• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural stability and ion migration of Li2MnO3 cathode material under high pressures

    2023-12-15 11:51:32ZeRenXie謝澤仁SiSiZhou周思思BeiBeiHe賀貝貝HuanWenWang王歡文YanShengGong公衍生JunJin金俊XiangGongZhang張祥功andRuiWang汪銳
    Chinese Physics B 2023年12期
    關(guān)鍵詞:思思

    Ze-Ren Xie(謝澤仁), Si-Si Zhou(周思思), Bei-Bei He(賀貝貝), Huan-Wen Wang(王歡文),Yan-Sheng Gong(公衍生), Jun Jin(金俊), Xiang-Gong Zhang(張祥功), and Rui Wang(汪銳),?

    1Faculty of Materials Science and Chemistry,China University of Geosciences,Wuhan 430074,China

    2Wuhan Institute of Marine Electric Propulsion,Wuhan 430064,China

    Keywords: lithium-ion battery,Li2MnO3,high pressure,DFT computation

    1.Introduction

    The ocean covers 70% of the Earth’s surface, and areas deeper than 103meters occupy more than 90%of the overall ocean area.The deep sea contains abundant oil,gas resources,and mineral resources.In order to develop these resources,new types of diving technology and equipment are required to meet the demands of deep-sea resource exploration.[1,2]In 2020, China sent a manned submersible, named “Striver”,into Earth’s deepest ocean trench.Lithium-ion batteries were chosen and used because of their high energy density, low self-discharge, and long life.[3-8]When used under such a condition, the electrode materials in the battery also experience enormous pressure.[9-12]Therefore, the properties of cathode materials under high pressure are worth studying.So far, the characteristics of LiCoO2,[13]LiFePO4,[14]and Li[Li1/3Ti5/3]O4[15]under high pressures have been studied.

    However, as the material with the highest energy density, the structural evolution and migration energy barrier of Li-excess Mn-based materials under high pressures are not yet clear.[16-19]The Li-excess Mn-based materials can be denoted asxLi2MnO3(1-x)LiMnO2(0

    In this work,the equation of state,bulk modulus,steadystate volume,and migration energy barrier of LMO under high pressures are studied.It is reported that LMO still maintains a monoclinic phase at 12 GPa.[28]To avoid phase transition caused by pressure,[29]12 GPa was taken as the upper limit in this research.

    2.Method

    In this work, the Viennaab initiosimulation package(VASP[30])was used for spin-polarized density functional theory (DFT) calculations.The exchange-correlation function uses the Perdewe-Burkee-Ernzerhof (PBE) functional, and the electron-ion interaction is represented by the projector augmented wave (PAW) method.Considering the existence of strongly correlated electrons of Mn in Li2MnO3electrode materials, the method of GGA+U(U=3.9)[31,32]was used.In all calculations,the wave function had a plane wave cutoff energy of 600 eV.This set of parameters could make the residual stress between atoms in the optimized unit cell less than 0.01 eV·?A-1, and the total energy convergence threshold did not exceed 10-5eV.Relaxed structure calculations were performed at different constant volumes and the energy-volume data were fitted to a third-order Birch-Murnaghan equation of state(EOS):[33]

    The equation of state is a description of theP-Vstate relationship of a solid at constant temperature.TheE-Vequation(formula (1)) andP-Vequation (formula (2)) have the same four parameters,i.e.,E0(steady-state energy),V0(steady-state volume),B0(bulk elastic modulus), andB′1(first-order differential of elastic modulus to volume).By fitting theE-Vequation of the LMO,the relevant fitting parameters could be obtained to obtain theP-Vequation.The migration energy barriers of lithium ions in 2×2×1 supercell(96 atoms in total)were calculated by using the CINEB method,and the minimum energy for lithium-ion diffusion was obtained.Seven images were placed between the starting position and the ending position to simulate the process of lithium-ion migration.

    3.Results and discussion

    3.1.Structural stability of Li2MnO3 under high pressures

    The calculation reproduces the monoclinic structure of the LMO(space groupC2/m),and the calculation method of LDA+Uis used to optimize the structure for comparisons.The cell parameter values and experimental values[34]of all optimized structures are shown in Table 1.The calculation results show that the cell parameter values obtained by using the GGA+Ucalculation method are close to the experimental values,and the same as other research results.[35,36]

    Table 1.Calculated and measured values of LMO cell parameters.

    The cell with optimized structure is adopted for calculation,and the third-order Birch-Murnaghan equation of state is used to fit the energy-volume diagram of the LMO as shown in Fig.1(a).According to the fitting results,the bulk modulus of LMO is 109.1 GPa and its first derivative is 4.9.At zero pressure, the equilibrium volume of the LMO is 206.46 ?A3.The pressure-volume relation of LMO within 12 GPa is shown in Fig.1(b).The prediction shows that at 12 GPa,the volume of LMO cell is about 189.5 ?A3, and the volume is compressed by about 8%,indicating that LMO is sensitive to high pressure environment.

    Fig.1.(a)The energy-volume relation and(b)pressure-volume relation calculated by LMO based on the third-order Birch-Murnaghan equation of state.

