• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DISCRETE GALERKIN METHOD FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS?

    2016-09-26 03:45:47MOKHTARY

    P.MOKHTARY

    Department of Mathematics,F(xiàn)aculty of Basic Sciences,Sahand University of Technology,Tabriz,Iran

    E-mail∶mokhtary.payam@gmail.com;mokhtary@sut.ac.ir

    ?

    DISCRETE GALERKIN METHOD FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS?

    P.MOKHTARY

    Department of Mathematics,F(xiàn)aculty of Basic Sciences,Sahand University of Technology,Tabriz,Iran

    E-mail∶mokhtary.payam@gmail.com;mokhtary@sut.ac.ir

    In this article,we develop a fully Discrete Galerkin(DG)method for solving initial value fractional integro-differential equations(FIDEs).We consider Generalized Jacobi polynomials(GJPs)with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution.The fractional derivatives are used in the Caputo sense.The numerical solvability of algebraic system obtained from implementation of proposed method for a special case of FIDEs is investigated.We also provide a suitable convergence analysis to approximate solutions under a more general regularity assumption on the exact solution.Numerical results are presented to demonstrate the effectiveness of the proposed method.

    Fractional integro-differential equation(FIDE);Discrete Galerkin(DG);Generalized Jacobi Polynomials(GJPs);Caputo derivative

    2010 MR Subject Classification34A08;65L60

    1 Introduction

    In this article,we provide a convergent numerical scheme for solving FIDE

    where q∈R+∩(0,1).The symbol R+is the collection of all positive real numbers.p(x)and f(x)are given continuous functions and K(x,t)is a given sufficiently smooth kernel function,and u(x)is the unknown function.

    Noting that the condition u(0)=0 is not restrictive,due to the fact that(1.1)with nonhomogeneous initial condition u(0)=d,d 6=0 can be converted to the following homogeneous FIDE

    by the simple transformation?u(x)=u(x)?d,where

    Such kind of equations arise in the mathematical modeling of various physical phenomena,such as heat conduction,materials with memory,combined conduction,convection and radiation problems([3,5,29,30]).

    Dqu(x)denotes the fractional Caputo differential operator of order q and is defined as([8,19,31])

    where

    is the fractional integral operator from orderμ.Γ(μ)is the well known Gamma function.The following relation holds[8]

    From the relation above,it is easy to check that(1.1)is equivalent to the following weakly singular Volterra integral equation

    ·f(x)∈Cl(?),l≥1,

    ·p(x)∈Cl(?),l≥1,

    ·K(x,t)∈Cl(D),D={(x,t);0≤t≤x≤1},l≥1,

    ·K(x,x)6=0,

    then the regularity of the unique solution u(x)of(1.5)and also(1.1)is described by

    where the coefficients γj,kare s∪ome constants,Ul(.;q)∈Cl(?),and(j,k):={(j,k):j,k∈N0,j+kq<l}.Here,N0=N{0},where the symbol N denotes the collection of all natural numbers.Thus,we must expect the first derivative of the solution to has a discontinuity at the origin.More precisely,if the given functions g(x),p(x),and K(x,t)are real analytic in their domains,then it can be concluded that there is a function U=U(z1,z2)that is real and analytic at(0,0),so that solutions of(1.5)and also(1.1)can be written as u(x)=U(x,xq)([4,35]).

    Recently,several numerical methods for the numerical solution of FIDE's were proposed;see[2,11,12,15,20-28,33,36,38,39].In[2],an analytical solution for a class of FIDE's was proposed.In[11],authors applied collocation method to solve the nonlinear FIDE's.In[15],Taylor expansion approach was presented for solving a class of linear FIDE's including those of Fredholm and Volterra types.In[20],Chebyshev pseudospectral method was implemented to solve linear and nonlinear system of FIDE's.Adomian decomposition method to solve nonlinear FIDE's was proposed in[21].In[22],authors solved FIDE's by adopting hybrid collocation method to an equivalent integral equation of convolution type.In[23],authors proposed an analyzed spectral Jacobi collocation method for the numerical solution of general linear FIDE's.In[24],Mokhtary and Ghoreishi proved the L2convergence of Legendre Tau method for the numerical solution of nonlinear FIDE's.In[28],fractional differential transform method was developed to solve FIDE's with nonlocal boundary conditions.In[33],Rawashdeh studied the numerical solution of FIDE's by polynomial spline functions.In[36],authors solved fractional nonlinear Volterra integro differential equations using the second kind Chebyshev wavelets.

    Many of the techniques mentioned above or have not proper convergence analysis or if any,very restrictive conditions including smoothness of the exact solution are assumed.In this article we will consider non-smooth solutions of(1.1).In this case,although the DG method can be implemented directly,but this method leads to a very poor numerical results. Thus,it is necessary to introduce a regularization procedure that allows us to improve the smoothness of the given functions and then to approximate the solution with a satisfactory order of convergence.To this end,we introduce a simple variable transformation for the regularization of solutions of the original equation such that the resulting equation possesses a more regularity properties.The main advantage of our proposed method is that in spite of the singularity behavior of the exact solution,it possesses a high order accuracy under a more general regularity assumptions on the exact solution and input data.Our logic in choosing proper transformation is based on the formal asymptotic expansion of the exact solution in(1.6).Considering(1.1)and using the variable transformation

    we can change(1.1)to the following equation

    where

    From(1.6),the exact solutionˉu(v)can be written asIt can be seen thatˉu′(v)∈C(?).It is trivial that forthe unknown

    functionˉu(v)will be in the form

    which is infinitely smooth.Then,we can deduce that the solutionˉu(v)of the new equation(1.8)possesses a better regularity and DG theory can be applied conveniently to obtain a high order accuracy.

