• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis on the cation distribution of MgxNi1-xFe2O4(x=0,0.25,0.5,0.75,1)using M¨ossbauer spectroscopy and magnetic measurement

    2023-12-15 11:48:20ShiyuXu徐詩語JiajunMo莫家俊LebinLiu劉樂彬andMinLiu劉敏
    Chinese Physics B 2023年12期
    關(guān)鍵詞:劉敏

    Shiyu Xu(徐詩語), Jiajun Mo(莫家俊), Lebin Liu(劉樂彬), and Min Liu(劉敏),3,?

    1College of Nuclear Science and Technology,University of South China,Hengyang 430074,China

    2School of Physics,Huazhong University of Science and Technology,Wuhan 421001,China

    3Zhuhai Tsinghua University Research Institute Innovation Center,Zhuhai 519000,China

    Keywords: spinel structure,magnetic properties,ferrite,M¨ossbauer spectra

    1.Introduction

    Considerable attention has been given to spinel ferrite,the ferrite with the general formulaMFe2O4(Mare divalent ions, such as Mn2+, Ba2+, Mg2+, Co2+, Cu2+, Ni2+, Zn2+,Co2+).[1]Historically, it has been used in many fields due to its high resistivity,chemical stability,mechanical hardness,and reasonable cost,including in information storage systems,magnetic cores, magnetic fluids, microwave absorbers, and many others.[2,3]

    NiFe2O4is an inverse spinel ferrite that is also a known soft ferrite.[12]Due to its high-frequency permeability, high resistance, and low dielectric loss, it is widely used in highfrequency electronics.[3]The electromagnetic properties of Ni ferrite can be improved by ion doping, making it more practical.[13]The magnetic moments of Fe3+ions and Ni2+ions are 5μBand 2μB, respectively.Based on the A-B superexchange interaction, NiFe2O4has a theoretical magnetic moment of 2μB.[14,15]

    Ni-Mg ferrite is a widely used type of soft magnetic material, but the structure and electromagnetic properties of Mg ferrite are different from those of Ni ferrite.This is because Mg2+cations have a certain preference for octahedral sites,but this preference is weaker than that of Ni cations.[16]Also,Mg2+ions have a diamagnetic moment(0μB);therefore,the superexchange interaction with iron ions is different from that with Ni2+ions.[15]It is also important to note that the position preferences and ionic radii of Ni2+ions and Mg2+ions are also different,which affect the magnetic properties of Mg-Ni ferrite.In this way, Ni-Mg ferrite can be optimized for outstanding properties by changing the proportion of Ni2+ions and Mg2+ions.

    We prepared Mg-Ni spinel ferrite materials,MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1), using the sol-gel method in this study.Tests were performed on samples using x-ray diffractometers,M¨ossbauer spectrometers,and vibrating sample magnetometers.Different properties were fitted and analyzed based on x-ray diffraction(XRD),M¨ossbauer spectra, and vibrating sample magnetometer (VSM)data, and the cation distribution and magnetic changes were determined.

    2.Experimental techniques

    2.1.Sample preparation

    In this work, Mg-Ni spinel ferrites, MgxNi1-xFe2O4(x= 0, 0.25, 0.5, 0.75, 1), were prepared using the sol-gel method.The raw materials iron(III) nitrate nonahydrate Fe(NO3)3·9H2O, nickel(II) nitrate hexahydrate Ni(NO3)2·6H2O,magnesium(II)nitrate hexahydrate Mg(NO3)2·6H2O and citric acid C6H8O7were purchased from Macklin.A calculation was made to determine the amount of raw materials required for the experiment.One mole of spinel ferrite requires three moles of nitrate and three moles of citric acid.The desired quantities of reagents were dissolved in 150 ml of deionized water and heated at 80?C.Ammonia was gradually added to the compound solution while stirring to maintain a pH of 7-9.The solution was stirred for 5 h until it evaporated to produce a highly viscous gel.This gel was then baked at 225?C for 4 h,resulting in foamy ferrite powder.A dense ceramic metal oxide is formed by grinding the oxide into a fine powder, then calcining it at 1000?C for 9 h in a muffle furnace.Finally, the calcined metal oxide is ground in a mortar to obtain the finished product.[12]

    2.2.Characterization of the samples

    The XRD patterns of samples were recorded using a Siemens D500 diffractometer with Cuα(λ=1.5418 ?A) radiation, which is in a Bragg angle range (10?≤θ ≤80?).The patterns were analyzed using MDI-JADE software.The M¨ossbauer spectra were obtained at room temperature by a Seeco W304 M¨ossbauer spectrometer with a57Co/Rh source.Spectra were fitted using Mosswinn 4.0 software, and the most appropriate parameters were estimated.A magnetization curve (M-H) for the compounds was determined from VSM measurements at temperatures of 300 K and 5 K,respectively,and from-7 T to 7 T external magnetic field.