    The research results in Ref.[12]show that the LMO structure is still stable at 12 GPa under experimental conditions.Therefore, we performed phonon calculation for verification,and the results are shown in Fig.2.There is no imaginary frequency in the phonon spectrum calculated under each pressure,which indicates that the atomic vibration is stable under the corresponding pressures.

    Fig.2.Orbital overlap Hamiltonian population between Mn-O in LMO at 0 GPa(a),4 GPa(b),and 8 GPa(c).

    3.2.Anisotropic compressibility of Li2MnO3 under highpressures

    Figure 3(a)shows the variations of LMO cell parametersa,b, andcwith pressures.The results show that the lattice parameters decrease with pressure increasing.At 12 GPa,lattice parameters are 4.862 ?A, 8.410 ?A, and 4.876 ?A, respectively.After normalization, lattice parameters are reduced by 2.59%, 2.55%, and 3.72%.The compression rate of the cell is almost the same in the direction of [100] and [010], so it can be considered that the compression of the LMO in the direction of[100]and[010]are isotropic under high pressures.However, the compression ratio in the direction of [001] is significantly higher than the two pressures above: about 1.45 times the compression ratio in the direction of [010], which shows anisotropic compression.According to the LMO structure(Fig.3(b)),the layered structure of LMO in the direction[001]leads to large compressible space between layers.

    To further study the compression mechanism of LMO under high pressures, the compression of chemical bonds and polyhedra in the cell are compared.Figure 3(c)shows that Li-O bond is compressed by 3.03%at 12 GPa,while Mn-O bond is compressed by only 1.58%.Similarly,figure 3(d)shows the volume compression ratio of the polyhedron LiO6(8.74%)is significantly higher than that of MnO6(4.31%).Obviously,the calculation results indicate that the Li-O bond is easier to compress than the Mn-O bond, resulting in stronger compressibility of the octahedron LiO6, and the compression ratio in the direction of cell [001] is different from that in the direction of [100] and [010].Like the research results in Ref.[37],the higher the pressure,the more serious the deformation is.The migration of transition metal manganese ions to the lithium layer may also be related to the inconsistent compression ratio of the polyhedron.

    Fig.3.(a)Influence of pressure on LMO cell parameters,(b)LMO cell structure,(c)normalized bond length change of Li-O and Mn-O bonds with pressures,and(d)normalized volume of polyhedral LiO6 and MnO6 versus pressures.

    3.3.Electronic structure of Li2MnO3 under highpressures

    Figure 4 shows the calculated electronic structures of LMO under different pressures.When the pressures are 0 GPa,4 GPa,and 8 GPa,the band gaps are 1.734 eV,1.799 eV,and 1.986 eV,respectively.When the pressure is 0 GPa,the calculated band gap is consistent with related research result,[38,39]and with the gradual increase of pressure, the band gap begins to expand.This means that it is harder for electrons in the occupied state to transition to the unoccupied state,and the electrical conductivity of the electrons will gradually decrease.This can regulate the electrical properties of the material.

    In order to better expound the influence of pressure on the stability of the cell in terms of electronic structure, we calculate the projected crystal orbital Hamilton populations(pCOHPs)of Mn and O atoms under different pressures, and the results are shown in Fig.5.Figures 5(a)-5(c) show the-pCOHP graphs of LMO under 0 GPa,4 GPa,and 8 GPa,respectively.The integral of pCOHP(IpCOHP)is used to determine the influence of pressure on the stability of Mn-O bond.According to Fig.5(a), it can be found that at 0 GPa, there are some anti-bonding components in a range from-1.8 eV to 0 eV, and below-1.8 eV, bonding components are the main components.At this time,the stability of Mn-O bond is mainly contributed by bonding electrons.However, at 4 GPa and 8 GPa,it can be seen from the-pCOHP diagram that there are a large number of anti-bonding electrons below the fermi level,which reduces the stability of Mn-O bond.This is also illustrated in IpCOHP.The IpCOHP values at 0 GPa, 4 GPa,and 8 GPa are-2.12,-0.73,and-0.57,respectively,showing a gradually increasing trend.Therefore,pressure can affect the stability of Mn-O chemical bond in LMO cells to a certain extent.

    Fig.4.LMO electronic structure changing with energy at 0 GPa,4 GPa,and 8 GPa,respectively.

    Fig.5.pCOHP between Mn atom and O atom at 0 GPa(a),4 GPa(b),and 8 GPa(c),respectively.

    3.4.Li-ion migration barrier energy of Li2MnO3 under high-pressures

    The CINEB method is used to calculate the migration path and migration energy barrier of Li+in LMO under highpressure compression,[40]and the ion migration paths are shown in Fig.3(b), where path 1 represents the migration of Li+at Wyckoff position 4h[41]in the lithium layers to site 2bin the transition metal layers, and path 2 represents the migration of Li+at site 4hin the lithium layer to site 2cin the lithium layer.At 0 GPa,the migration energy barrier of path 1 and path 2 are 0.589 eV and 0.499 eV,respectively,as shown in Fig.6(a).The calculation of the path 2 energy barrier is almost consistent with the related literature reports.The calculation results show that the Li+migration energy barrier height of path 1 is about 0.09 eV higher than that of path 2.Figure 6(a)also shows that the energy of Li+at site 2bis very higher than that at site 2c.This study indicates the huge difference in energy between the two paths from the perspective of energy,and Li+in the lithium layer is more prone to delithium.