    In the sequel,we introduce the DG solutionˉuN(v)based on GJPs to(1.8).As the exact solutions of(1.1)can be written as u(x)=ˉu(v),then we define uN(x)=ˉuN(v),x,v∈? as the approximate solution of(1.1).

    Spectral Galerkin method is one of the weighted residual methods(WRM),in which approximations are defined in terms of truncated series expansions,such that residual,which should be exactly equal to zero,is forced to be zero only in an approximate sense.It is well knownthat,in this method,the expansion functions must satisfy in the supplementary conditions. The two main characteristics behind the approach are that first it reduces the given problems to those of solving a system of algebraic equations,and in general converges exponentially and almost always supplies the most terse representation of a smooth solution([6,16,34]).

    In this article,we use shifted GJPs on ?,which are mutually orthogonal with respect to the shifted weight function δα,β(v)=(2?2v)α(2v)βon ?,where α,β belong to one of the following index sets:

    where the symbol Z is the collection of all integer numbers.The main advantage of GJPs is that these polynomials,with indexes corresponding to the number of homogeneous initial conditions in a given FIDE,are the natural basis functions to the Galerkin approximation of this problem([13,14]).

    The organization of this article is as follows:We begin by reviewing some preliminaries,which are required for establishing our results in Section 2;In Section 3,we introduce the DG method based on the GJPs and its application to(1.8);Numerical solvability of the algebraic system obtained from DG discretization of a special case of(1.8)with 0<q<12andˉp(v)=1 based on GJPs is given in Section 4;Convergence analysis of the proposed scheme is provided in Section 5;Numerical experiments are carried out in Section 6.

    2 Preliminaries and Notations

    In this section,we review the basic definitions and properties that are required in the sequel.

    Defining weighted inner product as

    and discrete Jacobi-Gauss inner product as

    we recall the following norms over ?

    The non-uniformly Jacobi-weighted Sobolev space is denoted by(?)and is defined as

    equipped with the norm and semi-norm

    equipped with the norm

    We denote the shifted GJPs on ? by(v)and define it as

    From(2.1)and the following formula[9]

    we can obtain the following explicit formula for(v),

    For any continuous function Z(v)on ?,we define the Legendre Gauss interpolation operator INas

    Let PNbe the space of all algebraic polynomials of degree up to N.We introduce the Legendre projection ΠN:L2(?)→PNwhich is a mapping such that for any Z(v)∈L2(?),

    3 DG Approach

    In this section,we present the numerical solution of(1.8)using the DG method based on GJPs.

    Let

    be the Galerkin solution of(1.8).It is trivial that?uN(0)=0.

    Galerkin formulation of(1.8)is to find?uN(v),such that

    Applying transformation w(θ)=vθ,for θ∈?,we obtain

    Substituting(3.3)in(3.2)yields

    Inserting(3.1)in(3.4),we get

    Now,we try to find an explicit form forTo this end,using(2.2)we have

    Applying relation[12],

    in(3.7)we can obtain the following explicit formula for

    Substituting(3.8)in(3.6),we obtain

    In this position,we approximate the integral terms of(3.9)using(N+1)?point Legendre Gauss quadrature formula.Our DG method is to seek

    where

    It is trivial that the solution of(3.11)gives us unknown coefficientsin(3.10).

    4 Existence and Uniqueness Theorem for DG Algebraic System

    The main object of this section is to provide an existence and uniqueness Theorem for a special case of the DG algebraic system of equations(3.11)withˉp(v)=1 and 0<q<12. Throughout this article,Ciwill denote a generic positive constant that is independent on N.

    First,we give some preliminaries,which will be used in the sequel.

    Definition 4.1Let X,Y be normed spaces.A linear operator A:X→Y is compact if the set{Ax|||x||X≤1}has compact closure in Y.

    Theorem 4.2([17,18,37])Assume that X and Y be two Banach spaces.Let

    be a linear operator equation,where A:X→Y is a linear continuous operator,and the operator I?A is continuously invertible.As an approximation solution of(4.1),we consider the equation

    which can be rewritten as

    where ANis a linear continuous operator in a closed subspace?Y of Y.BN,?BN:Y→?Y are linear continuous projection operators and SN=AN??BNA is a linear operator in?Y.If the following conditions are fulfilled:

    ·For any Z∈?Y,we have‖SNZ‖→0 as N→∞,

    ·‖A??BNA‖→0 as N→∞,

    ·‖f?BNf‖→0 as N→∞,

    then(4.3)possesses a unique solution vN∈?Y for a sufficiently large N.

    Lemma 4.3([1])Let X and Y be Banach spaces and?Y be a subspace of Y.Let?BN:Y→?Y be a family of linear continuous projection operators with

    Assume that linear operator A:X→Y is compact.Then,

    Lemma 4.4([34])(Interpolation error bound)Let INZ be the interpolation polynomial approximation of the function Z(v)defined in(2.3).For any Z(v)∈(?)with k≥1,we have

    Lemma 4.5([7])For every bounded function Z(v),there exists a constant C independent of Z such that

    Lemma 4.6([34])(Legendre Gauss quadrature error bound)If Z(v)∈(?)for some k≥1 and Φ∈PN,then for the Legendre Gauss integration,we have

    Now,we intend to prove the existence and uniqueness Theorem for a special case of the DG system(3.11)withˉp(v)=1 and 0<q<

    Theorem 4.7(Existence and Uniqueness)Let 0<q<,ˉp(v)=1,andˉf(v)∈(?)with k≥1.If(1.8)has a uniquely solutionˉu(v),then the linear DG system(3.11)has a unique solutionˉuN(v)∈PNfor sufficiently large N.

