• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QUANTILE ESTIMATION WITH AUXILIARY INFORMATION UNDER POSITIVELY ASSOCIATED SAMPLES?

    2016-09-26 03:45:27YinghuaLI李英華YongsongQIN秦永松QingzhuLEI雷慶祝LifengLI李麗鳳
    關(guān)鍵詞:英華

    Yinghua LI(李英華) Yongsong QIN(秦永松)Qingzhu LEI(雷慶祝)Lifeng LI(李麗鳳)

    Department of Mathematics,Guangxi Normal University,Guilin 541004,China

    E-mail∶54503514@qq.com;ysqin@gxnu.edu.cn;qzlei@gxnu.edu.cn;1057171318@qq.com

    ?

    QUANTILE ESTIMATION WITH AUXILIARY INFORMATION UNDER POSITIVELY ASSOCIATED SAMPLES?

    Yinghua LI(李英華) Yongsong QIN(秦永松)?Qingzhu LEI(雷慶祝)Lifeng LI(李麗鳳)

    Department of Mathematics,Guangxi Normal University,Guilin 541004,China

    E-mail∶54503514@qq.com;ysqin@gxnu.edu.cn;qzlei@gxnu.edu.cn;1057171318@qq.com

    The empirical likelihood is used to propose a new class of quantile estimators in the presence of some auxiliary information under positively associated samples.It is shown that the proposed quantile estimators are asymptotically normally distributed with smaller asymptotic variances than those of the usual quantile estimators.

    Quantile;positively associated sample;empirical likelihood

    2010 MR Subject Classification62G05;62E20

    1 Introduction

    The empirical likelihood(EL)method as a nonparametric technique for constructing confidence regions in the nonparametric setting was introduced by Owen[1,2].The EL method was used in statistical inferences for quantiles in various contexts such as in the context of independent sample by Chen and Hall[3]and in the case of survey sampling by Chen and Wu[4].The blockwise EL method was first proposed by Kitamura[5]to construct confidence intervals for parameters with mixing samples.A striking feature of the EL is its ability to use auxiliary information.Zhang[6]applied the EL technique to propose a new class of M-functional estimators as well as quantile estimators in the presence of some auxiliary information under independent samples.Chen and Qin[7]shown that the EL method can be naturally applied to make more accurate statistical inference in finite population estimation problems by employing auxiliary information efficiently.Under negatively associated(NA)samples,Qin and Lei[8]obtained the asymptotical distribution of the smooth kernel estimator of a quantile in the presence of some auxiliary information in conjunction with the EL method.

    Negative association of random variables occurs in a number of important cases,but it has not been as popular as positive association[9].On the other hand,it is much more difficult technologically to deal with positively associated(PA)samples than NA samples becanse thereexist nice moment inequalities for sums of NA sequences and there are no nice moment inequalities for sums of PA sequences.Thus,it is interesting to work on the quantile estimation with auxiliary information under PA samples.

    It is worth mentioning the definition of PA random variables and their applications here. Random variables{ξi,1≤i≤n}are said to be PA,or just associated,if for any real-valued coordinatewise nondecreasing functions f1and g1,

    whenever this covariance exists.An infinite family of random variables is associated if every finite subfamily is associated.The concept of PA random variables was introduced by Esary et al[10],which attracts more and more attention because of its wide applications in multivariate statistical analysis and reliability theory;see,for example,Birkel[11-13],Esary et al[10],Bagai and Prakasa Rao[14]

    In this article,we apply the EL technique to propose a new class of quantile estimators in the presence of some auxiliary information under PA samples.It is shown that the proposed quantile estimators are asymptotically normally distributed with smaller asymptotic variances than those of the usual quantile estimators.

    The rest of this article is organized as follows.The main results of this article are presented in Section 2.Simulations to examine the performance of the proposed quantile estimators are presented in Section 3.Some lemmas to prove the main results are given in Section 4.The proof of the main results is presented in Section 5.

    2 Main Results

    Throughout this article,we assume that X1,X2,···,Xnis a sequence of PA random variables,and F be the distribution function of their common population X.We also assume that some auxiliary information about the distribution function F is available in the sense that there exist r(r≥1)known functions g1(x),g2(x),···,gr(x)such that

    where g(x)=(g1(x),g2(x),···,gr(x))τis an r-dimensional vector.Using the auxiliary information(2.1),we will propose a new class of quantile estimators.

    Without the auxiliary information(2.1),the smooth estimator of F is defined as

    i=1

    hnAccordingly,the smooth kernel estimator of θγ=:F?1(γ)=inf{x|F(x)≥γ}(0<γ<1)is defined by

    Under some dependent samples including PA and NA samples,Cai and Roussas[15]studied the asymptotic normality of?θγ.

