• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Solvent and Impurities on Crystal Morphology of Zinc Lactate Trihydrate*

    2014-03-25 09:11:28楊薌鈺錢剛張相洋段學(xué)志周興貴

    (楊薌鈺)(錢剛)(張相洋)(段學(xué)志)(周興貴)**

    State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

    Effects of Solvent and Impurities on Crystal Morphology of Zinc Lactate Trihydrate*

    YANG Xiangyu(楊薌鈺), QIAN Gang(錢剛), ZHANG Xiangyang(張相洋), DUAN Xuezhi(段學(xué)志)and ZHOU Xinggui(周興貴)**

    State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

    The crystal morphology of zinc lactate trihydrate in the absence or presence of impurities (viz. succinic acid, L-malic acid and D-malic acid) is investigated by molecular simulation based on surface docking model and COMPASS force field. Combing simulation results with our previous experimental results, it is found that the solvent mainly has an inhibition effect on the (0 0 2) surface, and succinic acid impurity will inhibit the growth of (0 0 2) and (0 1 1) surfaces while two enantiomers of malic acid impurity will inhibit the (0 0 2) and (1 0 0) surfaces, which are in good agreement with the experimental results.

    crystal morphology, molecular simulation, solvent effect, impurity adsorption

    1 INTRODUCTION

    Crystallization is widely used for separation and purification of food, fine chemicals and pharmaceuticals, and the mild operation is especially suitable for APIs (active pharmaceutical ingredients) processing [1]. The product purity is of primary concern for any separation and purification process. However, for solid products, in addition to the purity and the polymorphs, the morphologies are also very important because they have substantial impacts on downstream processing (such as filtering, washing and drying) and product performance (such as the rate of dissolution and the bioavailability of pharmaceuticals) [2]. A tight control of the crystal morphology, in addition to the purity, is therefore of great significance in industry.

    The crystal morphology is essentially determined by the internal structure of crystal. Hence, a variety of theories and models relating crystal growth and morphology to crystal lattice have been proposed. However, the morphologies of most crystals are also easily influenced by external factors such as temperature [3], supersaturation [4], solvent [5, 6] and impurity [7]. These factors, especially the solvent or trace amount of impurities, have dramatic effects on crystal nucleation and crystal growth, and hence the crystal morphology. Nevertheless, the effects induced by these factors are still not well understood.

    Solvent, among all the external factors that have influences on the morphology of crystal, should be treated firstly before any other factors. It changes the final crystal morphology by altering the relative growth rate of crystal surfaces [8]. There are two mechanisms for a solvent to alter the relative growth rate. First, because of the adsorption of solvent on the crystal surface, an additional energy barrier for solvent desorption is required for crystal growth [9, 10]. Therefore, it tends to decrease the growth rate. Second, the adsorption of solvent on the crystal surface may provide a surface structure and environment that facilitate the adsorption of solute molecules. In this case, it increases the growth rate [4, 11].

    In addition, industrial solutions are invariably impure, and the impurities in the crystallizing solution can modify crystal morphology by stunting the growth of crystal in certain directions. From the thermodynamic point of view, the growth will be stopped by impurities if the supersaturation is lower than the critical supersaturation, i.e., the residual supersaturation threshold [12, 13], and the growth will be slowed if the supersaturation is above the critical value. From the kinetic point of view, the regular docking sequence of oncoming solute molecules will be interrupted, since the active sites on the surface are occupied by impurity molecules [7]. In some cases, impurities can actually build into crystal lattice.

    As crystallization process can be depicted as a molecular recognition procedure on interface, the effects of solvent and impurity can then be explained in the manner of molecular interactions among crystal molecules, solvent molecules and impurity molecules. Molecular modeling techniques make the estimation of the atom-atom interactions possible [14]. Moreover, molecular simulation gives a well pre-understanding of crystal behavior, which helps experimental design and observation.

    Bravais-Friedel-Donnay-Harker (BFDH) and attachment energy (AE) methods are generally used to predict the morphology of pure crystal. Based on the AE model, the influence of solvent and impurity are invested by simulating the relationship between foreign molecules and crystal molecules on interface. Kiang et al. [1, 15] predicted the habit and surface energetics of a pharmaceutical compound and validatedthe simulation result with experimental observation by scanning electron microscope (SEM), X-ray powder diffraction (XRPD) and atomic force microscope (AFM). Leeuw and Cooper [16] considered different interaction sites of a perfect crystal surface and found that the adsorbate would preferentially attach to either the acute or the obtuse steps. Dang et al. [17] found that cations appeared to have significant effect on phosphoric acid hemihydrate crystal shape than anions. These classical approaches are the first important steps in morphological analysis, despite the fact that they are not adequate for quantitative predictions.

    Zinc lactate trihydrate [(CH3CH(OH)COO)2Zn·3H2O, ZLT] is extensively used as food additives. The ZLT may contain several impurities, as coming from the upstream fermentation process for lactic acid production, which may affect the morphology of ZLT during crystallization. To facilitate the downstream processing of ZLT or to make the final product more aesthetic, some additives may be introduced to control the morphology of ZLT during crystallization. Despite a large number of experimental studies of impurities effects on crystal growth, a generally accepted molecular level description based on the crystal-impurity interactions has not been provided.

