• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetics of Glucose Ethanolysis Catalyzed by Extremely Low Sulfuric Acid in Ethanol Medium*

    2014-03-25 09:11:30朱偉娜常春馬晨杜風光
    關鍵詞:常春風光

    (朱偉娜)(常春),**(馬晨)(杜風光)

    1School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China

    2Shanghai Jiao Tong University Library, Shanghai Jiao Tong University, Shanghai 200240, China

    3State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, China

    Kinetics of Glucose Ethanolysis Catalyzed by Extremely Low Sulfuric Acid in Ethanol Medium*

    ZHU Weina(朱偉娜)1, CHANG Chun(常春)1,**, MA Chen(馬晨)2and DU Fengguang(杜風光)3

    1School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China

    2Shanghai Jiao Tong University Library, Shanghai Jiao Tong University, Shanghai 200240, China

    3State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, China

    The kinetics for production of ethyl levulinate from glucose in ethanol medium was investigated. The experiments were performed in various temperatures (433-473 K) and initial glucose concentrations (0.056-0.168 mol·L?1) with extremely low sulfuric acid as the catalyst. The results show that higher temperature can improve the conversion of glucose to ethyl levulinate, with higher yield of ethyl levulinate (44.79%, by mole) obtained at 473 K for 210 min. The kinetics follows a simplified first-order kinetic model. For the main and side reactions, the values of activation energy are 122.64 and 70.97 kJ·mol?1, and the reaction orders are 0.985 and 0.998, respectively.

    ethyl levulinate, glucose, kinetics, biomass

    1 INTRODUCTION

    Nowadays, production of new platform chemicals from biomass is gaining more attention around the world. Among the explorations, one attractive approach is the direct conversion of hexose carbohydrates into ethyl levulinate (EL) [1]. Ethyl levulinate is a versatile chemical feedstock with numerous potential industrial applications, which is regarded as a new kind of platform chemicals from biomass [2]. Besides current commercial usage in the food industry and fragrance industry, it can be used as octane booster for gasoline and fuel extender of diesel [3, 4].

    Several researches have been reported on the direct conversion of carbohydrates into ethyl levulinate in ethanol medium [5-8]. Although the ethanolysis reaction of carbohydrates is effective, the process has several limitations. The yields of ethyl levulinate are low, most of which are less than 40%. Many by-products form in the process [9]. Sulfuric acid is widely used as the catalyst in the reaction due to its low price and high activity. When sulfuric acid is in higher concentrations, it has serious drawbacks in separation and recycling, as well as equipment corrosion [10]. Thus it is necessary to develop new and green processes for production of ethyl levulinate.

    One of the promising methods for conversion of biomass is the usage of extremely low acid (ELA), which means the acid concentration lower than 0.01mol·L?1, with minimal impact on the environment. In addition, the corrosion is close to that in a neutral reaction, so that general stainless steel equipment can be used, which is significant in cost advantage. Several studies have showed the advantages of ELA in the conversion process of biomass. Chang et al. developed an efficient procedure for the conversion of rice huck into levulinic acid [11]. Zhuang et al. reported that ELA is good for the glucose production from biomass [12]. Peng et al. also reported that the ELA system is efficient, economical and environmentally benign for the conversion of carbohydrates into high value-added chemicals and fuels [13]. However, to our knowledge, little has been reported on the usage of ELA for production of ethyl levulinate from biomass, and there is no related report on the study of the kinetics. Therefore, the objective of present work is to study the kinetics of ethyl levulinate production from glucose under ELA conditions, which is helpful to develop new and green processes.

    2 EXPERIMENTAL

    2.1 Materials

    Glucose and ethyl levulinate used for calibration (purity over 99%) were obtained from Aladdin Reagent (Shanghai, China). Other reagents and chemicals were of analytical grade from Kermel Chemical Reagent (Tianjin, China). Deionized water was used in all experiments. All chemicals were used without further purification.

    2.2 Equipment and procedure

    The experiments were carried out in a 200 ml cylindrical pressurized stainless reactor equipped with an electrical heating jacket and a mechanical stirrer. The reaction temperature was monitored by a thermocouple connected to the reactor. For each experiment, a given amount of glucose and the mixture of ethanol with sulfuric acid were mixed and poured into the reactor, with the total volume of 80 ml. The acid concentration was in the range of 0.0025-0.01 mol·L?1.Then, the reactor was sealed and heated to the desired temperature by external heating with a stirring rate of 250 r·min?1. The temperature range was 433-473 K according to our previous study [14]. When the desired temperature was reached, the stirring rate was adjusted to 500 r·min?1. After desired reaction duration, the reactor was quenched in an ice cool water bath to terminate the reaction. The reaction liquid was filtered and collected for analysis. The amounts of diethyl ether from ethanol were calculated according to the mass loss of liquid phase before and after the reaction [10]. All the experiments were performed in duplicate and average values were reported.