    We will use the auxiliary information(2.1)to obtain a new estimator of θγby the blockwise EL method as follows.Let p=p(n)and q=q(n)be positive integers satisfying p+q≤n,and

    k=[n/(p+q)],where[t]denotes the integral part of t.Put

    where rm=(m?1)(p+q)+1,lm=(m?1)(p+q)+p+1,m=1,···,k.Define the following blockwise EL function

    with λ∈Rrbeing determined by

    Thus,under auxiliary information(2.1),a new estimator of F(x)at a given x∈R is

    and the new smooth kernel estimator of θγis defined by where with rm=(m?1)(p+q)+1,lm=(m?1)(p+q)+p+1,m=1,···,k.

    Assumptions

    (A1)(i)The X1,X2,···,Xnform a stationary sequence of real-valued r.v.s.with distribution function F,bounded probability density function f,and f(θγ)>0.

    (ii)The Xi's are PA with EX21<∞.

    (iv)The derivative f′(x)exists and is bounded in a neighborhood of θγ.

    (v)For all x∈R and each j≥2,F(xiàn)j|1(y|x)is continuous in a neighborhood of θγ,where Fj|1(y|x)is the conditional distribution function of Xjgiven X1.

    (A2)The function K is a bounded probability density function and satisfies

    (A3)The sequence of bandwidths{h=hn,n≥1}satisfies 0<h→0,nh→∞,nh4→0.

    (A4)gj(x),1≤j≤r,have bounded derivatives on R.There is a constant δ>0 such that(X)<∞,Eg(X)=0,E[‖g(X)‖6+2δ]<∞,and Σ>0,where Vgj(x)is the total variation function of gj(x),1≤j≤r,and

    (A5)Let p,q,k,and u(n)be as described above,which satisfy

    (i)q→∞and q/p→0.

    (ii)p2(3+δ)/(2+δ)/n→0.

    We now state the main results of this article.

    Theorem 2.1Suppose that conditions(A1)to(A5)are satisfied.Then,as n→∞,where with

    Remark 2.2From Cai and Roussas[15],√n(?θγ?θγ)d?→N(0,σ2(θγ)/f2(θγ)),which implies that the asymptotic variance of?θγnis less than or equal to that of?θγ.

    Remark 2.3The choice of the bandwidth is an important issue.There is no satisfactory approach available now.Further study in choosing the bandwidth is surely needed in the case of dependent samples.

    3 Simulation Results

    We conducted a small simulation to study the finite sample performance of the proposed estimators of quantiles.In the simulation,is an i.i.d.sequence with?X1~N(0,1).Note that{Xi,1≤i≤n}is an PA sequence[9]. Suppose that we know the information that Eg(X1)=0 where g(x)=x.

    We generated 1,000 random samples of data{Xi,i=1,···,n}for n=50,100,150,200,and 250.K was chosen as

    As the optimal choice of h needs further investigation,we currently choose h to satisfy Condition(A3).Specifically,we used h=n?1/3,n?5/12,and n?1/2in the simulation.p and q were chosen as p=[n1/3],q=[n1/4]throughout the simulations.

    Using the simulated samples,as h=n?1/3,we calculate the average values of 1,000 estimators?θγand?θγnof θγat γ=0.05,0.25 and 0.5,as well as the mean squared errors(MSE)of the estimators,which were reported in Table 1.For the case that γ>0.5,the simulation results were not reported due to the symmetry of the simulated population.In addition,the simulation results as h=n?5/12and h=n?1/2were reported in Tables 2 and 3 respectively.

    It can be seen from the simulation results that the MSEs of?θγnare uniformly smaller than those of?θγ,which coincides with the main results of this article and implies that the stability ofis better than?θγ.By contrast,?θγnis closer to θγthan?θγin most cases.

    Table 1?θγand?θγnand their MSEs(in bracket)at γ=0.05,0.25 and 0.5 as

    Table 2?θγand?θγnand their MSEs(in bracket)at γ=0.05,0.25 and 0.5 as

    Table 3?θγand?θγnand their MSEs(in bracket)at γ=0.05,0.25 and 0.5 as

    4 Lemmas

    To prove the main results,we need some lemmas.

    Lemma 4.1Let{ξj:j≥1}be stationary and associated random variables with Eξ1= 0.Assume that for some r>2 and δ>0,

    Let{aj,j≥1}be a real constant sequence,a:=supj|aj|<∞.Then,

    ProofThis is a straightforward consequence of Theorems 1 and 2 in Birkel[11].Lemma 4.2Let A1,A2be disjoint subsets of N,and let{ηj:j∈A1∪A2}be associated random variables.g1:Rn1→R and g2:Rn2→R have bounded partial derivatives,and let‖?g/?ti‖∝stand for the sup-norm.Then,

    where njis the number of elements of Aj,j=1,2.

    ProofSee Lemma 3.1 in Birkel[12].