    3.Results and discussion

    3.1.X-ray diffraction analysis

    The XRD data of Mg-Ni spinel ferrite MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1) with different Mg2+ion contents are shown in Fig.1.The XRD patterns of the synthesized materials are shown in Figs.1(a)-1(e),respectively,and those of NiFe2O4(PDF:#97-005-2387)and MgFe2O4(PDF:#97-004-0679) in the PDF file are shown in Figs.1(f) and 1(g).The patterns of the materials prepared in the experiment are generally consistent with those of the standard JCPDS cards.Each sample showed identical peaks of planes (220), (331),(400),(422),(511)and(440).Therefore,the single-phase cubic spinel structureFdˉ3mis formed, and all the compounds are spinel ferrites with a face-centered cubic structure.[1]

    Fig.1.Powder XRD patterns of spinel MgxNi1-xFe2O4 (x=0, 0.25,0.5,0.75,1)powers.

    Using the type of diffraction peak and intensity of the diffraction ray, it is possible to calculate the crystallite size(D),the lattice parameter(a),and cell volume of the samples.Based on the Scherrer equation,the crystallite size(D)of the samples was estimated by[17]

    wherekis a constant(the value is usually 0.9),βis the half intensity width of the different peaks,λis the x-ray wavelength,andθis the angle of diffraction.

    The lattice constanta(?A)is calculated from the Nelson-Riley correction and Bragg equation[18]

    whereλis the x-ray wavelength,h,k, andlare the Miller indices,andθis the angle of diffraction.

    Based on the calculated microcrystalline size(D),lattice parameter (a) and cell volume of the samples.The lattice constant increases from 8.3 ?A to 8.4 ?A, within the range of spinel ferrite lattice constants.Grain sizes range from 10 nm to 100 nm, which are larger nanoparticles.The cell volume ranges from 580 ?A3to 600 ?A3, which is within the normal range of Ni-Mg spinel ferrites.The preparation of Ni-Mg spinel ferrite appears to be successful.

    Fig.2.The evolution of the lattice constant of the samples and standard lattice constants of NiFe2O4 and MgFe2O4.

    As it appears on the standard JCPDS cards (NiFe2O4:#97-005-2387;MgFe2O4: #97-004-0679),NiFe2O4has a lattice constant ofa=b=c=8.34577 ?A, and MgFe2O4has a lattice constant ofa=b=c=8.3998 ?A.Standard cards are compared with the calculated results of the experimental data for lattice constants.The lattice constants of the samples and the standard NiFe2O4and MgFe2O4are shown in Fig.2.It can be seen that the samples’lattice constants increase as the amount of Mg2+increases.The lattice constant of the samples increases with increasing Mg2+ion content since the radii of Ni2+ions and Mg2+ions at octahedral positions are 0.069 nm and 0.072 nm, respectively.[19]The lattice constants of synthesized NiFe2O4and MgFe2O4differ slightly from those of the standard JCPDS card.According to Msomiet al.’s[20]study on Co-Ni spinel ferrite,lattice constants have a relationship with annealing temperatures.The lattice constant first increases(200-700?C)and then decreases(700-1100?C)as the annealing temperature increases (200-1100?C).Thus, it is speculated that the higher annealing temperature may have caused the difference in lattice constants between the sample and the standard JCPDS cards.An increase in lattice constant is observed with changes in Mg ion content,which is consistent with the results reported by Rosnanet al.This implies successful Mg2+ion doping.[21]

    3.2.M¨ossbauer spectroscopy analysis

    Due to the strong preference of Ni2+ions for octahedral sites,two sextets were used to fit the M¨ossbauer spectrum data of the NiFe2O4sample.The results of the fitting and the associated parameters are shown in Table 1 and Fig.3(a).The obtained results indicate that the peak area of iron ions in the tetrahedral sites(IA)is 47.5%,while that in the octahedral sites(IB)is 52.5%.The positions of cations can be calculated byIAandIBusing the following formula:[22]

    MgxNi1-xFe2O4(x=0.25,0.5,0.75,1)has a more complicated cation distribution due to the addition of Mg2+ions.Some approximations are introduced to simplify the calculation.For the octahedral sites of Fe3+ions, a sextet (labeled as sextet A) was used for fitting.For the tetrahedral sites of Fe3+ions,a study found that the dominant superexchange interaction for Fe3+ions at octahedral sites is the interaction between A-sites and B-sites: (A)-O-[B].Because it is 15-20 times stronger than the interaction between B-sites and Bsites, only the superexchange between B-sites and A-sites is considered.[23]Tetrahedral sites are considered to contain no nickel ions, since Ni2+ions prefer octahedral sites.Due to the trivalent Fe ions in the sample,the structure has extremely high symmetry, quadruple splitting (QS)=0 mm/s and isomer shift(IS)=0-0.5 mm/s.Many studies[24,25]have reported that the M¨ossbauer spectroscopic parameters of Fe ions at the B site are influenced by the six nearest tetrahedral sites of cations.Depending on the fraction of Mg2+ions at these tetrahedral sites surrounding the Fe ions, different sextets can be observed,denoted as B,B1,...,Bn,wherenis the number of Mg2+ions among the six nearest tetrahedral sites.The probability of observing a certain sextet at the octahedral siteP(n,a)can be expressed as a function of the number of Mg2+ions among the six nearest tetrahedral sites(n)using the following equation:

    whereais the Mg2+ion content of the A-site.P(n,a)values lower than 5%contribute very little to M¨ossbauer spectra and can be omitted.[9]Some papers[16]defineaas the total amount of Mg ionsx, but many studies have shown that MgFe2O4is a disordered spinel ferrite and the value ofadoes not equalx.[19,26]Therefore, in this study, the fitting of the M¨ossbauer spectra for B-sites is not solely based on Eq.(4).M¨ossbauer spectrum data of MgxNi1-xFe2O4withx=0.25,0.5,0.75,and 1 were fitted starting from two sextets.The value of (1-IA)from the fitting was used as the actual Mg2+ion contentafor the A-sites, which was then substituted into Eq.(4).The probability given by Eq.(4)was compared with the fitted peak areas(Irel),and a set of better fitting results was chosen as the final results.This results in four, five, five, and six sextets in the samples withx=0.25,0.5,0.75,and 1,as shown in Fig.3 and Table 1.

    There was substantial agreement between the fitted curve and the experimental data.The crystal blocking temperature is a size-dependent parameter.[27]When the blocking temperature of the crystal falls below test temperature,the thermal energy exceeds the anisotropic energy, and the samples display superparamagnetic behavior.It appears that the M¨ossbauer spectrum is a doublet or a collapse of the M¨ossbauer spectroscopy.The absence of these appearances suggests the synthesized sample has a large grain size,which is consistent with the XRD data.The values of the isomer shift are between 0.1 mm/s and 0.5 mm/s,with the B-site generally higher than the A-site,consistent with other studies.[26]

    Fig.3.Room-temperature 57Fe M¨ossbauer spectra of spinel MgxNi1-xFe2O4 (x=0, 0.25, 0.5, 0.75, 1) powers.Here, EXP and CAL are experimental and computational M¨ossbauer data,respectively.

    Table 1.M¨ossbauer parameters of spinel MgxNi1-xFe2O4 (x=0, 0.25, 0.5, 0.75, 1) powers.Here, IS is isomer shift, Γ is the Lorentzian linewidth,Heff is the hyperfine magnetic field,Irel is relative areas and cations at A and B sites.

    Based on the relative areas of the tetrahedral siteIAand octahedral siteIB, we can calculate the distribution of Fe3+ions.As a result, it gives the cations at A and B sites of MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1), as shown in Table 1.As is evident, Ni2+ion content influences Mg2+ion proportions in tetrahedral sites.When Ni2+ions are abundant,Mg2+ions tend to occupy tetrahedral sites.Furthermore,the distribution of different cations causes different magnetic properties; therefore, it is possible to calculate the saturation magnetic moments of a whole series of samples.[28]The relationship between the saturation magnetic moment and the cation distribution can be calculated using the following formula for each chemical formula of the sample:[29]

    where the notation{}represents the magnetic moment at the B site, and [] represents the magnetic moment at the A site.Here,μN(yùn)iandμFeare 2μBand 5μB,respectively,andδis the inversion degree inThe calculation results are presented in Table 2 and Fig.4.CAL.With increasingx,the sample’s saturation magnetization first increases and then decreases.The trend of the variation of the saturation magnetization is similar to the trend of the doping non-magnetic ion Zn in CoFe2O4.[30]When the value ofxis between 0.25 and 0.5, the results of the M¨ossbauer spectroscopy show a significant number of Mg ions located in the tetrahedral position, which is consistent with previous studies:[19]Ni2+ions prefer octahedral positions more than Mg2+ions, resulting in more non-magnetic Mg2+ions occupying tetrahedral positions.Consequently, the total magnetic moment of tetrahedral sites decreases,and the saturation magnetic moment difference between tetrahedral and octahedral sites becomes greater.Asxreaches 0.5, the saturated magnetic moment reaches its maximum value.Afterwards, with the continued increase in Mg2+ions,the non-magnetic Mg2+ions occupying octahedral sites increase and the Ni2+ions decrease,leading to a rapid decrease in the total saturated magnetic moment within octahedral sites.The difference in the saturation magnetic moment between A and B sites decreases,which makes the saturation magnetic moment of the samples drop continuously.A sample’s saturation magnetic moment ceaselessly decreases before its Ni2+ion content reaches zero.The evolution of the saturated magnetic moment and Mg2+ion contentxclearly demonstrates the correlation between structure and magnetic properties.

    Fig.4.The experimental (EXP) and computational (CAL) saturation magnetic moment of spinel MgxNi1-xFe2O4 (x=0,0.25,0.5,0.75,1)powers.

    Table 2.The experimental and computational saturation magnetic moment of spinel MgxNi1-xFe2O4 (x=0,0.25,0.5,0.75,1)powers.