    2.3 Analytical methods

    Ethyl levulinate concentration was analyzed using a gas chromatography equipped with a FFAP capillary column (30 m×0.32 mm×0.33 μm) and a flame ionization detector operated at 523 K. The carrier gas was nitrogen. The ethyl levulinate amount in the liquid was determined using calibration curves obtained by standard solutions, and reaction products were detected and confirmed by GC-MS (Thermo Fisher Scientific).

    The yield of ethyl levulinate (%, by mole) is calculated by

    3 RESULTS AND DISCUSSION

    3.1 Effect of sulfuric acid concentration on ethanol self-condensation reaction

    In the reaction, the presence of sulfuric acid will promote the conversion of ethanol to diethyl ether, an unavoidable side reaction under the experimental conditions [15]. For practical applications, it is necessary to investigate the influence of sulfuric acid concentration on ethanol self-condensation reaction.

    Figure 1 Effect of sulfuric acid concentration on the production of diethyl ether (T=473 K)sulfuric acid/mol·L?1: ■ 0; ● 0.0025; ▲ 0.005; ▼ 0.01

    Figure 1 shows the amount of diethyl ether per unit volume of ethanol versus reaction time. Without sulfuric acid, only negligible amount of diethyl ether can be detected. With the addition of sulfuric acid, the amount of diethyl ether increases significantly with reaction time. Since the concentration of sulfuric acid is less than 0.01 mol·L?1, the amount of diethyl ether is limited. In our previous experiments, at the acid concentration of 0.1 mol·L?1, the amount of diethyl ether can reach 1.88 g·L?1at 453 K for 30 min (data not shown). These results show that extremely low acid is benefit to suppress the self-condensation of ethanol and reduce the amount of diethyl ether [13].

    3.2 Effect of initial glucose concentration on EL yield

    Figure 2 shows the effect of initial glucose concentration on the yield of ethyl levulinate. The yield decreases slightly as the initial glucose concentration increases from 0.056 mol·L?1to 0.168 mol·L?1. It suggests that lower glucose concentration is benefit to the accumulation of product [16]. On the contrary, the ethyl levulinate concentration increases with the initial glucose concentration. Considering higher EL concentration is favorable for the separation of product, the initial glucose concentration of 0.112 mol·L?1was adopted for the further experiments.

    Figure 2 Effect of initial glucose concentration on EL yield (T=473 K, t=120 min, CH2SO4=0.01 mol·L?1)

    3.3 Effect of temperature on EL yield

    Reaction temperature plays a significant role in the reaction process. Fig. 3 shows the effect of reaction temperature on the yield of ethyl levulinate. At 433 K, the yield maintains at a low level. At 453 K, the yield reaches 27.93% (by mole) in 210 min. At 473 K, the yield increases with time more quickly at first and then gradually, reaching higher yield (44.79%, by mole). However, it was found that more humic solid accumulated in the reactor at higher temperature, which may diminish the efficiency of conversion. These results indicate that higher temperature accelerates the reaction rate, but unwanted side reactions appear [17]. In terms of the selectivity of the reaction, appropriate temperature is 473 K in this study.

    Figure 3 Effect of temperature on EL yield ( CH2SO4=0.01 mol·L?1, Cglu0=0.112 mol·L?1)

    3.4 Effect of acid concentration on EL yield

    The effect of acid concentration on the yield of ethyl levulinate is presented in Fig. 4. The curves are similar to those in Fig. 3, and the yield increases with reaction time. At the acid concentration of 0.01 mol·L?1, less reaction time is needed to reach the equilibrium, and the yield reaches 44.79% (by mole) at 210 min. These results indicate that the conversion of glucose is accelerated by increasing the acid concentration [9]. The acid concentration of 0.01 mol·L?1is recommended in practical production.

    Figure 4 Effect of acid concentration on EL yield (T=473 K, Cglu0=0.112 mol·L?1)

    3.5 Kinetic model of EL production from glucose

    Besides the main product, some dark-brown insoluble substance known as humins was observed, which may be the products of side-reactions [17]. According to the experimental results and related literature [18], a plausible reaction pathway of the acid-catalyzed conversion of glucose to ethyl levulinate in ethanol medium is proposed, as summarized in Fig. 5.

    According to previous research, a simplified model is used to determine the kinetics of glucose ethanolysis [13], as given in Fig. 6.

