• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy-distributable waterborne acoustic launcher for directional sensing

    2023-12-15 11:51:32TianYang楊天WentingGao高文婷ShidaFan范世達(dá)JieRen任捷andTianzhiYang楊天智
    Chinese Physics B 2023年12期

    Tian Yang(楊天), Wenting Gao(高文婷), Shida Fan(范世達(dá)), Jie Ren(任捷), and Tianzhi Yang(楊天智),?

    1School of Mechanical Engineering and Automation,Northeastern University,Shenyang 110819,China

    2Center for Phononics and Thermal Energy Science,Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology,School of Physics Sciences and Engineering,Tongji University,Shanghai 200092,China

    Keywords: underwater sound,acoustic sensing and acquisition,metamaterials

    During the last decades, significant advances have been achieved in metasurfaces.[1-10]More recently, waterborne acoustic metasurfaces have received extensive interest.Exotic waterborne acoustic behaviors have been observed successively.[11,12]However, superdirectional underwater acoustic signal transmission remains a great challenge due to the strong fluid-solid interaction(FSI).Previous waterborne acoustic lens equipment has many defects such as large acoustic beam side lobes and poor noise immunity.Hence,a novel device that can overcome the drawbacks of traditional underwater acoustic techniques and the limitations of the FSI is urgently needed to be developed.In recent years,derived from research on condensed-matter physics,quantumlike effects in topological acoustic systems have been widely noticed,[13-18]such as acoustic spin.[18-21]Many exotic acoustic behaviors can be predicted to depend on the distribution of acoustic spin.In addition, superdirectional airborne and waterborne acoustic transmission which overcome the limitations of beamwidth and effective frequency range have been realized recently.[7,22,23]However,waterborne acoustic power distribution and the prediction of superdirectional behavior still need further discussion based on waterborne phononic crystals(PCs).

    In this paper, we apply a design of the valley-hall topology insulator (VHTI) to underwater acoustic communication and propose a directional waterborne topology acoustic launcher (WTAL) with an energy distribution function as shown in Fig.1.[16,24-26]Unlike airborne environments, the FSI is significantly evident in water.To obtain a large relative elastic modulus of the unit cells against the FSI,stainless steel(ASTM 1045) was selected to build WTALs.The material properties of the unit cells are listed in Table 1.Emitted parallel needle-like acoustic beams are received only by target audiences.Remarkably,the width of the output path is so narrow that the signal is not leaked to non-target listeners.Furthermore, the acoustic spin angular momentum and energy flow distribution at different interfaces inside the phononic crystal are provided and they show tight coupling.Energy changes in different sound paths can be achieved by simply adjusting the internal structure of the WTALs.In this sense,superdirectional acoustic energy distribution can be achieved based on such a platform with multiple tunable sound channels.

    Table 1.Material properties.

    As the acoustic kagome lattice PnC shown in Fig.1,gray areas represent the topological order origin with theC3spatial symmetry.To induce the topological phase transition, theC6symmetry is reduced by modulating the hopping amplitudee.Here,the kagome lattices are constructed of the trimers where the lattice constanta= 30 mm, the edge length of strictly symmetric trimerb=19.9 mm,ande=0.9 mm.The model and simulations are performed by the finite element software COMSOL Multiphysics.In this regime, two different valley states of the acoustic trimer located at the topological order origin (rotation angleθ=0?) intersect at the Dirac point in Fig.2(a).To transform the topological modes and initiate edge states,lattice deformations are introduced to break theC6symmetry in time-reversal (TR) invariant systems.Specifically,two reversible topological phases are realized via rotating the acoustic trimers.As shown in Fig.2(a),similar to the energy band inversion effect, two opposite valley states take place,corresponding toθ=±30?, and the opening of the Dirac cone is observed.As a result of the topological transition in PnC withθ/=0?,a separated band gap of 26.3-30.3 kHz(the widening of the band gap is discussed in supplementary material I)appears at the corner of the first Brillouin zone(BZ).It is worth noting that the yellow curves corresponding to the two band gaps with the acoustic spine shape represent opposite topological characteristics.

    Fig.1.Schematic diagram of WTALs with an energy distribution function.The sound signal is focused on a target audience and cannot be leaked to undesired listeners.The energy of the sound signals focused on different target audiences is tunable.

    Fig.2.Band inversion and the acoustic spin mode of the acoustic trimers.(a)With the rotation angle θ =0?,a Dirac cone appears.The band inversion effect takes place with θ =±30?.(b)The color indicates distributions of acoustic spin normalized according to the maximum absolute acoustic spin at K and K′ points with θ =±30?.The unit of acoustic spin is kg·m-1·s-1.The black arrows represent the intensity and direction of energy flow.(c)Illustration of the dispersion relation of the superlattice.The blue(red)curve highlights the edge modes.Insets: the solid blue(red)line represents the positive-type(negative-type)interface.[(d),(e)]Illustrated distributions of energy flow and the acoustic spin normalized according to the maximum absolute acoustic spin at K and K′ points along the positive-and negative-type interfaces,respectively.

