• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis on the cation distribution of MgxNi1-xFe2O4(x=0,0.25,0.5,0.75,1)using M¨ossbauer spectroscopy and magnetic measurement

    2023-12-15 11:48:20ShiyuXu徐詩語JiajunMo莫家俊LebinLiu劉樂彬andMinLiu劉敏
    Chinese Physics B 2023年12期
    關(guān)鍵詞:劉敏

    Shiyu Xu(徐詩語), Jiajun Mo(莫家俊), Lebin Liu(劉樂彬), and Min Liu(劉敏),3,?

    1College of Nuclear Science and Technology,University of South China,Hengyang 430074,China

    2School of Physics,Huazhong University of Science and Technology,Wuhan 421001,China

    3Zhuhai Tsinghua University Research Institute Innovation Center,Zhuhai 519000,China

    Keywords: spinel structure,magnetic properties,ferrite,M¨ossbauer spectra

    1.Introduction

    Considerable attention has been given to spinel ferrite,the ferrite with the general formulaMFe2O4(Mare divalent ions, such as Mn2+, Ba2+, Mg2+, Co2+, Cu2+, Ni2+, Zn2+,Co2+).[1]Historically, it has been used in many fields due to its high resistivity,chemical stability,mechanical hardness,and reasonable cost,including in information storage systems,magnetic cores, magnetic fluids, microwave absorbers, and many others.[2,3]

    NiFe2O4is an inverse spinel ferrite that is also a known soft ferrite.[12]Due to its high-frequency permeability, high resistance, and low dielectric loss, it is widely used in highfrequency electronics.[3]The electromagnetic properties of Ni ferrite can be improved by ion doping, making it more practical.[13]The magnetic moments of Fe3+ions and Ni2+ions are 5μBand 2μB, respectively.Based on the A-B superexchange interaction, NiFe2O4has a theoretical magnetic moment of 2μB.[14,15]

    Ni-Mg ferrite is a widely used type of soft magnetic material, but the structure and electromagnetic properties of Mg ferrite are different from those of Ni ferrite.This is because Mg2+cations have a certain preference for octahedral sites,but this preference is weaker than that of Ni cations.[16]Also,Mg2+ions have a diamagnetic moment(0μB);therefore,the superexchange interaction with iron ions is different from that with Ni2+ions.[15]It is also important to note that the position preferences and ionic radii of Ni2+ions and Mg2+ions are also different,which affect the magnetic properties of Mg-Ni ferrite.In this way, Ni-Mg ferrite can be optimized for outstanding properties by changing the proportion of Ni2+ions and Mg2+ions.

    We prepared Mg-Ni spinel ferrite materials,MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1), using the sol-gel method in this study.Tests were performed on samples using x-ray diffractometers,M¨ossbauer spectrometers,and vibrating sample magnetometers.Different properties were fitted and analyzed based on x-ray diffraction(XRD),M¨ossbauer spectra, and vibrating sample magnetometer (VSM)data, and the cation distribution and magnetic changes were determined.

    2.Experimental techniques

    2.1.Sample preparation

    In this work, Mg-Ni spinel ferrites, MgxNi1-xFe2O4(x= 0, 0.25, 0.5, 0.75, 1), were prepared using the sol-gel method.The raw materials iron(III) nitrate nonahydrate Fe(NO3)3·9H2O, nickel(II) nitrate hexahydrate Ni(NO3)2·6H2O,magnesium(II)nitrate hexahydrate Mg(NO3)2·6H2O and citric acid C6H8O7were purchased from Macklin.A calculation was made to determine the amount of raw materials required for the experiment.One mole of spinel ferrite requires three moles of nitrate and three moles of citric acid.The desired quantities of reagents were dissolved in 150 ml of deionized water and heated at 80?C.Ammonia was gradually added to the compound solution while stirring to maintain a pH of 7-9.The solution was stirred for 5 h until it evaporated to produce a highly viscous gel.This gel was then baked at 225?C for 4 h,resulting in foamy ferrite powder.A dense ceramic metal oxide is formed by grinding the oxide into a fine powder, then calcining it at 1000?C for 9 h in a muffle furnace.Finally, the calcined metal oxide is ground in a mortar to obtain the finished product.[12]

    2.2.Characterization of the samples

    The XRD patterns of samples were recorded using a Siemens D500 diffractometer with Cuα(λ=1.5418 ?A) radiation, which is in a Bragg angle range (10?≤θ ≤80?).The patterns were analyzed using MDI-JADE software.The M¨ossbauer spectra were obtained at room temperature by a Seeco W304 M¨ossbauer spectrometer with a57Co/Rh source.Spectra were fitted using Mosswinn 4.0 software, and the most appropriate parameters were estimated.A magnetization curve (M-H) for the compounds was determined from VSM measurements at temperatures of 300 K and 5 K,respectively,and from-7 T to 7 T external magnetic field.

