• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GENERAL SPLIT FEASIBILITY PROBLEMS FOR TWO FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES?

    2016-09-26 03:45:53JinfangTANG唐金芳
    關(guān)鍵詞:劉敏

    Jinfang TANG(唐金芳)

    Department of Mathematics,Yibin University,Yibin 644007,China

    E-mail∶jinfangt 79@163.com

    Shih-sen CHANG(張石生)

    Center for General Education,China Medical University,Taichung 40402,Taiwan

    E-mail∶changss2013@163.com

    Min LIU(劉敏)

    Department of Mathematics,Yibin University,Yibin 644007,China

    E-mail∶liuminybsc@163.com

    ?

    GENERAL SPLIT FEASIBILITY PROBLEMS FOR TWO FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES?

    Jinfang TANG(唐金芳)

    Department of Mathematics,Yibin University,Yibin 644007,China

    E-mail∶jinfangt 79@163.com

    Shih-sen CHANG(張石生)

    Center for General Education,China Medical University,Taichung 40402,Taiwan

    E-mail∶changss2013@163.com

    Min LIU(劉敏)

    Department of Mathematics,Yibin University,Yibin 644007,China

    E-mail∶liuminybsc@163.com

    The purpose of this article is to introduce a general split feasibility problems for two families of nonexpansive mappings in Hilbert spaces.We prove that the sequence generated by the proposed new algorithm converges strongly to a solution of the general split feasibility problem.Our results extend and improve some recent known results.

    General split feasibility problems;nonexpansive mappings;Hilbert space;strong convergence

    2010 MR Subject Classification90C25;47H09;47J25

    1 Introduction

    Let H and K be infinite-dimensional real Hilbert spaces,and let A:H→K be a bounded linear operator.Letandbe the families of nonempty closed convex subsets of H and K,respectively.Let F(T)be the fixed point of the mapping T.

    (a)The convex feasibility problem(CFP)is formulated as the problem of finding a point x?with the property:

    (b)The split feasibility problem(SFP)is formulated as the problem of finding a point x?with the property:

    where C and Q are nonempty,closed and convex subsets of H and K,respectively.

    (c)The multiple-set split feasibility problem(MSSFP)is formulated as the problem of finding a point x?with the property:

    (d)The general split feasibility problem(GSFP)is formulated as the problem of finding a point x?with the property:

    There is a considerable investigation on CFP in view of its applications in various disciplines such as image restoration,computer tomograph,and radiation therapy treatment planning[1]. The split feasibility problem SFP in the setting of finite-dimensional Hilbert spaces was first introduced by Censor and Elfving[2]for modelling inverse problems which arise from phase retrievals and in medical image reconstruction[3].Since then,a lot of work has been done on finding a solution of SFP and MSSFP;see,for example,[2-17].

    In 2010,Xu[13]considered the SFP in the setting of infinite-dimensional Hilbert spaces and studied some algorithms and its convergence.In particular,he applied Mann's algorithm to the SFP and proposed an algorithm which is proved to be weakly convergent to a solution of the SFP.He also established the strong convergence result,which shows that the minimum-norm solution can be obtained.

    In 2011,Wang and Xu[14]proposed the following cyclic algorithm to solve MSSFP:

    where[n]:=n(modp)(mod function take values in{1,2,···,p},andThey shown that the sequence{xn}converged weakly to a solution of MSSFP provided the solution exists.

    To study strong convergence to a solution of MSSFP,in 2013,Eslamian and Latif[15]proposed the following algorithm to solve GSFP:

    In 2013,He and Zhao[16]introduced the following relaxed CQ algorithm such that the strong convergence was guaranteed in infinite-dimensional Hilbert spaces:

    To further study strong convergence to a solution of GSFP,first we introduce a general form of the general split feasibility problem for two families of firmly nonexpansive mappings as follows:

    (e)General split feasibility problem for two families of firmly nonexpansive mappings is to find a point x?such that

    where{Si},{Ti}are two families of firmly nonexpansive mappings.We denote by ? the solution set of the problem(1.8).

    Motivated and inspired by the researches going on in the sections of split feasibility problems,the purpose of this article is to introduce a new viscosity iterative algorithm for general split feasibility problems(1.8)in infinite dimensional Hilbert spaces.Under suitable conditions we prove the sequence converges strongly to a point in the set of solutions of general split feasibility problems for two families of firmly nonexpansive mappings.Our result extends and improves the corresponding results of some others.

    2 Preliminaries and Lemmas

    Throughout the rest of this article,we assume that H,H1,and H2are real Hilbert spaces,A is a bounded linear operator from H1to H2,and I is the identity operator on H,H1,or H2. If f:H→R is a differentiable function,then we denote by?f the gradient of the function f.We will also use the notations:→to denote the strong convergence,?to denote the weak convergence and

    to denote the weak limit set of{xn}.