    Lemma 4.3(i)Let η1,η2be an associated random variable sequence with finite variance and let η+1=max{η1,0},=max{a,min{η1,b}},where?∞≤a<b≤∞.Then,

    (ii)Let η1≥0,η2be an associated random variable sequence and let ρ>0.If η1≤C0<∞,then

    ProofSee Lemmas 4.1 and 4.2 in Birkel[11].

    Lemma 4.4Suppose that conditions(A1)(i)-(iii),(A4)and(A5)are satisfied.Then,

    where λ is given by(2.4).

    ProofTo prove(4.2),we first show that

    where

    with‖·‖being the L2-norm in Rr.

    Obviously,from Lemma 4.2,conditions(A1)(iii)and(A4),

    where Astdenotes the(s,t)-element of a matrix A.Then using Corollary 1 in Zhang[16],we have(4.5).

    To prove(4.4),it suffices to show that

    We first show,for any l∈Rrwith lτl=1,that

    To this end,letlτRncan be split as,where(4.10)follows if we can verify

    and by stationarity and(4.8),

    where we have used(4.8),Lemma 4.2 and conditions(A1)(iii),(A4).It follows that

    which implies(4.12).Similarly,we can prove(4.13).From the proof of(4.15),it can be shown that

    Relations(4.16)-(4.17)imply that

    Similarly,

    Note that Var(lτRn)=1 andUsing(4.18)and(4.19),we have

    which implies

    Furthermore,by stationarity,(4.8),Lemma 4.2 and conditions(A1)(iii),(A4),we have

    It follows from(4.20)and(4.21)that

    which proves(4.14).We thus have(4.10).To prove(4.9),it suffices to show that

    Note that where

    and

    Rewrite lτTn1l as

    where Firstly,we will show

    and denote f1(x)=x2I(x≥0),f2(x)=?x2I(x<0).As f1(x)and f2(x)are all monotone functions,{f1(vm1),1≤m≤k},{f2(vm1),1≤m≤k},{f1(vm2),1≤m≤k},{f2(vm2),1≤m≤k},{f1(vm1+vm2),1≤m≤k},and{f2(vm1+vm2),1≤m≤k}are all sequences of PA random variables,and

    By contrast,from Lemmas 4.2 and 4.3,similar to the proof of(4.15)in Li et al[17],we have

    where we have used condition A5(iii).As E‖g(X)‖6+2δ<∞,δ>0,then by Lemma 4.1,we

    have

    Similarly,we can show that

    By Cr-inequality,

    and(4.23)is thus verified.Similarly,we can prove E|lτTn2l?E(lτTn2l)|3→0 and E|lτTn3l?E(lτTn3l)|3→0.We thus have(4.22).(4.10)and(4.22)implies(4.4).

    We now prove(4.2).Let ρ=‖λ‖,λ=ρη.From(2.4),we have

    It follows that

    where ωnis defined in(4.6).Combining with(4.3)to(4.5),we have ρ/(1+ρωn)=Op(n?1/2). Therefore,

    Using(2.4)again,we have

    Therefore,combining with(4.4)and(4.5),we may write

    where τ is bounded by

    The proof of(4.2)is completed.

    Lemma 4.5Suppose that conditions(A1)to(A5)are satisfied.Then,for any real-valued sequence yn→θγ,

    where

    with

    ProofProof of(4.27).Similar to the proof of(4.27)and(4.28)in Qin and Lei[8],as yn→θγ,we have

    From Lemma 4.2,conditions(A1)(iii),(A2),and(A5),we have

    Thus,we have(4.27)from Lemma 1.1 in[16].

    Proof of(4.28).Let

    By(4.27),to prove(4.28),we only need to show,for any given a∈Rr+1with‖a‖=1,that

    with rm=(m?1)(p+q)+1,lm=(m?1)(p+q)+p+1,m=1,···,k.(4.32)follows if we can verify

    and

    As a preparation,we need to show that

    (4.34)-(4.36)can be proved similar to the proofs of(4.12)-(4.14).

    We now prove(4.33).Let

    where Astdenotes the(s,t)-element of a matrix A.By(4.31),for any a∈Rr+1,is convergent.Thus,uw(q)→0.Similar to the proof of Theorem 2.1 in[9],

    So by Lemma 4.2 and stationarity,we have

    Applying the Feller-Lindeberg central limit theorem,we get

    (4.33)is thus proved.

    Proof of(4.29).Denote

    Following the proof of(4.4),we can show that

    which leads to(4.29).

    The proof of(4.30)is completed.

    5 Proof of Theorem 2.1

    Next,we will prove

    Note that

    By conditions(A1)(i),(A1)(iv)and(A2),similar to Lemma 4.3 in Qin and Lei[8],we have

    Combining with nh4→0,(4.29),(4.30),(4.2),F(xiàn)(θγ)=γ,and F(yn)?F(θγ)=n?1/2σryf(θγ)+ o(n?1/2),we obtain

    Then by(4.28),Cramer-Word theorem,(5.2)and(5.1)lead to Theorem 2.1.