    3.Results and discussion

    3.1.X-ray diffraction analysis

    The XRD data of Mg-Ni spinel ferrite MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1) with different Mg2+ion contents are shown in Fig.1.The XRD patterns of the synthesized materials are shown in Figs.1(a)-1(e),respectively,and those of NiFe2O4(PDF:#97-005-2387)and MgFe2O4(PDF:#97-004-0679) in the PDF file are shown in Figs.1(f) and 1(g).The patterns of the materials prepared in the experiment are generally consistent with those of the standard JCPDS cards.Each sample showed identical peaks of planes (220), (331),(400),(422),(511)and(440).Therefore,the single-phase cubic spinel structureFdˉ3mis formed, and all the compounds are spinel ferrites with a face-centered cubic structure.[1]

    Fig.1.Powder XRD patterns of spinel MgxNi1-xFe2O4 (x=0, 0.25,0.5,0.75,1)powers.

    Using the type of diffraction peak and intensity of the diffraction ray, it is possible to calculate the crystallite size(D),the lattice parameter(a),and cell volume of the samples.Based on the Scherrer equation,the crystallite size(D)of the samples was estimated by[17]

    wherekis a constant(the value is usually 0.9),βis the half intensity width of the different peaks,λis the x-ray wavelength,andθis the angle of diffraction.

    The lattice constanta(?A)is calculated from the Nelson-Riley correction and Bragg equation[18]

    whereλis the x-ray wavelength,h,k, andlare the Miller indices,andθis the angle of diffraction.

    Based on the calculated microcrystalline size(D),lattice parameter (a) and cell volume of the samples.The lattice constant increases from 8.3 ?A to 8.4 ?A, within the range of spinel ferrite lattice constants.Grain sizes range from 10 nm to 100 nm, which are larger nanoparticles.The cell volume ranges from 580 ?A3to 600 ?A3, which is within the normal range of Ni-Mg spinel ferrites.The preparation of Ni-Mg spinel ferrite appears to be successful.

    Fig.2.The evolution of the lattice constant of the samples and standard lattice constants of NiFe2O4 and MgFe2O4.

    As it appears on the standard JCPDS cards (NiFe2O4:#97-005-2387;MgFe2O4: #97-004-0679),NiFe2O4has a lattice constant ofa=b=c=8.34577 ?A, and MgFe2O4has a lattice constant ofa=b=c=8.3998 ?A.Standard cards are compared with the calculated results of the experimental data for lattice constants.The lattice constants of the samples and the standard NiFe2O4and MgFe2O4are shown in Fig.2.It can be seen that the samples’lattice constants increase as the amount of Mg2+increases.The lattice constant of the samples increases with increasing Mg2+ion content since the radii of Ni2+ions and Mg2+ions at octahedral positions are 0.069 nm and 0.072 nm, respectively.[19]The lattice constants of synthesized NiFe2O4and MgFe2O4differ slightly from those of the standard JCPDS card.According to Msomiet al.’s[20]study on Co-Ni spinel ferrite,lattice constants have a relationship with annealing temperatures.The lattice constant first increases(200-700?C)and then decreases(700-1100?C)as the annealing temperature increases (200-1100?C).Thus, it is speculated that the higher annealing temperature may have caused the difference in lattice constants between the sample and the standard JCPDS cards.An increase in lattice constant is observed with changes in Mg ion content,which is consistent with the results reported by Rosnanet al.This implies successful Mg2+ion doping.[21]

    3.2.M¨ossbauer spectroscopy analysis

    Due to the strong preference of Ni2+ions for octahedral sites,two sextets were used to fit the M¨ossbauer spectrum data of the NiFe2O4sample.The results of the fitting and the associated parameters are shown in Table 1 and Fig.3(a).The obtained results indicate that the peak area of iron ions in the tetrahedral sites(IA)is 47.5%,while that in the octahedral sites(IB)is 52.5%.The positions of cations can be calculated byIAandIBusing the following formula:[22]

    MgxNi1-xFe2O4(x=0.25,0.5,0.75,1)has a more complicated cation distribution due to the addition of Mg2+ions.Some approximations are introduced to simplify the calculation.For the octahedral sites of Fe3+ions, a sextet (labeled as sextet A) was used for fitting.For the tetrahedral sites of Fe3+ions,a study found that the dominant superexchange interaction for Fe3+ions at octahedral sites is the interaction between A-sites and B-sites: (A)-O-[B].Because it is 15-20 times stronger than the interaction between B-sites and Bsites, only the superexchange between B-sites and A-sites is considered.[23]Tetrahedral sites are considered to contain no nickel ions, since Ni2+ions prefer octahedral sites.Due to the trivalent Fe ions in the sample,the structure has extremely high symmetry, quadruple splitting (QS)=0 mm/s and isomer shift(IS)=0-0.5 mm/s.Many studies[24,25]have reported that the M¨ossbauer spectroscopic parameters of Fe ions at the B site are influenced by the six nearest tetrahedral sites of cations.Depending on the fraction of Mg2+ions at these tetrahedral sites surrounding the Fe ions, different sextets can be observed,denoted as B,B1,...,Bn,wherenis the number of Mg2+ions among the six nearest tetrahedral sites.The probability of observing a certain sextet at the octahedral siteP(n,a)can be expressed as a function of the number of Mg2+ions among the six nearest tetrahedral sites(n)using the following equation:

    whereais the Mg2+ion content of the A-site.P(n,a)values lower than 5%contribute very little to M¨ossbauer spectra and can be omitted.[9]Some papers[16]defineaas the total amount of Mg ionsx, but many studies have shown that MgFe2O4is a disordered spinel ferrite and the value ofadoes not equalx.[19,26]Therefore, in this study, the fitting of the M¨ossbauer spectra for B-sites is not solely based on Eq.(4).M¨ossbauer spectrum data of MgxNi1-xFe2O4withx=0.25,0.5,0.75,and 1 were fitted starting from two sextets.The value of (1-IA)from the fitting was used as the actual Mg2+ion contentafor the A-sites, which was then substituted into Eq.(4).The probability given by Eq.(4)was compared with the fitted peak areas(Irel),and a set of better fitting results was chosen as the final results.This results in four, five, five, and six sextets in the samples withx=0.25,0.5,0.75,and 1,as shown in Fig.3 and Table 1.

    There was substantial agreement between the fitted curve and the experimental data.The crystal blocking temperature is a size-dependent parameter.[27]When the blocking temperature of the crystal falls below test temperature,the thermal energy exceeds the anisotropic energy, and the samples display superparamagnetic behavior.It appears that the M¨ossbauer spectrum is a doublet or a collapse of the M¨ossbauer spectroscopy.The absence of these appearances suggests the synthesized sample has a large grain size,which is consistent with the XRD data.The values of the isomer shift are between 0.1 mm/s and 0.5 mm/s,with the B-site generally higher than the A-site,consistent with other studies.[26]

    Fig.3.Room-temperature 57Fe M¨ossbauer spectra of spinel MgxNi1-xFe2O4 (x=0, 0.25, 0.5, 0.75, 1) powers.Here, EXP and CAL are experimental and computational M¨ossbauer data,respectively.

    Table 1.M¨ossbauer parameters of spinel MgxNi1-xFe2O4 (x=0, 0.25, 0.5, 0.75, 1) powers.Here, IS is isomer shift, Γ is the Lorentzian linewidth,Heff is the hyperfine magnetic field,Irel is relative areas and cations at A and B sites.

    Based on the relative areas of the tetrahedral siteIAand octahedral siteIB, we can calculate the distribution of Fe3+ions.As a result, it gives the cations at A and B sites of MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1), as shown in Table 1.As is evident, Ni2+ion content influences Mg2+ion proportions in tetrahedral sites.When Ni2+ions are abundant,Mg2+ions tend to occupy tetrahedral sites.Furthermore,the distribution of different cations causes different magnetic properties; therefore, it is possible to calculate the saturation magnetic moments of a whole series of samples.[28]The relationship between the saturation magnetic moment and the cation distribution can be calculated using the following formula for each chemical formula of the sample:[29]

    where the notation{}represents the magnetic moment at the B site, and [] represents the magnetic moment at the A site.Here,μN(yùn)iandμFeare 2μBand 5μB,respectively,andδis the inversion degree inThe calculation results are presented in Table 2 and Fig.4.CAL.With increasingx,the sample’s saturation magnetization first increases and then decreases.The trend of the variation of the saturation magnetization is similar to the trend of the doping non-magnetic ion Zn in CoFe2O4.[30]When the value ofxis between 0.25 and 0.5, the results of the M¨ossbauer spectroscopy show a significant number of Mg ions located in the tetrahedral position, which is consistent with previous studies:[19]Ni2+ions prefer octahedral positions more than Mg2+ions, resulting in more non-magnetic Mg2+ions occupying tetrahedral positions.Consequently, the total magnetic moment of tetrahedral sites decreases,and the saturation magnetic moment difference between tetrahedral and octahedral sites becomes greater.Asxreaches 0.5, the saturated magnetic moment reaches its maximum value.Afterwards, with the continued increase in Mg2+ions,the non-magnetic Mg2+ions occupying octahedral sites increase and the Ni2+ions decrease,leading to a rapid decrease in the total saturated magnetic moment within octahedral sites.The difference in the saturation magnetic moment between A and B sites decreases,which makes the saturation magnetic moment of the samples drop continuously.A sample’s saturation magnetic moment ceaselessly decreases before its Ni2+ion content reaches zero.The evolution of the saturated magnetic moment and Mg2+ion contentxclearly demonstrates the correlation between structure and magnetic properties.

    Fig.4.The experimental (EXP) and computational (CAL) saturation magnetic moment of spinel MgxNi1-xFe2O4 (x=0,0.25,0.5,0.75,1)powers.

    Table 2.The experimental and computational saturation magnetic moment of spinel MgxNi1-xFe2O4 (x=0,0.25,0.5,0.75,1)powers.