    Let C be a closed and convex subset of H.For every point x∈H,there exists a unique nearest point in C,denoted by PCx satisfing

    The operator PCis called the metric projection of H onto C.The metric projection PCis characterized by the following inequality:

    Recall that a mapping T:H→H is said to be nonexpansive if

    A mapping T:H→H is said to be firmly nonexpansive if

    A mapping T:H→H is said to be demi-closed at origin if for any sequencewith xn?x?and

    It is easy to prove that if T:H→H is a firmly nonexpansive mapping,then T is demiclosed at origin.

    A function f:H→R is called convex if

    Lemma 2.1[17]Let T:H2→H2be a firmly nonexpansive mapping such that||(I?T)x|| is a convex function from H2toˉR=[?∞,+∞].Let A:H1→H2be a bounded linear operator and

    Then

    (i)?f(x)=A?(I?T)Ax,x∈H1.

    (ii)?f is||A||2-Lipschitz,that is,||?f(x)??f(y)||≤||A||2||x?y||,x,y∈H1.

    Lemma 2.2[17]Let T:H→H be an operator.The following statements are equivalent:

    (i)T is firmly nonexpansive.

    (ii)||Tx?Ty||2≤〈x?y,Tx?Ty〉,?x,y∈H.

    (iii)I?T is firmly nonexpansive.

    The following results play an important role in this article.

    Lemma 2.4[18]Let X be a real Hilbert space,then we have

    Lemma 2.5[19]Let H be a Hilbert space and let{xn}be a sequence in H.Then for any given sequenceand for any positive integer i,j with i<j,

    Lemma 2.6[20]Let{an}be a sequence of nonnegative real numbers such that

    where{γn}is a sequence in(0,1),and{σn}is a sequence in R such that

    Lemma 2.7[21]Let{tn}be a sequence of real numbers such that there exists a subsequence{ni}of{n}such that tni<tni+1for all i∈N.Then,there exists a nondecreasing sequence{τ(n)}?N such that τ(n)→∞,and the following properties are satisfied by all(sufficiently large)numbers n∈N:

    In fact,

    3 Main Result

    In the following,we propose an algorithm and prove that the sequence generated by the proposed method converges strongly to a solution of the GSFP(1.8).

    Theorem 3.1Let H1,H2be two real Hilbert spaces.Let A:H1→H2be a bounded linear operatorbe a family of firmly nonexpansive mappings,and{Ti:be another family of firmly nonexpansive mappings such that for any i∈N,is a convex function from H2toAssume that GSFP(1.8)has a nonempty solution set ?.Suppose that h:H1→H1is a α-contraction mapping and let{xn}be a sequence generated by x0∈H1as follows

    If the sequences{ρn}?(0,4),{αn},{βn},{γn,i}?(0,1)satisfy the following conditions:

    then the sequence{xn}converges strongly to x?∈?,where x?=

    ProofFirst,we show that{xn}is bounded.In fact,for any p∈?,we haveObserving that each I?Tiis firmly nonexpansive, from Lemma 2.2(ii)we have

    Hence,for any i∈N we have

    This implies that for any i∈N,

    From(3.1)and(3.4),we have

    By induction,we have

    which implies that{xn}is bounded,and so is{h(xn)}.

    Using Lemma 2.5 and(3.3),for any p∈? and i∈N,we have

    On the other hand,without loss of generality,we may assume that there exists a constant σ>0 such that

    Hence,for each i∈N,we have

    As P?h is a contraction of H1into itself,there exists a unique element x?∈? such that x?=P?h(x?).

    Now,we prove xn→x?as n→∞by employing the technique studied by Maing′e[21]. For the purpose,we consider two cases.

    Case 1Assume that{||xn?p||}is a monotone sequence.In other words,for n0large enough,{||xn?p||}n≥n0is either nondecreasing or nonincreasing.As{||xn?p||}is bounded, so{||xn?p||}is convergent.Asis bounded,from(3.6)we get

    and

    By condition(ii)we obtain

    Now,we prove that

    It follows from Lemma 2.1(ii)that for all n≥1 and i∈N,

    This implies that for each i∈N,{||?fi(xn)||}is bounded.From(3.8)it yields that for each i∈N,fi(xn)→0,namely for each i∈N,

    By the way,we have

    As{xn}is bounded,there exists a subsequence{xnk}of{xn}which converges weakly to w∈H1,that is,w∈ww(xn).From the definition of A,we have

    In fact,from(3.10)we have

    As each Tiis demi-closed at origin,from(3.12)and(3.13)we have Aw∈F(Ti),that is,

    Thus,we have

    It follows from(3.9)and(3.11)that

    In view of xnk?w and each Si(i∈N)being demi-closed at origin,we get wHence w∈? and then ww(xn)??.

    Therefore,in view of x?=P?h(x?),from the characteristic of metric projection P?,we have

    Finally,we prove that xn→x?=P?h(x?).Applying Lemma 2.4 and(3.4),we have

    This implies that

    Case 2Assume that{||xn?p||}is not a monotone sequence.Then,we can define an integer sequence{τ(n)}for all n≥n0(for some n0large enough)by

    Clearly,τ(n)is a nondecreasing sequence such that τ(n)→∞as n→∞and for all n≥n0,

    From(3.6)we obtain

    and

    Following an argument similar to that in Case 1,we have ww(xτ(n))??.Therefore,from the characteristic of metric projection P?,we have

    And by similar argument,we have

    Therefore,the sequence{xn}converges strongly to x?=P?h(x?).

