字幕| 满18在线观看网站| 午夜激情久久久久久久| 日韩一区二区三区影片| 精品国产露脸久久av麻豆| 黄片播放在线免费| 久久狼人影院| 国产欧美日韩综合在线一区二区| 国产成人aa在线观看| 大陆偷拍与自拍| 青青草视频在线视频观看| 一个人免费看片子| 波多野结衣一区麻豆| 欧美精品亚洲一区二区| 90打野战视频偷拍视频| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美色中文字幕在线| 欧美bdsm另类| 韩国av在线不卡| 中文字幕另类日韩欧美亚洲嫩草| 在线观看美女被高潮喷水网站| 精品国产一区二区三区四区第35| 亚洲欧洲国产日韩| 久久99热6这里只有精品| 国产成人精品久久久久久| 国产片内射在线| 国产在线一区二区三区精| 美女主播在线视频| av不卡在线播放| 考比视频在线观看| 国产日韩欧美在线精品| 欧美bdsm另类| 久久精品国产综合久久久 | 久久99精品国语久久久| 看免费av毛片| 国产成人欧美| 肉色欧美久久久久久久蜜桃| 色视频在线一区二区三区| 日韩视频在线欧美| 日本vs欧美在线观看视频| 久久国内精品自在自线图片| 人人澡人人妻人| 国产日韩一区二区三区精品不卡| av黄色大香蕉| 国产免费一级a男人的天堂| 热re99久久国产66热| 伦精品一区二区三区| 男女高潮啪啪啪动态图| 国产xxxxx性猛交| 色婷婷av一区二区三区视频| 久久久久久人人人人人| 欧美日韩成人在线一区二区| 国产精品嫩草影院av在线观看| 亚洲成色77777| 国产一区亚洲一区在线观看| 黑人巨大精品欧美一区二区蜜桃 | 亚洲婷婷狠狠爱综合网| 免费看光身美女| 国产成人免费观看mmmm| 夜夜骑夜夜射夜夜干| 久久精品人人爽人人爽视色| 五月玫瑰六月丁香| 亚洲人与动物交配视频| 免费女性裸体啪啪无遮挡网站| 成人无遮挡网站| 国产一区二区三区综合在线观看 | 插逼视频在线观看| 国产 精品1| 欧美精品一区二区免费开放| 成年av动漫网址| 亚洲精品乱久久久久久| 久久这里有精品视频免费| 黑人欧美特级aaaaaa片| 亚洲av电影在线进入| 国产精品熟女久久久久浪| 亚洲av国产av综合av卡| 男人舔女人的私密视频| 自拍欧美九色日韩亚洲蝌蚪91| 久热这里只有精品99| 欧美日韩视频高清一区二区三区二| videosex国产| 美女国产高潮福利片在线看| av在线观看视频网站免费| 中文字幕免费在线视频6| 爱豆传媒免费全集在线观看| kizo精华| 好男人视频免费观看在线| 免费女性裸体啪啪无遮挡网站| 亚洲人与动物交配视频| 久久国产亚洲av麻豆专区| 性高湖久久久久久久久免费观看| 国产1区2区3区精品| 国产成人精品在线电影| 9热在线视频观看99| 91aial.com中文字幕在线观看| 中文字幕免费在线视频6| 少妇的丰满在线观看| 精品人妻在线不人妻| 人人澡人人妻人| 久久久久久久久久人人人人人人| 97人妻天天添夜夜摸| 91国产中文字幕| 亚洲av在线观看美女高潮| 大片电影免费在线观看免费| 国产毛片在线视频| 国语对白做爰xxxⅹ性视频网站| 一级片免费观看大全| 飞空精品影院首页| 亚洲一级一片aⅴ在线观看| 国产午夜精品一二区理论片| 午夜福利视频精品| 伊人亚洲综合成人网| 成人二区视频| 少妇的丰满在线观看| a级片在线免费高清观看视频| 久久 成人 亚洲| 中文字幕人妻丝袜制服| 建设人人有责人人尽责人人享有的| 少妇人妻 