• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance of EDAB-HCl Acid Blended System as Fracturing Fluids in Oil Fields*

    2014-03-25 09:11:25趙增迎呂國誠張以河LIANShengjiang連勝江田娜
    關(guān)鍵詞:連勝

    (趙增迎)**(呂國誠)**(張以河) LIAN Shengjiang(連勝江)(田娜)

    1School of Science, National Laboratory of Mineral Materials, China University of Geosciences (Beijing), Beijing 100083, China

    2Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China

    Performance of EDAB-HCl Acid Blended System as Fracturing Fluids in Oil Fields*

    ZHAO Zengying(趙增迎)1,**, Lü Guocheng(呂國誠)1,**, ZHANG Yihe(張以河)1, LIAN Shengjiang(連勝江)2and TIAN Na(田娜)1

    1School of Science, National Laboratory of Mineral Materials, China University of Geosciences (Beijing), Beijing 100083, China

    2Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China

    Due to the high price and formation damage of the guargum fracturing fluid, many oilfields are more and more interested in surfactant based fracturing fluids. The rheological properties of erucicamide dimethyl amidopropyl betaine (EDAB)-HCl acid blended system and its suitability as fracturing fluid were investigated in this work. The effects of pH, concentration of EDAB, and temperature on the rheological properties of the blended system were studied. The results show that addition of EDAB improved the viscosity of the system from less than 10 mPa·s to about 400 mPa·s, which could retard the acid-rock reaction to about one half at 60 °C and one quarter at 90 °C comparing to straight HCl acid, suggesting that there is sufficient time for the blended fluid to react with formation rock when it is used as fracturing fluid in an oil field. Core flow tests demonstrated that the EDAB-acid blended fluid could divert itself from high permeability formation core to low permeability one, thus ensuring proper acid placement in the target reservoirs.

    viscosity, surfactants, viscoelastic fluids, rheology

    1 INTRODUCTION

    Viscoelastic surfactant (VES) aqueous solutions have been studied for two decades [1-5]. Although there have been some studies on the viscoelastic characteristic of the aqueous solution of erucicamide dimethyl alkylamidopropyl betaine (EDAB) [6-8], the rheological properties of its HCl acid solution have not been systematically investigated, especially its feasibility as a fracturing fluid in an oil field. In aqueous solution, the surfactant molecules can form wormlike micelles and entangle to form transient network, which imparts viscoelastic properties to the solution [9-11]. Therefore, it can be used in fracturing fluids in oil fields. In the past five to ten years, the price of guar gel based fracturing fluids has risen from 500 USD to about 3500 USD per ton. Many researchers are looking for proper surfactant based fracturing fluid to replace the guar gel based one for the lower harm advantage of the former as another reason.

    This work reported the rheological properties of the EDAB-HCl blended system. The results of core flow test and its reaction rates with formation of carbonate were also provided.

    2 MATERIALS AND METHODS

    2.1 Materials and instrumentation

    The zwitterionic surfactant (EDAB) was prepared in our laboratory [12]. The surfactant has good solubility, foaming ability, thickening property and viscoelasticity in water. The EDAB-HCl blended system comprised of EDAB surfactant with mass content from 1% to 7% (similarly hereinafter), HCl with mass concentration from 10% to 20%, and corrosion inhibitor which is composed of 0.3% (by mass) aliphatic alcohol polyglycol ether and 0.3% (by mass) aromatic ketone amine derivative. The carbonate cores has about 70% (by mass) magnesium carbonate and 10% (by mass) calcium carbonate, and were finely ground to 150 μm (100 mush). The average carbonate mass content was 82.8%. The rheological properties were determined using the Rheostess-600 rheometer (Thermo Haake Inc., Germany) and CSL2-500 rheometer (TA Instruments Inc., USA).

    2.2 Experimental procedures

    The static and dynamic rheological experiments were performed on the Rheostess-600 rheometer (a cylinder rotor with radius of 14 mm and height of 42 mm, and cup radius of 15 mm) and CSL2-500 rheometer (a cone-and-plate rotor with diameter of 40 mm, cone angle of 2°), respectively. The temperature was controlled to ±0.1 °C. Finely ground formation carbonate (as described in Section 2.1) was added to the EDAB acid blended system, and the pH values were calculated by the hydrogen ion concentrations in the system which were determined by acid and alkali titration test. The acid-carbonate reaction rate was determined by measuring the mass difference of the carbonate cores before and after the reaction.

    The schematic of the equipment was depicted in Fig. 1. The rotating speed was 500 r·min?1, which issimilar to the flow condition in oil field when the acidification displacement is 4 m3·min?1. The carbonate cores, with diameter of 2.5 cm and 5 cm in length, were collected from Daqing Oil Field in northeastern China. Their average carbonate mass content was 82.8% and the average permeability is 0.22 mD (1 mD=0.9869×10?15m2).