    This completes the proof.

    RemarkIt should be pointed out that the condition“||(I?Ti)x||is a convex function from H2toˉR”in Theorem 3.1 can be replaced by the condition“the function fi(x)=is G′ateaux differentiable and?fi(x)=A?(I?Ti)Ax”.

    4 An Application and a Numerical Example for Split Equilibrium Problems in Hilbert Spaces

    In this section,we shall utilize Theorem 3.1 to give a numerical example for split equilibrium problems in Hilbert spaces.

    Let D be a nonempty closed and convex subset of a real Hilbert space H.A bifunction g:D×D→(?∞,+∞)is said to be a equilibrium function,if it satisfies the following conditions:

    (A1)g(x,x)=0,for all x∈D;

    (A2)g is monotone,that is,g(x,y)+g(y,x)≤0 for all x,y∈D;

    The“so-called”equilibrium problem with respect to the equilibrium function g is

    Its solution set is denoted by EP(g).

    For given λ>0 and x∈H,the resolvent of the equilibrium function g is the operator Rλ,g:H→D defined by

    Proposition 4.1[22]The resolvent operator Rλ,gof the equilibrium function g has the following properties:

    (1)Rλ,gis single-valued;

    (2)F(Rλ,g)=EP(g)is a nonempty closed and convex subset of D;

    (3)Rλ,gis a firmly nonexpansive mapping.

    Let H1and H2be two real Hilbert spaces.Let C be a nonempty closed convex subset of H1,Q be a nonempty closed convex subset of H2.Let h:C×C→R and g:Q×Q→R be two equilibrium functions.Let A:H1→H2be a bounded linear operator with adjoint operator A?.For given λ>0,let Rλ,hand Rλ,gbe the resolvent of h and g(defined by(4.2)),respectively.

    The“so-called”split equilibrium problem with respect to the equilibrium function h,g is to find x?∈C such that

    Let H1=H2=R2with standard norm and inner product.For each α=(α1,α2)and z=(z1,z2)∈R2,define operators A as

    It is easy to prove that

    Then,A is a bounded linear operator from R2into R2and A?:R2→R2is the adjoint operator of A.The norm of A

    Put

    For each α=(α1,α2)∈C and β=(β1,β2)∈Q,define functions:

    Let

    It is easy to know that h:C×C→R and g:Q×Q→R both are the equilibrium functions satisfying conditions(A1)-(A4).Let EP(h)(resp.EP(g))be the set of solutions of equilibrium problem with respect to h(resp.g).It is not hard to verify that

    This implies that(x?,y?)=((0,3),(?3,3))∈C×Q is the unique solution of the following split equilibrium problem with respect to h,g

    Denote by ? the set of solutions of the split equilibrium problem(4.8),then we have

    For given λ>0,let Rλ,hand Rλ,gbe the resolvent of h and g(defined by(4.2)),respectively. Let S=Rλ,hand T=Rλ,g.By Proposition 4.1,T and S both are firmly nonexpansive mappings and F(S)=EP(h),F(xiàn)(T)=EP(g).Hence from Theorem 3.1,we can obtain the following

    Theorem 4.2Let H1=H2=R2,T,S,A,A?and C,Q be the same as above.Let the function|(I?T)Ax||2be G′ateaux differentiable and?f(x)=A?(I?T)Ax.Suppose further that h:R2→R2is a α-contraction mapping and{xn}is a sequence generated by x0∈R2

    where{αn},{βn},{γn}?(0,1)with αn+βn+γn=1,?n≥1,A?(I?T)Axn6=0,?n≥1 and

    If the sequences satisfy the following conditions:

    then the sequence{xn}converges strongly to x?=(0,3)with Ax?=(?3,3)and ?={(x?,Ax?)}(the solution set of the split equilibrium problem(4.8)).

    References

    [1]Combettes P L.The convex feasibility problem in image recovery.Advances in Imaging and Electron Physics,1996,95:155-270

    [2]Censor Y,Elfving T.A multiprojection algorithm using Bregman projections in a product space.Numerical Algorithms,1994,8:221-239

    [3]Byrne C.Iterative oblique projection onto convex sets and the split feasibility problem.Inverse Problems,2002,18(2):441-453

    [4]Aleyner A,Reich S.Block-iterative algorithms for solving convex feasibility problems in Hilbert and in Banach spaces.Journal of Mathematical Analysis and Applications,2008,343(1):427-435

    [5]Bauschke H H,Borwein J M.On projection algorithms for solving convex feasibility problems.SIAM Review,1996,8(3):367-426

    [6]Moudafi A.A relaxed alternating CQ-algorithm for convex feasibility problems.Nonlinear Analysis,2013,79:117-121