    Based on this model, the concentration of ethyl levulinate as a function of time is represented as

    Solving the differential equations, analytic expressions for concentration and yield of ethyl levulinate are obtained

    Figure 5 Reaction pathway of the conversion of glucose to EL in ethanol medium

    Table 1 Rate constants of glucose ethanolysis under different reaction conditions

    We assume that the reaction order of main reaction is α and that of side reaction is β. The kinetic coefficients are correlated with temperature by applying modified Arrhenius equations for the effect of acid concentration

    Equation (6) is used to correlate the experimental data in Figs. 3 and 4. The kinetic parameters evaluated by using MATLAB 7.0 are given in Table 1. The rate constants are associated with the Arrhenius formula at different temperatures at the initial glucose concentration of 0.112 mol·L?1and the acid concentration of 0.01 mol·L?1. The activation energy of main reaction E1is 122.64 kJ·mol?1and that of side reaction E2is 70.97 kJ·mol?1. Since the hydrogen ion concentration of sulfuric acid in the high temperature ethanol is difficult to be measured accurately, it is assumed that the sulfuric acid ionized completely at high temperature and pressure. For the same temperature (473 K) and different concentrations of sulfuric acid, the reaction order of main reaction α is 0.985 and that of side reaction β is 0.998 from Eqs. (7) and (8). On this basis, the pre-exponential factor of main reaction A1is 2.6185×1013mol?0.985·L0.985·min?1and that of side reaction A2is 4.5136×107mol?0.998·L0.998·min?1.

    As shown in Table 1, the rate constants of main and side reactions increase with the increase of reaction temperature and acid concentration, suggesting that higher temperature and acid concentration promote the chemical reaction rate. The increase of k1/k2with acid concentration indicates that the formation rate of ethyl levulinate relative to that of humins can be enhanced by increasing acid concentration [8]. At the acid concentration of 0.01 mol·L?1, the value of k1/k2increases as the temperature increases from 433 K to 473 K. This indicates that high temperature also improves the formation of ethyl levulinate under the experimental conditions.

    Figure 7 shows that the predicted yields of ethyl levulinate according to the model are in good agreement with experimental data. Thus the kinetic model is appropriate.

    Figure 7 Comparison of predicted values of EL yield with experimental data

    The kinetic model allows the determination of the optimum reaction conditions to achieve high yield of ethyl levulinate. For this purpose, t is assumed as infinite in Eq. (6), and the combination of Eq. (1) lead to

    Substituting the kinetic coefficients expressed as Eqs. (7) and (8), we obtain the yield of ethyl levulinate as a function of reaction temperature and acid concentration

    Figure 8 EL yield versus temperature and acid concentration

    Table 2 Kinetic parameters under different conditions

    Figure 8 shows a three-dimensional surface to predict the yield of ethyl levulinate at different temperatures and acid concentrations. At the temperature lower than 453 K, the acid concentration has little effect on the yield. When the temperature is higher than 453 K, higher acid concentration improves the production of ethyl levulinate significantly. At the acid concentration of 0.01 mol·L?1, the highest yield (48.24%, by mole) can be obtained at 472 K.

    3.6 Comparison with other investigations

    The results of this study and other investigations are compared in Table 2. The activation energy and reaction order for alcoholysis of glucose are similar.

    NOMENCLATURE

    A1pre-exponential factor, mol?α·Lα·min?1

    A2pre-exponential factor, mol?β·Lβ·min?1

    CELethyl levulinate concentration, mol·L?1

    Cgluglucose concentration, mol·L?1

    Cglu0initial glucose concentration, mol·L?1

    CH+H+concentration, mol·L?1

    CH2SO4sulfuric acid concentration, mol·L?1

    E activation energy, kJ·mol?1

    k rate constant, min?1

    MELmolecular mass of ethyl levulinate, 144 g·mol?1

    Mglumolecular mass of glucose, 180 g·mol?1

    R gas constant, 8.3143 J·mol?1·K?1

    T temperature, K

    t time, min

    YELyield of ethyl levulinate (by mole), %

    α reaction order of main reaction

    β reaction order of side reaction

    Subscripts

    1 main reaction

    2 side reaction

    REFERENCES

    1 Joshi, H., Moser, B.R., Toler, J., Smith, W.F., Walker, T., “Ethyl levulinate: A potential bio-based diluent for biodiesel which improves cold flow properties”, Biomass Bioenergy, 35, 3262-3266 (2011).

    2 Mascal, M., Nikitin, E.B., “High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid and levulinic esters via 5-(chloromethyl)furfural”, Green Chem., 12, 370-373 (2010).

    3 Gurbuz, E.I., Alonso, D.M., Bond, J.Q., Dumesic, J.A., “Reactive extraction of levulinate esters and conversion to gamma-valerolactone for production of liquid fuels”, Chem. Sus. Chem., 4, 357-361 (2011).

    4 Lee, A., Chaibakhsh, N., Rahman, M.B.A., Basri, M., Tejo, B.A.,“Optimized enzymatic synthesis of levulinate ester in solvent-free system”, Ind. Crops Prod., 32, 246-251 (2010).

    5 Garves, K., “Acid catalyzed degradation of cellulose in alcohos”, J. Wood Chem. Technol., 8, 121-134 (1988).

    6 Olson, E.S., Kielden, M.R., Schlag, A.J., Sharma, R.K., “Levulinate esters from biomass wastes”, A.C.S. Symp. Ser., 784, 51-63 (2001).

    7 Mao, R.L.V., Zhao, Q., Dima, G., “New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction”, Catal. Lett., 141, 271-276 (2011).