    To illustrate the topological mechanism, the effective Hamiltonian and valley-Chern indices are provided according to the first-order Kadomtsev-Petviashvili perturbation theory.Specifically, subjected to the limited number of eigenmodes,H(k⊥)≡H(δk) =vD(δkxσx+δkyσy+mvDσz) is an approximation, andmis the effective mass defined asm=(ωk+1+ωk-2)/(2v2D), whereωkrepresents the band-edge frequency.[23]It is valid only in close proximity to the highsymmetryKandK′points of the BZ, wherevDis the group velocity,σi(i=x,y,z) are Pauli matrices of the valley states as the orbital degree of freedom, andδkis the distance from the Dirac points to theK(K′) points, respectively.[27,28]By considering the TR symmetry, the effective Hamiltonian in the inequivalentK′point can be derived directly asH(δk′)=vD(-δkxσx+δkyσy+mvDσz).The sign of the geometrical perturbation?pis determined by the rotation angle of acoustic trimers.In other words,?p< 0 (?p>0) corresponds toθ=-30?(30?).Furthermore, the non-vanishing valley-Chern indices can be expressed as 2C=±1×sgn(?p).[25,26,29]Considering the FSI,a large relative bulk elastic modulus of a trimer should be obtained after perturbation.It means that a large difference in elastic modulus between trimers and water is established.Otherwise, the relative elastic modulus of the trimers(e.g.,resins,etc.) is so small that no topological band gap appears.

    In Fig.2(b), the acoustic spin distribution for all modes of the PCs are described.The acoustic spin can be quantitatively illustrated aswhereρis the mass density,ωis the frequency,νis the particle vibration(acoustic)velocity, andν?is the conjugate ofν.Here, the acoustic spin is a spatial distribution rather than pure positive or negative values.In general, topological properties of the valley states at theKpoint are considered in focus, and the properties in the inequivalentK′point can be derived directly by considering the TR symmetry.The insets in Fig.2(b) illustrate the intensity of the energy flow and the distributions of the acoustic spin at the valley states.For the erected trimers in the lattice, the lower boundary state of the acoustic spin is marked asK1, and the higher boundary state is labeled asK2.For an upside-down lattice, the state of the acoustic spin is the opposite to that in erected lattice.This is the micrometric basis of acoustic topological valley transport at the interface between two VHTIs.As shown in Fig.2(c),the dispersion curves of both single ribbon-shaped superlattices separated by a zigzag interface are calculated.Notably,the zigzag interfaces are designed oppositely clearly.The positive-type(negative-type) interface is marked by a solid blue (red) line.As a key manifestation of the topological insulator,both spindependent one-way edge modes with opposite group velocities marked by blue and red lines are observed in the bulk band gap with the range from 26.3 kHz to 28.3 kHz.Figures 2(d) and 2(e)illustrate the distributions of the acoustic spin and energy flow in the positive-and negative-type interfaces.Obviously,the modes of different directions are of opposite acoustic spins in the acoustic spine interface, and the tight spin-momentum locking is observed in the topological system as previously verified in experiments.[20,21,30,31]Similar to the spin profile of the Gaussian beam of longitudinal acoustic wave,as shown in Ref.[17],the two sides of the acoustic beam transmitted along a zigzag interface have opposite spin distributions.Furthermore,the intensity of spin and energy density show a gradual debilitating trend on both sides.

    Fig.3.Topologically protected edge states at the positive-type interfaces with K′ valley polarization.(a)Transmission spectra of the topological valley transport with and without bends.Inset:simulated absolute pressure fields at the frequency f =28.3 kHz.The point source is located at the purple pentagram.(b)The model of WTAL with double positive-type interfaces.Blue dashed lines and red dashed lines represent positive-and negative-type interfaces,respectively.Here n1 and n2 indicate the number of rows of upside-down and erected trimers,respectively.The blue arrows represent acoustic transmission paths.Insets: details of the interfaces leading to the upper and lower sound paths.(c),(d),(e),(f)]Distributions of acoustic spin and energy flow at n1 =22(n2 =2),n1 =19(n2 =5),n1=12(n2=12),and n1=2(n2=22),respectively.

