• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetic and Thermodynamic Studies of Acid Scarlet 3R Adsorption onto Low-cost Adsorbent Developed from Sludge and Straw*

    2014-03-25 09:11:26任曉莉楊玲劉敏
    關(guān)鍵詞:楊玲劉敏

    (任曉莉)**(楊玲)(劉敏)

    Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China

    Kinetic and Thermodynamic Studies of Acid Scarlet 3R Adsorption onto Low-cost Adsorbent Developed from Sludge and Straw*

    REN Xiaoli(任曉莉)**, YANG Ling(楊玲)and LIU Min(劉敏)

    Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China

    A low-cost adsorbent was prepared from sludge and straw by pyrolysis in a dried state with the surface area of the adsorbent of 829.49 m2·g?1, micropore volume of 0.176 cm2·g?1and average pore radius of 5.0 nm. The kinetic, equilibrium isotherm and thermodynamic characteristics of trisodium 1-(1-naphthylazo)-2-hydroxynaphthalene-4′,6,8-trisulphonate (acid scarlet 3R) onto the adsorbent from sludge and straw were investigated. The results indicated that the pseudo second order adsorption was the predominant adsorption mechanism of acid scarlet 3R. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data were fitted better with Langmuir model than Freundlich model, indicating that the adsorption of acid scarlet 3R belonged to the monolayer adsorption and mainly occurred in micropores.

    kinetic, thermodynamic, acid scarlet 3R, adsorbent, sludge, straw

    1 INTRODUCTION

    Sewage sludge is the inevitable by-products of wastewater purification. The world is currently undergoing a rapid increase in sludge production that is expected to continue for many years [1]. Sewage sludge is composed largely of the substances responsible for the offensive, pathogenic and toxic characteristics of untreated wastewater. Therefore, if proper treatment disposal is not implemented, this sludge will lead to serious environmental pollution. Various methods have been used to dispose or utilize municipal sewage sludge including incineration, land filling, land application, road surfacing, conversion to fertilizer, compression into building blocks, etc [2]. However, the environmental and legislative constraints, increasing sludge production, more limited disposal options and reducing availability of land call for more efficient and environmentally friendly approaches to its utilization [3-6]. It is well known that sewage sludge is carbonaceous in nature. Hence, it might be promising to prepare adsorbent from sewage sludge [7-9].

    Dye wastewater discharged from dyeing industries is highly colored and is toxic to aquatic life in the receiving water bodies. However, wastewater containing dyes is difficult to treat, since the dyes are recalcitrant organic molecules, resistant to aerobic digestion and are stable to light, heat and oxidizing agents. Adsorption technology is considered to be most effective and proven technology for applications in dye wastewater treatment. An alternative treatment for the discoloration of wastewaters from the textile industry is the usage of some non-conventional adsorbents (natural materials, bio-adsorbents and waste materials from industry and agriculture) with lower cost and high efficiency [10-16].

    In this work, excess sludge and straw were prepared into adsorbents by chemical activation. In order to improve the adsorption performance of the adsorbents and reduce heat energy and activating agent consumption, the immersion method was substituted with a mixing method that consisted of mixing dried sludge with solid ZnCl2. Sludge-derived absorbents were investigated for kinetic, equilibrium isotherm and thermodynamic studies of acid red 3R adsorption.

    2 MATERIALS AND METHODS

    2.1 Materials

    Dewatered surplus sludge (SS) was collected from the Northern Suburb Municipal Wastewater Treatment Plant of Taiyuan, China. Proximate analysis of the raw materials showed water content of 76%, an ash content of 47.1%, a volatile mass of 47.55%, and fixed carbon of 5.35% (dry basis).

    The molecular formula of trisodium 1-(1-naphthylazo)-2-hydroxynaphthalene-4′,6,8-trisulphonate (acid scarlet 3R) is C20H11N2Na3O10S3, molecular mass is 604.48, and the UV-VIS spectrophotometer UV-2100PC scanning spectrum indicated that the maximum absorption wavelength was 506 nm.

    2.2 Methods

    The study of adsorption kinetics and thermodynamics is essential in supplying the fundamental information required for the design and operation of adsorption equipment for wastewater treatment.

    2.2.1 Adsorption kinetics experimentation

    The dye solutions were taken in a 250 ml Erlenmeyer flask for conducting the tests. The varying initial concentration was 50 mg·L?1, 100 mg·L?1and 150 mg·L?1with the adsorbent dosage of 0.2 g. The mixturewas agitated in an orbital shaker at a constant speed of 120 r·min?1for 24 h at a temperature of 20 °C. At predefined time intervals the solutions of the specified flask were separated from the adsorbent materials. The residual concentration of acid scarlet 3R was determined by using a UV-VIS spectrophotometer at a wavelength of 506 nm. The adsorption capacity (qt, mg·g?1) at predefined moments was calculated by using Eq. (1):

    where qtis monolayer adsorption capacity of the adsorbent at time (mg·g?1), C0is initial dye concentration (mg·L?1), Ctis dye concentration at time (mg·L?1), m is adsorbent mass (g) and V is volume of the adsorbate solution (L).

    2.2.2 Adsorption thermodynamic experimentation

    The dye solutions were put in a 250 ml Erlenmeyer flask for conducting the tests. The initial concentration varied from 50 mg·L?1to 400 mg·L?1with an adsorbent dosage of 0.2 g. The experiments were carried out at 20 °C, 30 °C and 40 °C, respectively. The dye concentration retained in the adsorbent phase (qe, mg·g?1) was calculated by using Eq. (2):

    where C0is the initial dye concentration (mg·L?1), Ceis the equilibrium concentration of the dye (mg·L?1), m is the adsorbent mass (g), V is volume of the adsorbate solution (L) and qeis the adsorption capacity of the adsorbent at equilibrium (mg·g?1).