    [7]Masad E,Reich S.A note on the multiple-set split convex feasibility problem in Hilbert space.Journal of Nonlinear and Convex Analysis,2007,8:367-371

    [8]Yao Y,Chen R,Marino G,et al.Applications of fixed point and optimization methods to the multiple-sets split feasibility problem.Journal of Applied Mathematics,2012,2012:Article ID 927530

    [9]Yang Q.The relaxed CQ algorithm for solving the split feasibility problem.Inverse Problems,2004,20:1261-1266

    [10]Zhao J,Yang Q.Several solution methods for the split feasibility problem.Inverse Problems,2005,21:1791-1799

    [11]Quan J,Chang S.S,Zhang X.Multiple-set split feasibility problems for κ-strictly pseudononspreading mappings in Hilbert spaces.Abstract and applied analysis,2013.article ID 342545

    [12]Xu H K.A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem.Inverse Problems,2006,22:2021-2034

    [13]Xu H K.Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces.Inverse Problems,2010,26:Article ID 105018

    [14]Wang F,Xu H K.Cyclic algorithms for split feasibility problems in Hilbert spaces.Nonlinear Analysis:Theory,Methods and Applications,2011,74(12):4105-4111

    [15]Eslamian M,Latif A.General split feasibility problems in Hilbert spaces.Abstract and Applied Analysis Volume 2013.Article ID 805104

    [16]He S,Zhao Z.Strong Convergence of A Relaxed CQ Algorithm for the Split Feasibility Problem.Journal of Inequalities and Applications,2013.doi:10.1186/1029-242X-2013-197

    [17]Tang J F,Chang S S,Yuan F.A strong convergence theorem for equilibrium problems and split feasibility problems in Hilbert spaces.Fixed point theory and applications,2014,2014:36

    [18]Chang S S.On Chidume’s open questions and approximate solutions for multi-valued strongly accretive mapping equations in Banach spaces.J.Math.Anal.Applications,1997,216:94-111

    [19]Chang S S,Kim J K,Wang X R,Modified block iterative algorithm for solving convex feasibility problems in Banach spaces.Journal of Inequalities and Applications,2010.Article ID869684

    [20]Xu H K.Iterative algorithms for nonlinnear operators.J Lond Math Soc,2002,66:240-256

    [21]Maing′e P E.Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization.Set-Valued Analysis,2008,16:899-912

    [22]Blum E,Oettli W.From optimization and variational inequalities to equilibrium problems.Math Stud,1994,63:123-145

    December 15,2014;revised July 11,2015.Supported by the Scientific Research Fund of Sichuan Provincial Department of Science and Technology(2015JY0165,2011JYZ011),the Scientific Research Fund of Sichuan Provincial Education Department(14ZA0271),the Scientific Research Project of Yibin University(2013YY06),the Natural Science Foundation of China Medical University,Taiwan,and the National Natural Science Foundation of China(11361070).

