• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    C band microwave damage characteristics of pseudomorphic high electron mobility transistor?

    2021-09-28 02:18:36QiWeiLi李奇威JingSun孫靜FuXingLi李福星ChangChunChai柴常春JunDing丁君andJinYongFang方進(jìn)勇
    Chinese Physics B 2021年9期
    關(guān)鍵詞:孫靜常春福星

    Qi-Wei Li(李奇威),Jing Sun(孫靜),Fu-Xing Li(李福星),Chang-Chun Chai(柴常春),Jun Ding(丁君),and Jin-Yong Fang(方進(jìn)勇)

    1School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710129,China

    2China Academy of Space Technology(Xi’an),Xi’an 710100,China

    3Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords:high power microwave,pseudomorphic high electron mobility transistor,damage mechanism,C band,low noise amplifier(LNA)

    1.Introduction

    With the rapid development of microwave technology,microwave devices are widely used in microwave communication,navigation,telemetry,remote control,satellite communication,and military electronic countermeasures.At the same time,the rapid development of microwave power supply technology makes electromagnetic pulse interference more and more dangerous to microwave semiconductor devices.[1]A large number of simulations and experiments have been carried out to study the electromagnetic immunity of high-power microwave(HPM)at the system or component level.[2–7]

    As a typical electromagnetic pulse,narrow-band microwave pulses with a peak power up to several GW and a pulse width of about 100 ns have been reported.[8,9]Such the HPM can be coupled from the front or back doors to disrupt or damage power systems.When irradiated by a strong electromagnetic pulse,the front door coupling through the antenna port will have a large amplitude,especially if the operating frequency band is within the radiation frequency band of the electromagnetic pulse.Therefore,the HPM is considered to be a serious threat to IT infrastructure and communication equipment,especially for radio frequency(RF)front-end components.

    In the previous study,Zhang et al.studied the burnt-out characteristics of low noise amplifier(LNA)based on gallium arsenide(GaAs)pseudomorphic high electron mobility transistor(pHEMT)injected with 1.4-GHz microwave pulse.[10]Liu et al.studied the combustion destruction characteristics of Ku band microwave pulses for GaAs pHEMT.[11,12]Yu et al.[13]and Xi et al.[14]studied the nonlinear and permanent degradation of GaAs-based LNA under electromagnetic pulse(EMP).Zhou et al.studied the mechanism of GaN HEMT failure induced by HPM.[15]The C band has good anti-rain attenuation and is often used in satellite communications.However,there are few reports on the HPM effect of C band LNA.

    This paper aims to study the damage characteristics of HPM induced pHEMT in the C band from the physical perspective through simulation analysis and the experimental results.The rest of this paper is organized as follows.In Section 2,the simulation model used here is described from three aspects:the device structure,the numerical model,and the signal model.In Section 3,with the help of the device simulator Sentaurus-TCAD,the electric field intensity,the current density,and the temperature characteristics of the device are analyzed to explain the HPM damage mechanism of the device.And we conclude HPM pulse-width-dependent damage rule.In Section 4,the simulation results are compared with the experimental results,and it is determined that the gate region of the pHEMT device is the vulnerable position under the irradiation of C-band HPM.Finally,the conclusions are presented in Section 5.

    2.Simulation model

    2.1.Device structure

    Aδ-doping AlGaAs/InGaAs pHEMT is studied in this paper.Figure 1 shows its basic structure as simulated in TCAD.[16]The device cross-section consists of a 0.8-μmthick GaAs substrate,a 10-nm-deep InGaAs channel,a 34.5-nm-thick AlGaAs spacer layer,a 30-nm-thick GaAs cap layer,and a 50-nm-thick Si3N4passivation layer.There also exists aδ-doping layer,which provides the carriers for the InGaAs channel layer,in the AlGaAs spacer layer.Here,the gate length is 0.15μm and the gate width is 200μm.Furthermore,the gate Schottky barrier height is 0.9 eV and the gate recess is 15-nm deep.The source–gate separation Lgsis 0.575μm including a 40-nm-thick oxide insulation layer for reducing the gate leaking current.Its metal material of electrode is gold.[17]And it is between the source and the drain and its form is symmetric.The area surrounded by the red dotted line in Fig.1 is the vulnerable area inside pHEMT,so the model grid of this area is finely divided,and the research results are given below.

    Fig.1.Basic structure ofδ-doping AlGaAs/InGaAs pHEMT.

    2.2.Numerical model

    To study the physical effect and mechanism of HEMT’s HPM effect,we start from the basic physical equation and use Sentaurus TCAD to construct the physical equivalent model of pHEMT,including the Poisson equation and continuity equation.It is important to consider the electro-thermal effect in the simulation of the burning process of the device injected by the HPM.So the thermodynamic model is adopted to solve the internal physical quantity of the device,and the current density equation of Jnand hole Jpare revised as

    whereμn(μp)is the electron(hole)mobilityφn(φp)is the electron(hole)quasi-Fermi potential,and Pn(Pp)is the absolute thermoelectric power electron(hole).Meanwhile,with the thermodynamic model,the lattice temperature is computed from

    where cLis the lattice heat capacity,κis the thermal conductivity,k is the Boltzmann constant,ECand EVare the top of conduction band and the bottom of valance band,respectively,and Rn(Rp)is the electron(hole)recombination rate.