    3.3.Vibrating sample magnetometer analysis

    Data on the magnetization of the compounds were collected using VSM and are plotted in Figs.5 and 6.The data show typical ferromagnetic behavior at 5 K and 300 K, suggesting that the Curie temperature of the sample is higher than 300 K.The maximum saturation magnetization(Ms)was calculated using the following equation by using the hysteresis loop:[31]

    whereσsis the saturation magnetization intensity in the hysteresis loop at 5 K, andMxis the relative molecular weight of the material.The calculated results are shown in Table 2 and Fig.4.EXP.As the Mg ion content increases, the saturation magnetization decreases from 2.21μBto 2.04μB,then increases to 2.79μB,and finally decreases to 1.44μB.The experimental and computational saturation magnetic moments of the compounds are compared in Fig.4.It is evident that both sets of data show a similar change trend,even though the theoretical data is higher than the experimental data when Mg and Ni ions coexist.The discrepancy between the experimental and theoretical data atx=0,0.25,0.5,and 0.75 may arise from the incomplete consideration of the distribution of Ni ions.Some Ni2+ions may occupy tetrahedral sites,especially when the concentration of Ni2+ions decreases.Some Ni2+ions in octahedral sites may potentially exchange with Mg2+ions in tetrahedral sites.As a result,the magnetic moment at tetrahedral sites increases,while the magnetic moment at octahedral sites decreases, leading to a smaller total magnetic moment.

    Fig.5.Magnetic hysteresis (M-H) loops of spinel MgxNi1-xFe2O4(x=0,0.25,0.5,0.75,1)powers at 5 K.

    Fig.6.Magnetic hysteresis (M-H) loops of spinel MgxNi1-xFe2O4(x=0,0.25,0.5,0.75,1)powers at 300 K.

    4.Conclusions

    In this work, MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1)spinel ferrite materials were successfully prepared using the sol-gel method, and their structure and magnetic properties were analyzed.Based on the results,it can be concluded that the structure and magnetism of the samples are affected by the Mg2+ion contentx.Extensive XRD analysis showed that the sample remained a cubic spinel structureFdˉ3mwith an increase in Mg2+ion contentx.Because the Mg ion radius of octahedral sites is larger than the Ni ion radius, the crystallite size (D), lattice parameter (a), and cell volume gradually increase.According to the M¨ossbauer spectrum analysis, the distribution ratio of Fe3+ions between octahedral sites and tetrahedral sites changes with a change in Mg2+ion contentx.Cations are distributed differently in different materials,resulting in different magnetic properties.M¨ossbauer spectral analysis data are used to calculate the saturation magnetization of the sample.The results indicate that with the change in Mg2+ion contentx, the saturation magnetization of the sample first increases from 2.04μBto 3.22μB,and then decreases to 1.5μB.Based on theM-Hcurve at 5 K and 300 K, it is demonstrated that the sample is a ferromagnetic at room temperature.With an increase in Mg2+ion content, the saturation magnetization decreases from 2.21μBto 2.04μB, then increases to 2.79μB,and finally decreases to 1.44μB.Experimental data and data calculated by structure show the same evolution trend,and the error may be caused by an incomplete consideration of Ni ion distribution.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.11447231), the National Undergraduate Innovation and Entrepreneurship Training Program Support Projects of China,the Natural Science Foundation of Hunan Province,China(Grant No.2020JJ4517),the Research Foundation of the Education Bureau of Hunan Province,China(Grant Nos.19A434, 19A433, and 19C1621), and the Opening Project of the Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China(Grant Nos.2019KFY10 and 2019KFY09).