    In the present work, the effect of solvent and some selected impurities, e.g. (D-, or L-) malic acid, and succinic acid, on crystal morphology of ZLT is investigated by molecular simulation. These impurities are chosen because of their structural similarity with lactate group in ZLT molecule, and they are expected to have strong effect on growth process of ZLT. With a properly chosen force field, the crystal morphologies of ZLT in presence of different impurities are predicted, which agree very well with the present experimental observation.

    2 METHODS

    Molecular simulation of the ZLT morphology is performed on Material Studio 4.0, with Forcite and Morphology packages and using the COMPASS (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies) force field [18]. Forcite is used to optimize the crystal structure and to study the adsorption effect of foreign molecules, while Morphology is used to calculate the pure crystal morphology.

    First, geometry optimization with the Smart algorithm is carried out for potential energy minimization of an initial unit cell of ZLT. Then BFDH law and AE method [19] are used to calculate the pure crystal morphologies. Because both methods were originally designed to predict the morphologies from either internal arrangement or crystal molecular interactions, and can not be used directly for the prediction of crystal morphologies in the presence of foreign molecules, the surface docking approach [20, 21] is applied to predict the influence of solvent and different impurities on the crystal morphology of ZLT. The surface docking approach consists of the following two steps.

    (1) Based on the optimized structure of ZLT, the main facets are cleaved for the calculation of the adsorption effects of foreign molecules. All surfaces are rebuilt to be at least 3.0 nm in surface dimensions in order to better represent the bulk material. A threedimensional periodical cell of crystal vacuum slab is then created. The thickness of vacuum is set to 5.0 nm, so that the non-bond interactions can reach their asymptotic values.

    (2) A foreign molecule is docked randomly on a given surface. Minimization is performed firstly for a proper initial position. Then, dynamics (with the NVT ensemble) is carried out for a geometrically and energetically optimal adsorption configuration. During dynamics simulation, all the atoms are taken into account in the energy expression of COMASS forcefield, but the bulk crystal molecules are constrained by fixing their Cartesian coordinates. As for the foreign molecule, no constraints are enforced and it is absolutely free to move in any directions. After dynamics computation, the structure of the foreign molecule is minimized, and the binding effects of adsorbates on crystal surfaces are calculated by

    A higher absolute value of Eadsorptionindicates a stronger binding effect of impurity molecules.

    Seeded batch cooling crystallization experiments were carried out to investigate the growth kinetics and the growth morphology in presence of impurities such as malic acid, succinic acids, etc. The detailed experimental procedures are referred to Zhang et al [13, 22]. Fig. 1 shows the habits produced in pure and impure aqueous solutions. Correspondingly, the XRD (X-ray diffraction) diagrams of the crystals grown from pureand impure mother liquors are shown in Fig. 2. The positions of the main peaks are the same, but the relative intensities of the peaks vary, indicating that the crystals grown from different conditions have different preferential orientations.

    Figure 1 SEM images of ZLT grown in (a) pure solution and in presence of (b) malic acid and (c) succinic acid

    Figure 2 Comparison of XRD spectra diagrams of ZLT from simulation and experiments

    3 RESULTS AND DISCUSSION

    3.1 Crystal structure

    The crystal structure of ZLT, including the unit cell dimensions, space group and atom coordination has already been determined by Singh et al. [23]. It has a monoclinic structure (a=0.938 nm, b=0.583 nm, c=2.200 nm, β=90.9°) with P21/c space group. However, the structure is not complete because there are 6 undefined light hydrogen atoms. An initial unit cell is then built on the basis of the structure parameters determined by Singh et al., and the 6 undefined light hydrogen atoms are added in a random manner. Geometry optimization is then performed on this unit cell which reduced the total energy of the unit cell significantly. With the structure optimized, its powder X-ray diffraction pattern is computed (by assuming the crystals are 500 μm in all three dimensions), and is found to be well in line with that determined by experiment, as shown in Fig. 2. The difference between the peak intensities can be attributed to the different size distribution of the crystals prepared in experiments.

    The COMPASS forcefield is also used to determine the unit cell of malic acid and succinic acid crystals, and the structure parameters are found to agree well with those available from that reported in Cambridge Crystallographic Data Centre (CCDC). This authenticates the validity of the COMPASS forcefield for this system.

    3.2 Crystal morphology

    The BFDH method and AE method are used to predict the habit of ZLT, and the results are presented in Fig. 3. Both methods predict a habit with the same three dominant facets, but the area percentages of the facets are very different (Table 1). The habit predicted by the BFDH method has a cube-like appearance, while the habit predicted by AE method, which is more close to the experimental pattern under a microscope (Fig. 1), is less developed along z-axis.

    Table 1 The facet area percentages of ZLT habit calculated from BFDH and AE method

    The zinc ions in ZLT crystal form a distorted octahedron arrangement with six oxygen atoms, four from lactate groups and two from water groups, and there are strong non-bond interactions in the unit cell. Crystal graph procedure helps to estimate the non-bond interactions between crystal molecules (Table 2). These interactions reflect the growth orientation and play an important role in determining the crystal habit. However, in the BFDH method, only the submultiples of the interplanar spacing are taken into account, and the energy, types of atoms and bonds, and charge distribution within the bulk crystals are not considered. In the AE method, both the crystal arrangement and the non-bond interactions are considered, the later being measured by the attachment energy which further determines the shape of the crystal [24-26]. Thus,the habit from AE method can be more accurate comparing with that from the BFDH method.