    Besides,the avalanche model accounting for impact ionization,the analytic-TEP model for thermal electric power,and the high-field-saturation model for electron mobility are also used in this model.[18]The description and physical equation for each of these models are available in Ref.[17].

    2.3.Signal model

    At present,in the study of the damage effect on the semiconductor device with the HPM event,lots of researchers take the sine wave as the HPM signal model.[19]So the C band HPM is assumed to be a sinusoidal wave without attenuation in this paper,and the mathematical expression is as follows:

    where U is the amplitude,f is the frequency,andφis the initial phase.Figure 2 shows the simulation circuit schematic diagram in this study.At first,the drain and the source are applied to with 12 V and grounded,respectively.And by adjusting the resistance R,the HEMT drain potential remains at 2 V when the gate potential is 0 V.Then the sinusoidal wave with a frequency f of 6.6 GHz and an initial phaseφof zero is injected into the gate terminal of pHEMT to simulate the process that the HPM energy couples into the input port of the pHEMT LNA through the front-door path.When the lattice temperature reaches the melting point of gallium arsenide 1511 K,the device is judged to be in failure and the simulation calculation is stopped.

    Fig.2.Schematic diagram of simulation circuit.

    3.Simulation results and discussion

    3.1.HPM damage effect

    In the simulation circuit described above,the HPMs with a fixed frequency of 6.6 GHz at different power levels are injected respectively into the gate port of pHEMT to explore the microwave damage characteristics of the C-band of pHEMT.Figure 3 shows the variations of the maximum temperature inside the device with time.Both the temperature change curves show periodic“rising-fall-rising”oscillations.When the HPM power equals 38.55 dBm,the highest temperature inside the device shows an overall upward trend at the beginning,and then the trend of the highest temperature inside the device stops rising and drops slightly,and finally,the trend of the highest temperature inside the device gradually stabilizes.It is inferred that in the last stage of the above-mentioned temperature change,the pHEMT device exchanges heat with the outside and the inside,and thus reaching a thermal equilibrium.Nevertheless,as the power level is elevated to 40.77 dBm,the highest temperature inside the device sharply rises and quickly reaches 1511 K(the GaAs melting point).So it can be inferred that device burn-out may occur.

    Fig.3.Variations of maximum temperature within pHEMT with time.

    Here,the situation that HPM with power of 40.77 dBm is injected into pHEMT is taken for example.Figure 4 shows the temperature distribution inside the HEMT at the time of the device burning down.In Fig.4,the change from dark blue to deep red represents the internal temperature of the device varying from 295.6 K to 1531 K.It can be seen that the hightemperature region represented by deep red is concentrated on the side of the source pole below the grid of the device,and this high-temperature region is called the hotspot inside the device.The formation mechanism of the hotspot is described below.

    Fig.4.Distribution of temperature(in unit K)at pHEMT burning time.

    3.2.HPM damage mechanism analysis

    According to Fig.3(b),the maximum temperature inside the device increases and decreases periodically,and the cycle frequency is consistent with the HPM frequency.In the following the changes of internal physical quantities of the pHEMT device during the single-cycle HPM are analyzed.Figures 5–8 show the data sampled at 0.87 ns and 0.95 ns from the simulation and the temperature distribution,electric field distribution,current distribution,and impact ionization,respectively.The values 0.87 ns and 0.95 ns are the minimum and maximum temperature peaks of the internal maximum temperature of the pHEMT device in an HPM cycle,respectively.Also,the value 0.87 ns is in the negative half cycle of the HPM and the value 0.95 ns is in the positive half cycle of the HPM signal.

    Figures 5(a)and 5(b)illustrate the distribution of temperature at 0.87 ns and 0.95 ns respectively.Obviously,the hotspot inside the device is always on the side of the source pole below the gate.And centered on the hotspot,the surrounding temperature decreases gradually.It means that the hotspot occurs where the heat is generated inside the device.However,the hotspot temperature at 0.95 ns is significantly higher than that at 0.87 ns.Therefore,the heat generated by the hotspot also varies in a single HPM cycle.

    Combining the heating curve of the pHEMT injected into HPM and the internal temperature distribution of the device,it can be obtained that the internal temperature of the device has an upward trend when the pHEMT gate is injected with HPM.And high temperature area is diffused because the heat generation is greater than the thermal diffusion in the pHEMT device.As a result,there appears a thermal accumulation effect in the device.Moreover,a large amount of heat is continuously generated and accumulated at the hotspot,which will eventually even cause a so high temperature inside the device that it exceeds the melting point of the material,and thus causing the device to burn.However,when the injected HPM power is less than a certain threshold,the internal temperature of the device will not rise any more after reaching a certain value,but will eventually stabilize.This is because the thermal diffusivity of the material increases with the temperature rising.Finally thermal output and thermal diffusion inside the device are balanced.