    On the one hand, the launching and out-coupling of the valley-polarized edge states are the pivotal mechanism of WTALs inside the PCs.Local edge states out of the bulk band gap are supported at the interface between two valley-Hall PCs with different valley polarization.As shown in the inset of Fig.3(a), the topologically protected edge states of the straight and bent interfaces are observed.As an example,the two PCs are separated by a negative interface in a finite VHTI with 30a×30aunit cells.Only one valley polarized edge state propagates in the lock direction of the given valley, rested on an edge state atK′(K) point with ?C=-1(?C=1).Sound topological valley transport with remarkable immunity effect is localized at the proximity of the interface.High transmission of sound waves is sustained across the topological band gap.However, the bulk states disappear from the topological band gap and the transmission is measured below-30 dB as shown in Fig.3(a).Meanwhile,to observe the acoustic behavior of sound waves in multi-interface WTAL, two finite VHTIs connected in parallel at the right termination of the WTALs containing 60a×30aunit cells are established in Fig.3(b).Both VHTIs are composed of 20 columns andni(i=1,2) rows, whereniis natural numbers, andn1+n2=24.A sound point source at 28.3 kHz is launched along the positive-type interface projected from theK′valley.Obviously, the positive-type interfaces are located above and below the two VHTIs,respectively.However,they are separated by a negative-type interface.It means that sound waves projected along the positive-type interface from theK′valley cannot pass through the negative-type interface between VHTIs from left to right.By varyingn1andn2, the distribution shift of the normalized energy fields and the acoustic spin are shown in Figs.3(c)-3(f), sequentially.A clear and consistent variable trend of the acoustic spin and energy density is observed.It is noted that the types of interfaces leading to the upper and lower sound paths are different as shown in the insets of Fig.3(b).The interface of the downward sound path is perfectly matched to the initial interface, while the match of the upward sound path is so poor relatively that a higher impedance is exhibited.As a result,approximate equal distribution does not appear atn1=n2=12 in Fig.3(e) but takes place atn1=19(n2=5)in Fig.3(d).

    Fig.4.Superdirectional sound radiation of the WTALs.[(a), (d)] Distribution of acoustic spin corresponding to K and K′ valleyprojected along the negative-type (positive-type) interface in k space at f =28.3 kHz.A black solid hexagon indicates the 1st BZ and the black dashed circle represents the dispersion.[(b),(e)]Far-field distributions of normalized energy and sound pressure fields along the negative-type (positive-type) interface at f =28.3 kHz.[(c), (f)] Normalized acoustical energy spectra in the range of 26.3-30.3 kHz.

    On the other hand, the acoustic energy launches into free space directionally along the positive-type and negativetype out-coupled interfaces of the WTALs as illustrated in Fig.4.The edge state guarantees reflection-free out-coupling which is essentially valley-projection.Moreover, whether inter-valley scattering is suppressed depends on the terminal type of the WTALs.A vanishing intervalley field overlap ensures that the undesired diffraction cannot take place at the zigzag termination of the WTALs.[26]Here, the radiation direction of the acoustic beam depends on the valley type of the projected edge state, which can be obtained according to the distribution of acoustic spin in Fig.2.As shown in Figs.4(a)and 4(d), the distribution of acoustic spin from left to right along the negative-type interface is consistent with the superlattice at?+pstate which is projected from theKvalley in Fig.2(d).It means that the negative-type interface corresponds to the excitation from theKvalley.Likewise, sound waves launched along the positive-type interface are projected from theK′valley.To obtain the refraction direction of the acoustic beam, the equifrequency curves in free space and the BZ are plotted on the acoustic spine scale.Along the direction parallel to the terminal of WTALs, the component of the incident wavevectorK(K′) is matched with the frequency curve in free space owing to the momentum conservation parallel to the WTALs boundary.Specifically, the refraction angle at the frequency 28.3 kHz can be calculatedLikewise, the refraction angle can also be determined to beθ+= 6.08?at the acoustic spine frequency for the WTALs with the positive-type interface.

    Fig.5.The model of WTAL with double positive-type interfaces.(a)Demonstration of superdirectional acoustic energy distribution with tunable WTALs.(b) Relationships between the normalized energy of the upper and lower paths and the number of rows of inverted and vertical trimers.[(c),(d),(e),(f)]Distributions of acoustic pressure fields at n1=22(n2=2),n1=19(n2=5),n1=12(n2=12),and n1=2(n2=22),respectively,and marked with the energy percentage in each sound path.

    To verify the prediction of the theoretical refraction angles,the far-field radiation patterns of WTALs with negativeand positive-type interfaces are scanned within an angular range shown in Figs.4(b)and 4(e).The observedθ-=-66?andθ+=6?demonstrate indirectly that the out-coupled edge states obey the superdirectional selection rule of the valley projection.Positive (negative) angle acoustic refraction is completely suppressed by the WTAL with a negative-type(positive-type) interface.Furthermore, the far-field normalized energy spectra are observed across the entire frequency range of the topological band gap in Figs.4(c) and 4(f).It means that functions of the proposed WTALs can be implemented between 28.3 kHz and 30.3 kHz.Additionally, three remarks need to be clarified: (1) The theoretical predictions are in great agreement with the simulation results.The small angular difference originates from the detection step of 1?during the simulation.(2)The half-energy beamwidth of the main lobe of WTALs with negative(positive)interfaces is 20?(14?)without side lobes.Protected and efficient energy transfer ensures that the sound can be focused on the target audience without being compromised.(3) The peak amplitudes of the far-field radiation of WTALs are about 6.63 times than the standard acoustic waveguides.Considering thermal adhesion effect of acoustic structures,the actual gain should be reduced than theoretical gain as shown in supplementary material II.It implies that superdirectional transmission appears universally at considerable far-field sound levels.