    3 PREPARATION OF ADSORBENT

    Dried sludge samples and straw were crushed to an average particle size of 75 μm and mixed with solid ZnCl2to a final concentration of 30% (g·g?1). The mixture was pyrolyzed in a stainless steel container (60 mm inside diametor) in a hypoxic environment at 400 °C for 120 min. The resulting sample was washed several times with 3 mol·L?1HCl and rinsed with deionized water until the pH of the washing effluent reached between 6 and 7. The product was then dried to constant mass in a drum drier at 105 °C.

    The physical characteristics of the adsorbents, including the specific surface area, pore volume distribution and pore diameter, were measured with a surface area analyzer (ASAP 2020 M, Micro-meritics Instrument Co., USA) by using the adsorption isotherms for gas adsorption (N2, 77 K) [17]. The specific surface area of the adsorbent was 829.49 m2which was calculated by using the Langmuir equation. Micropore volume (Vmi) was 0.176 cm3·g?1obtained by the t-plot method. Desorption average pore radius (2 V·A?1) was 5.0 nm calculated by the Barrette Joyner Halenda (BJH) method.

    4 RESULTS AND DISCUSSION

    4.1 Adsorption kinetics studies

    The influence of adsorption time on adsorption capacities of acid scarlet 3R were investigated with three dye concentration of 50 mg·L?1, 100 mg·L?1, and 150 mg·L?1at 25 °C and 4 g·L?1adsorbent dosage. The results are shown in Fig. 1.

    Figure 1 qt-t curve of acid scarlet 3R on low-cost adsorbent

    Figure 1 reveals that with the increase in concentration, the equilibrium adsorption capacity of acid scarlet 3R onto the adsorbent also increases. Furthermore, the lower the concentration, the shorter time it needs to reach the equilibrium.

    In order to comprehensively study adsorption kinetics characteristics of acid scarlet 3R onto the adsorbent and find the most suitable the kinetics model to describe the adsorption process, this paper chooses the pseudo first order kinetics equation, pseudo second kinetics equation, and particle diffusion equation to fit adsorption kinetics data, respectively. The suitability of three kinds of kinetics models was determined according to the linear correlation coefficient R of the fitting equation.

    The pseudo first order kinetics equation has been widely used to describe adsorption dynamics. The model assumes that the adsorption is a pseudo chemical reaction process and the limiting factor for adsorption is the resistance of mass transfer inside granules. Its expression is as follows:

    The boundary condition: t=0 and qt=0.

    Integrating Eq. (3) and applying the initial conditions, we have:

    where k1is the adsorption rate constant of pseudo first order (min?1).

    The pseudo second order kinetics equation has also been widely used to describe the adsorption dynamics. The model also assumes that adsorption is a pseudo chemical reaction process. However, unlike the pseudo first order kinetics equation, this modeldescribes the whole process of adsorption and assumes that the limiting factor for adsorption is the adsorption mechanism rather than the resistance of mass transfer inside granules. The model of pseudo second order kinetics is expressed as Eq. (5):

    The boundary condition is t=0 and qt=0.

    After definite integration by applying the initial conditions, Eq. (5) becomes:

    where k2is the adsorption rate constant of pseudo second order (g·mg?1·min?1).

    Intra-particle diffusion process is often the rate-controlling step in many adsorption processes. The possibility of intra-particle diffusion was explored by using Eq. (7):

    where kpis the adsorption rate constant of the intra-particle diffusion (mg·g?1·min?0.5). Fitting the adsorption kinetics data of acid scarlet 3R with the above motioned three kinetics models, the linear fitting curve and fitting equation can be obtained. The equation parameters can also be calculated by Eqs. (3)-(7) and the results are shown in Figs. 2 to 4 as well as Table 1.

    Figure 2 Pseudo first order kinetics fitting curve of acid scarlet 3R on low-cost adsorbent■ 50 mg·L?1, Exp.; ● 100 mg·L?1, Exp.; ▲ 150 mg·L?1, Exp.;50 mg·L?1, model;100 mg·L?1, model;150 mg·L?1, model

    Figure 3 Pseudo second order kinetics fitting curve of acid scarlet 3R on low-cost adsorbent■ 50 mg·L?1, Exp.; ● 100 mg·L?1, Exp.; ▲ 150 mg·L?1, Exp.;50 mg·L?1, model;100 mg·L?1, model;150 mg·L?1, model

    Figure 4 Diffusion equation fitting curve of acid scarlet 3R on low-cost adsorbent■ 50 mg·L?1, Exp.; ● 100 mg·L?1, Exp.; ▲ 150 mg·L?1, Exp.;50 mg·L?1, model;100 mg·L?1, model;150 mg·L?1, model

    From Figs. 2 to 4 and Table 1, the best model to generate a good fit to the experimental data is the pseudo-second-order model (R2>0.99). It shows that acid scarlet 3R adsorption mechanism on the sludgestraw adsorbent includes all the adsorption process, such as external liquid film diffusion, surface adsorption, and intra-particle diffusion. In addition, the maximum adsorption capacity obtained by experiment is close to that calculated by model, which further verified the validity of the above mentioned conclusion.