    3.3.Vibrating sample magnetometer analysis

    Data on the magnetization of the compounds were collected using VSM and are plotted in Figs.5 and 6.The data show typical ferromagnetic behavior at 5 K and 300 K, suggesting that the Curie temperature of the sample is higher than 300 K.The maximum saturation magnetization(Ms)was calculated using the following equation by using the hysteresis loop:[31]

    whereσsis the saturation magnetization intensity in the hysteresis loop at 5 K, andMxis the relative molecular weight of the material.The calculated results are shown in Table 2 and Fig.4.EXP.As the Mg ion content increases, the saturation magnetization decreases from 2.21μBto 2.04μB,then increases to 2.79μB,and finally decreases to 1.44μB.The experimental and computational saturation magnetic moments of the compounds are compared in Fig.4.It is evident that both sets of data show a similar change trend,even though the theoretical data is higher than the experimental data when Mg and Ni ions coexist.The discrepancy between the experimental and theoretical data atx=0,0.25,0.5,and 0.75 may arise from the incomplete consideration of the distribution of Ni ions.Some Ni2+ions may occupy tetrahedral sites,especially when the concentration of Ni2+ions decreases.Some Ni2+ions in octahedral sites may potentially exchange with Mg2+ions in tetrahedral sites.As a result,the magnetic moment at tetrahedral sites increases,while the magnetic moment at octahedral sites decreases, leading to a smaller total magnetic moment.

    Fig.5.Magnetic hysteresis (M-H) loops of spinel MgxNi1-xFe2O4(x=0,0.25,0.5,0.75,1)powers at 5 K.

    Fig.6.Magnetic hysteresis (M-H) loops of spinel MgxNi1-xFe2O4(x=0,0.25,0.5,0.75,1)powers at 300 K.

    4.Conclusions

    In this work, MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1)spinel ferrite materials were successfully prepared using the sol-gel method, and their structure and magnetic properties were analyzed.Based on the results,it can be concluded that the structure and magnetism of the samples are affected by the Mg2+ion contentx.Extensive XRD analysis showed that the sample remained a cubic spinel structureFdˉ3mwith an increase in Mg2+ion contentx.Because the Mg ion radius of octahedral sites is larger than the Ni ion radius, the crystallite size (D), lattice parameter (a), and cell volume gradually increase.According to the M¨ossbauer spectrum analysis, the distribution ratio of Fe3+ions between octahedral sites and tetrahedral sites changes with a change in Mg2+ion contentx.Cations are distributed differently in different materials,resulting in different magnetic properties.M¨ossbauer spectral analysis data are used to calculate the saturation magnetization of the sample.The results indicate that with the change in Mg2+ion contentx, the saturation magnetization of the sample first increases from 2.04μBto 3.22μB,and then decreases to 1.5μB.Based on theM-Hcurve at 5 K and 300 K, it is demonstrated that the sample is a ferromagnetic at room temperature.With an increase in Mg2+ion content, the saturation magnetization decreases from 2.21μBto 2.04μB, then increases to 2.79μB,and finally decreases to 1.44μB.Experimental data and data calculated by structure show the same evolution trend,and the error may be caused by an incomplete consideration of Ni ion distribution.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.11447231), the National Undergraduate Innovation and Entrepreneurship Training Program Support Projects of China,the Natural Science Foundation of Hunan Province,China(Grant No.2020JJ4517),the Research Foundation of the Education Bureau of Hunan Province,China(Grant Nos.19A434, 19A433, and 19C1621), and the Opening Project of the Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China(Grant Nos.2019KFY10 and 2019KFY09).