    Accurate superdirectional acoustic signal focusing not only is significant in underwater communication but also plays an important role in multi-channel acoustic information transmission.Considering both the internal and external characteristics of PCs, superdirectional acoustic energy distribution in parallel dual channels can be achieved with tunable WTALs in underwater acoustic environments.As illustrated in Fig.5, a sound point source at 28.3 kHz is launched along the positivetype interface projected from theK′valley as an example.The WTAL is acoustic spine as the one shown in Fig.3(b).As a result, parallel acoustic signals launched from the termination of the two positive-type interfaces can be obtained.Not only the two acoustic beams can be kept at a fixed interval relying onn1+n2=24, but their energy distribution will be achieved by rotating the unit cells in a whole row to varyn1andn2.Curves of the normalized energy distribution withniare shown in Fig.5(b).Specifically, the distribution of the sound pressure fields with the energy shift trend are shown in Figs.5(c)-5(f),sequentially.It is noted that equal distribution of energy does not take place atn1=n2=12 in Fig.5(e).As shown in the insets of Fig.5(a),the types of interfaces leading to the upper and lower sound paths are different.The interface of the downward sound path is perfectly matched to the initial interface,while the match of the upward sound path is so poor relatively that a higher impedance is exhibited.Thus,the intersection point of the energy distribution curve appears on one side instead of the middle in Fig.5(b), and approximate equal distribution of energy takes place atn1=19(n2=5)in Fig.5(d).Similarly, acoustic energy distribution can also be realized by launching along the negative-type interface projected from theKvalley.Rested on the above model, multichannel sound energy distribution at different intervals can be realized,depending on the requirements of the actual application.

    In summary,we propose directional WTALs with an energy distribution function based on valley-hall topological insulators,which not only launch parallel needle-like signals in a specific direction but also control the energy of the acoustic signal from different sound paths.Unlike airborne environments, the FSI is significantly evident in water.To obtain a large relative elastic modulus of the trimers against the FSI,ASTM 1045 was selected to build WTALs.The distributions of angular momentum and energy flow in different cases are observed.Furthermore,high energy level communication is realized, relying on out-coupling and sustaining of valleypolarized edge states.WTALs can not only radiate superdirectional acoustic beams with a width of less than 20?but also adjust their energy.The theoretical predictions and simulation results are in good agreement.In addition, the equipment is expected to be further optimized towards miniaturization and broadbanding in the future.Superdirectional WTALs provide a desirable idea for high-energy-level directional collimated underwater sensing and underwater acoustic energy distribution.In this sense,multi-level directional acoustic energy distribution can be achieved potentially based on such a platform with multiple tunable sound channels.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Grant Nos.12232014 and 12072221)and the Fundamental Research Funds for the Central Universities(Grant No.2013017).