    According to the linear regression correlation coefficient R2values (R2: 0.91-0.93), the intra-particle diffusion model shows limited applicability for theadsorption process. The fitting lines of qtvs. t0.5do not pass through the origin (C≠0), indicating that the presence of intra-particle diffusion process is one of the rate-controlling steps, besides many other processes controlling the rate of adsorption, such as surface adsorption and liquid film diffusion control, all of which are more likely to be operating simultaneously. These findings are in agreement with those obtained by other workers [16, 18].

    Table 1 Fitting kinetics parameters of acid scarlet 3R

    4.2 Adsorption thermodynamics studies

    The adsorption of acid scarlet 3R onto the adsorbent was investigated at 20 °C, 30 °C and 40 °C, respectively. The concentration of acid scarlet 3R varied from 50 mg·L?1to 400 mg·L?1. Primary discussion for the adsorption mechanism of acid scarlet 3R was progressed.

    The commonly used adsorption isotherm equations are the Langmuir isothermal adsorption equation and Freundlich isothermal adsorption equation.

    The Langmuir isothermal adsorption equation assumes that the adsorption is a chemical process, one adsorption site only adsorbs one molecule adsorbate, that is to say, the adsorption is assumed to occur at a specific uniformity site on the surface of the adsorbent. Langmuir isothermal adsorption equation is mainly used to describe the single molecular layer adsorption. Its linear expression is as follows:

    where Ceis the equilibrium concentration (mg·L?1), b is the Langmuir constant (L·mg?1) and Qmis the saturated absorption capacity (mg·g?1).

    Freundlich isothermal adsorption equation is an empirical formula, which describes equilibrium on heterogeneous surfaces and hence does not assume monolayer capacity. The linear expression is as follows:

    where KFis the Freundlich constants, 1/n is the index of concentration, KFand 1/n are indicators of the adsorption capacity and adsorption intensity. 1/n values between 0.1 and 0.5 represent good adsorption potential of the adsorbent.

    The adsorption experiments of acid scarlet 3R were conducted at 20 °C, 30 °C and 40 °C, respectively. The experimental data were fitted using Eqs. (8) and (9) respectively. The fitting isotherm equations are shown in Figs. 5 and 6.

    From Figs. 5 and 6, the experimental data are better fitted to the Langmuir isotherm than Freundlich isotherm. It indicates that the adsorption of acid scarlet 3R belongs to the monolayer adsorption and mainly occurs in micropores.

    The parameters of the fitting isotherm equation are shown in Tables 2 and 3.

    Figure 5 Fitting curve of Freundlich isotherm equation of acid scarlet 3R on low-cost adsorbent■ 20 °C, Exp.; ● 30 °C, Exp.; ▲ 40 °C, Exp.;?20 °C, model;?30 °C, model; ? 40 °C, model

    Figure 6 Fitting curve of Freundlich isotherm equation of acid scarlet 3R on low-cost adsorbent■ 20 °C, Exp.; ● 30 °C, Exp.; ▲ 40 °C, Exp.;20 °C, model;30 °C, model;40 °C, model

    Table 2 Fitting parameters of Langmuir isotherm equation

    Table 3 Fitting parameters of Freundlich isotherm equation

    From Tables 2 and 3, it can be seen that Langmuir equation parameters Qmincrease in accordance with the increase of temperature, which implies that the adsorption of acid scarlet 3R onto the adsorbent is an endothermic process where a higher temperature is more conducive to adsorption. The concentration index of the Freundlich model 1/n is between 0.1 and 0.5. Thus, it is easier to adsorb acid scarlet 3R from wastewater.

    Wang et al. [18] have studied adsorption kinetics of methylene blue, crystal violet and basic fuchsine onto dried waste sludge. The experimental data were analyzed by using several kinetic equations. The results showed that the adsorption of respective dye could be best described by pseudo second order equation. The diffusion process inside granules played an important role in adsorption and Langmuir isotherm was found to be more suitable than Freundlich isotherm for correlation of equilibrium data. Similar results were shown by Phanikumar [13], Yong [14], Yue [16], Zhang [19] and Gupta [20] in the removal of dyes. The above mentioned results were basically consistent with the conclusion of this study.

    4.3 Adsorption effects of sludge-straw adsorbent

    The adsorption effects of acid scarlet 3R onto the sludge-straw adsorbent were investigated. A comparative study with a commercial coal-based activated carbon (the iodine value of 950 mg·g?1) was conducted. The experimental conditions were as follows: pH of 3, adsorption time of 2 h, adsorption temperature of 26 °C and initial concentration of 250 mg·L?1. Fig. 7 shows the decolorization rate of acid scarlet 3R onto sludge-straw adsorbent and commercial activated carbon at different dosages.

    Figure 7 Decolorization rate of acid scarlet 3R at different dosage

    Both sludge-straw adsorbent and commercial activated carbon have good performance for acid scarlet 3R adsorption. Although the adsorption capacity of acid scarlet 3R onto sludge-straw adsorbent is inferior to that of commercial activated carbon at the same dosage, the decolorization rate of acid scarlet 3R onto sludge-straw adsorbent increases to 94.77% close to that of commercial activated carbon when the dosage is up to 1.4 g·L?1. Commercial activated carbon was prepared from high quality coal and expensive for dye removal in wastewater, while sludge-straw adsorbent was prepared from solid waste and relatively cheap compared with commercial activated carbon. The potential lower cost of the sludge-straw adsorbent might make it more attractive for practical applications.