视频| 国产淫语在线视频| 91在线精品国自产拍蜜月| 99精国产麻豆久久婷婷| 久久人人爽人人片av| 国产欧美日韩综合在线一区二区| 美女中出高潮动态图| 色视频在线一区二区三区| 熟女电影av网| 国产亚洲一区二区精品| 成人国产av品久久久| 女人被躁到高潮嗷嗷叫费观| 五月玫瑰六月丁香| 亚洲精品美女久久久久99蜜臀 | 成年女人在线观看亚洲视频| 观看美女的网站| 国产精品久久久久久久电影| 建设人人有责人人尽责人人享有的| 日韩制服骚丝袜av| 国产精品人妻久久久久久| 热re99久久国产66热| 国产永久视频网站| 韩国精品一区二区三区 | 久久久久精品人妻al黑| 国产精品嫩草影院av在线观看| 国产精品一国产av| 日本欧美视频一区| av在线播放精品| 午夜福利网站1000一区二区三区| 欧美日韩亚洲高清精品| 777米奇影视久久| 精品人妻熟女毛片av久久网站| 久久国内精品自在自线图片| 欧美日韩视频精品一区| 久久国产精品男人的天堂亚洲 | 欧美日韩综合久久久久久| 一级黄片播放器| 菩萨蛮人人尽说江南好唐韦庄| 秋霞伦理黄片| 国产精品女同一区二区软件| 亚洲精品美女久久久久99蜜臀 | 91午夜精品亚洲一区二区三区| 国产1区2区3区精品| 国产在线免费精品| 亚洲色图综合在线观看| www.av在线官网国产| 成人18禁高潮啪啪吃奶动态图| 中国美白少妇内射xxxbb| 久久午夜综合久久蜜桃| 深夜精品福利| 午夜免费鲁丝| 亚洲国产日韩一区二区| 免费观看无遮挡的男女| 伦理电影大哥的女人| 美女内射精品一级片tv| 日本-黄色视频高清免费观看| 五月天丁香电影| 亚洲精品乱码久久久久久按摩| 最近2019中文字幕mv第一页| 成人手机av| 中文字幕免费在线视频6| 少妇人妻久久综合中文| 国产精品久久久av美女十八| 国产精品三级大全| 欧美老熟妇乱子伦牲交| 免费观看性生交大片5| videosex国产| 午夜91福利影院| 制服丝袜香蕉在线| 日韩 亚洲 欧美在线| a级毛片在线看网站| 免费黄色在线免费观看| 亚洲色图 男人天堂 中文字幕 | av有码第一页| 婷婷色综合www| 成人毛片a级毛片在线播放| 少妇猛男粗大的猛烈进出视频| 秋霞在线观看毛片| 亚洲av中文av极速乱| 建设人人有责人人尽责人人享有的| 这个男人来自地球电影免费观看 | 久久精品国产亚洲av涩爱| 午夜91福利影院| 寂寞人妻少妇视频99o| 少妇熟女欧美另类| 只有这里有精品99| 亚洲图色成人| 日韩av免费高清视频| 精品人妻在线不人妻| 看免费av毛片| 狠狠婷婷综合久久久久久88av| 秋霞在线观看毛片| 精品国产乱码久久久久久小说| av线在线观看网站| 十分钟在线观看高清视频www| 久久久久久久亚洲中文字幕| 男女国产视频网站| 美女中出高潮动态图| www.熟女人妻精品国产 | 亚洲 欧美一区二区三区| 99视频精品全部免费 在线| 老司机亚洲免费影院| 日产精品乱码卡一卡2卡三| 狠狠精品人妻久久久久久综合| 大码成人一级视频| 国产又色又爽无遮挡免| 久久国产亚洲av麻豆专区| 亚洲av欧美aⅴ国产| 青春草国产在线视频| 最新的欧美精品一区二区| 免费黄色在线免费观看| 美女主播在线视频| 久久久久久人人人人人| 精品久久蜜臀av无| 亚洲成av片中文字幕在线观看 | 夫妻午夜视频| 蜜桃在线观看..| 久久97久久精品| 黑丝袜美女国产一区| 中文乱码字字幕精品一区二区三区| 日韩人妻精品一区2区三区|