    Table 2 The main non-bond interactions in ZLT crystal cell

    Figure 3 Simulated crystal habits of ZLT through BFDH (left) and AE (right) methods

    Figure 4 Cleaved crystal surfaces along the habit facets

    Figure 5 Solvent effect on ZLT crystal

    Based on the optimized crystal cell of ZLT, the main crystal surfaces are prepared. On the facets, different functional groups with diverse orientations and densities are exposed, as shown in Fig. 4. Only the methyl groups are exposed on top of (0 0 2) and (1 0 0) surface, while on (0 1 1) surface several functional groups are exposed. Thus, in comparison with (0 0 2) and (1 0 0), the (0 1 1) surface, the polar groups on it in particular, would be more appealing to the oncoming molecules.

    Moreover, the lactate groups form two ring structures with the zinc atoms, and the dihedral angles between the rings and the surface planes are different on these three facets. The two rings of the ZLT molecule incline toward the (0 1 1) facet with very small angles. In contrast, these rings are nearly perpendicular to the (1 0 0) facet and almost exactly perpendicular to the (0 0 2) facet. In the view of molecular dynamics, the vertical arrangement of the rings will hinder the surface diffusion of adsorbed solute molecules owing to steric hindrance. (0 1 1) surface is therefore expected to grow the fastest, while (0 0 2) surface grows the slowest and tends to be present in a large area percentage in the final crystals.

    3.3 Solvent effect

    Figure 5 (a) depicts the optimized configurations of an adsorbed water molecule on the three crystal surfaces. In order to compare the competition of the adsorption between the solvent and the solute molecules during crystal growth, the binding of ZLT molecules onto crystal surface were also determined, as shown in Fig. 5 (b). The result shows that H2O will preferentially adsorb on each surface (Table 3). However, the optimal adsorption sites of H2O are not always the active docking sites of ZLT molecules. On (0 0 2) surface, the H2O molecule forms strong hydrogen bonds with two adjacent crystal molecules, and so does the oncoming solute molecule. The adsorbedH2O molecule will therefore block the binding of ZLT molecule, and retard the crystal growth on this surface. On (1 0 0) and (0 1 1) surfaces, the H2O molecule adsorbs on a site close to that of the solute molecule, and the polarity of the H2O molecule will facilitate the deposition of ZLT molecule. Besides, the intrinsic growth rate of ZLT from the AE model, Rrel(0 0 2)< Rrel(1 0 0)

    Table 3 Adsorption energies (kJ·mol?1) of solvent andsolute molecules on different crystal surfaces

    3.4 Impurity effect

    Of the two impurities used, malic acid has two enantiomers, while succinic acid has no enantiomorphism. Because of the enantiomorphism of malic acid, the adsorption of L-malic acid and D-malic acid on antipodal surfaces of a crystal is studied. The calculated adsorption energies are listed in Table 4. Because of the strong non-bond interactions, the impurities are strongly adsorbed on the surfaces, which slow down the relative growth rate. The conformations and the adsorption energies of the two enantiomers of malic acid are almost identical, and the effect of enantiomorphism is hardly discriminable. In addition, the enantiomorphs can not be resolved via adsorption on antipodal surfaces of ZLT crystal, as revealed by dynamics simulation. The adsorption energy sequence is Eads(0 0 2)>Eads(0 1 1)>Eads(1 0 0). Therefore, the morphology has expanded (0 0 2) and (0 1 1) surfaces and a shrunk (1 0 0) surface.

    Table 4 Adsorption energies (kJ·mol?1) of impurities on the three crystal surfaces

    In contrast, the modification effect of succinic acid on the ZLT morphology is different. The inhibition sequence of succinic acid on ZLT crystal surfaces is Eads(0 0 2)>Eads(1 0 0)>Eads(0 1 1), and the intrinsic growth rate sequence is Rrel(0 0 2)

    4 CONCLUSIONS

    Molecular simulation has been performed to predict the crystal morphology of ZLT in the absence or presence of impurities. For pure ZLT crystals, the AE method is a more accurate method to predict the crystal morphology than the BFDH method. The surface-docking approach is employed to predict the effects of solvent and impurities on the crystal morphology of ZLT, and the results show that the inhibiting effect of H2O mainly occurs on (0 0 2) surface, and as for impurities, malic acid and succinic acid inhibit the growth of ZLT crystal facets with an order of (0 0 2)>(0 1 1)> (1 0 0) and (0 0 2)>(1 0 0)>(0 1 1), respectively. Moreover, the effects of both enantiomers of chiral malic acid on antipodal faces of ZLT crystal are the same. This agrees well with the experimental results of thinner morphology in the presence of malic acid and the longer habit in the presence of succinic acid.

    REFERENCES

    1 Kiang, Y.H., Yang, C.Y., Staples, R.J., Jona, J., “Crystal structure, crystal morphology, and surface properties of an investigational drug”, Int. J. Pharm., 368 (1-2), 76-82 (2009).

    2 Duan, X., Wei, C., Liu, Y., Pei, C., “A molecular dynamics simulation of solvent effects on the crystal morphology of HMX”, J. Hazard. Mater., 174 (1-3), 175-180 (2010).

    3 Poornachary, S.K., Chow, P.S., Rrginald, B.H., “Effect of solution speciation of impurities on α-glycine crystal habit: A molecular modeling study”, J. Cryst. Growth, 310 (12), 3034-3031 (2008).