    ProofOur strategy in Proof is based on two steps.First,we try to represent(3.11)in the operator form(4.3)and afterwards we apply Theorem 4.2 to this operator form to conclude the desired result.

    Step 1In this step,we show that the DG system(3.11)can be written in the operator form(4.3).To this end,consider(1.8)and define

    According to the proposed method,we have

    From interpolation and Legendre Gauss quadrature properties,we can write

    Using(4.4)and(4.5),we can deduce)=0 and so

    The equation above can be rewritten as

    and thereby

    where INand ΠNare defined in(2.3)and(2.4)respectively and

    As(4.7)is the form in which the DG method is implemented,it leads directly to the equivalent linear system(3.11).Thus,the existence and uniqueness of solutions of(4.7)approve the existence and uniqueness of solutions of(3.11).In this position,we can write(4.7)in operator form(4.3)by considering so it is the desired result of this step.

    Step 2In this step,we intend to apply Theorem 4.2 with the assumptions(4.8)to prove the Theorem.To this end,following Theorem 4.2 we must show that

    First,we prove the first condition in(4.9).For this,we can write

    Since we have MqZ∈PNfor any Z∈PN,then

    Using Lemmas 4.5 and 4.6 and relations(3.3)and(3.12),we can obtain

    Substituting(4.12)and(4.14)in(4.11),we can conclude the first condition in(4.9).Applying Lemma 4.4 gives us the third condition in(4.9).To complete the proof,it is sufficient that we prove the second condition of(4.9).To this end,we apply Lemma 4.3 with the assumptions(4.8).Becausethe second condition in(4.9)can be achieved by showing compactness of the operator T.a continuous kernel,then the operator T will be compact ifcompact operator.For this,defineusing Cauchy-Schwartz inequality,we have

    In this position,all conditions in(4.9)that are required to deduce the existence and uniqueness of solutions of the DG system(3.11)are proved and then the proof is completed.

    5 Convergence Analysis

    In this section,we will try to provide a reliable convergence analysis,which theoretically justify the convergence of the proposed approximate method for the numerical solution of(1.1)with p(x)=1.

    In the sequel,our discussion is based on these lemmas:

    Lemma 5.1([34])For any Z(x)∈(?),we have

    Lemma 5.2([19],Lemma 2.1(a))The fractional integral operator Iμis bounded in L2(?)and

    Lemma 5.3([7])(Gronwall inequality)Assume that Z(v)is a non-negative,locally integrable function defined on ? satisfing

    where α,β>?1,b(v)≥0 and B≥0.Then,there exists a constant C such that

    Now,we state and prove the main result of this section regarding the error analysis of the proposed method for the numerical solution of(1.1)with p(x)=1.

    Theorem 5.4(Convergence)Let u(x)andˉu(v)be the exact solutions of equations(1.1)and(1.8),respectively,that are related by u(x)=ˉu(v).Assume that uN(x)=ˉuN(v)is the approximate solution of(1.1),whereˉuN(v)is DG solution of the transformed equation(1.8). If the following conditions are fulfilled:

    then for sufficiently large N,we have

    ProofAs we point out in the previous section,DG solutionˉu(v)satisfied in the regularized equation(4.6).As MqˉuNis a polynomial from degree of at most N,then we can rewrite(4.6)as

    Subtracting(1.8)from(5.1)and some simple manipulations,we obtain

    Applying transformation(1.7)to the operator Iqu,we get

    Following(1.4),it is easy to check that

    Since

    then(5.4)can be rewritten as

    where

    Using Gronwall inequality(Lemma 5.3)in(5.6)yields

    It can be checked that by applying transformation(1.6),we get

    where Z(x)is a given function andˉZ(v)=Z(v1q).Using relations(5.8)and(5.9)in(5.7),we have

    In contrast,by applying(1.6)and Lemma 5.2,we can obtain

    where

    Now,it is sufficient to find suitable upper bounds to the above norms.According to Lemma 4.4,we have

    Using Lemmas 4.5 and 4.6,we can obtain

    For sufficiently large N,the desired result can be concluded by inserting(5.12)and(5.13)in(5.11).

    6 Numerical Results

    In this section,we apply a program written in Mathematica to some numerical examples to demonstrate the accuracy of the proposed method and effectiveness of applying regularization process.the”Numerical Error”always refers to the L2-norm of the obtained error function.

    Example 6.1Consider the following FIDE,

    with the exact solution u(x)=and

    Here,Jn(z)gives the Bessel function of the first kind.

    This example has a singularity at the origin,that is,

    In the theory presented in the previous section,our main concern is the regularity of the transformed solution.For this problem,by applying coordinate transformation x=v2,t=w2,

    the infinitely smooth solution,

    is obtained.The main purpose is to check the convergence behavior of the numerical solutions with respect to the approximation degree N.Numerical results obtained are given in Table 1 and Figure 1.As expected,the errors show an exponential-like decay,because in this semi-log representation(Figure 1)one observes that the error variations are essentially linear versus the degrees of approximation.

    Table 1The numerical errors of Example 6.1

    Figure 1The numerical errors of Example 6.1 with various values of N

    Example 6.2([24])Consider the following FIDE

    As this example has nonhomogeneous initial condition,first,we convert it to the following homogeneous FIDE

    Table 2The numerical errors of Example 6.2

    Figure 2Obtained errors versus N,when Legendre Tau and proposed DG methods are used to obtain an approximate solution for Example 6.2

    Example 6.3([10])Some physical phenomena involving certain type of memory effects are represented byin Banach space X,where 0<q≤1.Functions p(x)and K(x,t)are a continuous function and a real valued locally integrable function on ?,respectively.Nonlinear maps F and G are defined on ?×X into X.