    亚洲欧美日韩高清在线视频 | 一区二区三区精品91| 51午夜福利影视在线观看| 亚洲美女黄色视频免费看| 黄色片一级片一级黄色片| av网站免费在线观看视频| 女性生殖器流出的白浆| 黄色视频在线播放观看不卡| 亚洲精品一二三| 国产高清视频在线播放一区 | 观看av在线不卡| 亚洲av国产av综合av卡| 黄色视频不卡| 手机成人av网站| 一级毛片女人18水好多 | 无限看片的www在线观看| 国产成人免费无遮挡视频| 午夜久久久在线观看| 大码成人一级视频| 成人国语在线视频| 日本wwww免费看| 久久女婷五月综合色啪小说| 久久精品国产a三级三级三级| 亚洲成人免费电影在线观看 | 亚洲欧美激情在线| 精品国产国语对白av| 免费看av在线观看网站| 亚洲精品久久成人aⅴ小说| 亚洲欧美色中文字幕在线| 少妇猛男粗大的猛烈进出视频| 中文字幕人妻丝袜制服| 日韩视频在线欧美| 天堂俺去俺来也www色官网| 亚洲精品日本国产第一区| 99国产精品99久久久久| 夫妻午夜视频| xxx大片免费视频| 久久人妻熟女aⅴ| 男人添女人高潮全过程视频| 国产精品久久久久久精品电影小说| 日韩免费高清中文字幕av| 日韩免费高清中文字幕av| 午夜精品国产一区二区电影| 国产xxxxx性猛交| 一个人免费看片子| 日韩 亚洲 欧美在线| 午夜久久久在线观看| 满18在线观看网站| 成年人免费黄色播放视频| 亚洲成人手机| 美女脱内裤让男人舔精品视频| 女性生殖器流出的白浆| 人妻 亚洲 视频| 一区福利在线观看| 免费高清在线观看日韩| 免费高清在线观看日韩| 国产淫语在线视频| 丝袜在线中文字幕| 亚洲欧美一区二区三区久久| 中文字幕高清在线视频| 2018国产大陆天天弄谢| 18禁裸乳无遮挡动漫免费视频| 9色porny在线观看| av福利片在线| 亚洲av片天天在线观看| 一边摸一边抽搐一进一出视频| 国产av国产精品国产| 男人操女人黄网站| 午夜福利视频在线观看免费| 一边摸一边做爽爽视频免费| 久久久久网色| 一边摸一边抽搐一进一出视频| 日韩制服丝袜自拍偷拍| 午夜福利免费观看在线| 91麻豆av在线| 国产成人免费无遮挡视频| 午夜日韩欧美国产| 国产一区二区 视频在线| 日韩中文字幕视频在线看片| 亚洲国产欧美一区二区综合| 久久精品国产亚洲av高清一级| 久久人妻熟女aⅴ| bbb黄色大片| 啦啦啦在线观看免费高清www| 亚洲伊人久久精品综合| 亚洲国产欧美一区二区综合| 蜜桃在线观看..| 纯流量卡能插随身wifi吗| 亚洲五月色婷婷综合| 性色av一级| 蜜桃在线观看..| 中文欧美无线码| 亚洲精品国产色婷婷电影| 亚洲国产欧美网| 国语对白做爰xxxⅹ性视频网站| 丰满人妻熟妇乱又伦精品不卡| 亚洲伊人久久精品综合| 国产成人影院久久av| 亚洲七黄色美女视频| 国产精品国产三级专区第一集| 成人国产av品久久久| 日韩人妻精品一区2区三区| 国产xxxxx性猛交| 老熟女久久久| 精品视频人人做人人爽| 黄片小视频在线播放| 十八禁网站网址无遮挡| 国产精品久久久人人做人人爽| 嫩草影视91久久| 9热在线视频观看99| 亚洲av片天天在线观看| 精品久久久精品久久久| 少妇 在线观看| 亚洲国产精品成人久久小说| 黄色怎么调成土黄色| 国产精品人妻久久久影院| 久久这里只有精品19| 亚洲成国产人片在线观看| 亚洲综合色网址| 国产成人欧美在线观看 | 91成人精品电影| 999精品在线视频| 久久久久久久国产电影| 亚洲国产成人一精品久久久| 搡老岳熟女国产| 国产主播在线观看一区二区 | 欧美激情高清一区二区三区| 涩涩av久久男人的天堂| 久久久久久人人人人人| 纯流量卡能插随身wifi吗| 自线自在国产av| 久久久国产精品麻豆| 国产色视频综合| 少妇的丰满在线观看| 熟女少妇亚洲综合色aaa.