    Figure 1 Schematic diagram of experimental equipment for acid-carbonate reaction 1—rotation speed sensor; 2—electric motor; 3—pressure sensor; 4—temperature sensor; 5—condensate; 6—main reactor; 7—core holder; 8—core; 9—reaction fluid; 10—valve; 11—pressure controlled acid flow direction; 12—high pressure N2; 13—secondary reactor; 14—HCl acid solution or the blended fluid

    3 RESULTS AND DISCUSSION

    3.1 Viscoelasticity performance

    The viscoelastic performance of the blended system was evaluated by small amplitude oscillation because the system would become a gel after the acid-rock reaction. In a pure viscous system, storage modulus G′is equal to zero, whereas in a pure elastomer, the loss modulus G″ is zero [13]. In the EDAB-acid blended system, both G′ and G″ have numerical values. In general, they increase with the increasing oscillation frequency and the pH value of the system (Figs. 2 and 3). When the oscillation frequency is more than 10 rad·s?1, G″ has obvious attenuation at high pH. The dynamic rheological response at pH of 0.01 is presented in Fig. 4. The high frequency region is characterized by the fact that G′ is higher than G″, so the EDAB-HCl system behaves elastically; but at a low frequency region, G″ is higher than G′, so it behaves viscously [14-17]. Both moduli depend on frequency but follow different patterns. This region is characteristic of the occurrence of physical entanglements [18].

    3.2 Viscosities of the blended fluid at different pH

    Figure 2 The storage modulus G′ of the EDAB-acid blended system at different pH values [The base conditions: blended system contained 5% (by mass) of EDAB and 15% (by mass) of HCl, shear rate: 170 s?1, temperature: 20 °C. Similar conditions apply hereinafter if no special instruction]

    Figure 3 The loss modulus G″ of the blended system at different pH values

    Figure 4 Rheology of the blended system when pH equals to 0.01

    During the reaction between the EDAB-acid fluid and formation carbonate, the fluid viscosity increased from less than 10 mPa·s to about 400 mPa·s when the pH value changed from ?1.0 to 9.0 (Fig. 5). The positively charged nitrogen groups on the EDAB surfactant cause the molecules to repel one another at low pH; the nitrogen-nitrogen repulsion is mitigated by negatively charged surfactant at higher pH. Therefore, the pH value is an important factor affecting the rheological performance of the system fluids. Surfactant molecules will form spherical micelles if their concentration is above critical micelle concentration (CMC) [19-21]. Besides, in the acid-rock reaction, when the pH value of the reaction fluid increases, and COOH groups in the surfactant molecule will release H?to become[22-25]. At the same time,carbonaterock releases Ca2+.Then, Ca2+connects to the COO?anions in the surfactant molecules under electrostatic attraction. Therefore, the surfactant molecules connect with each other by Ca2+in the system. In this case, the oleophilic radicals (the long carbon chain in the surfactant) align with each other making the molecules aggregate to even a network [26, 27]. Therefore, the viscosity of the blended system increases rapidly to a very high value compared to the viscosity before the reaction. The viscosity can be comparable with the viscosity of guar fracturing fluids widely used in oil fields at present. Moreover, the blended fluid system can greatly simplify the fracture operation and reduce the cost, for it avoids the addition of crosslinker and internal breaker in the guar fracturing fluids [28].

    3.3 Viscosity of the blended system at different temperatures

    Generally, the change of viscosity with temperature is attributed to the formation of surfactant micelles [29-34]. However, there is no a clear explanation about why the viscosity rises to a maximum, then falls as temperature is increased as shown in Fig. 6. Ahmed and Aramaki [35] explained that at lower temperature, the viscosity rises with temperature is attributed to mainly the increase in average micelle contour length due to curvature reduction with temperature. On the other hand, the following drop of the viscosity is due to the predominance of the junctions with rise in temperature [35]. These junctions are quite fluid, and can slide along the micellar contour. This motion provides a very fast stress relaxation mechanism, that is, the relaxation time is quite short. Therefore, the viscosity is also low.

    Figure 5 The viscosity of the blended system and pH (shear rate: 50 s?1)

    Figure 6 The viscosity of the blended system and temperature

    3.4 Viscosity variation with EDAB concentration in the system

    From Fig. 7, it seems that the optimal surfactant mass content in the blended system is 5% for practical applications.

    Figure 7 Viscosity with VES content

    3.5 Shear resistant capability

    After persistent shearing for over 30 min, the blended system can still retain a fairly high viscosity (Fig. 8), which indicates that the blended system has shear resistant capability and is suitable for use in oilfield acidification.

    Figure 8 Shear resistance test

    Figure 9 Acid-carbonate reaction rates

    Figure 10 Schematic diagram for the multi-core flow apparatus

    3.6 Reaction between the blended system and formation carbonate

    Besides the rheological performance, the reaction rate between the EDAB-acid fluid and formation rock is also an important factor for the acidification process. The reaction rate can affect the shape and length of the flow channels in the formation etched by the injecting acid. The reaction between acid and formation carbonate is in a heterogeneous system, in which, gas is also produced. Fig. 9 shows that the viscosity of the system critically influences the reaction rate. This is because that the viscosity of the reaction fluid affects the diffusion rate of gases and ions when they move from the rock surface to the liquid phase [36]. Therefore, the addition of the surfactant can retard the acid-rock reaction when the viscosity increases during the reaction. The effect of surfactant addition is more effective than that of higher temperature. As a result, the longer acid-rock reaction time can ensure the blended acid fluid to etch longer and larger holes in the formation.