    References

    [1]Owen A B.Empirical likelihood ratio confidence intervals for a single functional.Biometrika,1988,75:237-249

    [2]Owen A B.Empirical likelihood ratio confidence regions.Ann Statist,1990,18:90-120

    [3]Chen S X,Hall P.Smoothed empirical likelihood confidence intervals for quantiles.Ann Statist,1993,21:1166-1181

    [4]Chen J,Wu C.Estimation of distribution function and quantiles using the model-calibrated pseudo empirical likelihood method.Statist Sinica,2002,12:1223-1239

    [5]Kitamura Y.Empirical likelihood methods with weakly dependent processes.Ann Statist,1997,25:2084-2102

    [6]Zhang B.M-estimation and quantile estimation in the presence of auxiliary information.J Statist Plann and Inference,1995,44:77-94

    [7]Chen J,Qin J.Empirical likelihood estimation for finite populations and the effective usage of auxiliary information.Biometrika,1993,80:107-116

    [8]Qin Y,Lei Q.Quantile estimation in the presence of auxiliary information under negatively associated samples.Communications in Statistics-Theory and Method,2011,40:4289-4307

    [9]Roussas G G.Asymptotic normality of the kernel estimate of a probability density function under association.Statist Probab Lett,2000,50:1-12

    [10]Esary J D,Proschan F,Walkup D W.Association of random variables with applications.Ann Math Statist,1967,38:1466-1474

    [11]Birkel T.Moment bounds for associated sequences.Ann Probab,1988,16:1184-1193

    [12]Birkel T.On the convergence rate in the central limit theorem for associated processes.Ann Probab,1988,16:1685-1698

    [13]Birkel T.A note on the strong law of large numbers for positively dependent random variables.Statist Probab Lett,1989,7:17-20

    [14]Bagai I,Prakasa Rao B L S.Kernel-type density and failure rate estimation for associated sequences.Ann Inst Statist Math,1995,47:253-266

    [15]Cai Z W,Roussas G G.Smooth estimate of quantiles under associate.Statist.Probab.Lett.1997,36:275-287

    [16]Zhang L X.The weak convergence for functions of negatively associated random variables.J Multivariate Anal,2001,78:272-298

    [17]Li Y,Qin Y,Lei Q.Confidence intervals for probability density functions under associated samples.J Statist Plann Infer,2012,142:1516-1524

    July 11,2014;revised April 10,2015.This work was partially supported by the National Natural Science Foundation of China(11271088,11361011,11201088)and the Natural Science Foundation of Guangxi(2013GXNSFAA019004,2013GXNSFAA019007,2013GXNSFBA019001).

    ?Corresponding author.