| 日韩一卡2卡3卡4卡2021年| 少妇的丰满在线观看| 国产精品免费大片| 国产精品一区二区在线不卡| 色播在线永久视频| 三上悠亚av全集在线观看| 午夜免费成人在线视频| 99久久综合免费| 亚洲精品久久午夜乱码| 亚洲 欧美一区二区三区| 又粗又硬又长又爽又黄的视频| 国产成人av教育| 婷婷丁香在线五月| 婷婷丁香在线五月| 婷婷丁香在线五月| 国产片特级美女逼逼视频| 乱人伦中国视频| 久久亚洲国产成人精品v| 91精品三级在线观看| 亚洲欧洲精品一区二区精品久久久| 99热国产这里只有精品6| 嫁个100分男人电影在线观看 | 国产99久久九九免费精品| 久久国产亚洲av麻豆专区| 国产精品99久久99久久久不卡| 国产91精品成人一区二区三区 | 大陆偷拍与自拍| 两性夫妻黄色片| 一级片'在线观看视频| 精品欧美一区二区三区在线| 女警被强在线播放| 男女边摸边吃奶| 国产精品国产三级专区第一集| bbb黄色大片| 一边亲一边摸免费视频| 亚洲精品av麻豆狂野| 夜夜骑夜夜射夜夜干| 久久精品久久精品一区二区三区| 中文字幕最新亚洲高清| 国产1区2区3区精品| 婷婷色综合www| 国产精品一二三区在线看| 国产一卡二卡三卡精品| 操美女的视频在线观看| 精品少妇一区二区三区视频日本电影| 国产精品九九99| 日本午夜av视频| 日韩av免费高清视频| 国产视频首页在线观看| 天堂8中文在线网| 丁香六月欧美| 欧美日韩av久久| 欧美日韩精品网址| 国产在线一区二区三区精| 亚洲av电影在线进入| 18禁黄网站禁片午夜丰满| 久久精品久久精品一区二区三区| 午夜激情av网站| 一区二区三区乱码不卡18| 欧美 亚洲 国产 日韩一| 九色亚洲精品在线播放| 国产亚洲av片在线观看秒播厂| 考比视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 伦理电影免费视频| 国产精品国产三级国产专区5o| 美女中出高潮动态图| 国产精品国产av在线观看| 日韩制服丝袜自拍偷拍| 欧美日韩亚洲高清精品| av欧美777| 午夜福利免费观看在线| 婷婷色麻豆天堂久久| www.精华液| 免费看av在线观看网站| 久久免费观看电影| 欧美 亚洲 国产 日韩一| 国产欧美日韩一区二区三 | 亚洲中文字幕日韩| 亚洲欧美激情在线| 亚洲国产精品国产精品| 在线观看一区二区三区激情| 欧美97在线视频| 91麻豆精品激情在线观看国产 | 下体分泌物呈黄色| 亚洲成人免费电影在线观看 | 黄频高清免费视频| 亚洲天堂av无毛| 国产高清国产精品国产三级| 久久久久精品国产欧美久久久 | 嫁个100分男人电影在线观看 | 麻豆乱淫一区二区| 日本五十路高清| 久久亚洲精品不卡| 另类亚洲欧美激情| 视频区欧美日本亚洲| 国产精品偷伦视频观看了| www.精华液| 在线 av 中文字幕| 黄色 视频免费看| 午夜影院在线不卡| 91麻豆精品激情在线观看国产 | 欧美另类一区| 中文乱码字字幕精品一区二区三区| 国产精品二区激情视频| 亚洲国产中文字幕在线视频| 少妇精品久久久久久久| 亚洲精品日韩在线中文字幕| 亚洲欧洲精品一区二区精品久久久| 久久久久网色| 啦啦啦啦在线视频资源| av在线老鸭窝| 精品少妇黑人巨大在线播放| 日本a在线网址| 波多野结衣一区麻豆| 久久国产精品人妻蜜桃| 男女午夜视频在线观看| 视频区图区小说| 老司机影院成人| 亚洲精品久久成人aⅴ小说| 男女免费视频国产| 两性夫妻黄色片| 欧美黄色淫秽网站| 高清av免费在线| 999精品在线视频| 亚洲精品中文字幕在线视频| 午夜福利一区二区在线看| 老司机影院毛片| 黄色片一级片一级黄色片| 亚洲国产精品一区三区| 97精品久久久久久久久久精品| 日韩电影二区| 精品国产一区二区三区久久久樱花| 日本一区二区免费在线视频| 亚洲欧美一区二区三区国产| 午夜免费男女啪啪视频观看| 久久精品成人免费网站| 可以免费在线观看a视频的电影网站| 国产成人av激情在线播放| www日本在线高清视频| 国产高清视频在线播放一区 | 性色av一级| 国产成人一区二区在线| 国产男女内射视频| 久热爱精品视频在线9| 国产一卡二卡三卡精品| 人体艺术视频欧美日本| 亚洲一码二码三码区别大吗| 极品人妻少妇av视频| 久久热在线av| 亚洲精品日本国产第一区| 999久久久国产精品视频| 欧美人与善性xxx| 成人黄色视频免费在线看| 一本久久精品| 国产真人三级小视频在线观看| 国产伦人伦偷精品视频| 国产色视频综合| 精品一区二区三区四区五区乱码 | 脱女人内裤的视频| 久久精品久久久久久久性| 欧美变态另类bdsm刘玥| 久久天躁狠狠躁夜夜2o2o | 国产精品.久久久| 国产精品秋霞免费鲁丝片| 国产免费视频播放在线视频| 五月天丁香电影| 亚洲 国产 在线| 精品人妻1区二区| 90打野战视频偷拍视频| 精品熟女少妇八av免费久了| 欧美精品av麻豆av| 黄色 视频免费看| 男女下面插进去视频免费观看| 99久久综合免费| 一二三四社区在线视频社区8| 熟女少妇亚洲综合色aaa.