    Here,we consider(6.2)with following assumptions:

    Table 3The numerical errors of Example 6.3

    Figure 3The numerical errors of example 6.3 with various values of N

    where BesselI[n,z]gives the modified Bessel function of the first kind Jn(z).Following assumptions(6.3),the exact solution of(6.2)is given by u(x)=ex√x.Now,we solve this problem by the proposed numerical method in Section 3.Obtained numerical results are given in Table 3 and Figure 3.Our results show that the proposed regularization process works well and regardless of the singularity behavior of the exact solution,the approximate results are in a goodagreement with the exact one.Indeed,we observe from Figure 3 that the obtained approximation errors decay exponential-like versus the approximation degree N,because in semi-log representation one observes that error variations are linear versus N.It is easy to check that these results approve the obtained theoretical prediction in Theorem 5.4(ξ=∞).

    Example 6.4Consider the following FIDE

    with the exact solution u(x)=x?qlog(x+1)and

    Here,F(xiàn)21[a;b;c;z]and Fpq[a;b;z]are the well known Hypergeometric and Generalized Hypergeometric functions,respectively.

    Table 4The numerical errors of Example 6.4

    Figure 4The numerical errors of Example 6.4 with various values of N

    The numerical results obtained are given in Table 4 and Figure 4.Clearly,the proposed approximate scheme is powerful and the obtained results are in a good agreement with the exact ones.

    References

    [1]Atkinson K E.The Numerical Solution of Integral Equations of the Second Kind.Cambridge,1997

    [2]Awawdeh F,Rawashdeh E A,Jaradat H M.Analytic solution of fractional integro-differential equations. Ann Univ Craiova Math Comput Sci Ser,2011,38:1-10

    [3]Bagley R L,Torvik P J.A theoretical basis for the application of fractional calculus to viscoelasticity.J Rheol,1983,27:201-210

    [4]Brunner H.Collocation Methods for Volterra and Related Functional Equations.Cambridge:Cambridge University Press,2004

    [5]Caputo M.Linear models of dissipation whose Q is almost frequency independent II.Geophys J Roy Astron Soc,1967,13:529-539

    [6]Canuto C,Hussaini M Y,Quarteroni A,Zang T A.Spectral Methods,F(xiàn)undamentals in Single Domains. Berlin:Springer-Verlag,2006

    [7]Chen Y,Tang T.Convergence analysis of the Jacobi spectral collocation methods for volterra integral equations with a weakly singular kernel.Math Comput,2010,79:147-167

    [8]Diethelm K.The Analysis of Fractional Differential Equations.Berlin:Springer-Verlag,2010

    [9]Doha E H,Bhrawy A H,Ezz-Eldien S S.A new Jacobi operational matrix:an application for solving fractional differential equations.Appl Math Model,2012,36:4931-4943

    [10]El-Borai Mahmoud M,Debbouche Amar.On some fractional integro-differential equations with analytic semigroups.Int J Contemp Math Sciences,2009,4(28):1361-1371

    [11]Eslahchi M R,Dehghan M,Parvizi M.Application of the collocation method for solving nonlinear fractional integro-differential equations.J Comput Appl Math,2014,257:105-128

    [12]Ghoreishi F,Mokhtary P.Spectral collocation method for multi-order fractional differential equations.Int J Comput Math,2014,11(5):23

    [13]Guo Ben-Yu,Shen Jie,Wang Li-Lian.Optimal spectral-galerkin methods using generalized Jacobi polynomials.J Sci Comput,2006,27:305-322

    [14]Guo Ben-Yu,Shen Jie,Wang Li-Lian.Generalized Jacobi polynomials/functions and their applications. Appl Numer Math,2009,59:1011-1028

    [15]Huang L,Li X F,Zhao Y L,Duan X Y.Approximate solution of fractional integro-differential eqations by Taylor expansion method.Comput Math Appl,2011,62:1127-1134

    [16]Hesthaven J S,Gottlieb S,Gottlieb D.Spectral Methods for Time-Dependent Problems.Cambridge University Press,2007

    [17]Kantrovich L V.Functional analysis and applied mathematics.Usp Mat Nauk,1984,3:89-185

    [18]Kantrovich L V,Akilov G P.Functional Analysis in Normed Spaces(Funktsional’nyi analiz v normirovannykh prostranstvakh).Moscow:Fizmatgiz,1959

    [19]Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations. Amesterdam:Elsevier,2006

    [20]Khader M M,Sweilam N H.On the approximate solutions for system of fractional integro-differential equations using chebyshev pseudo-spectral method.Appl Math Model,2013,27(24):819-9828

    [21]Mittal R C,Nigam R.Solution of fractional calculus and fractional integro-differential equations by adomian decomposition method.Int J Appli Math Mech,2008,4(4):87-94

    [22]Ma Xiaohua,Huang C.Numerical solution of fractional integro-differential equations by Hybrid collocation method.Appl Math Comput,2013,219:6750-6760

    [23]Ma Xiaohua,Huang C.Spectral collocation method for linear fractional integro-differential equations.Appl Math Model,2014,38(4):1434-1448

    [24]Mokhtary P,Ghoreishi F.The L2-convergence of the Legendre spectral Tau matrix formulation for nonlinear fractional integro differential equations.Numer Algorithms,2011,58:475-496

    [25]Mokhtary P,Ghoreishi F.Convergence analysis of spectral Tau method for fractional Riccati differential equations.Bull Iranian Math Soc,2014,40(5):1275-1290

    [26]Mokhtary P.Operational Tau method for non-linear FDEs.Iranian Journal of Numerical Analysis and Optimization,2014,4(2):43-55