    3.7 Multi-core flow tests

    Figure 10 showed the multi-core flow apparatus and it also schematically illustrated the testing process. When 15% (by mass) HCl was injected into two carbonate cores placed side by side (Cores 1 and 2 in Table 1), the flat pressure profile indicated that no diversion took place (Fig. 11, Line a). It was because there was no obvious pressure increase in the curve. However, the obvious increased pressure was just the one required to divert the acid fluid from the high permeability core to low one. On the contrary, when the EDAB-acid blended fluid was injected into other two cores placed side by side (for example Cores 3 and 4 in Table 1), the pressure profile showed a rapid pressure increase as the fluid entered the cores. This was because the blended fluid would first enter the high permeability core, and react with the core, and then the fluid became viscous (referring to Section 3.2). The high viscousfluid blocked the high permeability core, and resulted in the rapid increase of pressure (Fig. 11, Line b). And then, the pressure forced the fluid flowed into the low permeability core. Therefore, the low permeability pores were also acidified, making the high permeability more uniformly distributed than the treatment by straight HCl fluid. Therefore, it can be deduced that the EDAB-acid blended fluid can divert itself from high permeability core to low one, which is just required for acidification and fracture in exploitation of oil.

    Table 1 The permeability before and after the core flow test and acidification effect

    Figure 11 Multi-core flow tests of the pressure drop of the straight 15% (by mass) HCl and the surfactant blended system (Pore volume: the rate of the volume of acid entered the pore of the core to the porosity of the core)

    4 CONCLUSIONS

    The rheological properties and feasibility in oilfield acidification of the EDAB-HCl blended system were studied. The pH value of the blended system is the most important factor affecting the viscosity of the blended fluid. Small amplitude oscillation test demonstrated that the blended fluid is a type of viscoelastic fluid. The addition of EDAB can retarded the acid-rock reaction significantly. Core flow tests indicated that the blended fluid can divert itself from the high permeability reservoir core to low one. Therefore, the system is suitable for use in acidification and fracture for the exploitation of oil.

    NOMENCLATURE

    G′ storage modulus, Pa

    G″ loss modulus, Pa

    k0initial permeability, mD

    krfinal permeability, mD

    REFERENCES

    1 Rami, A. R., Heinz, H., “The distinction of viscoelastic phases from entangled wormlike micelles”, Rheol. Acta., 45, 781-792 (2006).

    2 Yoshida, T., Taribagil, R., Hillmyer, M.A., Lodge, T.P., “Viscoelastic synergy in aqueous mixtures of wormlike micelles and model amphiphilic triblock copolymers”, Macromolecules, 40, 1615-1623 (2007).

    3 Sharma, S.C., Shrestha, L.K., Tsuchiya, K., Sakai, K., Sakai, H.,“Viscoelastic wormlike micelles of long polyoxyethylene chain phytosterol with lipophilic nonionic surfactant in aqueous solution”, J. Phys. Chem. B, 113, 3043-3050 (2009).

    4 Couillet, I., Hughes, T., Maitland, G., Candau, F., Candau, S.J.,“Growth and scission energy of wormlike micelles formed by a cationic surfactant with long unsaturated tails”, Langmuir, 20, 9541-9550 (2004).

    5 Bernhard, L., Chris, F., Mark, B., Matthew, M., Schlumberger, S.A., Kelly, H., “Diversion and cleanup studies of viscoelastic surfactant-based self-diverting Acid”, SPE (Society of Petroleum Engineers), 86504 (2004).

    6 Sharma, S.C., Shrestha, R.G., Shrestha, L.K., Aramaki, K., “Viscoelastic wormlike micelles in mixed nonionic fluorocarbon surfactants and structural transition induced by oils”, J. Phys. Chem. B, 113, 1615-1622 (2009).

    7 Moss, G.R., Rothstein, J.P., “Flow of wormlike micelle solutions through a periodic array of cylinders”, J. Non-Newt. Fluid Mech., 165, 1-3 (2010).

    8 Kumar, R., Kalur, G.C., Ziserman, L., Dganit, D., Srinivasa, R.,“Wormlike micelles of a C22-tailed zwitterionic betaine surfactant: From viscoelastic solutions to elastic gels”, Langmuir, 23, 12849-12856 (2007).

    9 Sharma, S.C., Shrestha, R.G., Shrestha, L.K., Aramaki, K.,“Rheological behavior of viscoelastic wormlike micelles in mixed sodium dodecyl trioxyethylene sulfate-monolaurin aqueous system”, Colloid Polym. Sci., 286, 1613-1619 (2008).

    10 Huang, T.P., James, B.C., “Fluid-loss control improves performance of viscoelastic surfactant fluids”, SPE, 106227-MS (2008).

    11 Chang, F., Qi, Q., Wayne, F., “A novel self-diverting-acid developed for matrix stimulation of carbonate reservoirs”, SPE, 65033 (2001).

    12 Zhao, Z.Y., Lü, G.C., “Visco-elastic properties of VES diverting acid for carbonate reservoirs”, Chin. J. Chem. Eng., 18 (3), 511-514 (2010).

    13 Hoffmann, H., “Viscoelastic surfactant solutions”, In: Structure and Flow in Surfactant Solutions, ACS Symposium Series, 578, Herb, C.A., Prudhomme, R.K., eds., American Chemical Society, Washington DC, 2-31 (1994).