    猜你喜歡
    英華
    烤比薩餅
    中國古代小說中的自由人生圖景書寫
    Influence of particle size on the breaking of aluminum particle shells
    Empirical Likelihood for Partially Linear Models Under Associated Errors
    Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial*
    一種基于設(shè)備系統(tǒng)的故障預(yù)測技術(shù)
    我可愛的小門牙
    金英華 執(zhí)著幸福的“農(nóng)人”
    北京觀察(2016年9期)2017-01-16 02:17:16
    How to Teach English Reading Effectively
    Briefly Talk about Highly Effective English Classes
    最近视频中文字幕2019在线8| 国产黄a三级三级三级人| 国产欧美日韩一区二区精品| 国产私拍福利视频在线观看| 淫秽高清视频在线观看| 亚洲人成网站高清观看| 狂野欧美白嫩少妇大欣赏| 在线观看日韩欧美| 免费搜索国产男女视频| 制服丝袜大香蕉在线| 99国产综合亚洲精品| a级毛片a级免费在线| 精品乱码久久久久久99久播| 又黄又粗又硬又大视频| 国产中年淑女户外野战色| 九九热线精品视视频播放| 人人妻,人人澡人人爽秒播| 中文资源天堂在线| 蜜桃亚洲精品一区二区三区| 久久6这里有精品| 欧美性感艳星| 色综合站精品国产| 99热只有精品国产| 丁香欧美五月| 一区二区三区高清视频在线| 国产乱人伦免费视频| 成人国产综合亚洲| 亚洲午夜理论影院| 好男人在线观看高清免费视频| 欧美zozozo另类| 精品国产三级普通话版| 又紧又爽又黄一区二区| 国产精品久久久久久久久免 | 亚洲无线观看免费| 国产v大片淫在线免费观看| 欧美日韩福利视频一区二区| 精品一区二区三区人妻视频| 国语自产精品视频在线第100页| 99久久精品一区二区三区| 午夜福利成人在线免费观看| 一级作爱视频免费观看| 亚洲av美国av| 亚洲va日本ⅴa欧美va伊人久久| 欧美色欧美亚洲另类二区| 欧美性感艳星| 97人妻精品一区二区三区麻豆| 婷婷亚洲欧美| 观看免费一级毛片| 热99re8久久精品国产| 免费搜索国产男女视频| 美女高潮喷水抽搐中文字幕| 免费高清视频大片| 久久久国产精品麻豆| 丰满乱子伦码专区| 国产精品免费一区二区三区在线| 99国产极品粉嫩在线观看| 亚洲av五月六月丁香网| 国产伦精品一区二区三区四那| 桃色一区二区三区在线观看| 欧美成人a在线观看| 丰满人妻一区二区三区视频av | 成人av一区二区三区在线看| 搡老熟女国产l中国老女人| 精品久久久久久成人av| 男人和女人高潮做爰伦理| 久久久精品欧美日韩精品| 久久久久久大精品| 黄片小视频在线播放| 国产主播在线观看一区二区| 美女大奶头视频| 久久国产乱子伦精品免费另类| 97碰自拍视频| 无遮挡黄片免费观看| 色哟哟哟哟哟哟| 免费无遮挡裸体视频| 日本熟妇午夜| 岛国在线观看网站| 久久久久久久久中文| 校园春色视频在线观看| 日韩有码中文字幕| 国产淫片久久久久久久久 | 亚洲专区中文字幕在线| 三级男女做爰猛烈吃奶摸视频| 91九色精品人成在线观看| 国产精品野战在线观看| 无人区码免费观看不卡| 天天躁日日操中文字幕| 天天躁日日操中文字幕| 精品久久久久久久毛片微露脸| 好男人电影高清在线观看| 国产午夜精品论理片| 夜夜躁狠狠躁天天躁| 18禁裸乳无遮挡免费网站照片| 久久国产精品影院| 国产成人av教育| 国产欧美日韩一区二区精品| 午夜福利免费观看在线| 丰满的人妻完整版| 国产精品久久久久久亚洲av鲁大| 日本成人三级电影网站| 少妇的逼水好多| 黄色丝袜av网址大全| 一卡2卡三卡四卡精品乱码亚洲| 午夜精品久久久久久毛片777| 久久6这里有精品| 久久6这里有精品| 色精品久久人妻99蜜桃| 长腿黑丝高跟| 哪里可以看免费的av片| 日韩免费av在线播放| 国产免费男女视频| 熟妇人妻久久中文字幕3abv| 小说图片视频综合网站| 日本成人三级电影网站| 9191精品国产免费久久| 亚洲av中文字字幕乱码综合| 国产又黄又爽又无遮挡在线| e午夜精品久久久久久久| 亚洲最大成人手机在线| 69av精品久久久久久| 69人妻影院| 51午夜福利影视在线观看| 国产精品精品国产色婷婷| 叶爱在线成人免费视频播放| 露出奶头的视频| 欧美日韩中文字幕国产精品一区二区三区| 午夜福利免费观看在线| 久久久成人免费电影| 国产三级在线视频| 国产黄片美女视频| 丰满人妻熟妇乱又伦精品不卡| 欧美一级毛片孕妇| av片东京热男人的天堂| 久久久国产成人精品二区| 亚洲精品久久国产高清桃花| 69av精品久久久久久| 久久久久久久午夜电影| 国产高清视频在线观看网站| 黄色女人牲交| 男女午夜视频在线观看| 欧美一区二区精品小视频在线| 国产精品1区2区在线观看.