| 一级黄色大片毛片| 国产91精品成人一区二区三区 | 成年人黄色毛片网站| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看黄色视频的| 亚洲中文日韩欧美视频| 国产成人系列免费观看| 狂野欧美激情性xxxx| 侵犯人妻中文字幕一二三四区| 亚洲av成人不卡在线观看播放网 | 国产成人精品久久二区二区免费| 欧美性长视频在线观看| 精品亚洲成a人片在线观看| 满18在线观看网站| 国产极品粉嫩免费观看在线| 国产成人a∨麻豆精品| 精品国产一区二区三区四区第35| 亚洲人成电影免费在线| 欧美人与性动交α欧美软件| 男女无遮挡免费网站观看| 国产福利在线免费观看视频| 国产一区亚洲一区在线观看| 成年人午夜在线观看视频| 亚洲av成人不卡在线观看播放网 | 欧美日韩亚洲高清精品| 91麻豆精品激情在线观看国产 | 巨乳人妻的诱惑在线观看| 极品人妻少妇av视频| 午夜精品国产一区二区电影| 日本色播在线视频| 女人被躁到高潮嗷嗷叫费观| 日韩伦理黄色片| 日本欧美国产在线视频| 亚洲第一青青草原| 中文字幕人妻熟女乱码| 亚洲中文日韩欧美视频| 自线自在国产av| www.av在线官网国产| 天天操日日干夜夜撸| 国产97色在线日韩免费| 国产免费视频播放在线视频| av线在线观看网站| 一区二区三区精品91| 精品少妇一区二区三区视频日本电影| 国产伦人伦偷精品视频| 两个人看的免费小视频| 中文字幕制服av| 精品国产一区二区三区久久久樱花| 欧美日韩福利视频一区二区| 久久久久久久久免费视频了| 咕卡用的链子| 日韩视频在线欧美| 99香蕉大伊视频| 亚洲精品av麻豆狂野| av在线app专区| 纵有疾风起免费观看全集完整版| 久久精品亚洲熟妇少妇任你| 大陆偷拍与自拍| 国产成人av激情在线播放| 亚洲成人免费av在线播放| 国产亚洲精品久久久久5区| 性少妇av在线| 一级毛片我不卡| 狠狠精品人妻久久久久久综合| 国产亚洲欧美在线一区二区| 国产精品三级大全| 另类亚洲欧美激情| 满18在线观看网站| 人人妻人人添人人爽欧美一区卜| 亚洲伊人色综图| 日韩av在线免费看完整版不卡| 日日夜夜操网爽| 久热这里只有精品99| 性色av乱码一区二区三区2| 中文字幕色久视频| 亚洲国产精品成人久久小说| 三上悠亚av全集在线观看| 免费女性裸体啪啪无遮挡网站| 国产精品一区二区免费欧美 | 黑人欧美特级aaaaaa片| 久久久国产欧美日韩av| 高清av免费在线| 一区二区日韩欧美中文字幕| 欧美另类一区| 宅男免费午夜| xxx大片免费视频| 国产高清视频在线播放一区 | 久久精品国产亚洲av涩爱| 亚洲五月婷婷丁香| 国产成人av激情在线播放| 老司机靠b影院| 精品国产一区二区三区久久久樱花| 国产麻豆69| 美女国产高潮福利片在线看| 精品国产一区二区三区久久久樱花| 91精品国产国语对白视频| 欧美黄色片欧美黄色片| 操美女的视频在线观看| 欧美精品啪啪一区二区三区 | 看免费av毛片| 国产精品一二三区在线看| 美女中出高潮动态图| 亚洲色图 男人天堂 中文字幕| 高清欧美精品videossex| 亚洲国产日韩一区二区| 男女高潮啪啪啪动态图| 91成人精品电影| 欧美亚洲 丝袜 人妻 在线| av在线播放精品| 久久国产精品男人的天堂亚洲| 天天躁夜夜躁狠狠久久av| 少妇人妻久久综合中文| 啦啦啦视频在线资源免费观看| 巨乳人妻的诱惑在线观看| 亚洲欧洲国产日韩| 亚洲专区中文字幕在线| 国产一区二区三区av在线| 下体分泌物呈黄色| 久久人妻福利社区极品人妻图片 | 国产亚洲一区二区精品| 欧美日韩亚洲综合一区二区三区_| 国产精品三级大全| 婷婷成人精品国产| 精品国产乱码久久久久久男人| 亚洲欧洲日产国产| 亚洲熟女毛片儿| 国产精品av久久久久免费| 亚洲 欧美一区二区三区| 欧美激情 高清一区二区三区| 亚洲国产欧美在线一区| 欧美日韩黄片免| 亚洲激情五月婷婷啪啪| 国产免费视频播放在线视频| 人人妻,人人澡人人爽秒播 | 天天躁夜夜躁狠狠久久av| 午夜福利视频精品| 深夜精品福利| 久久这里只有精品19| 啦啦啦啦在线视频资源| 满18在线观看网站| 秋霞在线观看毛片| 国产极品粉嫩免费观看在线| 国产精品久久久av美女十八| 国产xxxxx性猛交| 免费黄频网站在线观看国产| 国产精品成人在线| av不卡在线播放| 国产亚洲欧美在线一区二区| 中文字幕最新亚洲高清| 亚洲成人免费av在线播放| 久久精品亚洲av国产电影网| 国产成人a∨麻豆精品| 蜜桃在线观看..