    14 Davies, T.S., Ketner, A.M., Raghavan, S.R., “Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating”, J. Am. Chem. Soc., 128, 6669-6675 (2006).

    15 Nasr-El-Din, H.A., Al-Habib, N.S., Al-Mumen, A.A., Jemmali, M., Samuel, M., “A new effective stimulation treatment for long horizontal wells drilled in carbonate reservoirs”, SPE, 86516 (2004).

    16 Nasr-El-Din, H.A., Samuel, M., “Field application of emulsified acid-based system to stimulate deep, sour gas reservoirs in Saudi Arabia”, SPE, 71693 (2001).

    17 Lungwitz, B., Fredd, C., Brady, M., Miller, M., Ali, S., Hughes, K.,“Diversion and cleanup studies of viscoelastic surfactant-based self-diverting acid”, SPE, 86504 (2004).

    18 Ferry, J.D. Viscoelastic Properties of Polymers, 3rd edition., John Wiley & Sons Inc, New York, 56-59 (1980).

    19 Scott, M., Qi, Q., Dan, V., “The successful use of polymer-free diverting agents for acid treatments in the Gulf of Mexico”, SPE, 73704 (2002).

    20 Zeiler, C., Alleman, D., Qu, Q., “Use of viscoelastic surfactant-based diverting agents for acid stimulation”, SPE, 90062 (2004).

    21 Chang, F., Acock, A., Geoghagan, A., “Experience in acid diversion in high permeability deep water formations using visco-elastic-surfactant”, SPE, 71691 (2001).

    22 Danov, K.D., Kralchevska, S.D., Kralchevsky, P.A., “Mixed solutions of anionic and zwitterionic surfactant (betaine): Surface-tension isotherms, adsorption, and relaxation kinetics”, Langmuir, 20, 5445-5453 (2004).

    23 Kato, K., Kondo, H., Morita, A., Esumi, K., Meguro, K., “Synthesis of polystyrene latex with amphoteric surfactant and its characterization”, Colloid Polym. Sci., 264, 737-742 (1986).

    24 Weers, J.G., Rathman, J.F., Axe, F.U., Crichlow, C.A., “Effect of the intramolecular charge separation distance on the solution properties of betaines and sulfobetaines”, Langmuir, 7, 854-867 (1991).

    25 Zana, R., “Dimeric and oligomeric surfactants behavior at interfaces and in aqueous solution: A review”, Adv. Colloid Interface Sci., 97, 205-253 (2002).

    26 Imae, T., Ikeda, S., “Sphere-rod transition of micelles of tetradecyltrimethylammonium halides in aqueous sodium halide solutions and flexibility and entanglement of long rodlike micelles”, J. Phys. Chem., 90, 5216-5223 (1986).

    27 Tse-Ve-Koon, K., Tremblay, N., Constantin, D., “Structure, thermodynamics and dynamics of the isotropic phase of spherical non-ionic surfactant micelles”, J. Colloid Interface Sci., 393, 161-173 (2013).

    28 Yang, Y.Y., Xu, X.G., Yang, X.C., “Properties research on guar-crosslinked fracturing at different ph value”, Chem. Eng. Oil & Gas, 39 (5), 427-433 (2010).

    29 Molchanov, V.S., Philippova, O.E., “Dominant role of wormlike micelles in temperature-responsive viscoelastic properties of their mixtures with polymeric chains”, J. Colloid Interface Sci., 394, 353-359 (2013).

    30 Lu, Y.J., Fang, B., Fang, D.Y., “Formation and rheologic behavior of viscoelastic micelle fracturing fluids”, Oilfield Chem., 20 (4), 326-330 (2003). (in Chinese)

    31 Shikata, T., Hirata, H., “Micelle formation of detergent molecules in aqueous media: Viscoelastic properties of aqueous cetyltrimethylammonium bromide solutions”, Langmuir, 3, 1081-1086 (1987).

    32 Kern, F., Lemarechal, P., Candau, S.J., “Theological properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium bromide in the presence of potassium bromide”, Langmuir, 8, 437-440 (1992).

    33 Pitkanen, I., Suuronen, J., Nurmi, J., “Partial molar volume, ionization, viscosity and structure of glycine betaine in aqueous solutions”, J. Solution Chem., 39, 1609-1626 (2010).

    34 Ali, A., Makhlou, R., “Effect of organic salts on micellar growth and structure studied by rheology”, Colloid Polym. Sci., 277, 270-275 (1999).

    35 Ahmed, T., Aramaki, K., “Temperature sensitivity of wormlike micelles in poly(oxyethylene) surfactant solution: Importance of hydrophilicgroup size”, J. Colloid Interface Sci., 336, 335-344 (2009).

    36 Kasper, L., “Acidization. II The dissolution of dolomite in hydrochloric acid”, Chem. Eng. Sci., 30, 825-835 (1975).

    Received 2012-03-20, accepted 2013-06-28.

    * Supported by the Fundamental Research Funds for the Central Universities (2652013107), the Laboratory Open Funds of China University of Geosciences (Beijing).