    4 Bennema, P., “Theory of growth and morphology applied to organic crystals; possible applications to protein crystals”, J. Cryst. Growth, 122 (1-4), 110-119 (1992).

    5 Segura, J.J., Verdaguer, A., Garzón, L., Barrena, E., Ocal, C., Fraxedas, J., “Strong water-mediated friction asymmetry and surface dynamics of zwitterionic solids at ambient conditions: L-alanine as a case study”, J. Chem. Phys., 134 (12), 124705 (2011).

    6 Blagden, N., “Crystal engineering of polymorph appearance, the case of sulphathiazole”, Powder Technol., 121 (1), 46-52 (2001).

    7 Enckevort, W.J.P., Berg, A.C.J.F., Kreuwel, K.B.G., Derksen, A.J.,Couto, M.S., “Impurity blocking of growth steps: Experiments and theory”, J. Cryst. Growth, 166 (1-4), 156-161 (1996).

    8 Myerson, A.S., Handbook of Industry Crystallization, Elsevier, Boston (2001).

    9 Lahav, M., Leiserowitz, L., “The effect of solvent on crystal growth and morphology”, Chem. Eng. Sci., 56 (7), 2245-2253 (2001).

    10 Horst, J.H., Geertman, R.M., Heijden, A.E., Rosmalen, G.M., “The influence of a solvent on the crystal morphology of RDX”, J. Cryst. Growth, 198-199, 773-779 (1999).

    11 Bourne, J.R., Davey, R.J., “The role of solvent-solute interactions in determining crystal growth mechanisms from solution: I. The surface entropy factor”, J. Cryst. Growth, 36 (2), 278-286 (1976).

    12 Kubota, N., “Effect of impurities on the growth kinetics of crystals”, Cryst. Res. Technol., 36 (8-10), 749-769 (2001).

    13 Zhang, X.Y., Févotte, G., Zhong, L., Qian, G., Zhou, X.G., Yuan, W.K., “Crystallization of zinc lactate in presence of malic acid”, J. Cryst. Growth, 312 (19), 2747-2755 (2010).

    14 Piana, S., Gale, J.D., “Understanding the barriers to crystal growth, dynamical simulation of the dissolution and growth of urea from aqueous solution”, JACS, 127 (6), 1975-1982 (2005).

    15 Kiang, Y.H., Shi, H.G., Mathre, D.J., Xu, W., Zhang, D., Panmai, S.,“Crystal structure and surface properties of an investigational drug—A case study”, Int. J. Pharm., 280 (1/2), 17-26 (2004).

    16 Leeuw, N.H., Cooper, T.G., “A computer modeling study of the inhibiting effect of organic adsorbates on calcite crystal growth”, Cryst. Growth Des., 4 (1), 123-133 (2004).

    17 Dang, L.P., Wei, H.Y., Zhu, Z., Wang, J.K., “The influence of impurities on phosphoric acid hemihydrate crystallization”, J. Cryst. Growth, 307 (1), 104-111 (2007).

    18 Sun, H., “COMPASS: An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds”, J. Phys. Chem. B, 102 (38), 7338-7364 (1998).

    19 Hartman, P., Bennema, P., “The attachment energy as a habit controlling factor: I. Theoretical considerations”, J. Cryst. Growth, 49 (1), 145-156 (1980).

    20 Lu, J.J., Ulrich, J., “The influence of supersaturation on crystal morphology—Experimental and theoretical study”, Cryst. Res. Technol., 40 (9), 839-846 (2005).

    21 Lu, J.J., Ulrich, J., “Improved understanding of molecular modeling— The importance of additive incorporation”, J. Cryst. Growth, 270 (1-2), 203-210 (2004).

    22 Zhang, X.Y., “Crystallization behaviour of zinc lactate in presence of impurities”, Ph. D. Thesis, East China University of Science and Technology, Shanghai (2010). (in Chinese)

    23 Singh, K.D., Jain, S.C., Sakore, T.D., Biswas, A.B., “The crystal and molecular structure of zinc lactate trihydrate”, Acta Crystallogr. Sect. B, 31, 990-993 (1975).

    24 Horst, J.H., Kramer, H.J., Rosmalen, G.M., Jansens, P.J., “Molecular modelling of the crystallization of polymorphs. Part 1, The morphology of HMX polymorphs”, J. Cryst. Growth, 237-239, 2215-2220 (2002).

    25 Chen, J., Wang, J., Zhang, Y., Wu, H., Chen, W., Guo, Z., “Crystal growth,structure and morphology of hydrocortisone methanol solvate”, J. Cryst. Growth, 265 (1/2), 266-273 (2004).

    26 Poornachary, S.K., Chow, P.S., Rrginald, B.H., “Impurity effects on the growth of molecular crystals-experiments and modeling”, Adv. Powder Technol., 19 (5), 459-473 (2008).

    Received 2012-02-21, accepted 2012-11-30.

    * Supported by the Shanghai Commission of Science and Technology (06SR07108) and the OpenProject of State Key Laboratory of Chemical Engineering (08C08).