    5 CONCLUSIONS

    The studies indicated that the adsorbent developed from sludge and straw was potential to act as an active carbon for the removal of the acid scarlet 3R from colored wastewater. The kinetics and thermodynamic experimentation were investigated, finding that the adsorption was best suited to the pseudo second order kinetics equation with higher correlation coefficients R and the thermodynamic data were also correlated better with the Langmuir model than the Freundlich isotherm model.

    REFERENCES

    1 Méndez, A., Gascó, G., Freitas, M.M.A., Siebielec, G., Stuczynski, T., Figueiredoa, J.L., “Preparation of carbon-based adsorbents from pyrolysis and air activation of sewage sludges”, Chem. Eng. J., 108, 169-177 (2005).

    2 Hwang, H.R., Choi, W.J., Kim, T.J., Kim, J.S., Oh, K.J., “The preparation of an adsorbent from mixtures of sewage sludge and coal-tar pitch using an alkaline hydroxide activation agent”, J. Anal. Appl. Pyrol., 83, 220-226 (2008).

    3 Martin, M.J., Serra, E., Ros, A., Balaguer, M.D., Rigola, M., “Carbonaceous adsorbents from sewage sludge and their application in a combined activated sludge-powdered activated carbon (AS-PAC) treatment”, Carbon, 42, 1389-1394 (2004).

    4 Fang, P., Cen, C.P., Chen, D.S., Tang, Z.X., “Carbonaceous adsorbents prepared from sewage sludge and its application for Hg0adsorption in simulated flue gas”, Chin. J. Chem. Eng., 18 (2), 231-238 (2010).

    5 Otero, M., Rozada, F., Calvo, L.F., García, A.I., Morán, A., “Elimination of organic water pollutants using adsorbents obtained from sewage sludge”, Dyes and Pigm., 57, 55-65 (2003).

    6 Xu, G.R., Zhang, W.T., Li, G.B., “Adsorbent obtained from CEPT sludge in wastewater chemically enhanced treatment”, Water Res., 39, 5175-5185 (2005).

    7 Pan, Z.H., Tian, J.Y., Xu, G.R., Li, J.J., Li, G.B., “Characteristics of adsorbents made from biological, chemical and hybrid sludges and their effect on organics removal in wastewater treatment”, Water Res., 45, 819-827 (2011).

    8 Ren, X.L., Liang, B.H., Liu, M., Xu, X.Y., Cui, M.H., “Effects of pyrolysis temper ature, time and leaf litter and powder coal ash addition on sludge-derived adsorbents for nitrogen oxide”, Bioresour. Technol., 125, 300-304 (2012).

    9 Anfruns, A., María, M.J., Montes-Morán, M.A., “Removal of odourous VOCs using sludge-based adsorbents”, Chem. Eng. J., 166, 1022-1031 (2011).

    10 Shukla, A., Zhang, Y.H., Dubey, P., Shyam, S.S., “The role of sawdust in the removal of unwanted materials from water”, J. Hazard. Mater., 95 (1/2), 137-152 (2002).

    11 Forgacs, E., Cserhati, T., Oros, G., “Removal of synthetic dyes from wastewaters: A review”, Environ. Int., 30 (7), 953-971 (2004).

    12 Crini, G., “Non-conventional low-cost adsorbents for dye removal: A review”, Bioresour. Technol., 97 (9), 1061-1085 (2006).

    13 Geethakarthi, A., Phanikumar, B.R., “Adsorption of reactive dyes from aqueous solutions by tannery sludge developed activated carbon: Kinetic and equilibrium studies”, J. Environ. Sci. Tech., 8 (3), 561-570 (2011).

    14 Fan, H., Yang, J.S., Gao, T.G., Yong, H.L., “Removal of low-moleculor basic dye (azure blue) from aqueous solutions by anative biomass of a newly isolated adsorption sp.: Kinetics equilibrium and biosorption simulation”, J. Taiwan Ins. Chem. Eng., 43, 382-392 (2012).

    15 Nandi, B.K., Goswami, A., Purkait, M.K., “Adsorption characteristics of brilliant green dye on kaolin”, J. Hazard. Mater., 161 (1), 387-395 (2009).

    16 Xie, J.K., Yue, Q.Y., Gao, B.Y., Li, Q., “Adsorption kinetics and thermodynamics of anionic dyes onto sewage sludge derived activated carbon”, Int. J. Environment and Pollution, 45 (1-3), 123-144 (2011).

    17 Chiang, H.M., Chen, T.C., Pan, S.D., Chiang, H.L., “Adsorption characteristics of orange II and chrysophenine on sludge adsorbent and activated carbon fibers”, J. Hazard. Mater., 161 (2/3), 1384-1390 (2009).

    18 Wang, X.S., Lin, H.Q., “Adsorption of basic dyes by dried waste sludge: Kinetic, equilibrium and desorption studies”, Desalin. and Water Treat., 29, 10-19 (2011).

    19 Zhang, L.N., Chen, Q.Y., Ke, Y.J., “Investigation on preparation and decolorization for dye waste water of activated carbon from sludge”, Saf. Environ. Eng., 16, 44-47 (2009).

    20 Gupta, V.K., Jain, R., Siddiqui, M.N., Saleh, T.A., Agarwal, S., Malati, S., Pathak, D., “Equilibrium and thermodynamic studies on the adsorption of the dye Rhodamine-B onto mustard cake and activated carbon”, J. Chem. Eng. Data, 55, 5225-5229 (2010).

    Received 2013-06-24, accepted 2013-10-09.

    * Supported by the Shanxi Science and Technology Agency Research Project (20100321085) and the Scientific Research Foundation of the Shanxi Education Department (20111029).