    猜你喜歡
    劉敏
    失控的逆襲:何苦死磕“渣男”成網(wǎng)紅
    飛翔的風(fēng)箏
    小讀者之友(2021年8期)2021-09-10 05:08:49
    血型也會改變
    抗癌之窗(2021年3期)2021-02-12 08:59:08
    我在聽你歌唱
    歌海(2020年5期)2020-11-16 06:04:02
    還手絹
    金山(2018年3期)2018-04-12 09:19:46
    掙夠50萬去離婚:摳門花心老公必須付出代價
    GENERAL SPLIT FEASIBILITY PROBLEMS FOR TWO FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES?
    都是愛
    詩選刊(2015年4期)2015-10-26 08:45:21
    神秘枕邊人,王子和魔鬼只隔一個微信的距離
    Kinetic and Thermodynamic Studies of Acid Scarlet 3R Adsorption onto Low-cost Adsorbent Developed from Sludge and Straw*
    两个人的视频大全免费| 美女高潮的动态| 熟女人妻精品中文字幕| 成人亚洲精品av一区二区| 精品一区二区三区av网在线观看| 特级一级黄色大片| 99国产极品粉嫩在线观看| 黄片wwwwww| 变态另类丝袜制服| 免费看美女性在线毛片视频| 国产精品一区www在线观看 | 色哟哟哟哟哟哟| 精品久久久久久,| 亚洲内射少妇av| 午夜福利在线观看吧| 欧美3d第一页| 色5月婷婷丁香| 两个人的视频大全免费| 国产亚洲91精品色在线| 两个人视频免费观看高清| 亚洲人与动物交配视频| 亚洲天堂国产精品一区在线| 亚洲专区国产一区二区| 久久精品夜夜夜夜夜久久蜜豆| 狂野欧美激情性xxxx在线观看| 久久久久国内视频| 高清在线国产一区| 成人国产综合亚洲| 村上凉子中文字幕在线| av在线天堂中文字幕| 久9热在线精品视频| 亚洲美女搞黄在线观看 | 午夜福利在线在线| 亚洲熟妇熟女久久| 日韩欧美免费精品| 69人妻影院| 亚洲精华国产精华精| 国产亚洲精品久久久com| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产亚洲av涩爱 | 成人国产综合亚洲| 999久久久精品免费观看国产| 国产不卡一卡二| 淫秽高清视频在线观看| 亚洲国产色片| 可以在线观看毛片的网站| 在线观看免费视频日本深夜| 国产蜜桃级精品一区二区三区| 美女xxoo啪啪120秒动态图| 国产真实乱freesex| 最近最新中文字幕大全电影3| 欧美激情久久久久久爽电影| 婷婷精品国产亚洲av在线| 长腿黑丝高跟| 久久久国产成人免费| 久久精品国产鲁丝片午夜精品 | 日韩av在线大香蕉| 亚洲avbb在线观看| h日本视频在线播放| 日韩中字成人| 亚洲aⅴ乱码一区二区在线播放| 国产日本99.免费观看| 亚洲三级黄色毛片| 老熟妇仑乱视频hdxx| 亚洲av美国av| 久久久色成人| 99热精品在线国产| 91午夜精品亚洲一区二区三区 | 中文资源天堂在线| 日本与韩国留学比较| 久久精品综合一区二区三区| 精品一区二区三区视频在线| 国产精品电影一区二区三区| 日韩人妻高清精品专区| 露出奶头的视频| 别揉我奶头~嗯~啊~动态视频| 国产色爽女视频免费观看| 亚洲精品一卡2卡三卡4卡5卡| 一级a爱片免费观看的视频| 嫩草影院精品99| 熟女人妻精品中文字幕| 午夜日韩欧美国产| 日韩人妻高清精品专区| 一级毛片久久久久久久久女| 蜜桃亚洲精品一区二区三区| 少妇熟女aⅴ在线视频| 一级a爱片免费观看的视频| 俄罗斯特黄特色一大片| 成年女人毛片免费观看观看9| 亚洲av中文字字幕乱码综合| 麻豆久久精品国产亚洲av| 亚洲一级一片aⅴ在线观看| 欧美成人a在线观看| 亚洲av电影不卡..在线观看| 网址你懂的国产日韩在线| 国产不卡一卡二| 丝袜美腿在线中文| 精品人妻一区二区三区麻豆 | 国产av麻豆久久久久久久| 欧美三级亚洲精品| 亚洲国产欧洲综合997久久,| 一进一出抽搐动态| 中文字幕av在线有码专区| 一进一出抽搐gif免费好疼| 国产男人的电影天堂91| 日本欧美国产在线视频| 欧美潮喷喷水| 此物有八面人人有两片| 美女xxoo啪啪120秒动态图| 麻豆av噜噜一区二区三区| 免费av观看视频| 此物有八面人人有两片| 日韩欧美免费精品| 校园春色视频在线观看| 久久香蕉精品热| 久久久久久久久大av| 午夜福利在线观看吧| 久久久久精品国产欧美久久久| 日韩精品中文字幕看吧| 