    Fig.5.Distribution of temperature(in unit K)at(a)0.87 ns and(b)0.95 ns.

    As can be seen from Fig.6,the electric field intensity is very high below the gate of the device,especially on both sides of the gate.This is due to the structure of the device,where the curvature is small,it is easy to form a large electric field intensity.At 0.87 ns,the maximum electric field intensity under the grid is close to that of the drain,while at 0.95 ns,the maximum electric field intensity under the grid is close to the electric field intensity of the source,because there is bias voltage at the drain.

    In Fig.7(a),at 0.87 ns,that is,in the negative half cycle,the current density is not large due to the reverse bias voltage of the Schottky junction.It can be seen from Fig.7(b)that at 0.95 ns,which is in the positive half cycle of the HPM,a current path appears under the gate and connects the gate to the InGaAs channel,and the current path is closer to the source side than to the drain.This is because the drain voltage is biased at 2 V,the gate/source voltage is greater than the gate/drain voltage.[20]The research shows that the heatproducing transistor can be expressed as Q=J·E by J current density and electric field intensity E.

    Fig.6.Distribution of electric field intensity(in units of V/cm)at(a)0.87 ns,and(b)0.95 ns.

    Fig.7.Distribution of current density(in units of A/cm2)at(a)0.87 ns,and(b)0.95 ns.

    Therefore,a lot of heat is thought to be generated in the positive half cycle.The area of high electric field intensity and high current density in the positive period device is located below the gate near the source,consistent with the location of the hotspot of the device.This indicates that the energy of HPM coupling into the device is converted into heat,causing the device to burn down.

    Figures 8(a)and 8(b)show the distribution of impact ionization at 0.87 ns and 0.95 ns of the device,respectively.The areas with impact ionization rate(in units A/cm2)less than 1×1027inside the device are shown in dark blue,and areas with impact ionization rate ranging from 1×1027to 1.2387×1032are shown in the areas from dark blue to deep red.In Fig.8(b),during the positive half cycle,the deep red area with a high ionization rate is concentrated in the lower part of the gate,and the position with the maximum ionization rate at the lower part of the gate is on the side of the source pole,which is consistent with the position of the large current channel in the lower part of the gate.However,during the negative half cycle,there is no high impact ionization region similar to the scenario during the positive half cycle in Fig.8(a).This indicates that in the positive half cycle,the grid Schottky junction is positively skewed,and the extremely strong grid field leads to an avalanche multiplier effect.In other words,the large forward bias voltage causes the gate to break down,forming a large current channel from the gate to the channel.In the negative half period,the gate/source and gate/drain voltages mostly fall on the reverse bias Schottky junction during the negative period,thereby failing to produce large collision ionization rate.

    Fig.8.Distribution of impact ionization(in units of cm?3·s?1)at(a)0.87 ns,and(b)0.95 ns.

    3.3.HPM pulse-width-dependent damage effect

    To study the HPM damage pulse width effect of pHEMT,in this paper used is the simulation model established above to inject sinusoidal signals with different voltage amplitudes and a frequency of 6.6 GHz into the input end of the pHEMT.And the simulation circuit setting is consistent with that described in Section 2.The HPM pulse width is calculated by the duration of the injected signal before the equipment burns out.Damage power threshold P is the average power absorbed by the equipment during HPM injection,and damage energy threshold E is the total energy absorbed by the equipment during HPM injection.The simulation results are shown in Fig.9.

    Fig.9.HPM damage power threshold and energy threshold versus pulse widthτ.

    The results show that with the increase of pulse width,the HPM power threshold decreases and the HPM energy threshold increases.Besides,there is a significant nonlinearity for each of the curves.By curve fitting,the empirical formula to describe the correlation can be obtained as follows:

    The above relationship is in line with the empirical formula of PN junction damage under monopulse signal presented by Wunsch and Tasca et al.[21,22]

    Figure 10 respectively show the temperature distribution of device with gate power injected at 40.49 dBm,41.71 dBm,and 42.40 dBm at the time of burnout in the above simulation,respectively.Comparing the high-temperature regions represented by the bright colors in Fig.10,it can be seen that the greater the injection power,the smaller the distribution area of the high-temperature region at the time of device burnout.This is because when more power is injected into the device,the device burns out in a shorter time and the heat does not have time to dissipate and is concentrated in a smaller area.It can be considered that the power injected by electromagnetic pulse will not change the mechanism of device burning,but only affect the burning time and the size of the high temperature zone.

    Fig.10.Distribution of temperature(in unit K)when the injected power is(a)40.49 dBm,(b)41.71 dBm,and(c)42.40 dBm.

    4.Comparison with experimental results

    The experiment is performed by directly injecting a continuous HPM at 6.6 GHz into an LNA.When the injection power exceeds 40 dBm,it is difficult to observe a stable output waveform at the output port of LNA.Therefore,the output gain of LNA is reduced by 20 dBm,which serves as a criterion to judge the damage of LNA.The experimental sample is a three-stage LNA.And the crucial transistors of the first two stages are typical GaAs pHEMT devices,whose gate length and width are consistent with those in the simulation model.By opening the package of the damaged sample,it is found that the LNA damage area is located at the first transistor gate of the LNA as shown in Fig.11.