    8 Wu, X.Y., Liu, X.Y., Chen, T., Chen, Z.N., “Alcoholysis kinetics of glucose catalyzed by dilute sulfuric acid in near-critical methanol”, CIESC J., 61, 2585-2589 (2010). (in Chinese)

    9 Mascal, M., Nikitin, E.B., “Comment on processes for the direct conversion of cellulose or cellulosic biomass into levulinate esters”, Chem. Sus. Chem., 3, 1349-1351 (2010).

    10 Peng, L.C., Lin, L., Zhang, J.H., Shi, J.B., Liu, S.J., “Solid acid catalyzed glucose conversion to ethyl levulinate”, Appl. Catal. A: Gen., 397, 259-265 (2011).

    11 Chang, C., Wang, D., Wei, W., Jiang, X.X., “Effects of extremely-low-concentration acid hydrolysis on levulinic acid production from rice husk and characterization of cellulosic structure”, Chem. Ind. Forest Prod., 31, 23-27 (2011).

    12 Zhuang, X.S., Wang, S.R., An, H., “Cellulose hydrolysis research for liquid fuelproduction under low concentration acids biomass hydrolysis under extremely low acids for fuel ethanol production”, J. Zhejiang Univ. (Eng. Sci.), 40, 997-1001 (2006).

    13 Peng, L.C., Lin, L., Li, H., “Extremely low sulfuric acid catalyst system for synthesis of methyl levulinate from glucose”, Ind. Crops and Prod., 40, 136-144 (2012).

    14 Chang, C., Ma, X.J., Cen, P.L., “Kinetics of levulinic acid formation from glucose decomposition at high temperature”, Chin. J. Chem. Eng., 14 (5), 708-712 (2006).

    15 Liu, D., Lin, L., Peng, L.C., “Conversion of sucrose to ethyl levulinate catalyzed by solid acidMod. Chem. Ind., 31, 45-49 (2011).

    16 Girisuta, B., Janssen, L.P.B.M., Heeres, H.J., “A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid”, Green Chem., 8, 701-709 (2006).

    17 Hu, X., Lievens, C., Larcher, A., Li, C.Z., “Reaction pathways of glucose during esterification: Effects of reaction parameters on the formation of humin type polymers”, Bioresour. Technol., 102, 10104-10113 (2011).

    18 Peng, L.C., Lin, L., Yang, Q.L., “Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts”, Appl. Energy, 88, 4590-4596 (2011).

    Received 2013-04-08, accepted 2013-08-24.

    * Supported by the National Natural Science Foundation of China (21176227) and the State Key Laboratory of Motor Vehicle Biofuel Technology (2013011).