    ?Corresponding author

    猜你喜歡
    劉敏
    失控的逆襲:何苦死磕“渣男”成網(wǎng)紅
    Analysis on the cation distribution of MgxNi1-xFe2O4(x=0,0.25,0.5,0.75,1)using M¨ossbauer spectroscopy and magnetic measurement
    飛翔的風(fēng)箏
    小讀者之友(2021年8期)2021-09-10 05:08:49
    血型也會(huì)改變
    抗癌之窗(2021年3期)2021-02-12 08:59:08
    我在聽(tīng)你歌唱
    歌海(2020年5期)2020-11-16 06:04:02
    還手絹
    金山(2018年3期)2018-04-12 09:19:46
    掙夠50萬(wàn)去離婚:摳門(mén)花心老公必須付出代價(jià)
    都是愛(ài)
    詩(shī)選刊(2015年4期)2015-10-26 08:45:21
    神秘枕邊人,王子和魔鬼只隔一個(gè)微信的距離
    Kinetic and Thermodynamic Studies of Acid Scarlet 3R Adsorption onto Low-cost Adsorbent Developed from Sludge and Straw*
    av.在线天堂| 国产毛片a区久久久久| 日韩人妻高清精品专区| 日韩三级伦理在线观看| 美女内射精品一级片tv| 亚洲不卡免费看| 国产伦理片在线播放av一区| 免费看a级黄色片| 国产欧美另类精品又又久久亚洲欧美| 禁无遮挡网站| 免费黄频网站在线观看国产| av福利片在线观看| 国产精品久久久久久精品电影| 深爱激情五月婷婷| 免费在线观看成人毛片| 久久亚洲国产成人精品v| 国产免费福利视频在线观看| 又粗又硬又长又爽又黄的视频| 午夜老司机福利剧场| 中文字幕免费在线视频6| 人妻一区二区av| 亚洲精品自拍成人| 搡老乐熟女国产| 国产精品一区www在线观看| 男女那种视频在线观看| 1000部很黄的大片| 丰满乱子伦码专区| 国产精品国产三级国产专区5o| 国产淫语在线视频| 日韩av不卡免费在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品,欧美精品| 国产精品三级大全| 国产成人aa在线观看| 亚洲在线观看片| 国产av码专区亚洲av| 久久精品久久久久久噜噜老黄| 校园人妻丝袜中文字幕| 99热这里只有精品一区| 色网站视频免费| 亚洲av成人精品一二三区| 国产av国产精品国产| 久久精品久久久久久久性| 久久久欧美国产精品| 国内少妇人妻偷人精品xxx网站| 国产成年人精品一区二区| 最后的刺客免费高清国语| 亚洲图色成人| 肉色欧美久久久久久久蜜桃 | 欧美潮喷喷水| 日日啪夜夜撸| 欧美日韩视频高清一区二区三区二| 99热全是精品| 免费看光身美女| 国产精品无大码| 欧美性感艳星| 国产爽快片一区二区三区| 久久鲁丝午夜福利片| 亚洲精品日韩av片在线观看| 在线观看美女被高潮喷水网站| 国产乱来视频区| 欧美老熟妇乱子伦牲交| 美女主播在线视频| 国精品久久久久久国模美| 免费看日本二区| 99re6热这里在线精品视频| 亚洲天堂av无毛| 色视频在线一区二区三区| 啦啦啦啦在线视频资源| 国产精品一区二区三区四区免费观看| 久久久久久伊人网av| 国产精品久久久久久av不卡| 老女人水多毛片| 人体艺术视频欧美日本| 高清av免费在线| 下体分泌物呈黄色| 久久精品综合一区二区三区| 最近2019中文字幕mv第一页| 国产精品99久久久久久久久| 国产伦精品一区二区三区视频9| 在线观看免费高清a一片| 亚洲人成网站在线播| 白带黄色成豆腐渣| 色吧在线观看| 亚洲欧美一区二区三区国产| 久久精品国产亚洲av涩爱| 亚洲熟女精品中文字幕| 亚洲婷婷狠狠爱综合网| 日韩电影二区| 免费看a级黄色片| 观看美女的网站| 欧美日本视频| 欧美潮喷喷水| av国产久精品久网站免费入址| 免费黄网站久久成人精品| 国产一区有黄有色的免费视频| 午夜视频国产福利| 大话2 男鬼变身卡| 国产一区二区三区av在线| 一级片'在线观看视频| 欧美zozozo另类| 2021少妇久久久久久久久久久| 国产欧美日韩一区二区三区在线 | 尾随美女入室| 大片免费播放器 马上看| 久久人人爽人人爽人人片va| av播播在线观看一区| 日韩欧美精品v在线| 大码成人一级视频| 十八禁网站网址无遮挡 | 天天躁夜夜躁狠狠久久av| 国产一区二区三区综合在线观看 | 日韩免费高清中文字幕av| 亚洲成人中文字幕在线播放| 