    The scanning electron microscope(SEM)observation results of the first-level damage of the LNA are shown in Fig.12.In Fig.12(a),there are several abnormal locations in the pHEMT device,and the square area surrounded by the red line represents a typical damage area.Figure 12(b)is the magnified view of the square area enclosed by the red line in Fig.12(a).In Fig.12(b),the vertical metal strip in the middle is the gate metal of pHEMT,the left side is the source region,and the right side is the drain region.The gate metal strip is broken.Besides,the channel in the region near the gate is also damaged,and the deviation of the gate to the source side is more serious.[6,10–12]As shown in Fig.12(c),there are small balls and pits formed after the material has melted at the fracture of the gate metal strip.The damage zone of position 1 and position 2 and the normal area are analyzed by EDS,and the results are as shown in Fig.13.

    Fig.11.First-stage LNA transistors by optical microscope.

    Fig.12.Internal characteristics of damaged samples characterized by SEM.

    Fig.13.Energy spectrum analysis of damage at(a)position 1,(b)position 2,and(c)in normal area.

    As can be seen from Fig.13,the percentage composition of gold(Au)at position 1(41.45%)and the percentage composition of gold(Au)at position 2(24.68%)are significantly higher than that in the normal area(7.95%).This indicates that the gate metal Au has melted and diffused in all directions.Also,the fractions of nitrogen(5.96%)and silicon(2.78%)at place 1 are both smaller than those of nitrogen(8.61%)and silicon(4.61%)in the normal area.This indicates that the passivation layer between the gate and the source also melts and splashes out.In contrast,the nitrogen component ratio(8.00%)and silicon component ratio(9.00%)in place 2 do not decrease compared with the normal place.It is judged that the passivation layer between the gate and the drain does not burn down or burns not severely.The anatomical analysis results of the above damaged samples are consistent with the simulation results,indicating that the pHEMT will burnt out in the circuit when the HPM power is larger than a certain threshold.Furthermore,the gate of the pHEMT device,especially the gate biased to the side of the source,is the weak link under the action of HPM.

    5.Conclusions

    The C band HPM damage effects of the pHEMT devices are studied through simulation and experiment in this paper.It can be concluded that the Schottky junction undergoes an avalanche breakdown under the action of a large forward bias voltage,which results in forming a large current.And a large amount of Joule heat generated by the strong electric field and the large current density near the gate forms a hotspot.When the injected HPM power is higher than a certain threshold,the hotspot temperature oscillating rises with time.And pHEMT will eventually damage because of the thermal accumulation at the hotspot.According to the above theory and experimental results,we investigated,the key parameters causing damage to the device under typical pulse conditions,including the damage location,damage power,etc.This work has a certain reference value in evaluating the pHEMT’s microwave damage.