    ** To whom correspondence should be addressed. E-mail: chunchang@zzu.edu.cn

    猜你喜歡
    常春風光
    常春作品
    C band microwave damage characteristics of pseudomorphic high electron mobility transistor?
    風光新580
    汽車觀察(2021年11期)2021-04-24 20:47:38
    風光如畫
    海峽姐妹(2019年12期)2020-01-14 03:25:02
    風光ix5:當轎跑邂逅SUV
    汽車觀察(2018年12期)2018-12-26 01:05:36
    同煤的“風光”算盤
    能源(2018年5期)2018-06-15 08:56:04
    “風光”繁榮背后的隱憂
    能源(2018年5期)2018-06-15 08:55:56
    書法中的常春
    各國首都風光
    朝夕之間,得“道”完全數(shù)
    99九九线精品视频在线观看视频| 久久久久免费精品人妻一区二区| 1000部很黄的大片| 国产男人的电影天堂91| 国产亚洲av嫩草精品影院| 欧美成人免费av一区二区三区| 国产又色又爽无遮挡免| 亚洲精品aⅴ在线观看| 久久久久精品久久久久真实原创| 视频中文字幕在线观看| 久久精品久久久久久久性| 天堂网av新在线| 波野结衣二区三区在线| 亚洲av.av天堂| 日韩av在线大香蕉| 亚洲国产成人一精品久久久| 亚洲性久久影院| 亚洲精品日韩在线中文字幕| 亚洲最大成人av| 精品人妻熟女av久视频| 中文字幕av在线有码专区| 99视频精品全部免费 在线| 日韩精品有码人妻一区| 国产精品久久视频播放| 国产又黄又爽又无遮挡在线| 日本黄色视频三级网站网址| 国产精品一区二区三区四区久久| 亚洲国产精品成人久久小说| 日韩欧美在线乱码| 2022亚洲国产成人精品| 国产精品女同一区二区软件| 男人狂女人下面高潮的视频| 国产毛片a区久久久久| 亚洲乱码一区二区免费版| 久久久久久大精品| 婷婷色av中文字幕| 日韩,欧美,国产一区二区三区 | 亚洲五月天丁香| 美女高潮的动态| a级一级毛片免费在线观看| 身体一侧抽搐| 国产视频首页在线观看| 成人二区视频| 白带黄色成豆腐渣| 丰满人妻一区二区三区视频av| 精品久久久久久久末码| 国产 一区 欧美 日韩| 一级黄色大片毛片| 国产欧美另类精品又又久久亚洲欧美| 最后的刺客免费高清国语| 亚洲不卡免费看| 国语自产精品视频在线第100页| 91aial.com中文字幕在线观看| 亚洲最大成人av| 秋霞在线观看毛片| 亚洲欧美日韩东京热| 深夜a级毛片| 国产精品女同一区二区软件| 亚洲美女搞黄在线观看| 亚洲成人av在线免费| 国产伦精品一区二区三区视频9| 视频中文字幕在线观看| 直男gayav资源| 欧美+日韩+精品| 国产精品1区2区在线观看.| 国产一区二区在线观看日韩| 久久久久久久午夜电影| 日韩一区二区三区影片| 欧美激情久久久久久爽电影| 色综合亚洲欧美另类图片| 能在线免费看毛片的网站| 99久久成人亚洲精品观看| 小说图片视频综合网站| 一边亲一边摸免费视频| 久久人人爽人人片av| 看片在线看免费视频| 久久久久久九九精品二区国产| 久久精品影院6| 午夜激情福利司机影院| 91狼人影院| 亚洲乱码一区二区免费版| 日韩成人av中文字幕在线观看| 蜜桃亚洲精品一区二区三区| 欧美区成人在线视频| 亚州av有码| 麻豆成人午夜福利视频| 国产伦一二天堂av在线观看| 99久久精品热视频| 国产美女午夜福利| 黄色配什么色好看| 97超视频在线观看视频| 免费黄色在线免费观看| 久久久久国产网址| 美女黄网站色视频| 一级黄片播放器| 免费av观看视频| 亚洲真实伦在线观看| 亚洲av一区综合| 欧美成人精品欧美一级黄| 国产毛片a区久久久久| 精品一区二区免费观看| 国产精品久久久久久精品电影小说 | 久久久亚洲精品成人影院| 国产黄a三级三级三级人| 国产成人aa在线观看| 免费av观看视频| 久久国产乱子免费精品| 毛片女人毛片| 亚洲丝袜综合中文字幕| 精品久久久久久久久亚洲| av卡一久久| 国产在视频线在精品| 国产极品精品免费视频能看的| 又粗又硬又长又爽又黄的视频| 国产美女午夜福利| 伊人久久精品亚洲午夜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av又黄又爽大尺度在线免费看 | 亚洲国产高清在线一区二区三| 亚洲自偷自拍三级| 国产精品伦人一区二区| 免费观看在线日韩| 超碰av人人做人人爽久久| 