| 又黄又爽又免费观看的视频| 欧美日本视频| 精品人妻一区二区三区麻豆 | 色播亚洲综合网| 一个人免费在线观看的高清视频| 国产成人福利小说| 国产免费av片在线观看野外av| av欧美777| 在线播放无遮挡| 日韩欧美在线二视频| 给我免费播放毛片高清在线观看| 亚洲av免费在线观看| 一级a爱片免费观看的视频| 亚洲在线自拍视频| 色综合欧美亚洲国产小说| 九九热线精品视视频播放| 久久中文看片网| 免费无遮挡裸体视频| 制服人妻中文乱码| 少妇的丰满在线观看| 亚洲成av人片免费观看| 久久久成人免费电影| 色在线成人网| 又黄又爽又免费观看的视频| 国产欧美日韩精品一区二区| 亚洲精品乱码久久久v下载方式 | 国产久久久一区二区三区| 国产淫片久久久久久久久 | 精品久久久久久久人妻蜜臀av| 国产探花在线观看一区二区| 国产伦在线观看视频一区| 少妇的逼水好多| 日韩欧美国产在线观看| 国产精品永久免费网站| 国产色爽女视频免费观看| 欧美大码av| 精品人妻一区二区三区麻豆 | 在线国产一区二区在线| 老司机深夜福利视频在线观看| 99久久九九国产精品国产免费| 两个人的视频大全免费| 国产av在哪里看| 91av网一区二区| 草草在线视频免费看| 精品乱码久久久久久99久播| 成年女人永久免费观看视频| 十八禁网站免费在线| 久久久久久大精品| 观看美女的网站| а√天堂www在线а√下载| 给我免费播放毛片高清在线观看| 精品熟女少妇八av免费久了| 欧美一级毛片孕妇| 国产成人a区在线观看| 久久精品国产亚洲av涩爱 | 国产主播在线观看一区二区| 一区福利在线观看| 他把我摸到了高潮在线观看| 一个人免费在线观看的高清视频| 欧美日韩一级在线毛片| 黄色丝袜av网址大全| 国产伦一二天堂av在线观看| 黄色日韩在线| 国产爱豆传媒在线观看| 神马国产精品三级电影在线观看| 美女大奶头视频| 深夜精品福利| 最近最新中文字幕大全免费视频| 一本久久中文字幕| 狂野欧美白嫩少妇大欣赏| 欧美日韩亚洲国产一区二区在线观看| 国产 一区 欧美 日韩| netflix在线观看网站| 久久国产精品影院| 日韩成人在线观看一区二区三区| 亚洲18禁久久av| 一夜夜www| 最后的刺客免费高清国语| 99热6这里只有精品| 国产 一区 欧美 日韩| 亚洲va日本ⅴa欧美va伊人久久| 婷婷亚洲欧美| 精品电影一区二区在线| 久久精品夜夜夜夜夜久久蜜豆| 有码 亚洲区| 欧美成人a在线观看| 99精品久久久久人妻精品| 亚洲精品456在线播放app | 亚洲成人中文字幕在线播放| 国产国拍精品亚洲av在线观看 | 亚洲人与动物交配视频| 亚洲一区高清亚洲精品| 很黄的视频免费| 国产 一区 欧美 日韩| 一级毛片高清免费大全| 又紧又爽又黄一区二区| 亚洲国产精品sss在线观看| 长腿黑丝高跟| 丝袜美腿在线中文| 熟女人妻精品中文字幕| 亚洲第一欧美日韩一区二区三区| 亚洲在线自拍视频| 国内精品一区二区在线观看| 国产一区二区三区视频了| 国产男靠女视频免费网站| 国产私拍福利视频在线观看| 国产精品精品国产色婷婷| 午夜福利视频1000在线观看| 国产成人av教育| 日韩欧美在线二视频| 麻豆一二三区av精品| 在线观看66精品国产| 午夜免费成人在线视频| 久久婷婷人人爽人人干人人爱| 一个人免费在线观看的高清视频| 久久久久九九精品影院| 欧美3d第一页| 欧美一级a爱片免费观看看| 激情在线观看视频在线高清| 老熟妇仑乱视频hdxx| 日韩 欧美 亚洲 中文字幕| 亚洲精品国产精品久久久不卡| 综合色av麻豆| 国产精华一区二区三区| 夜夜夜夜夜久久久久| 看免费av毛片| 欧美日韩国产亚洲二区| 久久婷婷人人爽人人干人人爱| 色噜噜av男人的天堂激情| 90打野战视频偷拍视频| 天天躁日日操中文字幕| 免费在线观看亚洲国产| 中文在线观看免费www的网站| 又黄又粗又硬又大视频| ponron亚洲| 搡女人真爽免费视频火全软件 | av福利片在线观看| 国产精品久久久久久亚洲av鲁大| 欧美黑人欧美精品刺激| 最近视频中文字幕2019在线8| 欧美黑人巨大hd| 可以在线观看的亚洲视频| 尤物成人国产欧美一区二区三区| a级一级毛片免费在线观看| 久久久久久久久中文| 国产高潮美女av| 黄色成人免费大全| 久久久久久久久大av| 国产一区二区亚洲精品在线观看| 一个人免费在线观看电影| 久久九九热精品免费| 