    猜你喜歡
    孫靜常春福星
    常春作品
    孫靜:堅(jiān)守初心 勇?lián)鷷r(shí)代使命
    Ultrafast proton transfer dynamics of 2-(2′-hydroxyphenyl)benzoxazole dye in different solvents
    家里的寶
    兩個(gè)少年兩匹馬
    兩個(gè)女人一臺(tái)戲
    以豎直上拋運(yùn)動(dòng)為例淺談學(xué)生分組合作的習(xí)題課模式
    Kinetics of Glucose Ethanolysis Catalyzed by Extremely Low Sulfuric Acid in Ethanol Medium*
    壽 酒
    西江月(2014年4期)2014-03-13 03:40:20
    等你回來(lái)
    日本黄色视频三级网站网址 | 亚洲中文日韩欧美视频| 国产成人免费观看mmmm| 亚洲av第一区精品v没综合| 国产视频一区二区在线看| 黄色毛片三级朝国网站| 国产国语露脸激情在线看| 国产免费福利视频在线观看| 国产三级黄色录像| 人妻 亚洲 视频| 国产精品99久久99久久久不卡| 欧美日韩一级在线毛片| 国产不卡av网站在线观看| 久久 成人 亚洲| 久久香蕉激情| 在线观看人妻少妇| 成人影院久久| a级片在线免费高清观看视频| 欧美日韩国产mv在线观看视频| av超薄肉色丝袜交足视频| 午夜福利视频在线观看免费| 国产1区2区3区精品| 日韩视频一区二区在线观看| 在线观看免费视频日本深夜| 极品人妻少妇av视频| 国产高清激情床上av| 黄色片一级片一级黄色片| 午夜精品国产一区二区电影| 少妇裸体淫交视频免费看高清 | 女性被躁到高潮视频| 日韩大码丰满熟妇| 黄色视频不卡| 丝袜喷水一区| 男人舔女人的私密视频| 黑人巨大精品欧美一区二区mp4| 免费在线观看视频国产中文字幕亚洲| 精品少妇久久久久久888优播| 久久久久精品国产欧美久久久| 性少妇av在线| 欧美亚洲 丝袜 人妻 在线| 亚洲性夜色夜夜综合| 国产一区有黄有色的免费视频| 亚洲黑人精品在线| 亚洲精品国产区一区二| 成人精品一区二区免费| 成人三级做爰电影| 欧美乱妇无乱码| 狠狠婷婷综合久久久久久88av| 在线永久观看黄色视频| 国产在线一区二区三区精| 777久久人妻少妇嫩草av网站| xxxhd国产人妻xxx| 法律面前人人平等表现在哪些方面| 亚洲人成电影免费在线| 成年人免费黄色播放视频| 亚洲少妇的诱惑av| 黑人巨大精品欧美一区二区mp4| 50天的宝宝边吃奶边哭怎么回事| 人妻久久中文字幕网| 一本色道久久久久久精品综合| 国产极品粉嫩免费观看在线| 久久久国产成人免费| 久久精品国产亚洲av高清一级| 欧美黑人精品巨大| 悠悠久久av| 亚洲三区欧美一区| 免费日韩欧美在线观看| 搡老乐熟女国产| 高清在线国产一区| 色综合欧美亚洲国产小说| 精品一区二区三区四区五区乱码| 69精品国产乱码久久久| 一区二区三区精品91| 中国美女看黄片| 99国产精品一区二区蜜桃av | 日日爽夜夜爽网站| 成人国语在线视频| 男女下面插进去视频免费观看| 丝袜喷水一区| 免费日韩欧美在线观看| 亚洲欧洲日产国产| 亚洲天堂av无毛| 久久人妻福利社区极品人妻图片| 黄片小视频在线播放| 久久精品aⅴ一区二区三区四区| 国产在线观看jvid| 一个人免费看片子| 涩涩av久久男人的天堂| 97在线人人人人妻| 亚洲欧美精品综合一区二区三区| 看免费av毛片| 黄片大片在线免费观看| a级毛片在线看网站| 精品福利永久在线观看| videosex国产| 国产av一区二区精品久久| 嫩草影视91久久| 国产视频一区二区在线看| 亚洲自偷自拍图片 自拍| 脱女人内裤的视频| 久久ye,这里只有精品| 国产精品亚洲av一区麻豆| 国产欧美日韩综合在线一区二区| 久久免费观看电影| 亚洲性夜色夜夜综合| 免费观看av网站的网址| 日韩三级视频一区二区三区| 欧美变态另类bdsm刘玥| 国产深夜福利视频在线观看| 欧美在线黄色| 黄片小视频在线播放| 狠狠狠狠99中文字幕| 免费观看人在逋| 在线永久观看黄色视频| 久久久欧美国产精品| 欧美老熟妇乱子伦牲交| 国产伦理片在线播放av一区| 亚洲精品粉嫩美女一区| 日韩视频在线欧美| 久久久久久人人人人人| 亚洲欧美日韩另类电影网站| 欧美精品啪啪一区二区三区| 国产亚洲精品一区二区www | 美女主播在线视频| 后天国语完整版免费观看| 欧美日韩一级在线毛片| 久久这里只有精品19| 久久久久久亚洲精品国产蜜桃av| 亚洲人成伊人成综合网2020| 色婷婷av一区二区三区视频| 亚洲精品国产色婷婷电影| 