    ** To whom correspondence should be addressed. E-mail: xgzhou@ecust.edu.cn

    精品国产乱子伦一区二区三区| 亚洲国产精品999在线| 丁香六月欧美| 天堂影院成人在线观看| 色综合欧美亚洲国产小说| 很黄的视频免费| 十八禁网站免费在线| 亚洲一区中文字幕在线| 十八禁人妻一区二区| 国产极品粉嫩免费观看在线| 国产精品免费一区二区三区在线| 日韩 欧美 亚洲 中文字幕| 一a级毛片在线观看| 日韩 欧美 亚洲 中文字幕| 麻豆成人av在线观看| 高潮久久久久久久久久久不卡| 桃色一区二区三区在线观看| 国产亚洲欧美98| 欧美黑人巨大hd| 欧美黑人巨大hd| 成年人黄色毛片网站| 国产亚洲av嫩草精品影院| 十八禁人妻一区二区| 国产午夜精品久久久久久| 一a级毛片在线观看| 久热这里只有精品99| 国产精品综合久久久久久久免费| 黑人巨大精品欧美一区二区mp4| 欧美日韩精品网址| 亚洲欧美精品综合一区二区三区| 亚洲色图av天堂| 精品第一国产精品| 欧美激情 高清一区二区三区| 大型黄色视频在线免费观看| 自线自在国产av| 日韩 欧美 亚洲 中文字幕| 在线观看一区二区三区| 精品少妇一区二区三区视频日本电影| 成年女人毛片免费观看观看9| 麻豆av在线久日| 亚洲av电影在线进入| 亚洲男人天堂网一区| 国产在线观看jvid| 免费在线观看影片大全网站| 少妇 在线观看| 天天一区二区日本电影三级| 日韩大尺度精品在线看网址| 夜夜夜夜夜久久久久| а√天堂www在线а√下载| 91麻豆精品激情在线观看国产| 18禁观看日本| 久久 成人 亚洲| 久久精品国产99精品国产亚洲性色| 91国产中文字幕| av视频在线观看入口| 老汉色av国产亚洲站长工具| 日韩成人在线观看一区二区三区| 欧美精品亚洲一区二区| 色综合婷婷激情| 国产精品 欧美亚洲| 首页视频小说图片口味搜索| 亚洲aⅴ乱码一区二区在线播放 | 欧美 亚洲 国产 日韩一| 91老司机精品| 国产极品粉嫩免费观看在线| 给我免费播放毛片高清在线观看| 午夜免费激情av| 在线观看免费午夜福利视频| 欧美日韩福利视频一区二区| cao死你这个sao货| 久久狼人影院| 久久久久亚洲av毛片大全| 亚洲自拍偷在线| 日韩欧美一区视频在线观看| 午夜免费观看网址| 亚洲男人天堂网一区| 国产av在哪里看| 此物有八面人人有两片| 日本五十路高清| 国产又爽黄色视频| 欧美黑人欧美精品刺激| 在线永久观看黄色视频| 久久国产精品影院| 国产精品久久电影中文字幕| www.www免费av| 制服诱惑二区| 欧美乱妇无乱码| 免费在线观看亚洲国产| 成年人黄色毛片网站| 亚洲精品粉嫩美女一区| 一区二区日韩欧美中文字幕| 精品人妻1区二区| 精品国产超薄肉色丝袜足j| 又紧又爽又黄一区二区| 国产爱豆传媒在线观看 | 又紧又爽又黄一区二区| 欧美 亚洲 国产 日韩一| 久久久久精品国产欧美久久久| 精品日产1卡2卡| 亚洲国产欧美网| 亚洲天堂国产精品一区在线| 国产亚洲欧美98| 国产亚洲欧美精品永久| 亚洲第一电影网av| 最近最新中文字幕大全电影3 | 天堂影院成人在线观看| 少妇的丰满在线观看| 精品一区二区三区视频在线观看免费| 黄网站色视频无遮挡免费观看| 成人精品一区二区免费| 久久热在线av| 日韩欧美一区视频在线观看| 亚洲精品国产区一区二| 夜夜看夜夜爽夜夜摸| 国产亚洲精品一区二区www| 亚洲国产日韩欧美精品在线观看 | 日本一区二区免费在线视频| 后天国语完整版免费观看| 在线观看午夜福利视频| 99国产精品一区二区蜜桃av| av在线天堂中文字幕| 女性生殖器流出的白浆| 中文字幕人妻丝袜一区二区| 久久久久久大精品| 午夜亚洲福利在线播放| 黄频高清免费视频| 黄片大片在线免费观看| 久久中文字幕人妻熟女| av有码第一页| 亚洲性夜色夜夜综合| 午夜福利在线观看吧| x7x7x7水蜜桃| 精品日产1卡2卡| 成人一区二区视频在线观看| 九色国产91popny在线| 久久国产精品人妻蜜桃| 一区二区三区国产精品乱码| 成人国产综合亚洲| 亚洲国产欧美日韩在线播放| 亚洲美女黄片视频| 亚洲全国av大片| 丁香六月欧美| 男男h啪啪无遮挡| 成人精品一区二区免费| 少妇 在线观看| 亚洲国产精品sss在线观看| 亚洲精品美女久久久久99蜜臀| 久久久久久久久久黄片| 久久精品人妻少妇| 精品电影一区二区在线| 日韩免费av在线播放| 久久久国产欧美日韩av| 美女免费视频网站| 欧美激情 高清一区二区三区| 亚洲,欧美精品.