亚洲欧美精品综合久久99| 欧美不卡视频在线免费观看| 99久久中文字幕三级久久日本| 国产片特级美女逼逼视频| 日韩一区二区视频免费看| 久久欧美精品欧美久久欧美| 好男人视频免费观看在线| 精品久久久噜噜| 亚洲精品日韩在线中文字幕| 男女视频在线观看网站免费| 午夜精品一区二区三区免费看| 日韩一本色道免费dvd| 最近视频中文字幕2019在线8| 国产一级毛片在线| 亚洲av日韩在线播放| 欧美性猛交黑人性爽| 色视频www国产| 白带黄色成豆腐渣| 亚洲18禁久久av| 少妇人妻精品综合一区二区| 亚洲色图av天堂| 亚洲av男天堂| 久久久国产成人免费| 人人妻人人看人人澡| 国产精品无大码| 卡戴珊不雅视频在线播放| 乱码一卡2卡4卡精品| 两个人的视频大全免费| av视频在线观看入口| videos熟女内射| 中文天堂在线官网| 嫩草影院入口| 国产午夜精品一二区理论片| 色综合亚洲欧美另类图片| 国产精品一区www在线观看| 中文资源天堂在线| 亚洲av免费在线观看| 少妇人妻精品综合一区二区| 国产黄片美女视频| or卡值多少钱| 国产又黄又爽又无遮挡在线| av在线观看视频网站免费| 日韩av在线大香蕉| 日韩欧美在线乱码| 在线免费观看的www视频| 久99久视频精品免费| 久久久欧美国产精品| eeuss影院久久| 毛片女人毛片| 高清视频免费观看一区二区 | 97热精品久久久久久| 亚洲丝袜综合中文字幕| 久久久成人免费电影| 久99久视频精品免费| 亚洲欧美日韩东京热| 国产欧美另类精品又又久久亚洲欧美| 老司机福利观看| 亚洲电影在线观看av| 一级毛片电影观看 | 日韩av在线免费看完整版不卡| 综合色丁香网| 中文字幕久久专区| 欧美日韩在线观看h| 国模一区二区三区四区视频| 亚洲性久久影院| 99久久中文字幕三级久久日本| 一级黄片播放器| 人人妻人人澡人人爽人人夜夜 | 国产高清有码在线观看视频| 99久久精品一区二区三区| 精华霜和精华液先用哪个| 亚洲四区av| 午夜免费男女啪啪视频观看| 国产精品,欧美在线| 99热全是精品| 久久精品91蜜桃| 成人漫画全彩无遮挡| 好男人视频免费观看在线| 亚洲在线自拍视频| 村上凉子中文字幕在线| 乱系列少妇在线播放| 亚洲欧美日韩东京热| 国产一区亚洲一区在线观看| 女的被弄到高潮叫床怎么办| 午夜福利在线观看免费完整高清在| 99九九线精品视频在线观看视频| 天堂网av新在线| 日本午夜av视频| 99在线视频只有这里精品首页| 伦精品一区二区三区| 五月玫瑰六月丁香| 国产久久久一区二区三区| 日本免费一区二区三区高清不卡| 日韩欧美精品免费久久| 国产精品乱码一区二三区的特点| videossex国产| 青春草视频在线免费观看| 国产一区二区三区av在线| 国产精华一区二区三区| 看十八女毛片水多多多| 18禁在线播放成人免费| 国产伦精品一区二区三区四那| 亚洲美女视频黄频| 久久久国产成人免费| 国内精品一区二区在线观看| 国产精品日韩av在线免费观看| 亚洲久久久久久中文字幕| 中文字幕av成人在线电影| 日日摸夜夜添夜夜爱| 成年av动漫网址| 欧美高清成人免费视频www| videos熟女内射| 美女脱内裤让男人舔精品视频| 亚洲精品色激情综合| 少妇熟女欧美另类| 少妇猛男粗大的猛烈进出视频 | 国产 一区精品| 欧美一区二区亚洲| 一级av片app| 你懂的网址亚洲精品在线观看 | 国产在线一区二区三区精 | 久久婷婷人人爽人人干人人爱| 一个人观看的视频www高清免费观看| 亚洲不卡免费看| 小说图片视频综合网站| 五月伊人婷婷丁香| 91久久精品国产一区二区成人| 亚洲不卡免费看| 在线天堂最新版资源| 免费电影在线观看免费观看| 国产精华一区二区三区| 久久久精品大字幕| 国产精品综合久久久久久久免费| АⅤ资源中文在线天堂| 简卡轻食公司| 国产淫语在线视频| 永久免费av网站大全| 国产精品人妻久久久影院| 日本一二三区视频观看| 亚洲av成人精品一区久久| 身体一侧抽搐| 久久久精品94久久精品| 亚洲欧美一区二区三区国产| 亚洲人成网站在线观看播放| 欧美又色又爽又黄视频| 天美传媒精品一区二区| 如何舔出高潮| 国产精品.