在线观看免费日韩欧美大片| 国产精品成人在线| 国产欧美亚洲国产| 99国产精品一区二区三区| 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品古装| 久9热在线精品视频| 纯流量卡能插随身wifi吗| 亚洲av成人一区二区三| 午夜老司机福利片| 国产精品九九99| tube8黄色片| 777久久人妻少妇嫩草av网站| 午夜免费鲁丝| 国产成人免费观看mmmm| 亚洲av欧美aⅴ国产| 一本一本久久a久久精品综合妖精| 国产精品一区二区精品视频观看| 久久久久精品国产欧美久久久| 国内毛片毛片毛片毛片毛片| 亚洲av电影在线进入| 男女床上黄色一级片免费看| 久久精品aⅴ一区二区三区四区| 精品一品国产午夜福利视频| 日韩 欧美 亚洲 中文字幕| 国产日韩欧美在线精品| 国产精品麻豆人妻色哟哟久久| 免费看a级黄色片| 精品亚洲成国产av| 99国产极品粉嫩在线观看| 国产亚洲精品第一综合不卡| 无遮挡黄片免费观看| 国产在线一区二区三区精| 亚洲第一av免费看| 黑人巨大精品欧美一区二区蜜桃| 久久久精品区二区三区| 亚洲中文字幕日韩| 好男人电影高清在线观看| 亚洲第一av免费看| 欧美老熟妇乱子伦牲交| 午夜福利在线免费观看网站| 黄片大片在线免费观看| 成人黄色视频免费在线看| 可以免费在线观看a视频的电影网站| 桃花免费在线播放| 99热国产这里只有精品6| 国产极品粉嫩免费观看在线| 免费久久久久久久精品成人欧美视频| 国精品久久久久久国模美| 在线 av 中文字幕| 啦啦啦免费观看视频1| 18禁国产床啪视频网站| 1024香蕉在线观看| 日韩三级视频一区二区三区| 黄频高清免费视频| 亚洲人成电影免费在线| 首页视频小说图片口味搜索| 多毛熟女@视频| 一级毛片女人18水好多| 欧美日韩国产mv在线观看视频| 99久久99久久久精品蜜桃| 啦啦啦中文免费视频观看日本| 国产亚洲欧美精品永久| aaaaa片日本免费| av欧美777| 黄网站色视频无遮挡免费观看| aaaaa片日本免费| 欧美老熟妇乱子伦牲交| 精品少妇一区二区三区视频日本电影| 中文字幕人妻熟女乱码| 国产淫语在线视频| 一边摸一边抽搐一进一出视频| 69精品国产乱码久久久| 香蕉丝袜av| 午夜福利,免费看| 99国产极品粉嫩在线观看| 一边摸一边做爽爽视频免费| 99久久99久久久精品蜜桃| 中文字幕最新亚洲高清| 精品久久久久久电影网| 18在线观看网站| 在线看a的网站| 男人操女人黄网站| 精品熟女少妇八av免费久了| 亚洲色图 男人天堂 中文字幕| 精品国产一区二区久久| 国产精品亚洲av一区麻豆| 18禁裸乳无遮挡动漫免费视频| 99久久精品国产亚洲精品| 亚洲综合色网址| 久久久精品94久久精品| 国产成人av激情在线播放| 国产免费视频播放在线视频| 91精品国产国语对白视频| 一本久久精品| 精品欧美一区二区三区在线| 久久久精品94久久精品| 精品国产乱子伦一区二区三区| 欧美乱码精品一区二区三区| 黑人巨大精品欧美一区二区mp4| 老司机靠b影院| 久久毛片免费看一区二区三区| 一本一本久久a久久精品综合妖精| 日韩欧美免费精品| 色精品久久人妻99蜜桃| 大香蕉久久成人网| 国产国语露脸激情在线看| 亚洲综合色网址| 久久 成人 亚洲| 日韩一区二区三区影片| tube8黄色片| 国产精品.久久久| 制服诱惑二区| 最新在线观看一区二区三区| av一本久久久久| 啦啦啦在线免费观看视频4| 一本大道久久a久久精品| 另类精品久久| 国产精品久久久av美女十八| 国产免费av片在线观看野外av| 精品少妇黑人巨大在线播放| 男女免费视频国产| 日韩有码中文字幕| 法律面前人人平等表现在哪些方面| 国产成人精品久久二区二区免费| 日本黄色视频三级网站网址 | 热99国产精品久久久久久7| 国产精品久久久久久精品古装| 丰满饥渴人妻一区二区三| 91成人精品电影| 亚洲成人免费av在线播放| tube8黄色片| 久久精品aⅴ一区二区三区四区| 美女午夜性视频免费| 两个人免费观看高清视频| 日韩欧美一区视频在线观看| 国产免费av片在线观看野外av| 国产在线视频一区二区| 国产有黄有色有爽视频| 日本a在线网址| 国产成人精品久久二区二区91| 久久九九热精品免费| 色婷婷av一区二区三区视频| 最新美女视频免费是黄的| 又黄又粗又硬又大视频| 欧美 日韩 精品 国产| 久久久欧美国产精品| 天堂中文最新版在线下载| 香蕉国产在线看| 可以免费在线观看a视频的电影网站| 老司机午夜福利在线观看视频 | 欧美日韩视频精品一区| 欧美乱妇无乱码| 国产欧美日韩一区二区精品| 麻豆国产av国片精品| 99久久精品国产亚洲精品| 国产亚洲午夜精品一区二区久久| 