    [27]Mokhtary P.Reconstruction of exponentially rate of convergence to Legendre-collocation solution of a class of fractional integro-differential equations.J Comput Appl Math,2014,279:145-158

    [28]Nazari D,Shahmorad S.Application of the fractionl differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions.J Comput Appl Math,2010,234:883-891

    [29]Oldham K B,Spanier J.The Fractional Calculus.New York:Academic Press,1974

    [30]Olmstead W E,Handelsman R A.Diffusion in a semi-infinite region with nonlinear surface dissipation. SIAM Rev,1976,18:275-291

    [31]Podlubny I.Fractional Differential Equations.Academic Press,1999

    [32]Porter D,Stirling David S G.Integral Equations,A Practical Treatment,from Spectral Theory to Applications.New York:Cambridge University Press,1990

    [33]Rawashdeh E A.Numerical solution of fractional integro-differential equations by collocation method.Appl Math Comput,2006,176:1-6

    [34]Shen Jie,Tang Tao,Wang Li-Lian.Spectral Methods,Algorithms,Analysis and Applications.Springer,2011

    [35]Xianjuan Li,Tang T.Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind.Front Math China,2012,7(1):69-84

    [36]Zhu Li,F(xiàn)an Qibin.Numerical solution of nonlinear fractional order Volterra integro differential equations by SCW.Commun Nonlinear Sci Numer Simul,2013,18(15):1203-1213

    [37]Vainikko G M.Galerkin’s perturbation method and the general theory of approximate methods for nonlinear equations.USSR Computational Mathematics and Mathematical Physics,1967,7(4):1-41

    [38]Yang Yin.Jacobi spectral galerkin methods for fractional integro-differential equations.Calcolo.DOI:10.1007/s10092-014-0128-6.

    [39]Yang Yin,Chen Yanping,Huang Yanqing.Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations.Acta Mathematica Scientia,2014,34B(3):673-690

    December 29,2014;revised May 15,2015.