22中文网久久字幕| 免费看光身美女| 免费人成在线观看视频色| 最近2019中文字幕mv第一页| 91久久精品国产一区二区成人| 爱豆传媒免费全集在线观看| 在线观看av片永久免费下载| 不卡视频在线观看欧美| 亚洲精品aⅴ在线观看| 久久人人爽人人爽人人片va| 干丝袜人妻中文字幕| 亚洲欧美成人精品一区二区| 五月伊人婷婷丁香| 亚洲综合精品二区| 成年女人在线观看亚洲视频 | 国产69精品久久久久777片| av在线亚洲专区| 亚洲欧美日韩无卡精品| 国产成人a∨麻豆精品| 中文字幕人妻熟人妻熟丝袜美| 熟女电影av网| av一本久久久久| 国产精品国产三级国产专区5o| 亚洲无线观看免费| 亚洲欧美成人综合另类久久久| av国产久精品久网站免费入址| 午夜精品一区二区三区免费看| 中文天堂在线官网| 国产黄片视频在线免费观看| 老女人水多毛片| 成人毛片60女人毛片免费| 国产精品三级大全| 亚洲国产成人一精品久久久| 午夜福利在线观看免费完整高清在| 国产男人的电影天堂91| 欧美xxxx性猛交bbbb| 尾随美女入室| 一本色道久久久久久精品综合| 国产老妇伦熟女老妇高清| 午夜视频国产福利| 久久久成人免费电影| 日本欧美国产在线视频| 亚洲无线观看免费| 国产成年人精品一区二区| 在线免费十八禁| 久久亚洲国产成人精品v| 日本午夜av视频| av国产久精品久网站免费入址| 国产探花在线观看一区二区| av国产免费在线观看| 六月丁香七月| 秋霞伦理黄片| 精品国产乱码久久久久久小说| 成人无遮挡网站| 欧美97在线视频| 日日啪夜夜撸| 午夜老司机福利剧场| 联通29元200g的流量卡| 日韩中字成人| 中文乱码字字幕精品一区二区三区| 另类亚洲欧美激情| 九九久久精品国产亚洲av麻豆| 亚洲精品国产av成人精品| 久久久精品免费免费高清| 91aial.com中文字幕在线观看| 色播亚洲综合网| 国产一区有黄有色的免费视频| 久久久久久九九精品二区国产| 国产精品一及| 天堂俺去俺来也www色官网| 亚洲在久久综合| 高清日韩中文字幕在线| 日韩一区二区三区影片| 老司机影院毛片| 高清av免费在线| 一级av片app| 亚洲成色77777| 久久人人爽人人爽人人片va| 丝瓜视频免费看黄片| 国产成人精品久久久久久| 深爱激情五月婷婷| 成人美女网站在线观看视频| 亚洲av中文av极速乱| 69av精品久久久久久| 国产一区有黄有色的免费视频| 亚洲精品乱码久久久久久按摩| 日韩成人av中文字幕在线观看| 国产乱人偷精品视频| 边亲边吃奶的免费视频| 毛片一级片免费看久久久久| 国产又色又爽无遮挡免| 日日撸夜夜添| 91精品国产九色| 夜夜看夜夜爽夜夜摸| 亚洲最大成人av| 九九爱精品视频在线观看| 国产免费一级a男人的天堂| 18禁在线播放成人免费| 午夜精品一区二区三区免费看| 少妇人妻一区二区三区视频| 亚洲四区av| 十八禁网站网址无遮挡 | 国产成人91sexporn| 国产人妻一区二区三区在| 免费大片黄手机在线观看| 黑人高潮一二区| 国产亚洲一区二区精品| 国产爱豆传媒在线观看| 午夜福利视频1000在线观看| 免费大片黄手机在线观看| 亚洲内射少妇av| 中文字幕亚洲精品专区| 亚洲精品视频女| 毛片一级片免费看久久久久| 亚洲在久久综合| 午夜激情久久久久久久| 久久精品国产鲁丝片午夜精品| 久久久亚洲精品成人影院| 亚洲aⅴ乱码一区二区在线播放| 国产成人a区在线观看| 五月伊人婷婷丁香| 成年免费大片在线观看| 亚洲第一区二区三区不卡| 久久人人爽av亚洲精品天堂 | 亚洲欧美精品自产自拍| 好男人视频免费观看在线| 国产在线男女| 亚洲精品乱久久久久久| 亚洲精品一区蜜桃| 国产 一区精品| 一本一本综合久久| 久久女婷五月综合色啪小说 | 美女被艹到高潮喷水动态| 看非洲黑人一级黄片| 日韩 亚洲 欧美在线| 国产白丝娇喘喷水9色精品| 亚洲国产欧美人成| 国产乱人偷精品视频| 91aial.com中文字幕在线观看| 国产精品嫩草影院av在线观看| 亚洲国产日韩一区二区| 搡老乐熟女国产| 国产 一区 欧美 日韩| 日本午夜av视频| 亚洲欧美一区二区三区国产| 永久网站在线| 丰满少妇做爰视频| 岛国毛片在线播放| 一级毛片久久久久久久久女| 99久久精品一区二区三区| 亚洲怡红院男人天堂| 一级黄片播放器| 亚洲av二区三区四区| av一本久久久久| 国产色爽女视频免费观看| 看非洲黑人一级黄片| 韩国av在线不卡| 在线看a的网站| 亚洲,一卡二卡三卡| 99久久精品一区二区三区| 日日撸夜夜添| 精品亚洲乱码少妇综合久久| eeuss影院久久| 久久精品夜色国产| 精品人妻偷拍中文字幕| 2021少妇久久久久久久久久久| 国产精品.