香蕉av资源在线| www.www免费av| 又爽又黄a免费视频| 一级黄色大片毛片| 香蕉av资源在线| 久久久久九九精品影院| 欧美潮喷喷水| 一级a爱片免费观看的视频| 亚洲无线在线观看| 国内毛片毛片毛片毛片毛片| 国产精品一区www在线观看 | 久久精品国产亚洲av香蕉五月| 免费搜索国产男女视频| 亚洲精品乱码久久久v下载方式| 99久久九九国产精品国产免费| 亚洲国产精品sss在线观看| 亚洲七黄色美女视频| 老司机福利观看| 国产精品一区二区三区四区免费观看 | 伦精品一区二区三区| 又粗又爽又猛毛片免费看| 久久久久久大精品| 免费看日本二区| 亚洲最大成人中文| 99久久精品热视频| 1024手机看黄色片| 在线观看舔阴道视频| 午夜影院日韩av| 国产精品女同一区二区软件 | 久久久久久久久大av| 日韩高清综合在线| 午夜日韩欧美国产| 一区福利在线观看| 亚洲欧美日韩高清专用| 在线观看舔阴道视频| av国产免费在线观看| 丝袜美腿在线中文| 国产色婷婷99| 亚洲成人精品中文字幕电影| 亚洲精品久久国产高清桃花| 国产av麻豆久久久久久久| 精品人妻1区二区| 国产精品女同一区二区软件 | 亚洲av成人av| 国产亚洲欧美98| 搞女人的毛片| 波多野结衣高清作品| 成年人黄色毛片网站| 免费人成在线观看视频色| 日韩精品青青久久久久久| 黄色视频,在线免费观看| 精品午夜福利视频在线观看一区| 午夜福利在线观看免费完整高清在 | 国产精品1区2区在线观看.| 99热只有精品国产| 非洲黑人性xxxx精品又粗又长| 中国美白少妇内射xxxbb| av国产免费在线观看| 97热精品久久久久久| 精品久久久久久久久久免费视频| 男女啪啪激烈高潮av片| 天美传媒精品一区二区| av黄色大香蕉| 97碰自拍视频| 一区二区三区四区激情视频 | 如何舔出高潮| 久久精品91蜜桃| 国产欧美日韩精品亚洲av| 亚洲人与动物交配视频| 亚洲经典国产精华液单| 男女做爰动态图高潮gif福利片| 乱人视频在线观看| av女优亚洲男人天堂| 在线播放国产精品三级| 国产精品一区二区三区四区免费观看 | 99国产极品粉嫩在线观看| 制服丝袜大香蕉在线| 欧美一区二区亚洲| 一级av片app| 久久久精品大字幕| 日本黄色视频三级网站网址| 色综合亚洲欧美另类图片| 性色avwww在线观看| 亚洲不卡免费看| 国产白丝娇喘喷水9色精品| www日本黄色视频网| 免费大片18禁| bbb黄色大片| 欧美+日韩+精品| 亚洲美女视频黄频| 男人和女人高潮做爰伦理| 日韩在线高清观看一区二区三区 | 最近最新免费中文字幕在线| 啦啦啦韩国在线观看视频| 成人毛片a级毛片在线播放| 久久久精品欧美日韩精品| 亚洲av不卡在线观看| 永久网站在线| 69av精品久久久久久| 最近最新中文字幕大全电影3| 欧美+亚洲+日韩+国产| 欧美zozozo另类| 天堂网av新在线| 精品人妻1区二区| 久久6这里有精品| 国产aⅴ精品一区二区三区波| 亚洲人成网站在线播放欧美日韩| 亚洲18禁久久av| 成人av在线播放网站| 可以在线观看毛片的网站| 亚洲精品日韩av片在线观看| 久久久色成人| 亚洲色图av天堂| 国产高清视频在线观看网站| 精品午夜福利视频在线观看一区| 亚洲专区中文字幕在线| 性插视频无遮挡在线免费观看| 黄色欧美视频在线观看| 日本 av在线| 精品一区二区三区视频在线| 波野结衣二区三区在线| 91久久精品国产一区二区三区| 亚洲男人的天堂狠狠| 在线天堂最新版资源| 欧美性猛交╳xxx乱大交人| 蜜桃久久精品国产亚洲av| 国内精品美女久久久久久| 哪里可以看免费的av片| 毛片一级片免费看久久久久 | 国产乱人视频| 免费大片18禁| 成年女人毛片免费观看观看9| 日本熟妇午夜| 免费看a级黄色片| 久久久久久大精品| 亚洲不卡免费看| 色哟哟哟哟哟哟| 哪里可以看免费的av片| 老司机午夜福利在线观看视频| 亚洲中文字幕日韩| 久久久久久久精品吃奶| 大又大粗又爽又黄少妇毛片口| 国产一区二区三区av在线 | 天美传媒精品一区二区| 日韩大尺度精品在线看网址| 久久亚洲精品不卡| 成人鲁丝片一二三区免费| 熟女电影av网| 欧美激情在线99| 精品国内亚洲2022精品成人| 久久精品夜夜夜夜夜久久蜜豆| 可以在线观看的亚洲视频| 成人国产综合亚洲| 欧美一区二区亚洲| 美女被艹到高潮喷水动态| 国内揄拍国产精品人妻在线| 欧美丝袜亚洲另类 | 欧美色视频一区免费| 内射极品少妇av片p| 色综合亚洲欧美另类图片| 日本欧美国产在线视频| .国产精品久久| 中文字幕熟女人妻在线| 欧美最黄视频在线播放免费| 日韩欧美一区二区三区在线观看| 两人在一起打扑克的视频| 国产熟女欧美一区二区| 啪啪无遮挡十八禁网站| 91狼人影院| 亚州av有码| 成人二区视频| 午夜免费成人在线视频| 亚洲四区av| 日韩国内少妇激情av| 国产成人福利小说| 国产成人a区在线观看| 久久国产乱子免费精品| 国产日本99.