| 一夜夜www| 日韩高清综合在线| 免费看美女性在线毛片视频| cao死你这个sao货| 国内精品久久久久久久电影| 日本一区二区免费在线视频| 可以免费在线观看a视频的电影网站| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲精品av在线| 日韩中文字幕欧美一区二区| 精华霜和精华液先用哪个| 亚洲国产精品999在线| 国产三级在线视频| 大型黄色视频在线免费观看| 男人舔女人下体高潮全视频| 国产私拍福利视频在线观看| 精品久久久久久久毛片微露脸| 亚洲国产欧洲综合997久久, | 欧美成狂野欧美在线观看| 麻豆国产av国片精品| 三级毛片av免费| 久久久国产成人精品二区| 亚洲成国产人片在线观看| 国产精品永久免费网站| 最新美女视频免费是黄的| 女人爽到高潮嗷嗷叫在线视频| 999久久久精品免费观看国产| 亚洲专区中文字幕在线| 久久久久久免费高清国产稀缺| 亚洲 欧美 日韩 在线 免费| 熟女电影av网| 悠悠久久av| 国产精品影院久久| 国产在线观看jvid| 18禁黄网站禁片免费观看直播| 欧美又色又爽又黄视频| 天天躁夜夜躁狠狠躁躁| 夜夜看夜夜爽夜夜摸| 欧美 亚洲 国产 日韩一| 999久久久精品免费观看国产| 国产精品久久久av美女十八| 国产91精品成人一区二区三区| 成人国产一区最新在线观看| 波多野结衣高清无吗| 亚洲欧美日韩无卡精品| 欧美午夜高清在线| 搡老妇女老女人老熟妇| 无人区码免费观看不卡| 免费观看精品视频网站| 黑人操中国人逼视频| 国产精品一区二区精品视频观看| 99国产极品粉嫩在线观看| 岛国视频午夜一区免费看| 中亚洲国语对白在线视频| 夜夜夜夜夜久久久久| 制服人妻中文乱码| 亚洲 欧美一区二区三区| 中文字幕高清在线视频| 女人爽到高潮嗷嗷叫在线视频| 久久久久久人人人人人| 最好的美女福利视频网| 日韩精品免费视频一区二区三区| 久久中文字幕一级| 可以在线观看的亚洲视频| 九色国产91popny在线| 国产视频一区二区在线看| 99久久久亚洲精品蜜臀av| 亚洲av成人不卡在线观看播放网| 国产精品久久久av美女十八| 国产91精品成人一区二区三区| 国产高清有码在线观看视频 | 国产又爽黄色视频| 亚洲狠狠婷婷综合久久图片| 亚洲成人久久爱视频| 50天的宝宝边吃奶边哭怎么回事| 看片在线看免费视频| 在线观看免费视频日本深夜| 国产成人系列免费观看| 成人亚洲精品一区在线观看| 少妇裸体淫交视频免费看高清 | 草草在线视频免费看| 黄色视频,在线免费观看| 一级作爱视频免费观看| 精品第一国产精品| 亚洲专区国产一区二区| 身体一侧抽搐| 国产视频一区二区在线看| 人妻丰满熟妇av一区二区三区| 女性被躁到高潮视频| 中文亚洲av片在线观看爽| 国产午夜福利久久久久久| 久久久久亚洲av毛片大全| 国产精品久久视频播放| 操出白浆在线播放| 一本精品99久久精品77| 精品国产国语对白av| 欧美日韩精品网址| 美女免费视频网站| 淫秽高清视频在线观看| 成人午夜高清在线视频 | 久久性视频一级片| 人人妻人人澡人人看| 人妻久久中文字幕网| 精品第一国产精品| 国产精品电影一区二区三区| www日本在线高清视频| 精品一区二区三区视频在线观看免费| 国产av在哪里看| 免费在线观看完整版高清| 国产亚洲精品久久久久5区| a在线观看视频网站| 免费在线观看亚洲国产| 成熟少妇高潮喷水视频| 国产成人av激情在线播放| 91在线观看av| 国产乱人伦免费视频| 自线自在国产av| 日韩欧美一区二区三区在线观看| 国产亚洲欧美在线一区二区| 夜夜爽天天搞| 午夜免费激情av| 少妇的丰满在线观看| 午夜免费鲁丝| 熟女电影av网| 一区二区日韩欧美中文字幕| 日本a在线网址| 久久久久国内视频| 制服诱惑二区| 最新在线观看一区二区三区| 一级毛片女人18水好多| 妹子高潮喷水视频| 欧美黑人欧美精品刺激| 午夜精品在线福利| 法律面前人人平等表现在哪些方面| 丁香六月欧美| 中文亚洲av片在线观看爽| 丁香欧美五月| 欧美激情高清一区二区三区| 国产精品亚洲av一区麻豆| netflix在线观看网站| 国产爱豆传媒在线观看 | 亚洲精品久久国产高清桃花| 日韩有码中文字幕| 一进一出抽搐动态| www.