    美女高潮的动态| 一级黄色大片毛片| 一级av片app| 亚洲国产欧美人成| 亚洲欧洲日产国产| 国产av不卡久久| 国产一区亚洲一区在线观看| 免费电影在线观看免费观看| 床上黄色一级片| 国产一区亚洲一区在线观看| 99热网站在线观看| 亚洲国产欧美人成| 丰满乱子伦码专区| 亚洲最大成人av| 亚洲欧美日韩卡通动漫| 天天躁日日操中文字幕| 国产在视频线精品| 国产麻豆成人av免费视频| 国产精品蜜桃在线观看| 真实男女啪啪啪动态图| 国产伦一二天堂av在线观看| 天堂中文最新版在线下载 | 乱系列少妇在线播放| 精品无人区乱码1区二区| 1024手机看黄色片| 99久久精品热视频| 亚洲成av人片在线播放无| 久久久久九九精品影院| 午夜福利高清视频| 男女那种视频在线观看| 国产精品久久电影中文字幕| 别揉我奶头 嗯啊视频| 特大巨黑吊av在线直播| a级毛色黄片| 超碰97精品在线观看| 国产色婷婷99| 国产精品不卡视频一区二区| 国产黄片美女视频| 欧美日韩一区二区视频在线观看视频在线 | 午夜免费男女啪啪视频观看| 少妇熟女aⅴ在线视频| 国产熟女欧美一区二区| 日日啪夜夜撸| 国产精品国产三级专区第一集| ponron亚洲| 最近最新中文字幕大全电影3| 舔av片在线| 亚洲精品乱码久久久久久按摩| 最近最新中文字幕大全电影3| 18禁在线无遮挡免费观看视频| 一个人免费在线观看电影| 丰满乱子伦码专区| 天美传媒精品一区二区| 一边摸一边抽搐一进一小说| 熟女人妻精品中文字幕| 久久人人爽人人片av| 极品教师在线视频| av黄色大香蕉| 国产欧美日韩精品一区二区| 欧美日韩国产亚洲二区| 色网站视频免费| 午夜福利网站1000一区二区三区| 国产爱豆传媒在线观看| 91av网一区二区| 日本猛色少妇xxxxx猛交久久| av国产久精品久网站免费入址| 亚洲久久久久久中文字幕| 伦理电影大哥的女人| 久久精品久久久久久噜噜老黄 | 亚洲中文字幕日韩| 熟女人妻精品中文字幕| 搞女人的毛片| 国产成人91sexporn| 一本久久精品| 麻豆一二三区av精品| 日韩av不卡免费在线播放| 综合色av麻豆| 精品99又大又爽又粗少妇毛片| 国产白丝娇喘喷水9色精品| 精品人妻视频免费看| 视频中文字幕在线观看| 色尼玛亚洲综合影院| 国产精品一区二区在线观看99 | 麻豆国产97在线/欧美| 能在线免费观看的黄片| 欧美变态另类bdsm刘玥| 2021天堂中文幕一二区在线观| 成人漫画全彩无遮挡| 中文字幕精品亚洲无线码一区| 尤物成人国产欧美一区二区三区| 国产综合懂色| 午夜亚洲福利在线播放| 亚洲欧美一区二区三区国产| 国产单亲对白刺激| 亚洲天堂国产精品一区在线| 国产精品一区二区在线观看99 | 欧美97在线视频| 久久久久久久久中文| 18+在线观看网站| 看十八女毛片水多多多| 国产爱豆传媒在线观看| 亚洲成人中文字幕在线播放| 国产国拍精品亚洲av在线观看| 嫩草影院新地址| 麻豆成人午夜福利视频| 成人亚洲精品av一区二区| 免费一级毛片在线播放高清视频| 国产精品国产高清国产av| av在线蜜桃| 3wmmmm亚洲av在线观看| 99在线人妻在线中文字幕| 狠狠狠狠99中文字幕| 亚洲国产色片| 一卡2卡三卡四卡精品乱码亚洲| 国产午夜精品一二区理论片| 精品国产露脸久久av麻豆 | 日韩人妻高清精品专区| 一夜夜www| 久久精品国产亚洲av天美| 精品国产一区二区三区久久久樱花 | 国模一区二区三区四区视频| 麻豆一二三区av精品| 欧美日本亚洲视频在线播放| 综合色av麻豆| 亚洲成人久久爱视频| 国产精品久久久久久久久免| 色哟哟·www| 国产视频首页在线观看| 成人漫画全彩无遮挡| 我的老师免费观看完整版| 91午夜精品亚洲一区二区三区| 91av网一区二区| 亚洲一级一片aⅴ在线观看| 床上黄色一级片| 六月丁香七月| 麻豆精品久久久久久蜜桃| 国产91av在线免费观看| 成人午夜精彩视频在线观看| 国产成人a区在线观看| 日韩在线高清观看一区二区三区| 一个人看的www免费观看视频| 国产高潮美女av| 夜夜看夜夜爽夜夜摸| 国产乱人视频| 中文字幕av成人在线电影| 最近最新中文字幕免费大全7| 在现免费观看毛片| 欧美激情久久久久久爽电影| 亚洲国产欧洲综合997久久,| 晚上一个人看的免费电影| 成人亚洲欧美一区二区av| 国产成年人精品一区二区| 午夜激情欧美在线| 亚洲成人av在线免费| 亚洲精品色激情综合| 国产美女午夜福利| 色网站视频免费| 亚洲内射少妇av| 成年免费大片在线观看| 美女脱内裤让男人舔精品视频| 变态另类丝袜制服| 成人二区视频| av在线蜜桃| 亚洲av电影在线观看一区二区三区 | 久久亚洲精品不卡| 在线免费观看不下载黄p国产| 特级一级黄色大片| 中文精品一卡2卡3卡4更新| 少妇人妻精品综合一区二区| 国产老妇女一区| 色哟哟·www| 国产精品蜜桃在线观看| 国产乱人视频| 一区二区三区乱码不卡18| 精品久久久久久久人妻蜜臀av| 精品人妻视频免费看| 18禁裸乳无遮挡免费网站照片| 欧美一级a爱片免费观看看| 人人妻人人澡欧美一区二区| 国产精华一区二区三区| 日本熟妇午夜| 亚洲国产欧美人成| 亚洲天堂国产精品一区在线| 国产一区二区三区av在线| 一级毛片我不卡| 欧美变态另类bdsm刘玥| 美女黄网站色视频| 国产v大片淫在线免费观看| 中文亚洲av片在线观看爽| 人妻制服诱惑在线中文字幕| 五月玫瑰六月丁香| 免费黄网站久久成人精品| 国产免费一级a男人的天堂| 一级毛片久久久久久久久女| 国产色婷婷99| 菩萨蛮人人尽说江南好唐韦庄 | 国产av码专区亚洲av| 精品久久国产蜜桃| 99久久成人亚洲精品观看| 日韩一本色道免费dvd| 久久6这里有精品| 天堂网av新在线| 亚洲精品,欧美精品| 一边摸一边抽搐一进一小说| 午夜免费男女啪啪视频观看| 97超视频在线观看视频| 中文字幕亚洲精品专区| 国产极品天堂在线| 亚洲欧美日韩高清专用| 人人妻人人澡人人爽人人夜夜 | 亚洲av熟女| 日韩视频在线欧美| 深夜a级毛片| 毛片女人毛片| 国产精品1区2区在线观看.