久久久| 亚洲最大成人av| 亚洲三级黄色毛片| 国产成人免费观看mmmm| 高清在线视频一区二区三区| 在线观看一区二区三区| 亚洲精品456在线播放app| 亚洲av欧美aⅴ国产| 97热精品久久久久久| 伦精品一区二区三区| 国国产精品蜜臀av免费| 国产探花在线观看一区二区| 国产成人精品婷婷| av在线老鸭窝| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人毛片a级毛片在线播放| 六月丁香七月| 亚洲成色77777| 最近中文字幕高清免费大全6| 久久这里有精品视频免费| 亚洲av.av天堂| 欧美成人精品欧美一级黄| 蜜臀久久99精品久久宅男| 国产 精品1| 精品国产露脸久久av麻豆| 国产免费视频播放在线视频| 日本熟妇午夜| 午夜亚洲福利在线播放| 亚洲国产精品999| 国产男女内射视频| 精品久久久噜噜| 菩萨蛮人人尽说江南好唐韦庄| 女的被弄到高潮叫床怎么办| 欧美日韩在线观看h| 人妻少妇偷人精品九色| 22中文网久久字幕| 亚洲人与动物交配视频| 国产爱豆传媒在线观看| 国产美女午夜福利| 欧美精品一区二区大全| 水蜜桃什么品种好| 91久久精品电影网| 国产淫片久久久久久久久| 人体艺术视频欧美日本| 97热精品久久久久久| 国产精品.久久久| 91在线精品国自产拍蜜月| 97超碰精品成人国产| 久久久国产一区二区| 又黄又爽又刺激的免费视频.| 免费播放大片免费观看视频在线观看| 蜜桃久久精品国产亚洲av| 亚洲自拍偷在线| 国产乱来视频区| 男人舔奶头视频| 亚洲精品日本国产第一区| 欧美区成人在线视频| 亚洲高清免费不卡视频| 网址你懂的国产日韩在线| 久久久久久久精品精品| 久久精品国产亚洲av涩爱| 国产高清国产精品国产三级 | 日韩av在线免费看完整版不卡| 日本欧美国产在线视频| 永久免费av网站大全| 亚洲精品国产av成人精品| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美日韩卡通动漫| 在线精品无人区一区二区三 | 97精品久久久久久久久久精品| 亚洲欧美精品自产自拍| 一区二区三区免费毛片| 全区人妻精品视频| 国产在视频线精品| 欧美日韩一区二区视频在线观看视频在线 | 精品午夜福利在线看| 97在线人人人人妻| 亚洲av男天堂| 乱码一卡2卡4卡精品| 久久99热这里只有精品18| 丝瓜视频免费看黄片| 视频区图区小说| 天堂俺去俺来也www色官网| 国产精品国产三级专区第一集| 亚洲成人久久爱视频| 午夜福利网站1000一区二区三区| 国产淫片久久久久久久久| 亚洲精品aⅴ在线观看| 亚洲国产色片| 日韩人妻高清精品专区| 少妇人妻精品综合一区二区| 国产极品天堂在线| 色视频www国产| av在线观看视频网站免费| 天堂俺去俺来也www色官网| 国产精品偷伦视频观看了| 国产精品一二三区在线看| 神马国产精品三级电影在线观看| 日韩一区二区三区影片| 亚洲熟女精品中文字幕| 亚洲国产成人一精品久久久| 菩萨蛮人人尽说江南好唐韦庄| 高清在线视频一区二区三区| 五月玫瑰六月丁香| 欧美潮喷喷水| 男女国产视频网站| 内射极品少妇av片p| 青青草视频在线视频观看| av在线亚洲专区| 天美传媒精品一区二区| 免费大片黄手机在线观看| 在线观看免费高清a一片| 波野结衣二区三区在线| 亚洲va在线va天堂va国产| 国产av码专区亚洲av| 亚洲四区av| 边亲边吃奶的免费视频| 三级国产精品片| 久久99精品国语久久久| 在线亚洲精品国产二区图片欧美 | 成人一区二区视频在线观看| 久久久久久国产a免费观看| 欧美高清成人免费视频www| 欧美性感艳星| 伦理电影大哥的女人| 国产精品久久久久久av不卡| 欧美三级亚洲精品| 在线免费十八禁| 男人舔奶头视频| 成年免费大片在线观看| 国内揄拍国产精品人妻在线| 观看免费一级毛片| 国国产精品蜜臀av免费| 在线精品无人区一区二区三 | 别揉我奶头 嗯啊视频| 菩萨蛮人人尽说江南好唐韦庄| 老女人水多毛片| 又粗又硬又长又爽又黄的视频| 亚洲av中文字字幕乱码综合| 观看美女的网站| 亚洲最大成人中文| 18禁裸乳无遮挡免费网站照片| 高清午夜精品一区二区三区| 色婷婷久久久亚洲欧美| 91午夜精品亚洲一区二区三区| 午夜激情福利司机影院| 国产黄频视频在线观看| 如何舔出高潮| 久久久成人免费电影| 国产成人精品一,二区| 国产男人的电影天堂91| 欧美老熟妇乱子伦牲交| 卡戴珊不雅视频在线播放| 欧美区成人在线视频| 亚洲精品日本国产第一区| 亚洲精品视频女| 免费看av在线观看网站| www.