精品久久久精品久久久| 亚洲国产毛片av蜜桃av| 中文字幕另类日韩欧美亚洲嫩草| 日本一区二区免费在线视频| 国产日韩一区二区三区精品不卡| 一级a爱视频在线免费观看| 久久av网站| 欧美成狂野欧美在线观看| 国产亚洲午夜精品一区二区久久| 欧美性长视频在线观看| 丁香六月天网| 欧美黑人欧美精品刺激| 亚洲欧美一区二区三区黑人| 亚洲人成电影免费在线| 国产人伦9x9x在线观看| 国产精品熟女久久久久浪| 久久人人97超碰香蕉20202| 国产91精品成人一区二区三区 | 50天的宝宝边吃奶边哭怎么回事| 成年版毛片免费区| 91成人精品电影| 一夜夜www| 日本vs欧美在线观看视频| 看免费av毛片| 日韩一区二区三区影片| 午夜福利,免费看| 国产黄频视频在线观看| 黑人猛操日本美女一级片| www日本在线高清视频| 每晚都被弄得嗷嗷叫到高潮| 欧美老熟妇乱子伦牲交| 亚洲精品中文字幕一二三四区 | 一边摸一边做爽爽视频免费| av视频免费观看在线观看| 精品福利永久在线观看| 亚洲国产中文字幕在线视频| 黑人巨大精品欧美一区二区mp4| 精品一区二区三卡| av有码第一页| 亚洲一区二区三区欧美精品| 国产单亲对白刺激| 夜夜骑夜夜射夜夜干| 国产亚洲精品第一综合不卡| 丝袜美腿诱惑在线| 无人区码免费观看不卡 | www.自偷自拍.com| 国产免费现黄频在线看| 精品国产一区二区久久| 午夜日韩欧美国产| 午夜成年电影在线免费观看| 老司机亚洲免费影院| av欧美777| 母亲3免费完整高清在线观看| 美女扒开内裤让男人捅视频| 亚洲一区中文字幕在线| 欧美午夜高清在线| 黄色视频,在线免费观看| 两人在一起打扑克的视频| av天堂久久9| 精品国产亚洲在线| 天天影视国产精品| 国产成人精品无人区| bbb黄色大片| 窝窝影院91人妻| a级毛片黄视频| 91成人精品电影| 一二三四社区在线视频社区8| 69精品国产乱码久久久| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩黄片免| av有码第一页| 国产区一区二久久| av不卡在线播放| 国产不卡一卡二| 午夜福利在线观看吧| 丰满迷人的少妇在线观看| 蜜桃国产av成人99| 国产在线免费精品| 成人国产av品久久久| 久久久久久免费高清国产稀缺| 亚洲成人国产一区在线观看| 青草久久国产| 国产高清videossex| 99久久99久久久精品蜜桃| 99久久人妻综合| 日韩视频一区二区在线观看| 热99re8久久精品国产| 啦啦啦视频在线资源免费观看| 老汉色∧v一级毛片| 久久久久精品人妻al黑| 后天国语完整版免费观看| 免费在线观看日本一区| 每晚都被弄得嗷嗷叫到高潮| 露出奶头的视频| 大码成人一级视频| 国产精品98久久久久久宅男小说| 少妇被粗大的猛进出69影院| 欧美人与性动交α欧美精品济南到| 日本av手机在线免费观看| 自线自在国产av| 91av网站免费观看| 99热国产这里只有精品6| 91精品国产国语对白视频| tube8黄色片| 电影成人av| 啦啦啦中文免费视频观看日本| 人人妻,人人澡人人爽秒播| 亚洲av第一区精品v没综合| 大片电影免费在线观看免费| 在线观看免费视频日本深夜| 国产免费现黄频在线看| 精品国产一区二区久久| 中文字幕av电影在线播放| 久久精品国产a三级三级三级| 91av网站免费观看| 国产亚洲欧美精品永久| 侵犯人妻中文字幕一二三四区| 男女床上黄色一级片免费看| 亚洲人成电影免费在线| 啦啦啦中文免费视频观看日本| 97在线人人人人妻| 啪啪无遮挡十八禁网站| 国产精品一区二区免费欧美| 欧美+亚洲+日韩+国产| 亚洲av日韩在线播放| 久久影院123| 自线自在国产av| 免费看十八禁软件| 一本久久精品| 久久久精品免费免费高清| 99精品久久久久人妻精品| 午夜福利影视在线免费观看| 80岁老熟妇乱子伦牲交| 美女主播在线视频| 热99国产精品久久久久久7| 丝袜喷水一区| 丝袜美腿诱惑在线| 久久影院123| 国产日韩欧美视频二区| 亚洲av美国av| 国产精品成人在线| 9色porny在线观看| 日韩中文字幕欧美一区二区| 亚洲第一青青草原| 如日韩欧美国产精品一区二区三区| 国产在线精品亚洲第一网站| 超碰97精品在线观看| 一二三四社区在线视频社区8| 精品欧美一区二区三区在线| 久久久精品区二区三区| 叶爱在线成人免费视频播放| 国产精品欧美亚洲77777| 亚洲精品中文字幕一二三四区 | 国产成人精品在线电影| 高清在线国产一区| 国产亚洲精品第一综合不卡| 美女主播在线视频| 婷婷成人精品国产| 欧美亚洲 丝袜 人妻 在线| 黄色成人免费大全| 交换朋友夫妻互换小说| 亚洲自偷自拍图片 自拍| 性高湖久久久久久久久免费观看| 午夜久久久在线观看| 