    ** To whom correspondence should be addressed. E-mail: 1012278135@qq.com

    猜你喜歡
    連勝
    一路殺戮
    雪落無聲
    人力資源(2015年12期)2015-09-10 10:16:41
    從CBA遼寧隊十七連勝談績效管理
    日韩 亚洲 欧美在线| 欧美97在线视频| 99国产精品免费福利视频| 51午夜福利影视在线观看| 国产极品粉嫩免费观看在线| 50天的宝宝边吃奶边哭怎么回事| av国产精品久久久久影院| www.熟女人妻精品国产| 欧美黄色片欧美黄色片| 在线精品无人区一区二区三| 国产在线视频一区二区| 高清视频免费观看一区二区| 91精品三级在线观看| 国产高清视频在线播放一区 | 一级片'在线观看视频| www.精华液| 欧美大码av| 啦啦啦在线免费观看视频4| 国产成人精品久久二区二区免费| 午夜福利视频精品| 欧美国产精品va在线观看不卡| 女性被躁到高潮视频| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区三区在线| 青春草视频在线免费观看| 日本精品一区二区三区蜜桃| 大陆偷拍与自拍| 久久久久久久久久久久大奶| 正在播放国产对白刺激| 麻豆乱淫一区二区| 十八禁网站免费在线| 国产精品成人在线| 啦啦啦在线免费观看视频4| 免费在线观看影片大全网站| videosex国产| 精品久久久久久电影网| av不卡在线播放| 免费黄频网站在线观看国产| 国产有黄有色有爽视频| 久久久久久亚洲精品国产蜜桃av| 国产在视频线精品| 精品一区二区三卡| 69av精品久久久久久 | 日韩免费高清中文字幕av| 乱人伦中国视频| 视频区欧美日本亚洲| 日韩有码中文字幕| 热99re8久久精品国产| 久久精品国产亚洲av香蕉五月 | 成人亚洲精品一区在线观看| 精品免费久久久久久久清纯 | 新久久久久国产一级毛片| 又黄又粗又硬又大视频| 9色porny在线观看| av电影中文网址| 一边摸一边做爽爽视频免费| 乱人伦中国视频| 丁香六月天网| 交换朋友夫妻互换小说| av一本久久久久| 狂野欧美激情性bbbbbb| 欧美黑人欧美精品刺激| 免费人妻精品一区二区三区视频| 窝窝影院91人妻| 国产高清视频在线播放一区 | 国产免费一区二区三区四区乱码| 精品亚洲乱码少妇综合久久| 大型av网站在线播放| 老司机福利观看| 手机成人av网站| 亚洲精品久久成人aⅴ小说| 人成视频在线观看免费观看| 国产片内射在线| 亚洲精品成人av观看孕妇| 亚洲视频免费观看视频| 亚洲色图 男人天堂 中文字幕| 色视频在线一区二区三区| 激情视频va一区二区三区| 在线精品无人区一区二区三| 国产成人av教育| 真人做人爱边吃奶动态| 美女午夜性视频免费| cao死你这个sao货| 欧美中文综合在线视频| 99热全是精品| 国产免费现黄频在线看| 女人精品久久久久毛片| 亚洲精品第二区| 久久av网站| 亚洲天堂av无毛| 亚洲色图综合在线观看| 日本91视频免费播放| 欧美精品高潮呻吟av久久| 侵犯人妻中文字幕一二三四区| 91麻豆精品激情在线观看国产 | 亚洲国产日韩一区二区| 一区二区三区精品91| 91老司机精品| 12—13女人毛片做爰片一| 国产欧美亚洲国产| 精品久久蜜臀av无| 在线观看www视频免费| 十八禁网站免费在线| 日本一区二区免费在线视频| 老司机深夜福利视频在线观看 | 黄片播放在线免费| 国产精品久久久久久精品古装| 老汉色av国产亚洲站长工具| 一本—道久久a久久精品蜜桃钙片| 亚洲va日本ⅴa欧美va伊人久久 | 婷婷丁香在线五月| 国产精品1区2区在线观看. | 午夜视频精品福利| 51午夜福利影视在线观看| 午夜久久久在线观看| 精品少妇一区二区三区视频日本电影| 性高湖久久久久久久久免费观看| 爱豆传媒免费全集在线观看| 建设人人有责人人尽责人人享有的| 十八禁网站免费在线| 国产精品秋霞免费鲁丝片| 一本大道久久a久久精品| 精品一区二区三卡| 黄片大片在线免费观看| 午夜福利视频精品| 考比视频在线观看| 日韩有码中文字幕| 九色亚洲精品在线播放| 五月开心婷婷网| 成人国产av品久久久| 国产高清视频在线播放一区 | 97精品久久久久久久久久精品| 深夜精品福利| e午夜精品久久久久久久| 热99国产精品久久久久久7| 国产精品久久久人人做人人爽| 成年人黄色毛片网站| 中文字幕高清在线视频| 搡老岳熟女国产| 亚洲精华国产精华精| 久久综合国产亚洲精品| 亚洲av成人不卡在线观看播放网 | 国产精品一二三区在线看| 国产欧美日韩精品亚洲av| 精品久久久久久电影网| 一二三四在线观看免费中文在| 一本一本久久a久久精品综合妖精| 欧美日韩一级在线毛片| 欧美精品啪啪一区二区三区 | 高清av免费在线| 亚洲中文字幕日韩| 午夜影院在线不卡| 亚洲精品在线美女| 桃花免费在线播放| 久久久国产一区二区| 精品欧美一区二区三区在线| 91大片在线观看| 亚洲免费av在线视频| 国产激情久久老熟女| 久久精品国产综合久久久| 久久久久久久大尺度免费视频| 波多野结衣av一区二区av| videosex国产| 国产精品 国内视频| 亚洲精品美女久久av网站| 人人妻人人爽人人添夜夜欢视频| 91成年电影在线观看| 亚洲天堂av无毛| 国产成人av激情在线播放| 男人爽女人下面视频在线观看| 12—13女人毛片做爰片一| 欧美精品高潮呻吟av久久| 老司机影院毛片| 男女边摸边吃奶| 首页视频小说图片口味搜索| av网站在线播放免费| 欧美另类亚洲清纯唯美| 国产精品久久久久成人av| videos熟女内射| 在线天堂中文资源库| 亚洲五月婷婷丁香| 黄片播放在线免费| 自线自在国产av| 欧美日韩亚洲综合一区二区三区_| 亚洲熟女精品中文字幕| 中国国产av一级| 久久精品亚洲熟妇少妇任你| 亚洲精品国产av蜜桃| 午夜福利乱码中文字幕| 欧美xxⅹ黑人| 青草久久国产| 欧美成狂野欧美在线观看| 桃花免费在线播放| 精品高清国产在线一区| 女人被躁到高潮嗷嗷叫费观| 一区二区日韩欧美中文字幕| 久久人妻福利社区极品人妻图片| 69精品国产乱码久久久| 法律面前人人平等表现在哪些方面 | 天天操日日干夜夜撸| 操出白浆在线播放| 丰满人妻熟妇乱又伦精品不卡| 丝袜脚勾引网站| 国产在线观看jvid| 久久久国产精品麻豆| 最新的欧美精品一区二区| 欧美一级毛片孕妇| 国产精品久久久久成人av| 久久久久久久大尺度免费视频| 精品人妻熟女毛片av久久网站| 亚洲一卡2卡3卡4卡5卡精品中文| 成人18禁高潮啪啪吃奶动态图| 久久久久久免费高清国产稀缺| 欧美黄色片欧美黄色片| 男女之事视频高清在线观看| 欧美日韩亚洲综合一区二区三区_| 日韩一卡2卡3卡4卡2021年| 国产老妇伦熟女老妇高清| 热99久久久久精品小说推荐| 大型av网站在线播放| 老司机福利观看| 啦啦啦啦在线视频资源| 美女高潮喷水抽搐中文字幕| 亚洲av国产av综合av卡| 国产精品免费大片| 男男h啪啪无遮挡| 动漫黄色视频在线观看| 蜜桃在线观看..| 汤姆久久久久久久影院中文字幕| 成人18禁高潮啪啪吃奶动态图| 日韩一区二区三区影片| 欧美午夜高清在线| 欧美精品人与动牲交sv欧美| 国产精品一区二区免费欧美 | 狠狠婷婷综合久久久久久88av| 欧美日韩福利视频一区二区| 伦理电影免费视频| 国产亚洲av高清不卡| 亚洲成人免费av在线播放| 美女脱内裤让男人舔精品视频| 一进一出抽搐动态| 久久久久久久精品精品| 亚洲 国产 在线| 日韩视频一区二区在线观看| 最黄视频免费看| 一级毛片精品| 新久久久久国产一级毛片| 国产有黄有色有爽视频| 老司机午夜福利在线观看视频 | 国产成人av教育| 国产一区二区 视频在线| 亚洲精品一卡2卡三卡4卡5卡 | 母亲3免费完整高清在线观看| 狂野欧美激情性xxxx| 王馨瑶露胸无遮挡在线观看| 韩国精品一区二区三区| 最近中文字幕2019免费版| 久久久国产成人免费| 一级毛片女人18水好多| 亚洲成人免费电影在线观看| 国产在线免费精品| 在线观看免费午夜福利视频| 天堂8中文在线网| 悠悠久久av| 俄罗斯特黄特色一大片| 国产精品亚洲av一区麻豆| xxxhd国产人妻xxx| 欧美亚洲日本最大视频资源| 黄色视频不卡| 免费在线观看黄色视频的| 亚洲成人手机| 国产亚洲精品第一综合不卡| 亚洲七黄色美女视频| 亚洲精品乱久久久久久| 无限看片的www在线观看| 青春草视频在线免费观看| 久久人妻熟女aⅴ| 国产男人的电影天堂91| 亚洲人成77777在线视频| 成人国产av品久久久| 成人三级做爰电影| 一本久久精品| 国产在线观看jvid| 18在线观看网站| 天堂8中文在线网| 日本91视频免费播放| 一级片免费观看大全| www.