| 久久精品综合一区二区三区| 观看免费一级毛片| 少妇人妻一区二区三区视频| 毛片女人毛片| av天堂中文字幕网| 嫩草影院新地址| 国产探花在线观看一区二区| 99久久精品热视频| 国产视频内射| 高清午夜精品一区二区三区| 99国产精品一区二区蜜桃av| 91精品一卡2卡3卡4卡| 久久久久久久久大av| 99热这里只有是精品在线观看| 高清午夜精品一区二区三区| 99久久无色码亚洲精品果冻| 国产精品99久久久久久久久| 97在线视频观看| 国产精品永久免费网站| 欧美精品一区二区大全| 嫩草影院精品99| 日韩亚洲欧美综合| 黑人高潮一二区| 51国产日韩欧美| 亚洲无线观看免费| 久久婷婷人人爽人人干人人爱| 国产精品熟女久久久久浪| 国产精品99久久久久久久久| 亚洲国产精品专区欧美| 最后的刺客免费高清国语| 观看免费一级毛片| 日产精品乱码卡一卡2卡三| 丰满乱子伦码专区| 国产精品久久久久久久久免| 成年女人看的毛片在线观看| 国产高清国产精品国产三级 | 一级爰片在线观看| 男人舔奶头视频| 日本爱情动作片www.在线观看| 九九爱精品视频在线观看| 最近中文字幕2019免费版| 亚洲av免费在线观看| 99久久无色码亚洲精品果冻| 色尼玛亚洲综合影院| 日本黄色视频三级网站网址| 久久99热这里只有精品18| 丝袜美腿在线中文| 免费黄网站久久成人精品| 国产精品1区2区在线观看.| 亚洲伊人久久精品综合 | 久久精品国产亚洲av天美| 国产黄片美女视频| 久久99热这里只有精品18| 一区二区三区乱码不卡18| 国产高清三级在线| 我的老师免费观看完整版| 亚洲内射少妇av| 免费黄色在线免费观看| 观看免费一级毛片| 国产片特级美女逼逼视频| 99久久成人亚洲精品观看| 国产精品1区2区在线观看.| 久久婷婷人人爽人人干人人爱| 97热精品久久久久久| 精品99又大又爽又粗少妇毛片| 欧美人与善性xxx| 哪个播放器可以免费观看大片| 18禁在线播放成人免费| 亚洲成人久久爱视频| 亚洲久久久久久中文字幕| 欧美区成人在线视频| 国产一区亚洲一区在线观看| 午夜爱爱视频在线播放| 日日摸夜夜添夜夜添av毛片| 精华霜和精华液先用哪个| 91精品伊人久久大香线蕉| 十八禁国产超污无遮挡网站| 日韩精品有码人妻一区| 老司机福利观看| 久久久午夜欧美精品| 久久久国产成人免费| 色网站视频免费| 久久6这里有精品| 色5月婷婷丁香| 精品久久久久久久久av| 大又大粗又爽又黄少妇毛片口| 99热网站在线观看| av黄色大香蕉| 日日撸夜夜添| 久久久久久久久久久丰满| 免费观看a级毛片全部| 在线免费观看不下载黄p国产| 永久网站在线| 99久国产av精品国产电影| 亚洲av二区三区四区| 欧美一区二区亚洲| 国产午夜精品论理片| 亚洲内射少妇av| av在线老鸭窝| 亚州av有码| 亚洲国产精品久久男人天堂| 久久精品久久久久久噜噜老黄 | 人人妻人人澡欧美一区二区| 久久99热6这里只有精品| 日韩一本色道免费dvd| 久久久久网色| 91久久精品电影网| 在线免费十八禁| 免费观看在线日韩| 99久国产av精品国产电影| 99视频精品全部免费 在线| 日韩av在线大香蕉| 久久久久久久久久久免费av| 亚洲高清免费不卡视频| 一个人看的www免费观看视频| av视频在线观看入口| 亚洲在久久综合| 我要看日韩黄色一级片| 亚洲欧美成人精品一区二区| 偷拍熟女少妇极品色| 午夜视频国产福利| 国产高清国产精品国产三级 | 久久6这里有精品| 国产探花极品一区二区| 天美传媒精品一区二区| 亚洲成人久久爱视频| 国产精品一区二区性色av| 亚洲欧美清纯卡通| 久久精品91蜜桃| 插阴视频在线观看视频| 夜夜看夜夜爽夜夜摸| 日韩高清综合在线| 亚洲中文字幕日韩| 免费观看的影片在线观看| 欧美日韩综合久久久久久| 久久午夜福利片| 99久久九九国产精品国产免费| 亚洲av免费在线观看| 在线免费观看不下载黄p国产| 小说图片视频综合网站| 久久久久久国产a免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 性插视频无遮挡在线免费观看| 中文字幕久久专区| 久久精品国产自在天天线| 亚洲四区av| 国产探花极品一区二区| 最近最新中文字幕免费大全7| 久久精品夜色国产| 精品酒店卫生间| 亚洲精品国产成人久久av| av线在线观看网站| 一区二区三区高清视频在线| 乱人视频在线观看| 久久精品久久久久久久性| 国产精品1区2区在线观看.| 长腿黑丝高跟| 亚洲国产成人一精品久久久| 亚洲第一区二区三区不卡| 少妇裸体淫交视频免费看高清| 久久久久久久久久久丰满| 亚洲av中文av极速乱| 成人无遮挡网站| 亚洲性久久影院| 精品午夜福利在线看| 免费看日本二区| 国产免费一级a男人的天堂| 女人十人毛片免费观看3o分钟| 99热精品在线国产| 国产精品日韩av在线免费观看| 国产精品野战在线观看| or卡值多少钱| 国产成人freesex在线| 69人妻影院| 看免费成人av毛片| 精品久久久久久久末码| 高清午夜精品一区二区三区| 久久久国产成人免费| 国产爱豆传媒在线观看| 韩国高清视频一区二区三区| 黄片wwwwww| 精品久久久久久成人av| 菩萨蛮人人尽说江南好唐韦庄 | 免费观看a级毛片全部| 成年免费大片在线观看| 午夜福利在线观看免费完整高清在| 亚洲最大成人av| 又爽又黄a免费视频| 日韩欧美精品v在线| 禁无遮挡网站| 日本熟妇午夜| 狂野欧美激情性xxxx在线观看| 亚洲图色成人| 2022亚洲国产成人精品| 