| 丰满人妻熟妇乱又伦精品不卡| 1024香蕉在线观看| 亚洲精品av麻豆狂野| 国产精品av久久久久免费| 欧美日韩国产mv在线观看视频| 日韩熟女老妇一区二区性免费视频| 色婷婷av一区二区三区视频| 国产在视频线精品| 国产精品久久久人人做人人爽| 高清黄色对白视频在线免费看| 我的亚洲天堂| 欧美黑人精品巨大| av片东京热男人的天堂| 建设人人有责人人尽责人人享有的| 母亲3免费完整高清在线观看| 久久精品亚洲熟妇少妇任你| 国产有黄有色有爽视频| av国产久精品久网站免费入址| 日本黄色日本黄色录像| 久久综合国产亚洲精品| 欧美97在线视频| 操美女的视频在线观看| 亚洲国产欧美日韩在线播放| 婷婷色麻豆天堂久久| 午夜福利影视在线免费观看| av有码第一页| 国产精品一区二区在线不卡| 久久国产精品男人的天堂亚洲| 性少妇av在线| 欧美+亚洲+日韩+国产| 波多野结衣一区麻豆| 日韩中文字幕欧美一区二区 | 免费av中文字幕在线| 精品人妻1区二区| 欧美日韩视频精品一区| 免费在线观看视频国产中文字幕亚洲 | 欧美精品av麻豆av| 国产在线观看jvid| 成人国语在线视频| 美女视频免费永久观看网站| 国产精品国产三级专区第一集| 老司机亚洲免费影院| 成人免费观看视频高清| 国产人伦9x9x在线观看| 午夜福利视频在线观看免费| 黑人猛操日本美女一级片| 女人高潮潮喷娇喘18禁视频| 别揉我奶头~嗯~啊~动态视频 | 男男h啪啪无遮挡| 国产成人一区二区在线| 久久久久精品国产欧美久久久 | 不卡av一区二区三区| 老司机影院毛片| 热re99久久国产66热| 久久久国产精品麻豆| 美女福利国产在线| 国产欧美亚洲国产| 国产激情久久老熟女| 天天躁夜夜躁狠狠躁躁| 青草久久国产| 亚洲五月色婷婷综合| 中文字幕人妻丝袜制服| 一本久久精品| 免费高清在线观看日韩| av在线播放精品| 欧美人与善性xxx| 国产日韩一区二区三区精品不卡| 国产精品久久久人人做人人爽| 青青草视频在线视频观看| 欧美激情高清一区二区三区| 丰满饥渴人妻一区二区三| 十分钟在线观看高清视频www| 亚洲成人国产一区在线观看 | 两个人免费观看高清视频| 国产精品三级大全| 国产欧美日韩一区二区三 | 一级毛片黄色毛片免费观看视频| 热re99久久国产66热| 亚洲精品美女久久av网站| 亚洲欧洲精品一区二区精品久久久| 精品一品国产午夜福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看一区二区三区激情| 欧美少妇被猛烈插入视频| 免费在线观看完整版高清| 国产成人av激情在线播放| 一二三四社区在线视频社区8| 成人影院久久| 欧美黑人精品巨大| 桃花免费在线播放| 天天躁夜夜躁狠狠躁躁| 男人操女人黄网站| 国产精品国产三级国产专区5o| 久久99精品国语久久久| 又紧又爽又黄一区二区| 一级片免费观看大全| 亚洲欧美一区二区三区国产| 国产精品国产三级专区第一集| 亚洲成人免费电影在线观看 | 一本综合久久免费| 肉色欧美久久久久久久蜜桃| 又黄又粗又硬又大视频| 亚洲人成77777在线视频| 一级毛片我不卡| 99国产综合亚洲精品| 又黄又粗又硬又大视频| 精品免费久久久久久久清纯 | 国产亚洲一区二区精品| 国产精品偷伦视频观看了| 韩国高清视频一区二区三区| 一区在线观看完整版| 中文字幕亚洲精品专区| 精品国产乱码久久久久久小说| 成年av动漫网址| 在线观看免费午夜福利视频| 久久久久久人人人人人| 亚洲人成电影免费在线| 黑人巨大精品欧美一区二区蜜桃| 国产极品粉嫩免费观看在线| 久久久久久久国产电影| 亚洲一卡2卡3卡4卡5卡精品中文| 飞空精品影院首页| 可以免费在线观看a视频的电影网站| 久久久精品免费免费高清| 国产精品一区二区免费欧美 | 新久久久久国产一级毛片| 亚洲免费av在线视频| av天堂在线播放| 国产精品人妻久久久影院| 男人添女人高潮全过程视频| 大片电影免费在线观看免费| 蜜桃在线观看..| 色视频在线一区二区三区| videosex国产| 一本大道久久a久久精品| 国产福利在线免费观看视频| 少妇 在线观看| 观看av在线不卡| 午夜免费男女啪啪视频观看| 婷婷色综合www| 在线观看免费午夜福利视频| 亚洲视频免费观看视频| 日本欧美国产在线视频| 18禁黄网站禁片午夜丰满| 成年动漫av网址| 我的亚洲天堂| 人体艺术视频欧美日本| 国产精品久久久久久精品电影小说| 丝袜人妻中文字幕| 中文字幕亚洲精品专区|