脱女人内裤的视频| e午夜精品久久久久久久| 亚洲国产色片| 免费在线观看成人毛片| 欧美黄色淫秽网站| 久久久久久久亚洲中文字幕 | 午夜视频国产福利| 夜夜看夜夜爽夜夜摸| 一区二区三区高清视频在线| 久久99热这里只有精品18| 国产精品一区二区三区四区久久| 国产高清有码在线观看视频| 精品熟女少妇八av免费久了| 欧美另类亚洲清纯唯美| netflix在线观看网站| 欧美三级亚洲精品| 国产真实伦视频高清在线观看 | 丰满人妻熟妇乱又伦精品不卡| 国产aⅴ精品一区二区三区波| 一本综合久久免费| 国产一级毛片七仙女欲春2| 国产成人系列免费观看| 免费高清视频大片| 岛国在线免费视频观看| x7x7x7水蜜桃| 亚洲在线自拍视频| 国语自产精品视频在线第100页| 久久精品国产清高在天天线| 日韩欧美精品免费久久 | bbb黄色大片| 国产亚洲精品综合一区在线观看| 久久精品人妻少妇| 久久精品综合一区二区三区| 亚洲国产色片| 国产精品亚洲美女久久久| 亚洲精品日韩av片在线观看 | 一夜夜www| 久久久国产成人精品二区| 中文字幕av在线有码专区| 人妻夜夜爽99麻豆av| 国产精品,欧美在线| 性色av乱码一区二区三区2| 午夜激情欧美在线| 一级毛片高清免费大全| 每晚都被弄得嗷嗷叫到高潮| 九色成人免费人妻av| 在线观看免费午夜福利视频| 精品人妻一区二区三区麻豆 | 日韩欧美在线二视频| 亚洲精品一卡2卡三卡4卡5卡| 一a级毛片在线观看| 免费搜索国产男女视频| 日本三级黄在线观看| av福利片在线观看| 国产欧美日韩一区二区三| 十八禁人妻一区二区| 国产色婷婷99| 又粗又爽又猛毛片免费看| 天堂动漫精品| 一级作爱视频免费观看| 丁香六月欧美| 久久香蕉精品热| 黄片小视频在线播放| 偷拍熟女少妇极品色| www国产在线视频色| 老司机深夜福利视频在线观看| 99久久久亚洲精品蜜臀av| 亚洲中文字幕日韩| 亚洲精品在线观看二区| 五月伊人婷婷丁香| 观看免费一级毛片| 国产色爽女视频免费观看| 99热精品在线国产| 久久香蕉精品热| 亚洲成人久久性| 全区人妻精品视频| 亚洲成人免费电影在线观看| 久久精品夜夜夜夜夜久久蜜豆| 丰满人妻一区二区三区视频av | 99国产极品粉嫩在线观看| 国产一区在线观看成人免费| 国产黄a三级三级三级人| 性欧美人与动物交配| 99国产精品一区二区蜜桃av| 男人和女人高潮做爰伦理| 中文字幕精品亚洲无线码一区| 久99久视频精品免费| 韩国av一区二区三区四区| 欧美一区二区精品小视频在线| 色吧在线观看| 亚洲av免费高清在线观看| 亚洲av不卡在线观看| a级一级毛片免费在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品sss在线观看| 99精品欧美一区二区三区四区| 听说在线观看完整版免费高清| 久久久久性生活片| 欧美极品一区二区三区四区| 久久国产精品人妻蜜桃| 中文在线观看免费www的网站| 看免费av毛片| 亚洲国产高清在线一区二区三| 麻豆成人av在线观看| 神马国产精品三级电影在线观看| 欧美bdsm另类| 变态另类丝袜制服| 亚洲av日韩精品久久久久久密| 舔av片在线| 超碰av人人做人人爽久久 | 亚洲成人精品中文字幕电影| 一进一出好大好爽视频| 亚洲五月天丁香| 狂野欧美激情性xxxx| 观看免费一级毛片| 香蕉久久夜色| 久久欧美精品欧美久久欧美| 亚洲狠狠婷婷综合久久图片| 欧美色视频一区免费| 狂野欧美激情性xxxx| 亚洲欧美日韩高清在线视频| 国产精品久久久久久久电影 | 男人舔女人下体高潮全视频| 黄色女人牲交| 亚洲乱码一区二区免费版| 久久久成人免费电影| 母亲3免费完整高清在线观看| 亚洲人成网站高清观看| 日韩精品中文字幕看吧| 国产成人系列免费观看| 免费人成视频x8x8入口观看| 两人在一起打扑克的视频| 男女那种视频在线观看| 99久国产av精品| 级片在线观看| 中文亚洲av片在线观看爽| 老熟妇仑乱视频hdxx| 国内揄拍国产精品人妻在线| www日本黄色视频网| www.www免费av| 99久久综合精品五月天人人| 窝窝影院91人妻| 国产男靠女视频免费网站| 成年女人永久免费观看视频| 日日干狠狠操夜夜爽| 麻豆成人午夜福利视频| 日韩大尺度精品在线看网址| 国产精品亚洲美女久久久| 欧美日韩瑟瑟在线播放| 欧美不卡视频在线免费观看| 在线观看av片永久免费下载| 精品国产美女av久久久久小说| 国产国拍精品亚洲av在线观看 | 亚洲精品在线观看二区| 一边摸一边抽搐一进一小说| 亚洲av不卡在线观看| 一级毛片女人18水好多| 悠悠久久av| 久久中文看片网| 岛国在线免费视频观看| 在线观看免费午夜福利视频| 丰满人妻熟妇乱又伦精品不卡| 国产伦一二天堂av在线观看| 