美女cb高潮喷水在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲一级一片aⅴ在线观看| 99久国产av精品| 久久精品人妻少妇| 成人无遮挡网站| 日韩在线高清观看一区二区三区| 在线免费观看的www视频| 女的被弄到高潮叫床怎么办| 男女啪啪激烈高潮av片| 日本一二三区视频观看| 国产伦在线观看视频一区| 九色成人免费人妻av| 日韩欧美国产在线观看| 成人三级黄色视频| 日韩 亚洲 欧美在线| 精品国产一区二区三区久久久樱花 | 日本wwww免费看| 亚洲美女搞黄在线观看| 少妇被粗大猛烈的视频| 免费看日本二区| 中文欧美无线码| 午夜激情欧美在线| 永久免费av网站大全| 国模一区二区三区四区视频| 日韩,欧美,国产一区二区三区 | 秋霞伦理黄片| 亚洲乱码一区二区免费版| 男人舔奶头视频| 国产亚洲av嫩草精品影院| 国产精品.久久久| 我的女老师完整版在线观看| 性色avwww在线观看| 日本熟妇午夜| 国国产精品蜜臀av免费| 十八禁国产超污无遮挡网站| 成人国产麻豆网| 男人和女人高潮做爰伦理| 日本黄色片子视频| 亚洲美女搞黄在线观看| 欧美精品一区二区大全| 99久久精品国产国产毛片| 九九在线视频观看精品| 一边摸一边抽搐一进一小说| 三级经典国产精品| 国产亚洲午夜精品一区二区久久 | 日韩av不卡免费在线播放| 在线免费十八禁| 欧美不卡视频在线免费观看| 国产精品三级大全| 夜夜爽夜夜爽视频| 亚洲精品乱久久久久久| 亚洲不卡免费看| 伊人久久精品亚洲午夜| 少妇熟女aⅴ在线视频| 丰满乱子伦码专区| 女人被狂操c到高潮| 国产三级中文精品| 69av精品久久久久久| 欧美潮喷喷水| 五月玫瑰六月丁香| 老女人水多毛片| 国内揄拍国产精品人妻在线| 欧美成人免费av一区二区三区| 自拍偷自拍亚洲精品老妇| 乱系列少妇在线播放| 人妻夜夜爽99麻豆av| 精品久久久久久久末码| 亚洲在久久综合| 舔av片在线| 啦啦啦观看免费观看视频高清| av免费观看日本| 欧美日本视频| 亚洲内射少妇av| 中文字幕久久专区| 国产精品人妻久久久影院| av线在线观看网站| 成人三级黄色视频| 韩国av在线不卡| 天天躁夜夜躁狠狠久久av| 久久精品久久精品一区二区三区| 欧美+日韩+精品| 久久精品综合一区二区三区| 一级爰片在线观看| 亚洲欧美成人综合另类久久久 | 一区二区三区高清视频在线| 禁无遮挡网站| 日本黄色视频三级网站网址| 日韩亚洲欧美综合| 午夜福利网站1000一区二区三区| 国产淫片久久久久久久久| 日本免费在线观看一区| 精品久久久久久久末码| 久久久久久久久久久免费av| 国产黄色小视频在线观看| 久久久久久久久久成人| 亚洲av电影在线观看一区二区三区 | 国产午夜精品久久久久久一区二区三区| 国产人妻一区二区三区在| 精品国产一区二区三区久久久樱花 | 在线免费观看的www视频| 亚洲国产精品国产精品| 亚洲欧洲国产日韩| 久久久久久久国产电影| 欧美日韩精品成人综合77777| 日本黄色片子视频| 91aial.com中文字幕在线观看| 建设人人有责人人尽责人人享有的 | 韩国高清视频一区二区三区| 亚洲精品久久久久久婷婷小说 | 日韩精品有码人妻一区| 国产黄色视频一区二区在线观看 | 最后的刺客免费高清国语| 内射极品少妇av片p| 免费看美女性在线毛片视频| 赤兔流量卡办理| 我要看日韩黄色一级片| 亚洲无线观看免费| 亚洲av一区综合| 不卡视频在线观看欧美| 日本爱情动作片www.在线观看| 日韩,欧美,国产一区二区三区 | 久久久久国产网址| 欧美色视频一区免费| av免费观看日本| 日韩欧美国产在线观看| 亚洲av福利一区| av专区在线播放| 国产高清视频在线观看网站| 亚洲va在线va天堂va国产| 国产乱来视频区| 男女下面进入的视频免费午夜| 久久精品国产鲁丝片午夜精品| 国产男人的电影天堂91| 麻豆av噜噜一区二区三区| 久久精品91蜜桃| 51国产日韩欧美| 欧美日本亚洲视频在线播放| 如何舔出高潮| 日韩制服骚丝袜av| 精品久久久噜噜| 欧美又色又爽又黄视频| 国语对白做爰xxxⅹ性视频网站| 日日摸夜夜添夜夜添av毛片| 男女视频在线观看网站免费| 精品熟女少妇av免费看| 少妇熟女欧美另类| 美女大奶头视频| 高清在线视频一区二区三区 | 亚洲av一区综合| 国产成人一区二区在线| 亚洲国产精品成人综合色| 人人妻人人澡人人爽人人夜夜 | 天堂√8在线中文| 国产伦理片在线播放av一区| 免费搜索国产男女视频| 免费无遮挡裸体视频| 日本一二三区视频观看| 国产乱人视频| 干丝袜人妻中文字幕| 少妇丰满av| 国产一区有黄有色的免费视频 | 日日撸夜夜添| 久久这里有精品视频免费| 我要搜黄色片| 色网站视频免费| 国产精品一区www在线观看| 亚洲乱码一区二区免费版| 亚洲国产精品久久男人天堂| 亚洲国产欧美在线一区| 真实男女啪啪啪动态图| 日韩制服骚丝袜av| 久久久a久久爽久久v久久| 噜噜噜噜噜久久久久久91| 黄色一级大片看看| 男插女下体视频免费在线播放| 亚洲av中文av极速乱| 亚洲av不卡在线观看| 国产私拍福利视频在线观看| 小蜜桃在线观看免费完整版高清| 欧美zozozo另类| 美女脱内裤让男人舔精品视频| 欧美xxxx性猛交bbbb| 男人舔女人下体高潮全视频| 日本一本二区三区精品| 激情 狠狠 欧美| 黄色日韩在线| 国产美女午夜福利| 亚洲精品成人久久久久久| 亚洲天堂国产精品一区在线| 国产av不卡久久| 久久亚洲国产成人精品v| 69人妻影院| 亚洲国产高清在线一区二区三| 国产真实乱freesex| 欧美日本亚洲视频在线播放| 亚洲人成网站在线播| 亚洲18禁久久av| 91狼人影院| 欧美成人a在线观看| 国产老妇女一区| 欧美色视频一区免费| av播播在线观看一区| 色尼玛亚洲综合影院| 日本猛色少妇xxxxx猛交久久| 少妇高潮的动态图|