    ** To whom correspondence should be addressed. E-mail: xlren66@126.com

    猜你喜歡
    楊玲劉敏
    Analysis on the cation distribution of MgxNi1-xFe2O4(x=0,0.25,0.5,0.75,1)using M¨ossbauer spectroscopy and magnetic measurement
    分娩球聯(lián)合自由體位在初產(chǎn)婦助產(chǎn)護理中的應(yīng)用價值分析
    血型也會改變
    抗癌之窗(2021年3期)2021-02-12 08:59:08
    我在聽你歌唱
    歌海(2020年5期)2020-11-16 06:04:02
    GENERAL SPLIT FEASIBILITY PROBLEMS FOR TWO FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES?
    結(jié)婚后的動心
    37°女人(2016年3期)2016-09-26 03:09:29
    結(jié)婚后的動心
    幸福家庭(2016年6期)2016-05-14 13:35:04
    結(jié)婚后的動心
    37°女人(2016年3期)2016-03-11 16:28:49
    都是愛
    詩選刊(2015年4期)2015-10-26 08:45:21
    第一次勞動體驗
    一级片'在线观看视频| 高清视频免费观看一区二区 | 国内精品宾馆在线| 久久久a久久爽久久v久久| 国产成人freesex在线| 2022亚洲国产成人精品| 色综合站精品国产| 禁无遮挡网站| 一本久久精品| 国产精品国产三级专区第一集| 夜夜看夜夜爽夜夜摸| 亚州av有码| 国产伦精品一区二区三区视频9| 亚洲av二区三区四区| 成人综合一区亚洲| 91午夜精品亚洲一区二区三区| 国产一级毛片七仙女欲春2| 免费在线观看成人毛片| 国产精品嫩草影院av在线观看| 一区二区三区四区激情视频| 丝袜美腿在线中文| 嫩草影院精品99| 丰满乱子伦码专区| 噜噜噜噜噜久久久久久91| 床上黄色一级片| av又黄又爽大尺度在线免费看| 黄片wwwwww| 国产精品一区二区性色av| 天天一区二区日本电影三级| 久久久精品免费免费高清| 亚洲国产精品国产精品| 国产精品一二三区在线看| 五月天丁香电影| 六月丁香七月| 国产欧美另类精品又又久久亚洲欧美| 亚洲成人精品中文字幕电影| 国产成人午夜福利电影在线观看| 日韩在线高清观看一区二区三区| 大陆偷拍与自拍| 中文字幕av成人在线电影| 国产黄频视频在线观看| 精品久久国产蜜桃| 大香蕉97超碰在线| 国产 一区 欧美 日韩| 精品国产一区二区三区久久久樱花 | 日本av手机在线免费观看| 少妇熟女欧美另类| 亚洲av成人精品一区久久| 精品国产一区二区三区久久久樱花 | 又大又黄又爽视频免费| 国产精品一区二区三区四区久久| 久久99热这里只频精品6学生| 秋霞在线观看毛片| 国产美女午夜福利| 非洲黑人性xxxx精品又粗又长| 精品人妻熟女av久视频| 三级毛片av免费| 久99久视频精品免费| 一本一本综合久久| 亚洲国产色片| 日韩亚洲欧美综合| 久久久久九九精品影院| 一级毛片久久久久久久久女| 看非洲黑人一级黄片| 欧美激情久久久久久爽电影| 亚洲丝袜综合中文字幕| 观看免费一级毛片| 国产精品蜜桃在线观看| 蜜桃亚洲精品一区二区三区| 国产成人aa在线观看| av女优亚洲男人天堂| 亚洲va在线va天堂va国产| 国产黄片视频在线免费观看| 天堂√8在线中文| 激情 狠狠 欧美| 日本一二三区视频观看| 久久久精品免费免费高清| 日本熟妇午夜| 国产极品天堂在线| 一级毛片电影观看| 午夜福利视频1000在线观看| 人妻少妇偷人精品九色| 十八禁网站网址无遮挡 | 91午夜精品亚洲一区二区三区| 边亲边吃奶的免费视频| 黑人高潮一二区| 亚洲内射少妇av| 欧美一区二区亚洲| 国产美女午夜福利| 亚洲av不卡在线观看| 国产欧美日韩精品一区二区| 国产午夜精品论理片| 日产精品乱码卡一卡2卡三| 久久久久久伊人网av| 日本免费a在线| 亚洲精品国产av成人精品| 国产日韩欧美在线精品| 亚洲经典国产精华液单| 成年版毛片免费区| 国产真实伦视频高清在线观看| 亚洲av日韩在线播放| 日韩在线高清观看一区二区三区| 亚洲欧美一区二区三区黑人 | 亚洲婷婷狠狠爱综合网| 国产成人免费观看mmmm| 亚洲国产av新网站| 97人妻精品一区二区三区麻豆| 男人舔奶头视频| 午夜福利在线观看免费完整高清在| 