久久久| 日本wwww免费看| 日日干狠狠操夜夜爽| 欧美另类亚洲清纯唯美| 一个人看的www免费观看视频| 高清日韩中文字幕在线| 亚洲国产精品成人综合色| 麻豆av噜噜一区二区三区| 不卡视频在线观看欧美| 午夜a级毛片| 男人的好看免费观看在线视频| 国产又色又爽无遮挡免| 成人三级黄色视频| 色综合站精品国产| 能在线免费看毛片的网站| 最近最新中文字幕大全电影3| 国产精品一区二区性色av| a级毛片免费高清观看在线播放| 免费黄色在线免费观看| 伊人久久精品亚洲午夜| 亚洲av.av天堂| 中文字幕精品亚洲无线码一区| 国产精品不卡视频一区二区| 男人舔女人下体高潮全视频| 在现免费观看毛片| 在线播放无遮挡| 中文欧美无线码| 亚洲欧美日韩卡通动漫| 中文字幕免费在线视频6| 国产午夜福利久久久久久| 中文字幕熟女人妻在线| 69av精品久久久久久| 高清毛片免费看| 在线观看66精品国产| 国产成人福利小说| 男人的好看免费观看在线视频| 看片在线看免费视频| 国内揄拍国产精品人妻在线| 麻豆成人午夜福利视频| 国产伦在线观看视频一区| 搡女人真爽免费视频火全软件| av女优亚洲男人天堂| 啦啦啦观看免费观看视频高清| 黄片无遮挡物在线观看| 99久久无色码亚洲精品果冻| 日韩欧美国产在线观看| 日韩一本色道免费dvd| 一个人观看的视频www高清免费观看| 久久久精品大字幕| 波多野结衣高清无吗| 一夜夜www| 国产成人a区在线观看| 欧美精品一区二区大全| 欧美zozozo另类| 十八禁国产超污无遮挡网站| 久久欧美精品欧美久久欧美| 成人午夜高清在线视频| 久久久久久久久久久丰满| 你懂的网址亚洲精品在线观看 | 少妇的逼水好多| 91aial.com中文字幕在线观看| 亚洲国产最新在线播放| 国产色爽女视频免费观看| 精品人妻偷拍中文字幕| 观看美女的网站| 久久久久久久国产电影| 亚洲av日韩在线播放| 我要搜黄色片| 日韩欧美国产在线观看| 婷婷色麻豆天堂久久 | 久久鲁丝午夜福利片| 亚洲美女视频黄频| 日韩高清综合在线| 欧美日本视频| 在线免费观看的www视频| 欧美xxxx性猛交bbbb| 九草在线视频观看| 在线免费观看的www视频| 男人狂女人下面高潮的视频| 亚洲电影在线观看av| a级毛片免费高清观看在线播放| 一级黄片播放器| .国产精品久久| 欧美性感艳星| 亚洲精品乱码久久久v下载方式| 三级国产精品欧美在线观看| 最近视频中文字幕2019在线8| 免费看日本二区| 久久久亚洲精品成人影院| 一个人免费在线观看电影| 久久精品国产鲁丝片午夜精品| 久久久亚洲精品成人影院| 能在线免费看毛片的网站| 久久亚洲国产成人精品v| 爱豆传媒免费全集在线观看| 干丝袜人妻中文字幕| 寂寞人妻少妇视频99o| av在线天堂中文字幕| 日本一本二区三区精品| 成年版毛片免费区| 狂野欧美激情性xxxx在线观看| 日本三级黄在线观看| 国产三级中文精品| 性插视频无遮挡在线免费观看| 看片在线看免费视频| 国产精品久久久久久精品电影| 欧美色视频一区免费| 欧美激情久久久久久爽电影| 亚洲国产欧美人成| 内地一区二区视频在线| 精品一区二区三区人妻视频| av视频在线观看入口| av线在线观看网站| 国产乱人偷精品视频| 精品人妻偷拍中文字幕| 久久午夜福利片| 国产探花在线观看一区二区| 99热网站在线观看| 亚洲va在线va天堂va国产| 大香蕉久久网| 一级二级三级毛片免费看| 尤物成人国产欧美一区二区三区| 中文字幕av成人在线电影| 亚洲国产欧美人成| 亚洲在线自拍视频| 亚洲美女视频黄频| 国产单亲对白刺激| 亚洲欧美精品专区久久| 黄片wwwwww| 麻豆av噜噜一区二区三区| 22中文网久久字幕| 亚洲精品国产av成人精品| 日韩国内少妇激情av| АⅤ资源中文在线天堂| 99热这里只有是精品50| 天天躁夜夜躁狠狠久久av| 午夜福利在线观看吧| 久久久久久久久久成人| 一级毛片电影观看 | 国产精品野战在线观看| 中文亚洲av片在线观看爽| 国产一区二区亚洲精品在线观看| 黄色欧美视频在线观看| 婷婷六月久久综合丁香| 国产单亲对白刺激| 亚洲国产精品合色在线| 偷拍熟女少妇极品色| 成人一区二区视频在线观看| 久久久成人免费电影| 国产精品蜜桃在线观看| 成人毛片a级毛片在线播放| 能在线免费看毛片的网站| 国语自产精品视频在线第100页| 日本猛色少妇xxxxx猛交久久| 国产精品嫩草影院av在线观看| 久久久久久久久久久免费av| 一区二区三区四区激情视频| 久久这里有精品视频免费| 天堂√8在线中文| 久久久久久久久久久丰满| 97人妻精品一区二区三区麻豆| 国产中年淑女户外野战色| 国产成人freesex在线| 七月丁香在线播放| 中文字幕免费在线视频6| 26uuu在线亚洲综合色| 麻豆av噜噜一区二区三区| 美女黄网站色视频| 搡老妇女老女人老熟妇| 麻豆一二三区av精品| 久久久久久大精品| 看黄色毛片网站| 亚洲欧洲日产国产| 黄色欧美视频在线观看| 搡女人真爽免费视频火全软件| 亚洲精品456在线播放app| 国产真实伦视频高清在线观看| 国产乱来视频区| 真实男女啪啪啪动态图| 最近最新中文字幕免费大全7| 国产成人福利小说| 丝袜喷水一区| 久久婷婷人人爽人人干人人爱| 久久久国产成人精品二区| 人妻夜夜爽99麻豆av| 国产亚洲av嫩草精品影院| 成人亚洲欧美一区二区av| 