人人妻人人澡欧美一区二区| 少妇丰满av| 成年版毛片免费区| 中文字幕人妻丝袜一区二区| 高清毛片免费观看视频网站| 国产亚洲精品av在线| 欧美日韩瑟瑟在线播放| 人人妻,人人澡人人爽秒播| 国产私拍福利视频在线观看| 女警被强在线播放| xxx96com| 在线观看66精品国产| 亚洲av日韩精品久久久久久密| 久久久久九九精品影院| 人妻久久中文字幕网| 校园春色视频在线观看| 国内少妇人妻偷人精品xxx网站| 一区福利在线观看| 禁无遮挡网站| 国产午夜精品论理片| 午夜a级毛片| 久久久久久久午夜电影| 精品日产1卡2卡| 小蜜桃在线观看免费完整版高清| 亚洲国产高清在线一区二区三| 久久久精品欧美日韩精品| www国产在线视频色| 国产毛片a区久久久久| 免费在线观看影片大全网站| 最新中文字幕久久久久| 色噜噜av男人的天堂激情| 久久久成人免费电影| 成人无遮挡网站| 免费一级毛片在线播放高清视频| 亚洲一区二区三区色噜噜| 免费电影在线观看免费观看| 亚洲aⅴ乱码一区二区在线播放| 18禁黄网站禁片午夜丰满| 欧美最新免费一区二区三区 | 一本一本综合久久| 757午夜福利合集在线观看| 日韩欧美三级三区| 首页视频小说图片口味搜索| 亚洲国产高清在线一区二区三| 18禁在线播放成人免费| 国产色爽女视频免费观看| 村上凉子中文字幕在线| 亚洲人成伊人成综合网2020| 亚洲精品亚洲一区二区| 午夜激情欧美在线| 一区二区三区激情视频| 久久6这里有精品| 老司机福利观看| 日韩欧美国产一区二区入口| 哪里可以看免费的av片| 国产精品 欧美亚洲| 精品一区二区三区人妻视频| 色播亚洲综合网| 亚洲在线自拍视频| 三级国产精品欧美在线观看| 最近最新免费中文字幕在线| 久久久久久久亚洲中文字幕 | 亚洲美女黄片视频| a级毛片a级免费在线| 久久人妻av系列| 亚洲中文字幕日韩| 亚洲熟妇熟女久久| 亚洲精品乱码久久久v下载方式 | 欧美日本亚洲视频在线播放| 国产伦人伦偷精品视频| 久久性视频一级片| 亚洲在线观看片| 欧美又色又爽又黄视频| 国产精品女同一区二区软件 | 男人的好看免费观看在线视频| 两个人看的免费小视频| 成年女人看的毛片在线观看| 久久精品国产自在天天线| 嫁个100分男人电影在线观看| 中出人妻视频一区二区| 日韩欧美在线乱码| 国内揄拍国产精品人妻在线| 久久久色成人| 亚洲中文字幕日韩| 亚洲内射少妇av| 桃色一区二区三区在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲av电影在线进入| 久久久久性生活片| 国产黄片美女视频| 日韩欧美三级三区| 亚洲天堂国产精品一区在线| 精品电影一区二区在线| 国产精品精品国产色婷婷| 精品一区二区三区av网在线观看| 三级国产精品欧美在线观看| 色吧在线观看| 91麻豆av在线| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩乱码在线| 亚洲av电影不卡..在线观看| 变态另类成人亚洲欧美熟女| 亚洲七黄色美女视频| 国产精品久久电影中文字幕| 精品国产亚洲在线| 欧美xxxx黑人xx丫x性爽| 天堂网av新在线| 午夜免费成人在线视频| 狂野欧美白嫩少妇大欣赏| 757午夜福利合集在线观看| 露出奶头的视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产高清在线一区二区三| 欧美成人a在线观看| 国产伦在线观看视频一区| 久久久久久大精品| 久9热在线精品视频| 色综合婷婷激情| 97人妻精品一区二区三区麻豆| 国产成人aa在线观看| 欧美+日韩+精品| 精品国产三级普通话版| 少妇的丰满在线观看| 成年女人看的毛片在线观看| 嫩草影院入口| 看免费av毛片| 又粗又爽又猛毛片免费看| 国产精品嫩草影院av在线观看 | 久久久久久久亚洲中文字幕 | 亚洲人成网站高清观看| 婷婷精品国产亚洲av在线| 99在线视频只有这里精品首页| 国产精品99久久久久久久久| 黄色女人牲交| 欧美大码av| 无遮挡黄片免费观看| av在线天堂中文字幕| 中文字幕人妻熟人妻熟丝袜美 | 国语自产精品视频在线第100页| 亚洲av电影在线进入| 中文字幕人妻熟人妻熟丝袜美 | 在线观看美女被高潮喷水网站 | 最近最新中文字幕大全免费视频| 一边摸一边抽搐一进一小说| 免费一级毛片在线播放高清视频| 91麻豆精品激情在线观看国产| 亚洲最大成人手机在线| 亚洲在线观看片| 香蕉av资源在线| av片东京热男人的天堂| 在线播放无遮挡| 国产午夜精品久久久久久一区二区三区 | 成年免费大片在线观看| 黄色成人免费大全| 亚洲黑人精品在线| 看免费av毛片| 午夜a级毛片| 亚洲avbb在线观看| 精品国产超薄肉色丝袜足j|