欧美区成人在线视频| av天堂中文字幕网| 80岁老熟妇乱子伦牲交| 特大巨黑吊av在线直播| 超碰97精品在线观看| 中文字幕免费在线视频6| 欧美 日韩 精品 国产| 美女高潮的动态| 成人二区视频| 色5月婷婷丁香| 一夜夜www| 2018国产大陆天天弄谢| 久久精品国产自在天天线| 看非洲黑人一级黄片| 美女主播在线视频| 国产麻豆成人av免费视频| 亚洲av.av天堂| 精品人妻视频免费看| 欧美xxⅹ黑人| 亚洲国产高清在线一区二区三| 国产免费福利视频在线观看| 欧美精品一区二区大全| 天天躁夜夜躁狠狠久久av| 汤姆久久久久久久影院中文字幕 | 好男人在线观看高清免费视频| 有码 亚洲区| 亚洲av男天堂| 99久久精品热视频| 性插视频无遮挡在线免费观看| 亚洲精品中文字幕在线视频 | 免费人成在线观看视频色| 十八禁网站网址无遮挡 | 天堂俺去俺来也www色官网 | 日韩不卡一区二区三区视频在线| 国产一区二区亚洲精品在线观看| 丝袜美腿在线中文| 亚洲精品一区蜜桃| 黄色一级大片看看| 男女下面进入的视频免费午夜| 2018国产大陆天天弄谢| 欧美日韩亚洲高清精品| 日日摸夜夜添夜夜添av毛片| 美女脱内裤让男人舔精品视频| av在线蜜桃| 欧美日韩在线观看h| 亚洲av免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 久久人人爽人人片av| 天堂网av新在线| 久久久久久久久久成人| 亚洲国产精品sss在线观看| 搡女人真爽免费视频火全软件| 观看美女的网站| 亚洲欧美日韩卡通动漫| 国产片特级美女逼逼视频| 亚洲精品第二区| 在线免费十八禁| 国产视频内射| 91久久精品国产一区二区三区| 亚洲综合色惰| 国产黄色免费在线视频| 亚洲精品自拍成人| 亚洲精品亚洲一区二区| 在线天堂最新版资源| 国产熟女欧美一区二区| 亚洲电影在线观看av| 午夜福利网站1000一区二区三区| 国产一级毛片七仙女欲春2| 亚洲欧美一区二区三区黑人 | 乱人视频在线观看| 97超视频在线观看视频| 久久精品久久久久久噜噜老黄| 国产av在哪里看| 国产极品天堂在线| 亚洲国产精品sss在线观看| 精品国产三级普通话版| av国产免费在线观看| 人妻夜夜爽99麻豆av| 久久精品人妻少妇| 国产三级在线视频| 成人亚洲欧美一区二区av| 中文天堂在线官网| 亚洲自拍偷在线| 亚洲av成人精品一二三区| 婷婷六月久久综合丁香| 两个人视频免费观看高清| 一本久久精品| 国产免费又黄又爽又色| 国内精品美女久久久久久| 亚洲av.av天堂| 欧美日韩国产mv在线观看视频 | 九九爱精品视频在线观看| 久久久久久久亚洲中文字幕| 久久久亚洲精品成人影院| 久久久久久久久久黄片| 亚洲国产精品成人久久小说| 日韩视频在线欧美| 亚洲精品亚洲一区二区| 搡老妇女老女人老熟妇| 免费黄网站久久成人精品| 夜夜爽夜夜爽视频| 国产黄色免费在线视频| 欧美性猛交╳xxx乱大交人| 国产精品一二三区在线看| av在线亚洲专区| 色综合亚洲欧美另类图片| 一区二区三区乱码不卡18| 观看免费一级毛片| 91久久精品电影网| 丰满乱子伦码专区| 美女内射精品一级片tv| 99热这里只有精品一区| 亚洲精品一二三| 天天一区二区日本电影三级| 亚洲精品日韩av片在线观看| 久久99热这里只频精品6学生| 最近2019中文字幕mv第一页| 亚洲无线观看免费| 国产一区二区三区av在线| 国产综合精华液| 国产人妻一区二区三区在| 日韩欧美国产在线观看| 麻豆成人av视频| 亚洲精品亚洲一区二区| 校园人妻丝袜中文字幕| 99热全是精品| 80岁老熟妇乱子伦牲交| 深夜a级毛片| 一区二区三区四区激情视频| 久久久久精品性色| 欧美潮喷喷水| 精华霜和精华液先用哪个| 亚洲婷婷狠狠爱综合网| 国产淫语在线视频| 亚洲欧美日韩无卡精品| 午夜精品在线福利| 成人欧美大片| 国产黄频视频在线观看| 久久午夜福利片| 亚洲天堂国产精品一区在线| 国产男女超爽视频在线观看| 国产精品一区二区三区四区久久| 一级黄片播放器| 99re6热这里在线精品视频| 中文资源天堂在线| 日韩伦理黄色片| 一级毛片我不卡| 亚洲在线观看片| 亚洲欧美日韩无卡精品| 久久午夜福利片| 成人欧美大片| 国产精品人妻久久久影院| 国产单亲对白刺激| 人人妻人人澡欧美一区二区| 国产亚洲av嫩草精品影院| 国产色爽女视频免费观看| 亚洲精品久久久久久婷婷小说| 国精品久久久久久国模美| 久热久热在线精品观看| 永久免费av网站大全| 色播亚洲综合网| 欧美日本视频| 久久人人爽人人爽人人片va| 中文在线观看免费www的网站| 亚洲熟女精品中文字幕| 2021少妇久久久久久久久久久| 久久久欧美国产精品| 欧美日韩精品成人综合77777| 