精华液| 午夜两性在线视频| 日本黄色日本黄色录像| bbb黄色大片| 亚洲av片天天在线观看| 国产亚洲精品第一综合不卡| 欧美在线一区亚洲| 午夜成年电影在线免费观看| 亚洲精品第二区| a级片在线免费高清观看视频| 免费观看a级毛片全部| 中文字幕高清在线视频| 国产日韩欧美亚洲二区| 免费观看av网站的网址| 高清av免费在线| 亚洲精品第二区| 久久久久精品人妻al黑| 一进一出抽搐动态| 黑人操中国人逼视频| 国产日韩欧美在线精品| av网站免费在线观看视频| 欧美久久黑人一区二区| 自线自在国产av| 精品国产乱码久久久久久男人| 国产精品 欧美亚洲| 丝袜在线中文字幕| 香蕉丝袜av| 伦理电影免费视频| 欧美+亚洲+日韩+国产| 亚洲精品中文字幕一二三四区 | 欧美中文综合在线视频| 一二三四在线观看免费中文在| 1024香蕉在线观看| 久久久精品国产亚洲av高清涩受| av不卡在线播放| 精品乱码久久久久久99久播| 国产精品亚洲av一区麻豆| 激情视频va一区二区三区| 男女边摸边吃奶| 丝袜脚勾引网站| 狠狠狠狠99中文字幕| 精品国产国语对白av| 欧美日韩中文字幕国产精品一区二区三区 | 99热国产这里只有精品6| 久久人人爽人人片av| a级毛片在线看网站| 一区二区三区乱码不卡18| 精品久久久久久久毛片微露脸 | 深夜精品福利| 久久久久久久精品精品| 欧美激情极品国产一区二区三区| 国产免费视频播放在线视频| 视频区欧美日本亚洲| 国精品久久久久久国模美| 一本一本久久a久久精品综合妖精| 日韩一区二区三区影片| 国产精品成人在线| 国产一级毛片在线| 一区在线观看完整版| 国产亚洲一区二区精品| 男人操女人黄网站| 每晚都被弄得嗷嗷叫到高潮| 别揉我奶头~嗯~啊~动态视频 | 一本—道久久a久久精品蜜桃钙片| 十八禁高潮呻吟视频| 人人妻人人澡人人看| 亚洲专区中文字幕在线| 亚洲欧美成人综合另类久久久| 亚洲专区中文字幕在线| 成人手机av| 国产精品一二三区在线看| a在线观看视频网站| 久热爱精品视频在线9| 母亲3免费完整高清在线观看| 9热在线视频观看99| 欧美精品一区二区大全| 又紧又爽又黄一区二区| 一区二区三区精品91| 国产精品一二三区在线看| 一区二区三区精品91| 天堂俺去俺来也www色官网| 视频在线观看一区二区三区| 日韩 亚洲 欧美在线| 色精品久久人妻99蜜桃| 99热全是精品| 男人操女人黄网站| 亚洲精品在线美女| 在线观看免费午夜福利视频| 乱人伦中国视频| 少妇人妻久久综合中文| 午夜福利视频在线观看免费| 国产亚洲欧美精品永久| av视频免费观看在线观看| 男女国产视频网站| 国产精品二区激情视频| 国产成人免费无遮挡视频| 女人久久www免费人成看片| 99精国产麻豆久久婷婷| 成人黄色视频免费在线看| 亚洲国产欧美日韩在线播放| 亚洲天堂av无毛| 在线亚洲精品国产二区图片欧美| 亚洲伊人久久精品综合| 亚洲欧美色中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区有黄有色的免费视频| 中文精品一卡2卡3卡4更新| 久久狼人影院| 搡老乐熟女国产| 美女高潮喷水抽搐中文字幕| 看免费av毛片| 国产成人精品在线电影| 亚洲欧美一区二区三区久久| 中文字幕人妻丝袜制服| 色老头精品视频在线观看| 电影成人av| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品免费大片| 亚洲精品国产av蜜桃| 亚洲欧美精品自产自拍| xxxhd国产人妻xxx| 国产免费av片在线观看野外av| 亚洲国产av新网站| 国产日韩欧美视频二区| 久久中文字幕一级| 日日摸夜夜添夜夜添小说| 久久中文看片网| 日本撒尿小便嘘嘘汇集6| 下体分泌物呈黄色| 国产三级黄色录像| 精品一区在线观看国产| 亚洲精品国产区一区二| 精品免费久久久久久久清纯 | 男女之事视频高清在线观看| 国产av国产精品国产| 午夜福利一区二区在线看| 狂野欧美激情性xxxx| 久久人人97超碰香蕉20202| 18在线观看网站| 国产老妇伦熟女老妇高清| 亚洲人成77777在线视频| 亚洲欧美日韩高清在线视频 | 深夜精品福利| 国产精品欧美亚洲77777| 涩涩av久久男人的天堂| 麻豆国产av国片精品| 97精品久久久久久久久久精品| 高清黄色对白视频在线免费看| 国产成人精品久久二区二区免费| 男女之事视频高清在线观看| 亚洲五月色婷婷综合| 中国美女看黄片| 亚洲精品国产区一区二| 亚洲人成电影免费在线| 丰满饥渴人妻一区二区三| 人成视频在线观看免费观看| 免费一级毛片在线播放高清视频 | 亚洲 国产 在线| 国产99久久九九免费精品| 精品一品国产午夜福利视频| 制服诱惑二区| 丝袜脚勾引网站| 最近中文字幕2019免费版| 啦啦啦在线免费观看视频4| 久久中文看片网| 欧美中文综合在线视频| 国产成人系列免费观看| 久久这里只有精品19| 