午夜免费成人在线视频| 18禁美女被吸乳视频| 怎么达到女性高潮| 啦啦啦免费观看视频1| 一区在线观看完整版| videosex国产| 欧美中文综合在线视频| 国产精品影院久久| 如日韩欧美国产精品一区二区三区| 国产精品久久久久久精品电影小说| 国产精品九九99| 久久ye,这里只有精品| 在线观看人妻少妇| 久久九九热精品免费| 在线十欧美十亚洲十日本专区| 国产精品九九99| 欧美日韩亚洲国产一区二区在线观看 | a级毛片黄视频| 国产一区二区三区综合在线观看| 亚洲精品乱久久久久久| 亚洲欧美激情在线| 99精国产麻豆久久婷婷| 国产精品一区二区在线不卡| 老熟女久久久| 亚洲一区二区三区欧美精品| 精品卡一卡二卡四卡免费| 精品人妻在线不人妻| 一进一出抽搐动态| 亚洲熟女毛片儿| 久久人妻熟女aⅴ| 成人精品一区二区免费| 久久精品aⅴ一区二区三区四区| 精品久久久久久电影网| 国产成人欧美| 十八禁人妻一区二区| 欧美激情久久久久久爽电影 | 满18在线观看网站| 久久国产亚洲av麻豆专区| 国产高清激情床上av| 国产精品亚洲av一区麻豆| 蜜桃国产av成人99| 精品福利永久在线观看| 欧美日韩国产mv在线观看视频| 宅男免费午夜| 精品午夜福利视频在线观看一区 | 精品乱码久久久久久99久播| 欧美一级毛片孕妇| 色在线成人网| 男人操女人黄网站| 一边摸一边做爽爽视频免费| 国产一区二区三区在线臀色熟女 | 99re在线观看精品视频| 视频区图区小说| 亚洲欧美激情在线| 国产成人精品无人区| 99九九在线精品视频| 精品人妻熟女毛片av久久网站| 法律面前人人平等表现在哪些方面| 99久久人妻综合| 男人操女人黄网站| 亚洲欧美精品综合一区二区三区| 黄色视频,在线免费观看| 一级毛片女人18水好多| 两个人免费观看高清视频| 久久久久久亚洲精品国产蜜桃av| 国产成人欧美| 麻豆av在线久日| 在线 av 中文字幕| 午夜福利在线免费观看网站| 精品少妇久久久久久888优播| 91麻豆精品激情在线观看国产 | 欧美+亚洲+日韩+国产| 母亲3免费完整高清在线观看| 黄色毛片三级朝国网站| kizo精华| 成人国语在线视频| 丰满饥渴人妻一区二区三| 天堂中文最新版在线下载| xxxhd国产人妻xxx| 亚洲视频免费观看视频| 色婷婷av一区二区三区视频| 亚洲成人免费电影在线观看| 肉色欧美久久久久久久蜜桃| 91老司机精品| 日韩欧美一区二区三区在线观看 | 久久99一区二区三区| 中文字幕精品免费在线观看视频| 成人亚洲精品一区在线观看| 精品卡一卡二卡四卡免费| 日本黄色日本黄色录像| 淫妇啪啪啪对白视频| 日韩欧美一区二区三区在线观看 | 成人亚洲精品一区在线观看| 日本av手机在线免费观看| 亚洲成人国产一区在线观看| 国产精品免费大片| 免费黄频网站在线观看国产| 亚洲人成伊人成综合网2020| 国产高清视频在线播放一区| 久久久国产成人免费| 国产一区二区三区视频了| 国产黄频视频在线观看| 97人妻天天添夜夜摸| 肉色欧美久久久久久久蜜桃| 亚洲午夜理论影院| av有码第一页| 99精品在免费线老司机午夜| 99国产精品免费福利视频| 黄片播放在线免费| 91麻豆精品激情在线观看国产 | 国产亚洲精品第一综合不卡| 黄色片一级片一级黄色片| 少妇粗大呻吟视频| 成人黄色视频免费在线看| 精品国产亚洲在线| 高清毛片免费观看视频网站 | 国产精品久久久人人做人人爽| 精品午夜福利视频在线观看一区 | 国内毛片毛片毛片毛片毛片| 亚洲av成人一区二区三| 90打野战视频偷拍视频| 99久久99久久久精品蜜桃| 女性生殖器流出的白浆| 午夜福利视频精品| 免费高清在线观看日韩| 精品久久久精品久久久| 99精国产麻豆久久婷婷| 天天躁日日躁夜夜躁夜夜| 男女之事视频高清在线观看| 欧美 亚洲 国产 日韩一| 香蕉丝袜av| 久久精品亚洲精品国产色婷小说| 国产av精品麻豆| netflix在线观看网站| 久久久国产精品麻豆| 高潮久久久久久久久久久不卡| 亚洲久久久国产精品| 黄色怎么调成土黄色| 日本黄色日本黄色录像| 国产99久久九九免费精品| 十八禁网站免费在线| av国产精品久久久久影院| 啦啦啦 在线观看视频| 精品高清国产在线一区| 欧美激情极品国产一区二区三区| 91精品国产国语对白视频| 露出奶头的视频| 午夜91福利影院| 免费观看人在逋| 欧美国产精品va在线观看不卡| 一夜夜www| 国产精品国产高清国产av | a级片在线免费高清观看视频| 黄色丝袜av网址大全| 国产91精品成人一区二区三区 | 性少妇av在线| 在线观看人妻少妇| 成年女人毛片免费观看观看9 | 在线观看舔阴道视频| 免费观看人在逋| 国产精品国产高清国产av | 亚洲av欧美aⅴ国产| 黄色成人免费大全|