天天一区二区日本电影三级| 白带黄色成豆腐渣| 国产精品久久久久久久电影| 久久精品久久久久久噜噜老黄| 激情 狠狠 欧美| 偷拍熟女少妇极品色| av免费在线看不卡| 日韩大片免费观看网站| 一级毛片aaaaaa免费看小| 成人性生交大片免费视频hd| 一级黄片播放器| 高清毛片免费看| 色综合色国产| 中国美白少妇内射xxxbb| 国产亚洲av片在线观看秒播厂 | or卡值多少钱| 69人妻影院| 丰满少妇做爰视频| 欧美成人a在线观看| 亚洲aⅴ乱码一区二区在线播放| 青春草亚洲视频在线观看| 偷拍熟女少妇极品色| 亚洲综合色惰| 看非洲黑人一级黄片| 精品人妻偷拍中文字幕| 国产黄片美女视频| 天堂av国产一区二区熟女人妻| 欧美 日韩 精品 国产| 女人被狂操c到高潮| 韩国高清视频一区二区三区| 免费大片18禁| 日韩欧美精品v在线| 精品久久久久久电影网| 国产精品日韩av在线免费观看| 国产国拍精品亚洲av在线观看| 国产精品女同一区二区软件| 国语对白做爰xxxⅹ性视频网站| 日韩一区二区三区影片| 国产一区有黄有色的免费视频 | 久久精品国产鲁丝片午夜精品| 大又大粗又爽又黄少妇毛片口| 亚洲色图av天堂| 国产女主播在线喷水免费视频网站 | 成人二区视频| 赤兔流量卡办理| 高清午夜精品一区二区三区| 男女下面进入的视频免费午夜| 毛片女人毛片| 特级一级黄色大片| 亚洲自偷自拍三级| 国语对白做爰xxxⅹ性视频网站| 免费看不卡的av| 成年女人看的毛片在线观看| 久久这里只有精品中国| 久久人人爽人人片av| 女人久久www免费人成看片| 国产亚洲91精品色在线| 国产v大片淫在线免费观看| 免费观看av网站的网址| 最近中文字幕高清免费大全6| 十八禁国产超污无遮挡网站| 婷婷色综合大香蕉| 水蜜桃什么品种好| 大陆偷拍与自拍| 激情五月婷婷亚洲| 中文字幕人妻熟人妻熟丝袜美| 亚洲激情五月婷婷啪啪| 久久韩国三级中文字幕| 免费人成在线观看视频色| 中文天堂在线官网| 男女视频在线观看网站免费| 亚洲精华国产精华液的使用体验| 国产精品国产三级国产av玫瑰| 国产精品一二三区在线看| 国产一区二区三区综合在线观看 | 欧美成人精品欧美一级黄| 国产免费福利视频在线观看| 国产精品女同一区二区软件| 亚洲天堂国产精品一区在线| 国产 一区精品| 噜噜噜噜噜久久久久久91| 在线观看人妻少妇| 身体一侧抽搐| 免费电影在线观看免费观看| 亚洲精品第二区| av天堂中文字幕网| 亚洲精品国产成人久久av| 久久精品国产鲁丝片午夜精品| 免费观看av网站的网址| freevideosex欧美| 女人被狂操c到高潮| 免费看不卡的av| 看非洲黑人一级黄片| 麻豆乱淫一区二区| 亚洲欧美一区二区三区黑人 | 午夜福利在线观看免费完整高清在| 亚洲自偷自拍三级| 亚洲精品456在线播放app| 波野结衣二区三区在线| xxx大片免费视频| 天堂俺去俺来也www色官网 | 一级毛片 在线播放| 非洲黑人性xxxx精品又粗又长| 波野结衣二区三区在线| 精品一区在线观看国产| 内地一区二区视频在线| 国产乱人视频| av卡一久久| 成年女人在线观看亚洲视频 | 热99在线观看视频| 国产精品一区二区三区四区免费观看| 精品久久久久久电影网| 精品人妻熟女av久视频| 亚洲在久久综合| 我的女老师完整版在线观看| 久久精品久久久久久久性| 免费观看在线日韩| 一级二级三级毛片免费看| 久久精品国产鲁丝片午夜精品| 亚洲真实伦在线观看| 卡戴珊不雅视频在线播放| 成人综合一区亚洲| 少妇被粗大猛烈的视频| 亚洲欧美中文字幕日韩二区| 内射极品少妇av片p| 亚洲综合色惰| 欧美3d第一页| 亚洲欧美日韩无卡精品| 高清毛片免费看| 亚洲av男天堂| 亚洲丝袜综合中文字幕| 欧美性感艳星| 三级经典国产精品| 国内精品宾馆在线| 亚洲av中文av极速乱| 麻豆乱淫一区二区| 少妇人妻一区二区三区视频| 99久久人妻综合| 99热网站在线观看| 真实男女啪啪啪动态图| 国产精品三级大全| av在线亚洲专区| 成人午夜高清在线视频| 国产av码专区亚洲av| 在线 av 中文字幕| 自拍偷自拍亚洲精品老妇| 91精品国产九色| 草草在线视频免费看| 天堂影院成人在线观看| 精品久久久久久久久av| 波多野结衣巨乳人妻| 免费不卡的大黄色大毛片视频在线观看 | 22中文网久久字幕| 亚洲精品国产成人久久av| 内地一区二区视频在线| 国产免费福利视频在线观看| 成人漫画全彩无遮挡| 中文字幕亚洲精品专区| 亚洲成色77777| 亚洲精品色激情综合| 国产精品嫩草影院av在线观看| 国产欧美日韩精品一区二区| 91午夜精品亚洲一区二区三区| 国产亚洲最大av| 欧美成人午夜免费资源| 91午夜精品亚洲一区二区三区| 嫩草影院入口| 国产色婷婷99| 