    猜你喜歡
    劉敏
    失控的逆襲:何苦死磕“渣男”成網(wǎng)紅
    飛翔的風(fēng)箏
    小讀者之友(2021年8期)2021-09-10 05:08:49
    血型也會改變
    抗癌之窗(2021年3期)2021-02-12 08:59:08
    我在聽你歌唱
    歌海(2020年5期)2020-11-16 06:04:02
    還手絹
    金山(2018年3期)2018-04-12 09:19:46
    掙夠50萬去離婚:摳門花心老公必須付出代價
    GENERAL SPLIT FEASIBILITY PROBLEMS FOR TWO FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES?
    都是愛
    詩選刊(2015年4期)2015-10-26 08:45:21
    神秘枕邊人,王子和魔鬼只隔一個微信的距離
    Kinetic and Thermodynamic Studies of Acid Scarlet 3R Adsorption onto Low-cost Adsorbent Developed from Sludge and Straw*
    日韩中文字幕视频在线看片| 两性夫妻黄色片| 视频区欧美日本亚洲| 99re6热这里在线精品视频| 日本欧美视频一区| 亚洲欧美色中文字幕在线| 久久久国产欧美日韩av| 日韩精品免费视频一区二区三区| 三上悠亚av全集在线观看| 久久精品国产a三级三级三级| 精品人妻1区二区| 日韩 欧美 亚洲 中文字幕| 精品人妻在线不人妻| 亚洲男人天堂网一区| 女人久久www免费人成看片| 欧美激情高清一区二区三区| 亚洲av国产av综合av卡| 极品人妻少妇av视频| 欧美少妇被猛烈插入视频| cao死你这个sao货| 丝袜美腿诱惑在线| 超色免费av| 亚洲欧洲国产日韩| 制服人妻中文乱码| 在现免费观看毛片| 美女视频免费永久观看网站| 丝袜喷水一区| 赤兔流量卡办理| 人妻一区二区av| 欧美日本中文国产一区发布| 岛国毛片在线播放| 亚洲国产精品999| 国产高清不卡午夜福利| 免费观看av网站的网址| 成年美女黄网站色视频大全免费| 成在线人永久免费视频| 丝袜美腿诱惑在线| 久久免费观看电影| 午夜av观看不卡| 欧美日韩成人在线一区二区| 国产高清国产精品国产三级| 黄色 视频免费看| 午夜福利,免费看| 亚洲人成电影观看| 高清不卡的av网站| 丝瓜视频免费看黄片| 国产在线免费精品| 十分钟在线观看高清视频www| 99久久综合免费| 久久久久久久国产电影| 免费观看av网站的网址| 一级毛片电影观看| 国产精品久久久久久精品古装| 亚洲男人天堂网一区| 91国产中文字幕| 青青草视频在线视频观看| 日韩中文字幕欧美一区二区 | 狂野欧美激情性xxxx| 一本大道久久a久久精品| 丝瓜视频免费看黄片| 人人妻人人澡人人爽人人夜夜| 又大又黄又爽视频免费| 婷婷色综合www| 丝袜喷水一区| 中国美女看黄片| www.精华液| 亚洲欧美日韩另类电影网站| 亚洲,欧美精品.| 亚洲五月婷婷丁香| 欧美激情高清一区二区三区| 爱豆传媒免费全集在线观看| 亚洲欧美一区二区三区国产| 中文字幕人妻丝袜一区二区| 国产欧美日韩综合在线一区二区| 国产在视频线精品| 欧美变态另类bdsm刘玥| 在线观看免费日韩欧美大片| 精品高清国产在线一区| 欧美在线黄色| 久久性视频一级片| 免费在线观看日本一区| av在线app专区| 久久中文字幕一级| 欧美国产精品一级二级三级| 亚洲精品一卡2卡三卡4卡5卡 | 男人舔女人的私密视频| 秋霞在线观看毛片| 亚洲国产毛片av蜜桃av| 久久久国产精品麻豆| 男女边摸边吃奶| 欧美日韩福利视频一区二区| 亚洲欧美成人综合另类久久久| 国产精品亚洲av一区麻豆| 午夜久久久在线观看| 校园人妻丝袜中文字幕| 亚洲国产精品成人久久小说| 亚洲 国产 在线| 久久狼人影院| 精品人妻熟女毛片av久久网站| 99国产综合亚洲精品| 亚洲激情五月婷婷啪啪| bbb黄色大片| 亚洲国产中文字幕在线视频| 亚洲 欧美一区二区三区| 老司机深夜福利视频在线观看 | www日本在线高清视频| 国产精品久久久久久精品古装| 成年动漫av网址| 国产亚洲欧美在线一区二区| 国产成人精品久久久久久| 丝袜人妻中文字幕| 精品国产一区二区久久| 欧美中文综合在线视频| 啦啦啦视频在线资源免费观看| 2021少妇久久久久久久久久久| 国产日韩欧美视频二区| 国产日韩欧美在线精品| 香蕉丝袜av| 国产一区二区三区av在线| 亚洲国产中文字幕在线视频| av国产精品久久久久影院| 天天躁日日躁夜夜躁夜夜| 