午夜视频精品福利| 人妻 亚洲 视频| 搡老乐熟女国产| 成年人免费黄色播放视频| 91九色精品人成在线观看| 69av精品久久久久久 | 国产精品国产av在线观看| 精品少妇久久久久久888优播| 亚洲人成77777在线视频| 老司机影院成人| 亚洲精品自拍成人| 亚洲精品国产av蜜桃| 国产成人欧美在线观看 | 免费少妇av软件| 国产人伦9x9x在线观看| 亚洲精品国产精品久久久不卡| 亚洲专区字幕在线| 午夜福利在线观看吧| 12—13女人毛片做爰片一| 国产区一区二久久| 国产欧美日韩一区二区三 | 黄片小视频在线播放| 91精品伊人久久大香线蕉| 亚洲国产精品一区二区三区在线| 欧美成人午夜精品| 热99re8久久精品国产| 日韩视频在线欧美| 我的亚洲天堂| 少妇裸体淫交视频免费看高清 | av网站免费在线观看视频| 不卡一级毛片| 最新在线观看一区二区三区| 久久久欧美国产精品| 国产99久久九九免费精品| 少妇裸体淫交视频免费看高清 | 亚洲国产欧美一区二区综合| 老司机靠b影院| 国产精品亚洲av一区麻豆| 国产片内射在线| 天天影视国产精品| 欧美久久黑人一区二区| 99精国产麻豆久久婷婷| 亚洲五月色婷婷综合| 免费在线观看黄色视频的| 亚洲第一av免费看| 两个人看的免费小视频| 黄色视频,在线免费观看| 一二三四在线观看免费中文在| 99精品久久久久人妻精品| 国产成人系列免费观看| 久久综合国产亚洲精品| 日韩欧美免费精品| 丰满饥渴人妻一区二区三| 操美女的视频在线观看| 1024香蕉在线观看| 丰满少妇做爰视频| a在线观看视频网站| 精品亚洲乱码少妇综合久久| 亚洲精品国产色婷婷电影| 国产三级黄色录像| 亚洲一区中文字幕在线| 亚洲熟女精品中文字幕| 免费少妇av软件| 人人妻人人添人人爽欧美一区卜| 少妇裸体淫交视频免费看高清 | 天天操日日干夜夜撸| 悠悠久久av| 国产男人的电影天堂91| 久久久水蜜桃国产精品网| 不卡av一区二区三区| 中文欧美无线码| 丝袜喷水一区| 黄色a级毛片大全视频| 肉色欧美久久久久久久蜜桃| 久久久久久免费高清国产稀缺| 十分钟在线观看高清视频www| 亚洲成人国产一区在线观看| 一区二区三区乱码不卡18| 欧美日韩成人在线一区二区| 女人高潮潮喷娇喘18禁视频| 高清在线国产一区| 免费高清在线观看日韩| 亚洲中文字幕日韩| 少妇的丰满在线观看| 久久av网站| 又黄又粗又硬又大视频| 男人操女人黄网站| 日韩 欧美 亚洲 中文字幕| 亚洲色图综合在线观看| 伊人亚洲综合成人网| 成年av动漫网址| 免费av中文字幕在线| 一个人免费在线观看的高清视频 | 久久中文字幕一级| 久久久久久免费高清国产稀缺| 国产成人欧美在线观看 | 国产91精品成人一区二区三区 | 巨乳人妻的诱惑在线观看| 50天的宝宝边吃奶边哭怎么回事| 男女免费视频国产| 亚洲精品国产av蜜桃| 国产精品 欧美亚洲| 久久女婷五月综合色啪小说| 丝袜脚勾引网站| 热99re8久久精品国产| 久久久欧美国产精品| 一区二区三区乱码不卡18| 青草久久国产| av在线app专区| 久久人人爽av亚洲精品天堂| 久久精品国产亚洲av高清一级| 女人被躁到高潮嗷嗷叫费观| 午夜成年电影在线免费观看| 午夜福利在线免费观看网站| 又紧又爽又黄一区二区| 久久久久久亚洲精品国产蜜桃av| 深夜精品福利| 男人爽女人下面视频在线观看| 黄色片一级片一级黄色片| 两个人免费观看高清视频| 亚洲欧美一区二区三区久久| 两性夫妻黄色片| 精品国产一区二区三区四区第35| 午夜福利视频精品| 超色免费av| av在线老鸭窝| 一级毛片精品| 又大又爽又粗| 国产日韩欧美在线精品| 久久国产亚洲av麻豆专区| 又大又爽又粗| 天天影视国产精品| 真人做人爱边吃奶动态| a在线观看视频网站| 国产日韩欧美在线精品| 久久 成人 亚洲| 少妇粗大呻吟视频| 久9热在线精品视频| 在线观看免费视频网站a站| 99久久99久久久精品蜜桃| 黄片大片在线免费观看| 精品一区二区三卡| 午夜日韩欧美国产| 久久九九热精品免费| 一区福利在线观看| 精品久久久精品久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久精品免费免费高清| 日韩免费高清中文字幕av| 中文字幕人妻熟女乱码| 蜜桃在线观看..| www日本在线高清视频| 国产国语露脸激情在线看| 另类亚洲欧美激情| 欧美性长视频在线观看| 亚洲欧美成人综合另类久久久| 精品乱码久久久久久99久播| 亚洲国产精品成人久久小说| 亚洲伊人久久精品综合| 精品人妻熟女毛片av久久网站|