久久韩国三级中文字幕| 伊人久久精品亚洲午夜| 免费看美女性在线毛片视频| 亚洲av中文字字幕乱码综合| 亚洲国产欧洲综合997久久,| 老女人水多毛片| 欧美日韩精品成人综合77777| 国产视频内射| 欧美日本亚洲视频在线播放| 免费黄色在线免费观看| 国产女主播在线喷水免费视频网站 | 久久精品91蜜桃| 一边摸一边抽搐一进一小说| 国产精品国产高清国产av| 视频中文字幕在线观看| 国产亚洲精品av在线| 成人特级av手机在线观看| 久久久a久久爽久久v久久| 亚洲综合色惰| 亚洲图色成人| 欧美bdsm另类| 午夜精品国产一区二区电影 | 久久久久性生活片| 午夜福利网站1000一区二区三区| 午夜福利在线观看吧| av专区在线播放| 国产精品人妻久久久影院| 蜜臀久久99精品久久宅男| 日韩 亚洲 欧美在线| 欧美精品一区二区大全| 亚洲av免费高清在线观看| 亚洲国产高清在线一区二区三| 日韩高清综合在线| 色网站视频免费| 天天躁日日操中文字幕| 国产成人freesex在线| 99九九线精品视频在线观看视频| 免费av观看视频| 成人亚洲精品av一区二区| 欧美日韩在线观看h| 国产精品一二三区在线看| 午夜福利在线在线| 精品无人区乱码1区二区| 91午夜精品亚洲一区二区三区| 亚洲欧美中文字幕日韩二区| 久久久亚洲精品成人影院| 好男人在线观看高清免费视频| 中文亚洲av片在线观看爽| 毛片一级片免费看久久久久| 亚洲成色77777| 性插视频无遮挡在线免费观看| 成人高潮视频无遮挡免费网站| 国产高清国产精品国产三级 | 三级男女做爰猛烈吃奶摸视频| 91精品伊人久久大香线蕉| 特级一级黄色大片| 乱人视频在线观看| 欧美日本视频| 一级二级三级毛片免费看| 国产伦在线观看视频一区| 亚洲av一区综合| 亚洲三级黄色毛片| 有码 亚洲区| 国产精品电影一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产激情偷乱视频一区二区| 国产亚洲91精品色在线| 亚洲精品一区蜜桃| 免费电影在线观看免费观看| 国产日韩欧美在线精品| 99在线人妻在线中文字幕| 国产探花在线观看一区二区| 日本猛色少妇xxxxx猛交久久| 美女被艹到高潮喷水动态| 亚洲国产欧美人成| 国产精品人妻久久久久久| 国产黄a三级三级三级人| 麻豆一二三区av精品| 狂野欧美激情性xxxx在线观看| 亚洲精华国产精华液的使用体验| 亚洲最大成人av| 国产伦在线观看视频一区| 国产高清有码在线观看视频| 成年版毛片免费区| 国模一区二区三区四区视频| 最近中文字幕2019免费版| 一边摸一边抽搐一进一小说| 精品熟女少妇av免费看| 99久国产av精品国产电影| 亚洲第一区二区三区不卡| 亚洲av免费高清在线观看| 在线观看av片永久免费下载| 免费在线观看成人毛片| 亚洲成人精品中文字幕电影| 午夜精品国产一区二区电影 | 韩国av在线不卡| 亚洲成人中文字幕在线播放| 免费黄网站久久成人精品| 久久婷婷人人爽人人干人人爱| 国产在线一区二区三区精 | 丰满少妇做爰视频| 国产免费福利视频在线观看| 国产精品熟女久久久久浪| 日韩人妻高清精品专区| 国内精品宾馆在线| 国产乱人视频| 建设人人有责人人尽责人人享有的 | 男人狂女人下面高潮的视频| 黄片wwwwww| 久久精品国产鲁丝片午夜精品| 日韩三级伦理在线观看| 99热精品在线国产| 国产亚洲午夜精品一区二区久久 | 日本猛色少妇xxxxx猛交久久| 真实男女啪啪啪动态图| 日日撸夜夜添| 夜夜爽夜夜爽视频| 国产精品日韩av在线免费观看| 中国美白少妇内射xxxbb| 欧美激情在线99| 精品不卡国产一区二区三区| 精品欧美国产一区二区三| 男的添女的下面高潮视频| 久久人人爽人人片av| 国产一区二区在线观看日韩| 又爽又黄a免费视频| 国产精品一区二区三区四区久久| 99久久精品一区二区三区| 免费大片18禁| 国产毛片a区久久久久| 插阴视频在线观看视频| 麻豆久久精品国产亚洲av| 国产美女午夜福利| 日本色播在线视频| 国产乱人偷精品视频| 亚洲国产欧洲综合997久久,| 亚洲精华国产精华液的使用体验| 深爱激情五月婷婷| 欧美不卡视频在线免费观看| 一区二区三区免费毛片| 夫妻性生交免费视频一级片| 日韩高清综合在线| 日韩一本色道免费dvd| 91精品国产九色| 亚洲av男天堂| 亚洲丝袜综合中文字幕| 观看美女的网站| 最近中文字幕2019免费版| 国产真实乱freesex| av播播在线观看一区| 国产精品一二三区在线看| 国产精品av视频在线免费观看| 国产色婷婷99| 99九九线精品视频在线观看视频| 人人妻人人澡人人爽人人夜夜 | 欧美性猛交╳xxx乱大交人| 国产白丝娇喘喷水9色精品| 亚洲av免费高清在线观看|