精华液| 国产成人精品久久二区二区免费| 久久久久久九九精品二区国产 | 美女高潮喷水抽搐中文字幕| 午夜精品久久久久久毛片777| 国产又黄又爽又无遮挡在线| 人人妻人人看人人澡| 国产黄片美女视频| 国产亚洲精品第一综合不卡| 啦啦啦 在线观看视频| 国产av又大| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av五月六月丁香网| 国产免费av片在线观看野外av| 成年人黄色毛片网站| 日日爽夜夜爽网站| 97碰自拍视频| 久久99热这里只有精品18| 亚洲五月天丁香| 一卡2卡三卡四卡精品乱码亚洲| 777久久人妻少妇嫩草av网站| 国产精品久久久av美女十八| 欧美日韩亚洲综合一区二区三区_| 一本一本综合久久| 可以在线观看毛片的网站| 国产男靠女视频免费网站| 性色av乱码一区二区三区2| 国产亚洲欧美精品永久| 成年版毛片免费区| 精品国产一区二区三区四区第35| 国产精品,欧美在线| 欧美日韩乱码在线| x7x7x7水蜜桃| 免费一级毛片在线播放高清视频| 久久久久久人人人人人| 免费高清在线观看日韩| 欧美激情高清一区二区三区| 麻豆av在线久日| 在线av久久热| 91在线观看av| 日韩欧美国产一区二区入口| 久久久久久久午夜电影| 国产国语露脸激情在线看| 看片在线看免费视频| 日本免费一区二区三区高清不卡| 色综合亚洲欧美另类图片| 变态另类丝袜制服| 青草久久国产| netflix在线观看网站| 亚洲成人久久性| 久久婷婷人人爽人人干人人爱| 少妇裸体淫交视频免费看高清 | 草草在线视频免费看| 欧美成人性av电影在线观看| 国产成人欧美在线观看| 丁香六月欧美| 久久久久久九九精品二区国产 | 午夜免费观看网址| 麻豆av在线久日| 色尼玛亚洲综合影院| 又黄又爽又免费观看的视频| 国产精品久久久av美女十八| 欧美激情高清一区二区三区| 夜夜夜夜夜久久久久| 韩国av一区二区三区四区| 婷婷精品国产亚洲av在线| 琪琪午夜伦伦电影理论片6080| 国产色视频综合| 91老司机精品| 精品一区二区三区视频在线观看免费| 色综合亚洲欧美另类图片| 欧美在线一区亚洲| 色av中文字幕| 侵犯人妻中文字幕一二三四区| 19禁男女啪啪无遮挡网站| 欧美一级毛片孕妇| 亚洲专区国产一区二区| АⅤ资源中文在线天堂| 午夜福利在线观看吧| 成人亚洲精品av一区二区| 亚洲最大成人中文| 少妇被粗大的猛进出69影院| 欧美日韩一级在线毛片| 国产伦一二天堂av在线观看| 日本 av在线| 操出白浆在线播放| 黄色成人免费大全| 99热只有精品国产| 日本 欧美在线| 午夜久久久在线观看| 妹子高潮喷水视频| 亚洲狠狠婷婷综合久久图片| 成人三级做爰电影| 少妇粗大呻吟视频| 日本免费a在线| 免费看日本二区| 一本大道久久a久久精品| 午夜免费成人在线视频| 免费观看人在逋| 久久精品国产99精品国产亚洲性色| www日本在线高清视频| 欧美激情 高清一区二区三区| 国产日本99.免费观看| 中文亚洲av片在线观看爽| 淫秽高清视频在线观看| 在线播放国产精品三级| 久久精品亚洲精品国产色婷小说| 亚洲全国av大片| 性色av乱码一区二区三区2| 国内久久婷婷六月综合欲色啪| 精品一区二区三区视频在线观看免费| 成人亚洲精品一区在线观看| 18禁黄网站禁片午夜丰满| 国产亚洲精品一区二区www| 香蕉av资源在线| 桃色一区二区三区在线观看| 成人特级黄色片久久久久久久| 免费看美女性在线毛片视频| 制服人妻中文乱码| 欧美一区二区精品小视频在线| 女生性感内裤真人,穿戴方法视频| 十分钟在线观看高清视频www| 久久香蕉精品热| 免费高清在线观看日韩| 国产人伦9x9x在线观看| 午夜福利在线在线| 叶爱在线成人免费视频播放| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美精品综合一区二区三区| 亚洲国产欧洲综合997久久, | 黄色a级毛片大全视频| 国产激情久久老熟女| 亚洲最大成人中文| 两个人免费观看高清视频| 久久性视频一级片| 国产成人精品久久二区二区免费| 男女做爰动态图高潮gif福利片| 免费在线观看成人毛片| av电影中文网址| 97人妻精品一区二区三区麻豆 | 99热6这里只有精品| 成人国产综合亚洲| 99精品欧美一区二区三区四区| 桃色一区二区三区在线观看| 在线观看免费视频日本深夜| av免费在线观看网站| 村上凉子中文字幕在线| 国产精品久久久久久人妻精品电影| 啦啦啦观看免费观看视频高清| 巨乳人妻的诱惑在线观看| 国产真实乱freesex| 变态另类成人亚洲欧美熟女| 中文字幕另类日韩欧美亚洲嫩草| 淫妇啪啪啪对白视频| 亚洲成人精品中文字幕电影| 老鸭窝网址在线观看| 国产精品一区二区免费欧美| 免费在线观看影片大全网站| 亚洲av日韩精品久久久久久密| 日韩欧美国产在线观看| 国产真人三级小视频在线观看| 日本一区二区免费在线视频| 国产精品免费视频内射| 欧美日韩乱码在线| 国产激情欧美一区二区| 在线观看一区二区三区| 一本久久中文字幕| 亚洲自偷自拍图片 自拍| 长腿黑丝高跟| 日本三级黄在线观看| 亚洲成人精品中文字幕电影| 在线观看日韩欧美| 国产一区二区三区视频了| 1024视频免费在线观看| 久久 成人 亚洲| 国产主播在线观看一区二区| 亚洲aⅴ乱码一区二区在线播放 | 成年免费大片在线观看| 亚洲国产高清在线一区二区三 | 熟女少妇亚洲综合色aaa.