免费观看| 亚洲人成网站在线播放欧美日韩| 欧美zozozo另类| 免费一级毛片在线播放高清视频| 亚洲一级一片aⅴ在线观看| 国产v大片淫在线免费观看| 欧美日韩综合久久久久久 | 国产综合懂色| 久久精品国产自在天天线| 国产成人av教育| 亚洲国产高清在线一区二区三| 超碰av人人做人人爽久久| 成人美女网站在线观看视频| 久久精品国产亚洲av香蕉五月| 两人在一起打扑克的视频| 1000部很黄的大片| 99riav亚洲国产免费| 国产精品亚洲美女久久久| 亚洲18禁久久av| 久久精品国产亚洲av天美| 亚洲 国产 在线| 午夜老司机福利剧场| 国产精品99久久久久久久久| 欧美精品国产亚洲| 午夜久久久久精精品| 亚洲成人精品中文字幕电影| 久久久久性生活片| 国产精品综合久久久久久久免费| 免费观看的影片在线观看| 亚洲欧美日韩东京热| 成年女人永久免费观看视频| 老师上课跳d突然被开到最大视频| 五月伊人婷婷丁香| 两人在一起打扑克的视频| 人妻夜夜爽99麻豆av| videossex国产| 少妇熟女aⅴ在线视频| or卡值多少钱| 国内精品一区二区在线观看| 精品乱码久久久久久99久播| 亚洲图色成人| 国产 一区精品| 久99久视频精品免费| 九九在线视频观看精品| 欧美黑人巨大hd| netflix在线观看网站| 国产精品一区二区三区四区久久| 精品99又大又爽又粗少妇毛片 | 免费黄网站久久成人精品| 午夜福利18| 国产精品一区www在线观看 | 极品教师在线视频| 久久国产乱子免费精品| 免费看av在线观看网站| 97碰自拍视频| 99精品久久久久人妻精品| 在线a可以看的网站| 一个人免费在线观看电影| 18+在线观看网站| 美女黄网站色视频| 久久久久精品国产欧美久久久| 国产不卡一卡二| 又爽又黄无遮挡网站| 国产乱人视频| 欧美xxxx性猛交bbbb| 不卡一级毛片| 欧美成人一区二区免费高清观看| 看免费成人av毛片| 少妇裸体淫交视频免费看高清| 欧美潮喷喷水| 色哟哟·www| 久久久精品大字幕| 十八禁网站免费在线| 免费人成在线观看视频色| 搡女人真爽免费视频火全软件 | 成人av在线播放网站| 欧美激情国产日韩精品一区| 国产一区二区三区在线臀色熟女| 18+在线观看网站| 亚洲熟妇熟女久久| 99热精品在线国产| 亚洲精品粉嫩美女一区| 大又大粗又爽又黄少妇毛片口| 免费电影在线观看免费观看| 中文在线观看免费www的网站| 热99在线观看视频| 中文字幕免费在线视频6| 亚洲乱码一区二区免费版| 国产麻豆成人av免费视频| 日韩欧美 国产精品| 日韩亚洲欧美综合| 国产女主播在线喷水免费视频网站 | 国产欧美日韩一区二区精品| 国产免费一级a男人的天堂| 春色校园在线视频观看| 变态另类成人亚洲欧美熟女| 亚洲五月天丁香| 熟妇人妻久久中文字幕3abv| а√天堂www在线а√下载| 免费看美女性在线毛片视频| 欧美人与善性xxx| 日韩强制内射视频| 尾随美女入室| 欧美性感艳星| 国产成人一区二区在线| 免费看美女性在线毛片视频| 欧美绝顶高潮抽搐喷水| 亚洲av熟女| 看免费成人av毛片| 少妇猛男粗大的猛烈进出视频 | netflix在线观看网站| 露出奶头的视频| 少妇的逼水好多| 亚洲av日韩精品久久久久久密| 成人综合一区亚洲| 天堂√8在线中文| 精品久久久久久久久久免费视频| 深夜精品福利| 欧美潮喷喷水| 狂野欧美激情性xxxx在线观看| 久久久久久久久中文| 久久久久久大精品| 色5月婷婷丁香| 超碰av人人做人人爽久久| 国产伦在线观看视频一区| 国产精品女同一区二区软件 | 在线观看午夜福利视频| 日本黄色视频三级网站网址| 国产欧美日韩一区二区精品| 国产乱人视频| 两人在一起打扑克的视频| 国产精品福利在线免费观看| 国产精品久久久久久久久免| eeuss影院久久| 91麻豆av在线| 国产伦精品一区二区三区视频9| 99热这里只有精品一区| 男女做爰动态图高潮gif福利片| 久久精品国产亚洲av天美| 久久亚洲精品不卡| 国产aⅴ精品一区二区三区波| 91麻豆精品激情在线观看国产| 国产大屁股一区二区在线视频| 99久久中文字幕三级久久日本| 乱码一卡2卡4卡精品| 97超视频在线观看视频| 免费人成在线观看视频色| 国产精品三级大全| 尾随美女入室| 久久6这里有精品| 亚洲av二区三区四区| 天天躁日日操中文字幕| 欧美区成人在线视频| 国产成人影院久久av| 午夜福利在线观看免费完整高清在 | 日韩欧美三级三区| 国产精品电影一区二区三区| 嫩草影院精品99| 内射极品少妇av片p| 