亚洲精品日韩av片在线观看| 久99久视频精品免费| 九九在线视频观看精品| 超碰av人人做人人爽久久| 看黄色毛片网站| xxx大片免费视频| 国产在线一区二区三区精| 免费观看a级毛片全部| 日韩一区二区三区影片| 久久久久久九九精品二区国产| 日本一二三区视频观看| 三级经典国产精品| 久久99热这里只频精品6学生| 欧美高清成人免费视频www| 床上黄色一级片| 国产一区有黄有色的免费视频 | 国产精品久久视频播放| 亚洲最大成人中文| 国产综合精华液| h日本视频在线播放| 国内精品宾馆在线| 亚洲精品aⅴ在线观看| 欧美区成人在线视频| 午夜福利视频1000在线观看| 免费少妇av软件| 热99在线观看视频| 欧美极品一区二区三区四区| 国产 一区精品| 欧美丝袜亚洲另类| 亚洲欧美一区二区三区黑人 | 97在线视频观看| 日本一本二区三区精品| 日日撸夜夜添| 天堂影院成人在线观看| 日韩伦理黄色片| 99热全是精品| 麻豆乱淫一区二区| 免费看a级黄色片| 国产黄色视频一区二区在线观看| 亚洲国产高清在线一区二区三| 18禁裸乳无遮挡免费网站照片| 免费av不卡在线播放| 国产免费视频播放在线视频 | 亚洲国产欧美在线一区| 天堂影院成人在线观看| 亚洲怡红院男人天堂| 自拍偷自拍亚洲精品老妇| 国产淫片久久久久久久久| 精品熟女少妇av免费看| 久久午夜福利片| 国产av码专区亚洲av| 一本一本综合久久| 成人毛片a级毛片在线播放| 男人和女人高潮做爰伦理| 一区二区三区高清视频在线| 在现免费观看毛片| 国产午夜福利久久久久久| 久久久久网色| 亚洲av国产av综合av卡| 三级国产精品片| 日韩av在线免费看完整版不卡| 好男人在线观看高清免费视频| 国产精品综合久久久久久久免费| 精品欧美国产一区二区三| 精品国产露脸久久av麻豆 | 久久草成人影院| 亚洲欧美成人综合另类久久久| 亚洲精品国产av蜜桃| 久久99热这里只有精品18| 天堂影院成人在线观看| 亚洲av男天堂| 日韩电影二区| 国产一区亚洲一区在线观看| 乱系列少妇在线播放| 国产成人精品久久久久久| 三级毛片av免费| 欧美日韩在线观看h| 天堂俺去俺来也www色官网 | 女人十人毛片免费观看3o分钟| 网址你懂的国产日韩在线| 91精品伊人久久大香线蕉| 尤物成人国产欧美一区二区三区| 欧美日韩综合久久久久久| 一级毛片久久久久久久久女| 欧美高清成人免费视频www| 激情五月婷婷亚洲| 日韩在线高清观看一区二区三区| 床上黄色一级片| 精品久久久噜噜| 美女黄网站色视频| 日韩电影二区| 我要看日韩黄色一级片| 国产精品99久久久久久久久| 激情 狠狠 欧美| 久久精品熟女亚洲av麻豆精品 | 五月玫瑰六月丁香| av线在线观看网站| 欧美bdsm另类| 一级av片app| 自拍偷自拍亚洲精品老妇| 国产精品美女特级片免费视频播放器| 纵有疾风起免费观看全集完整版 | 久久久久久久久久久丰满| 成人国产麻豆网| 久久久久久久亚洲中文字幕| 成人特级av手机在线观看| 少妇熟女aⅴ在线视频| 欧美zozozo另类| 一个人看的www免费观看视频| 插阴视频在线观看视频| 欧美xxⅹ黑人| 亚洲人与动物交配视频| 日韩欧美精品v在线| 中文字幕免费在线视频6| 99久久中文字幕三级久久日本| 亚洲天堂国产精品一区在线| 国产精品一及| 十八禁国产超污无遮挡网站| 久久久久久国产a免费观看| 最近最新中文字幕大全电影3| 一级毛片 在线播放| 国产在视频线在精品| 亚洲国产av新网站| 91精品国产九色| 午夜日本视频在线| 国产乱来视频区| 日日啪夜夜撸| 午夜激情福利司机影院| 22中文网久久字幕| 日韩欧美精品免费久久| 国产精品一区二区性色av| 国产精品一区www在线观看| 久久热精品热| 啦啦啦啦在线视频资源| av国产免费在线观看| 亚洲精品成人久久久久久| 欧美成人精品欧美一级黄| 亚洲怡红院男人天堂| 国产在线一区二区三区精| 日韩欧美三级三区| 日韩电影二区| 听说在线观看完整版免费高清| 亚洲在线自拍视频| 国产av不卡久久| 国产成人一区二区在线| 欧美日韩视频高清一区二区三区二| 女人久久www免费人成看片| 禁无遮挡网站| 神马国产精品三级电影在线观看| 国产美女午夜福利| 亚洲精品乱码久久久久久按摩| 如何舔出高潮| 日韩大片免费观看网站| 欧美变态另类bdsm刘玥| 日本爱情动作片www.在线观看| 亚洲成人av在线免费| 免费观看性生交大片5| 91精品国产九色| 日韩伦理黄色片| 国产在视频线在精品| 日本与韩国留学比较| 亚洲国产成人一精品久久久| 丰满人妻一区二区三区视频av| 精品国内亚洲2022精品成人| 中国国产av一级| 网址你懂的国产日韩在线| 亚洲国产色片| 亚洲精品自拍成人| 一级av片app| 免费看a级黄色片|