色视频.com| 夜夜爽夜夜爽视频| 成人漫画全彩无遮挡| 国产成人精品福利久久| 大香蕉97超碰在线| 国产永久视频网站| 美女高潮的动态| 日韩中字成人| 亚洲av成人精品一区久久| 免费不卡的大黄色大毛片视频在线观看| av在线老鸭窝| 激情 狠狠 欧美| 久久久久国产网址| 免费观看无遮挡的男女| 欧美xxⅹ黑人| 免费黄色在线免费观看| 欧美日韩视频精品一区| 老师上课跳d突然被开到最大视频| 日韩欧美精品v在线| 亚洲图色成人| 自拍欧美九色日韩亚洲蝌蚪91 | 免费少妇av软件| 国产精品爽爽va在线观看网站| 亚洲国产日韩一区二区| 国产亚洲av嫩草精品影院| 麻豆久久精品国产亚洲av| 三级国产精品片| 成人国产麻豆网| 亚洲在线观看片| 一级毛片电影观看| 女人久久www免费人成看片| 免费观看的影片在线观看| 男人舔奶头视频| 在线亚洲精品国产二区图片欧美 | 777米奇影视久久| 日韩在线高清观看一区二区三区| 麻豆国产97在线/欧美| 国产成人精品一,二区| 国产精品一及| 高清在线视频一区二区三区| 国内揄拍国产精品人妻在线| 国产精品久久久久久久久免| 丰满人妻一区二区三区视频av| 久久精品熟女亚洲av麻豆精品| 久久综合国产亚洲精品| 人体艺术视频欧美日本| 少妇人妻精品综合一区二区| 精品国产三级普通话版| 亚洲在线观看片| 一级二级三级毛片免费看| 黄色日韩在线| 国产精品久久久久久精品电影小说 | 一个人看的www免费观看视频| 男人和女人高潮做爰伦理| 亚洲精品自拍成人| 午夜精品国产一区二区电影 | 99热这里只有精品一区| 国产一区亚洲一区在线观看| 欧美人与善性xxx| 王馨瑶露胸无遮挡在线观看| 91午夜精品亚洲一区二区三区| 在线亚洲精品国产二区图片欧美 | 特级一级黄色大片| 高清欧美精品videossex| 2022亚洲国产成人精品| 精品亚洲乱码少妇综合久久| 精品一区在线观看国产| 黄色日韩在线| 亚洲精品第二区| eeuss影院久久| 国产色婷婷99| 午夜免费鲁丝| 制服丝袜香蕉在线| 人妻一区二区av| 黄色怎么调成土黄色| 你懂的网址亚洲精品在线观看| 精品人妻熟女av久视频| 免费观看a级毛片全部| 亚洲成人一二三区av| 欧美日韩视频精品一区| 国产精品蜜桃在线观看| 爱豆传媒免费全集在线观看| 成人一区二区视频在线观看| av一本久久久久| 国产成人一区二区在线| 禁无遮挡网站| 国产精品福利在线免费观看| 国产高清三级在线| 成人漫画全彩无遮挡| 人体艺术视频欧美日本| 建设人人有责人人尽责人人享有的 | 免费高清在线观看视频在线观看| av黄色大香蕉| 一级二级三级毛片免费看| 插逼视频在线观看| 国产69精品久久久久777片| 亚洲精品乱久久久久久| 国产探花极品一区二区| 久久国内精品自在自线图片| 久久99蜜桃精品久久| 国产高清三级在线| 日本av手机在线免费观看| 亚洲欧美一区二区三区黑人 | 久久99热6这里只有精品| 一级毛片 在线播放| 尾随美女入室| 2021少妇久久久久久久久久久| 国产 一区精品| 中文字幕久久专区| 亚洲精品久久午夜乱码| 日本黄大片高清| 亚洲av不卡在线观看| 一级a做视频免费观看| 国产白丝娇喘喷水9色精品| 欧美xxxx性猛交bbbb| 九九久久精品国产亚洲av麻豆| 国产精品人妻久久久久久| 性色avwww在线观看| 日本与韩国留学比较| 国产成人a区在线观看| 免费观看性生交大片5| 身体一侧抽搐| 国产精品蜜桃在线观看| 欧美国产精品一级二级三级 | www.av在线官网国产| 久久久色成人| 日韩中字成人| 欧美变态另类bdsm刘玥| 一本久久精品| 哪个播放器可以免费观看大片| 久久精品熟女亚洲av麻豆精品| 一个人观看的视频www高清免费观看| 日韩一本色道免费dvd| 蜜桃久久精品国产亚洲av| 久久ye,这里只有精品| 欧美日韩综合久久久久久| 美女高潮的动态| 又粗又硬又长又爽又黄的视频| 白带黄色成豆腐渣| 狂野欧美白嫩少妇大欣赏| 亚洲av.av天堂| 久久精品国产亚洲av涩爱| 下体分泌物呈黄色| 亚洲av成人精品一二三区| 欧美日本视频| 国产亚洲精品久久久com| 久久精品国产自在天天线| 国产精品国产av在线观看| 欧美日韩国产mv在线观看视频 | 午夜亚洲福利在线播放| 午夜福利网站1000一区二区三区| av线在线观看网站| 嫩草影院精品99| 亚洲欧美一区二区三区黑人 | 特大巨黑吊av在线直播| 久久久精品94久久精品| 日本免费在线观看一区| 亚洲精品456在线播放app| 亚洲国产欧美人成| 在线天堂最新版资源| 久久久久久久大尺度免费视频| 丰满乱子伦码专区| 人体艺术视频欧美日本| 蜜桃亚洲精品一区二区三区| 亚洲内射少妇av| 美女脱内裤让男人舔精品视频| 蜜桃亚洲精品一区二区三区| 一级毛片电影观看| 亚洲第一区二区三区不卡| 亚洲久久久久久中文字幕| av在线天堂中文字幕| 午夜福利网站1000一区二区三区| 亚洲国产精品国产精品| 免费大片18禁| 纵有疾风起免费观看全集完整版| 伊人久久国产一区二区| 久久精品久久精品一区二区三区| 国内少妇人妻偷人精品xxx网站|