亚洲国产欧美日韩在线播放| 日本91视频免费播放| 成年人免费黄色播放视频| 久久天躁狠狠躁夜夜2o2o | 老司机在亚洲福利影院| 婷婷色av中文字幕| 18禁观看日本| 精品一品国产午夜福利视频| 日韩熟女老妇一区二区性免费视频| 久久天躁狠狠躁夜夜2o2o | 丝袜在线中文字幕| 久久国产精品男人的天堂亚洲| 欧美黄色片欧美黄色片| 纵有疾风起免费观看全集完整版| 精品一区二区三区四区五区乱码 | 国产日韩欧美亚洲二区| 久久久久精品人妻al黑| 国产免费福利视频在线观看| 观看av在线不卡| 精品欧美一区二区三区在线| 日日夜夜操网爽| 欧美国产精品va在线观看不卡| 久久精品久久久久久久性| 纯流量卡能插随身wifi吗| 国产一区有黄有色的免费视频| 99re6热这里在线精品视频| 天堂中文最新版在线下载| 国产黄色免费在线视频| av网站在线播放免费| 少妇猛男粗大的猛烈进出视频| 欧美精品一区二区免费开放| 亚洲av日韩在线播放| 国产精品国产三级专区第一集| 久久这里只有精品19| 50天的宝宝边吃奶边哭怎么回事| 水蜜桃什么品种好| 黄片播放在线免费| 日本一区二区免费在线视频| 亚洲国产欧美在线一区| 国产av国产精品国产| 超碰成人久久| 国产成人欧美| 国产在线一区二区三区精| 久久久精品免费免费高清| 美女高潮到喷水免费观看| 满18在线观看网站| 免费不卡黄色视频| 99国产精品99久久久久| 欧美日韩黄片免| 91麻豆精品激情在线观看国产 | 下体分泌物呈黄色| videos熟女内射| 亚洲,欧美精品.| 亚洲黑人精品在线| av又黄又爽大尺度在线免费看| 黑人猛操日本美女一级片| av线在线观看网站| 美女中出高潮动态图| 亚洲九九香蕉| 视频区图区小说| 一本色道久久久久久精品综合| 99九九在线精品视频| 热re99久久精品国产66热6| 国产亚洲av片在线观看秒播厂| 亚洲,欧美精品.| 色精品久久人妻99蜜桃| 欧美日韩视频高清一区二区三区二| 热re99久久精品国产66热6| 80岁老熟妇乱子伦牲交| 色网站视频免费| 国产国语露脸激情在线看| 丰满迷人的少妇在线观看| 侵犯人妻中文字幕一二三四区| 国产精品久久久av美女十八| 久久鲁丝午夜福利片| 中国美女看黄片| 欧美日韩亚洲国产一区二区在线观看 | 国产黄色视频一区二区在线观看| 婷婷色综合www| 纯流量卡能插随身wifi吗| 国产欧美日韩精品亚洲av| 国产女主播在线喷水免费视频网站| 免费不卡黄色视频| 国产99久久九九免费精品| 国产精品久久久久久精品电影小说| 极品少妇高潮喷水抽搐| 美女高潮到喷水免费观看| 亚洲伊人久久精品综合| 久久青草综合色| 久久久久国产精品人妻一区二区| 搡老岳熟女国产| 看十八女毛片水多多多| 波多野结衣一区麻豆| 久久ye,这里只有精品| 老司机影院成人| 中文字幕制服av| 宅男免费午夜| 男女下面插进去视频免费观看| 国产成人免费观看mmmm| 好男人视频免费观看在线| 飞空精品影院首页| 亚洲av美国av| 亚洲精品自拍成人| 99香蕉大伊视频| 成人18禁高潮啪啪吃奶动态图| 男人爽女人下面视频在线观看| 国产亚洲精品第一综合不卡| 成人免费观看视频高清| 国产精品国产三级专区第一集| 大码成人一级视频| 国语对白做爰xxxⅹ性视频网站| 精品亚洲乱码少妇综合久久| 日韩,欧美,国产一区二区三区| 青草久久国产| 久久人人爽av亚洲精品天堂| 丰满饥渴人妻一区二区三| 日韩,欧美,国产一区二区三区| 久久精品久久久久久噜噜老黄| 黄色毛片三级朝国网站| 国产亚洲精品第一综合不卡| 亚洲国产精品一区二区三区在线| 青春草视频在线免费观看| 日本欧美国产在线视频| 伊人久久大香线蕉亚洲五| 在线精品无人区一区二区三| 久久天堂一区二区三区四区| 午夜福利视频在线观看免费| 亚洲欧美色中文字幕在线| 我要看黄色一级片免费的| 伊人久久大香线蕉亚洲五| www.av在线官网国产| 国产一区二区三区av在线| 50天的宝宝边吃奶边哭怎么回事| 久久久精品区二区三区| 少妇被粗大的猛进出69影院| 男女之事视频高清在线观看 | 一区二区三区四区激情视频| 国产亚洲av高清不卡| 国产又色又爽无遮挡免| 久久久亚洲精品成人影院| 午夜久久久在线观看| 国产老妇伦熟女老妇高清| 亚洲精品久久成人aⅴ小说| 欧美在线一区亚洲| 国产亚洲欧美精品永久| 97人妻天天添夜夜摸| 久久天堂一区二区三区四区| 一区在线观看完整版| 高清不卡的av网站| 精品少妇黑人巨大在线播放| 高清av免费在线| 久久精品久久久久久久性| 99国产精品99久久久久| 黑人巨大精品欧美一区二区蜜桃| 亚洲黑人精品在线| 脱女人内裤的视频| 国产免费又黄又爽又色| 亚洲美女黄色视频免费看| 美国免费a级毛片| 1024香蕉在线观看| 