| 免费看a级黄色片| 久99久视频精品免费| 亚洲成人免费电影在线观看| 黄频高清免费视频| 国产成人av激情在线播放| 久久人人精品亚洲av| 青草久久国产| 亚洲午夜精品一区,二区,三区| 啦啦啦 在线观看视频| 国产精品 欧美亚洲| 亚洲自拍偷在线| 99精品久久久久人妻精品| 黄网站色视频无遮挡免费观看| 99久久无色码亚洲精品果冻| 亚洲专区字幕在线| 欧美性猛交╳xxx乱大交人| 免费一级毛片在线播放高清视频| 99热只有精品国产| 精品久久久久久久久久久久久 | 美女高潮喷水抽搐中文字幕| 高清在线国产一区| 一区福利在线观看| 法律面前人人平等表现在哪些方面| 波多野结衣av一区二区av| 好男人在线观看高清免费视频 | 国产精品av久久久久免费| 真人做人爱边吃奶动态| 长腿黑丝高跟| 亚洲人成网站高清观看| 亚洲片人在线观看| 亚洲欧美精品综合久久99| 午夜福利18| 久久久久久亚洲精品国产蜜桃av| 成人特级黄色片久久久久久久| 亚洲七黄色美女视频| 制服人妻中文乱码| 免费在线观看影片大全网站| 69av精品久久久久久| 精品高清国产在线一区| 十八禁网站免费在线| 国产人伦9x9x在线观看| 久久精品aⅴ一区二区三区四区| 校园春色视频在线观看| 久久国产精品男人的天堂亚洲| 久久午夜亚洲精品久久| 亚洲午夜理论影院| 一进一出好大好爽视频| 成人三级做爰电影| 欧美日本亚洲视频在线播放| 国产精品美女特级片免费视频播放器 | 免费在线观看日本一区| 国产一卡二卡三卡精品| 色综合欧美亚洲国产小说| 日韩欧美国产一区二区入口| 99精品久久久久人妻精品| 成人特级黄色片久久久久久久| 在线观看午夜福利视频| 亚洲三区欧美一区| 一区二区三区精品91| 欧美乱码精品一区二区三区| 国产91精品成人一区二区三区| 精品午夜福利视频在线观看一区| 久久欧美精品欧美久久欧美| 久久性视频一级片| 777久久人妻少妇嫩草av网站| 国产亚洲精品久久久久5区| 亚洲av中文字字幕乱码综合 | 国产单亲对白刺激| 日韩欧美国产一区二区入口| 精品欧美国产一区二区三| 亚洲精品中文字幕在线视频| 一边摸一边抽搐一进一小说| 侵犯人妻中文字幕一二三四区| 亚洲一区二区三区不卡视频| 变态另类丝袜制服| 黑人欧美特级aaaaaa片| 黄色女人牲交| 午夜福利成人在线免费观看| 免费看a级黄色片| 亚洲人成伊人成综合网2020| 色哟哟哟哟哟哟| 大香蕉久久成人网| 国产黄片美女视频| 国产亚洲精品久久久久5区| netflix在线观看网站| 亚洲中文av在线| 91老司机精品| 在线免费观看的www视频| 伦理电影免费视频| 男女做爰动态图高潮gif福利片| 精品午夜福利视频在线观看一区| 无遮挡黄片免费观看| 桃色一区二区三区在线观看| 亚洲av成人不卡在线观看播放网| 国产极品粉嫩免费观看在线| 999精品在线视频| 91国产中文字幕| 欧美精品啪啪一区二区三区| 免费看美女性在线毛片视频| 香蕉久久夜色| 91av网站免费观看| 在线十欧美十亚洲十日本专区| 亚洲av熟女| 激情在线观看视频在线高清| 一级片免费观看大全| 亚洲专区国产一区二区| 69av精品久久久久久| 又黄又爽又免费观看的视频| 狠狠狠狠99中文字幕| 亚洲国产日韩欧美精品在线观看 | 欧美成人性av电影在线观看| 曰老女人黄片| 久久精品91无色码中文字幕| 一二三四在线观看免费中文在| 在线观看午夜福利视频| 亚洲熟女毛片儿| 最近最新免费中文字幕在线| 侵犯人妻中文字幕一二三四区| 18美女黄网站色大片免费观看| 国产亚洲av高清不卡| 欧美乱妇无乱码| 午夜福利高清视频| 亚洲一区高清亚洲精品| av欧美777| 国产在线精品亚洲第一网站| 亚洲精品国产精品久久久不卡| 亚洲午夜理论影院| 日本免费a在线| 婷婷亚洲欧美| www.www免费av| 999久久久精品免费观看国产| 香蕉国产在线看| 欧美亚洲日本最大视频资源| 一本一本综合久久| 国产高清视频在线播放一区| 日韩一卡2卡3卡4卡2021年|