女人十人毛片免费观看3o分钟| 黄色一级大片看看| 日本 欧美在线| 女同久久另类99精品国产91| 亚洲性夜色夜夜综合| 精品久久久久久成人av| 国产成人aa在线观看| 国产伦一二天堂av在线观看| 国产精品,欧美在线| 如何舔出高潮| 91午夜精品亚洲一区二区三区 | 99精品在免费线老司机午夜| 男女下面进入的视频免费午夜| 国产美女午夜福利| 国产精品国产高清国产av| 亚洲最大成人av| 久久久久久久亚洲中文字幕| 最新中文字幕久久久久| 欧美3d第一页| 久久精品人妻少妇| 午夜免费激情av| 伦理电影大哥的女人| 在线免费十八禁| 在线天堂最新版资源| 1024手机看黄色片| 日本免费一区二区三区高清不卡| 桃色一区二区三区在线观看| 成人国产麻豆网| 乱码一卡2卡4卡精品| 国产av不卡久久| 午夜视频国产福利| 亚洲av第一区精品v没综合| 黄色一级大片看看| 久久久久九九精品影院| 日本免费一区二区三区高清不卡| 成人鲁丝片一二三区免费| 日韩精品有码人妻一区| 99热这里只有是精品50| 日韩强制内射视频| 日韩精品中文字幕看吧| 日本一二三区视频观看| ponron亚洲| x7x7x7水蜜桃| 久久精品久久久久久噜噜老黄 | 国产精品爽爽va在线观看网站| 欧美激情国产日韩精品一区| 中亚洲国语对白在线视频| 国产一区二区三区视频了| 国产成人aa在线观看| 日韩欧美精品v在线| 欧美日韩亚洲国产一区二区在线观看| 精品乱码久久久久久99久播| 中文字幕av在线有码专区| 日本爱情动作片www.在线观看 | 我的女老师完整版在线观看| 成人特级黄色片久久久久久久| 麻豆成人午夜福利视频| 欧美一区二区精品小视频在线| 桃红色精品国产亚洲av| 99视频精品全部免费 在线| АⅤ资源中文在线天堂| 国产伦人伦偷精品视频| 亚洲av成人精品一区久久| 亚洲电影在线观看av| 麻豆国产97在线/欧美| 国产又黄又爽又无遮挡在线| 成人国产麻豆网| 国产精品美女特级片免费视频播放器| 在线观看av片永久免费下载| 乱码一卡2卡4卡精品| 波多野结衣高清无吗| 久久午夜福利片| 在线观看66精品国产| 日日干狠狠操夜夜爽| 人妻制服诱惑在线中文字幕| 深爱激情五月婷婷| 特级一级黄色大片| 久久久久久大精品| 真人做人爱边吃奶动态| 亚洲熟妇中文字幕五十中出| 尤物成人国产欧美一区二区三区| 日韩精品青青久久久久久| 人妻少妇偷人精品九色| 三级男女做爰猛烈吃奶摸视频| 精品免费久久久久久久清纯| 国产伦在线观看视频一区| 国产精品日韩av在线免费观看| 精品国内亚洲2022精品成人| 国产精品一区二区三区四区久久| 精品久久久久久久久久免费视频| 亚洲一级一片aⅴ在线观看| 国产在视频线在精品| 国产高清激情床上av| 欧洲精品卡2卡3卡4卡5卡区| 日韩中字成人| 午夜福利成人在线免费观看| 一a级毛片在线观看| 特大巨黑吊av在线直播| 一级a爱片免费观看的视频| 色视频www国产| 午夜福利18| 成年女人毛片免费观看观看9| 国产一区二区三区av在线 | 午夜精品久久久久久毛片777| 成人永久免费在线观看视频| 俄罗斯特黄特色一大片| 国产精品一区二区三区四区免费观看 | 久久久久九九精品影院| 国产熟女欧美一区二区| 国内精品宾馆在线| 国产午夜精品久久久久久一区二区三区 | 熟女人妻精品中文字幕| 少妇丰满av| 欧美潮喷喷水| 久久久久久久精品吃奶| 91久久精品电影网| 国产v大片淫在线免费观看| 亚洲18禁久久av| 欧美绝顶高潮抽搐喷水| 国内精品宾馆在线| 91av网一区二区| 精品久久久噜噜| 亚洲av第一区精品v没综合| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美激情综合另类| 久久久久久久久大av| 国产亚洲精品综合一区在线观看| 国产精品久久视频播放| 神马国产精品三级电影在线观看| 亚洲美女搞黄在线观看 | 国产中年淑女户外野战色| 午夜a级毛片| a级一级毛片免费在线观看| 夜夜爽天天搞| 欧美+亚洲+日韩+国产| 色尼玛亚洲综合影院| 淫秽高清视频在线观看| 亚洲经典国产精华液单| 欧美色视频一区免费| 成人av一区二区三区在线看| 亚洲欧美日韩高清专用| 一进一出抽搐gif免费好疼| 99精品久久久久人妻精品| 亚洲专区中文字幕在线| 无人区码免费观看不卡| av天堂在线播放| 欧美丝袜亚洲另类 | 蜜桃亚洲精品一区二区三区| 最新中文字幕久久久久| 精品午夜福利视频在线观看一区| 五月伊人婷婷丁香| 精品久久久久久成人av| 色噜噜av男人的天堂激情| 高清在线国产一区| 亚洲av美国av| 日韩大尺度精品在线看网址| 亚州av有码| 大又大粗又爽又黄少妇毛片口| 久久精品综合一区二区三区| 人人妻人人看人人澡|