欧美黄色淫秽网站| 久久久久久免费高清国产稀缺| 成人亚洲欧美一区二区av| 多毛熟女@视频| av线在线观看网站| 一区二区三区精品91| 国产免费一区二区三区四区乱码| 国产精品国产av在线观看| 久久这里只有精品19| 国产视频一区二区在线看| 国产在线免费精品| 美女扒开内裤让男人捅视频| 久久久久久免费高清国产稀缺| 你懂的网址亚洲精品在线观看| 9色porny在线观看| 波多野结衣av一区二区av| 国产精品偷伦视频观看了| 99久久99久久久精品蜜桃| 亚洲精品一二三| 狠狠精品人妻久久久久久综合| a级片在线免费高清观看视频| 日本一区二区免费在线视频| 热99国产精品久久久久久7| 深夜精品福利| 最新在线观看一区二区三区 | 99久久人妻综合| 电影成人av| 好男人视频免费观看在线| 国产av一区二区精品久久| 69精品国产乱码久久久| 我要看黄色一级片免费的| 尾随美女入室| 国产精品人妻久久久影院| 国产一级毛片在线| 亚洲av欧美aⅴ国产| 精品高清国产在线一区| 午夜福利乱码中文字幕| 亚洲人成电影免费在线| 手机成人av网站| 成人亚洲精品一区在线观看| 在线观看国产h片| 亚洲欧美色中文字幕在线| 亚洲天堂av无毛| 欧美日韩国产mv在线观看视频| 两个人免费观看高清视频| 在线观看免费午夜福利视频| 老司机亚洲免费影院| 99re6热这里在线精品视频| 在线av久久热| 久久久久网色| 女人久久www免费人成看片| 久久ye,这里只有精品| 日韩制服丝袜自拍偷拍| 日韩大码丰满熟妇| 国产成人免费无遮挡视频| 久久精品aⅴ一区二区三区四区| 久9热在线精品视频| 我要看黄色一级片免费的| 免费看不卡的av| 别揉我奶头~嗯~啊~动态视频 | 亚洲欧美激情在线| 九草在线视频观看| 午夜激情久久久久久久| 美女视频免费永久观看网站| 永久免费av网站大全| 黄色a级毛片大全视频| 免费少妇av软件| 国产色视频综合| 美女福利国产在线| 天天躁夜夜躁狠狠躁躁| 男女下面插进去视频免费观看| 天堂8中文在线网| 嫩草影视91久久| 精品少妇黑人巨大在线播放| 99热国产这里只有精品6| 91九色精品人成在线观看| 精品人妻一区二区三区麻豆| 母亲3免费完整高清在线观看| 国产精品欧美亚洲77777| 欧美成人精品欧美一级黄| 国产男女超爽视频在线观看| 老汉色av国产亚洲站长工具| 美女主播在线视频| 亚洲欧美日韩另类电影网站| 最近中文字幕2019免费版| 搡老乐熟女国产| av线在线观看网站| 亚洲色图 男人天堂 中文字幕| 下体分泌物呈黄色| 少妇裸体淫交视频免费看高清 | 欧美 日韩 精品 国产| 女人久久www免费人成看片| 国产亚洲午夜精品一区二区久久| 亚洲成人手机| 丰满少妇做爰视频| 久久久精品免费免费高清| av福利片在线| 精品第一国产精品| 老司机在亚洲福利影院| 国产精品二区激情视频| 可以免费在线观看a视频的电影网站| 欧美成人精品欧美一级黄| 纵有疾风起免费观看全集完整版| 国产99久久九九免费精品| 久久精品熟女亚洲av麻豆精品| 亚洲专区国产一区二区| 免费在线观看完整版高清| 少妇人妻 视频| 精品国产国语对白av| 涩涩av久久男人的天堂| www.999成人在线观看| 99精国产麻豆久久婷婷| 欧美少妇被猛烈插入视频| 在线亚洲精品国产二区图片欧美| 午夜福利在线免费观看网站| 亚洲精品国产一区二区精华液| 纯流量卡能插随身wifi吗| 亚洲av国产av综合av卡| 超碰成人久久| 久久久国产精品麻豆| 人人澡人人妻人| 久久精品aⅴ一区二区三区四区| 两人在一起打扑克的视频| 蜜桃国产av成人99| 日韩av不卡免费在线播放| 又黄又粗又硬又大视频| 黄色视频不卡| 精品第一国产精品| 久久亚洲精品不卡| 久久久久视频综合| 黑人巨大精品欧美一区二区蜜桃| 欧美精品一区二区免费开放| 黄色视频在线播放观看不卡| 成在线人永久免费视频| 午夜免费鲁丝| 波野结衣二区三区在线| 超碰成人久久| 18在线观看网站| 婷婷成人精品国产| 日韩一卡2卡3卡4卡2021年| 波多野结衣av一区二区av| 高清av免费在线| kizo精华| 久久国产亚洲av麻豆专区| 老司机影院毛片| 不卡av一区二区三区| 亚洲国产欧美一区二区综合| 妹子高潮喷水视频| 亚洲欧洲国产日韩| 国产xxxxx性猛交| 男女国产视频网站| 国产欧美亚洲国产| 夜夜骑夜夜射夜夜干| 交换朋友夫妻互换小说| 免费看av在线观看网站| 色婷婷av一区二区三区视频| 日韩 欧美 亚洲 中文字幕| 欧美精品av麻豆av| 五月开心婷婷网| 无限看片的www在线观看| av网站免费在线观看视频| 亚洲欧美日韩另类电影网站| 免费在线观看黄色视频的| 亚洲 国产 在线| 国产成人欧美在线观看 | 女人精品久久久久毛片| 日韩欧美一区视频在线观看| 久久久久久久久免费视频了| 咕卡用的链子| 在现免费观看毛片| 午夜福利在线免费观看网站| 久久久久久久精品精品| 亚洲国产精品999| 国产精品 欧美亚洲| 国产淫语在线视频| 国产男女内射视频| 亚洲国产看品久久| 中文精品一卡2卡3卡4更新| 亚洲第一av免费看| 国产亚洲欧美精品永久| 国产一区有黄有色的免费视频| 各种免费的搞黄视频| 18禁观看日本| 人人妻人人澡人人看| 精品亚洲乱码少妇综合久久| 亚洲av成人精品一二三区| av天堂在线播放| 首页视频小说图片口味搜索 | 国产av精品麻豆| 久久青草综合色| 国产精品二区激情视频| 50天的宝宝边吃奶边哭怎么回事| 欧美激情 高清一区二区三区| 久久国产精品人妻蜜桃| 人妻一区二区av| 黄色怎么调成土黄色| 国产精品久久久人人做人人爽| 亚洲综合色网址| 少妇精品久久久久久久| 亚洲av成人精品一二三区| 亚洲国产欧美日韩在线播放| 欧美精品一区二区免费开放| 建设人人有责人人尽责人人享有的| 天天躁夜夜躁狠狠久久av| 欧美日韩av久久| 99国产精品一区二区蜜桃av | 国产精品久久久av美女十八| 成人国语在线视频| 国产亚洲av片在线观看秒播厂| 性少妇av在线| 人人妻,人人澡人人爽秒播 | 超碰成人久久| 在线看a的网站| 亚洲精品日本国产第一区| 日本a在线网址| 婷婷色综合www| 国产免费福利视频在线观看| 性色av一级| 操美女的视频在线观看| 国产一卡二卡三卡精品| 丰满少妇做爰视频| 欧美亚洲 丝袜 人妻 在线| 自线自在国产av| 国产精品免费大片| 美女高潮到喷水免费观看| 中文乱码字字幕精品一区二区三区| 亚洲五月婷婷丁香| 日本91视频免费播放| 制服人妻中文乱码| 亚洲九九香蕉| 亚洲一区中文字幕在线| av网站免费在线观看视频| 男男h啪啪无遮挡| 97精品久久久久久久久久精品| 高清黄色对白视频在线免费看| 中文乱码字字幕精品一区二区三区| 亚洲av日韩在线播放| 欧美人与性动交α欧美软件| 中文字幕另类日韩欧美亚洲嫩草| 欧美性长视频在线观看| 男女下面插进去视频免费观看| 曰老女人黄片| 亚洲国产欧美一区二区综合| 又紧又爽又黄一区二区| 亚洲五月婷婷丁香| 欧美日韩亚洲高清精品| 99热国产这里只有精品6| 嫩草影视91久久| 99热网站在线观看| 少妇精品久久久久久久| 啦啦啦在线观看免费高清www| 精品视频人人做人人爽| 亚洲精品国产色婷婷电影| 熟女av电影| 久久久久久久精品精品| 大香蕉久久网| 王馨瑶露胸无遮挡在线观看| 香蕉丝袜av| a级毛片黄视频| 又大又爽又粗| 亚洲专区中文字幕在线| 亚洲国产欧美在线一区| 18禁国产床啪视频网站| 久久 成人 亚洲| 一级毛片黄色毛片免费观看视频| 99国产精品一区二区三区| 纵有疾风起免费观看全集完整版| 久久久久久久久免费视频了| 秋霞在线观看毛片| 超色免费av| 999精品在线视频| 国产国语露脸激情在线看| 嫩草影视91久久| 国产97色在线日韩免费| 日韩视频在线欧美| 激情五月婷婷亚洲| 欧美人与善性xxx| 国产免费视频播放在线视频| 美女脱内裤让男人舔精品视频| 国产精品熟女久久久久浪| 日韩一本色道免费dvd| 亚洲熟女毛片儿| 免费观看a级毛片全部| 99久久人妻综合| 精品欧美一区二区三区在线| 考比视频在线观看| 久久久久久久久免费视频了| 国产在线免费精品| 国产在视频线精品| 老鸭窝网址在线观看| 亚洲精品在线美女| 亚洲欧美成人综合另类久久久| 天天躁狠狠躁夜夜躁狠狠躁| www.精华液| 男女床上黄色一级片免费看| 少妇猛男粗大的猛烈进出视频| 亚洲成色77777| 97人妻天天添夜夜摸| 色婷婷av一区二区三区视频| 亚洲成av片中文字幕在线观看| a级毛片黄视频| 精品久久久久久电影网| 人人妻人人爽人人添夜夜欢视频| 男人爽女人下面视频在线观看| 国产成人一区二区三区免费视频网站 | 亚洲成av片中文字幕在线观看| 成年人午夜在线观看视频| 国产精品秋霞免费鲁丝片| 国产一卡二卡三卡精品| 欧美国产精品va在线观看不卡| 视频区图区小说| 国产伦理片在线播放av一区| 99国产精品一区二区三区| bbb黄色大片| 欧美激情 高清一区二区三区| www日本在线高清视频| 少妇人妻 视频| 欧美黄色片欧美黄色片| 手机成人av网站| 免费不卡黄色视频| 日本黄色日本黄色录像| 亚洲专区国产一区二区| 中文字幕色久视频| 亚洲中文av在线| 久久久精品区二区三区| 国产激情久久老熟女| 美女脱内裤让男人舔精品视频| 每晚都被弄得嗷嗷叫到高潮| 国产高清videossex| 狠狠婷婷综合久久久久久88av| 中文字幕制服av| 久久国产精品人妻蜜桃| 国产精品久久久久久人妻精品电影 |