    Fig.6.Migration barriers of different paths at 0 GPa(a)and(b)calculated variations of Li+ migration barrier energy with volume of path 2 under different pressures.

    Based on the calculation of diffusion path 2, we studied the influence of pressure on the diffusion energy barrier.The migration energy barrier of Li+increases from about 0.499 eV at 0 GPa(825.38 ?A3in volume)to nearly 0.795 eV at 12 GPa(747.37 ?A3in volume), and the change process is almost linear.This indicates that under the condition of cell compression,the ion migration channel will limit the migration of Li+,thus leading the ion conductivity to decrease.The decrease of ionic conductivity at high pressure makes LMO unsuitable as energy device for exploration in high-pressure environment such as deep sea or deep ground.

    4.Conclusions

    The structural stability and electrical conductivity of Li2MnO3under high pressures are studied theoretically by using the first-principles calculations.The results show that the bulk modulus of the LMO is 109.1 GPa and the equilibrium volume is 206.46 ?A3.Under the same pressure,the compression rate of lattice parameters in the direction[100]and[010]are almost the same,but the compression rate of cell parameters in the direction[001]is obviously larger.The Li-O bond is more easily compressed than the Mn-O bond.The Li+at the 4hsite in the lithium layer at 12 GPa is more likely to migrate to the 2csite in the same lithium layer,and the diffusion energy barrier increases almost linearly with the increase of the pressure.These research deepens our understanding of the structural and electrical properties of layered Li-excess Li2MnO3under high pressures and can help us predict the effect of high voltage modification, which will provide useful information about the structural stability and conductive properties of cathode materials in the high pressure environment.

    Acknowledgement

    Project supported by the Research on High Power Flexible Battery in All Sea Depth,China(Grant No.2020-XXXXXX-246-00).

    猜你喜歡
    思思
    李思思漆畫作品
    收藏與投資(2022年7期)2022-08-02 08:27:52
    小魚捉迷藏
    陸思思作品
    藝術(shù)家(2020年9期)2020-11-03 11:34:06
    夏思思
    田思思作品
    English
    長(zhǎng)不大的調(diào)皮蛋
    The Exploration of Group Work in College English Teaching
    東方教育(2016年4期)2016-12-14 21:22:52
    Discussion of the relationship between the constructionist and news media
    卷宗(2016年7期)2016-09-26 00:37:43
    數(shù)學(xué)王國(guó)里的爭(zhēng)論
    免费观看人在逋| 国产一卡二卡三卡精品| 好男人电影高清在线观看| 中文亚洲av片在线观看爽| 激情在线观看视频在线高清| 色综合婷婷激情| 国产99久久九九免费精品| 亚洲avbb在线观看| 美女 人体艺术 gogo| 嫁个100分男人电影在线观看| 成人三级黄色视频| 亚洲成人精品中文字幕电影| 18禁观看日本| av免费在线观看网站| 成人永久免费在线观看视频| 91九色精品人成在线观看| 可以在线观看毛片的网站| 男女那种视频在线观看| 亚洲avbb在线观看| 国产亚洲欧美精品永久| 欧美日韩亚洲国产一区二区在线观看| 高潮久久久久久久久久久不卡| 国产高清有码在线观看视频 | 日韩一卡2卡3卡4卡2021年| 久久精品国产亚洲av高清一级| 岛国视频午夜一区免费看| 国产精品久久久人人做人人爽| 麻豆久久精品国产亚洲av| 午夜激情av网站| 国产亚洲精品一区二区www| netflix在线观看网站| 色综合婷婷激情| 色播在线永久视频| 真人做人爱边吃奶动态| 国内精品久久久久精免费| 日韩大尺度精品在线看网址| 欧美国产日韩亚洲一区| 欧洲精品卡2卡3卡4卡5卡区| 99热这里只有精品一区 | 免费在线观看日本一区| 欧美乱码精品一区二区三区| 国产精品国产高清国产av| 美国免费a级毛片| netflix在线观看网站| 人妻丰满熟妇av一区二区三区| 99热6这里只有精品| 制服诱惑二区| 亚洲av美国av| 国产视频一区二区在线看| 国产97色在线日韩免费| 久久久久久久午夜电影| 不卡一级毛片| 精品一区二区三区av网在线观看| 哪里可以看免费的av片| 久久久久久免费高清国产稀缺| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产欧洲综合997久久, | 欧美三级亚洲精品| 国产精品久久电影中文字幕| 午夜精品在线福利| 在线观看午夜福利视频| 国产精品 国内视频| 久久久久久久精品吃奶| 啪啪无遮挡十八禁网站| 亚洲欧美精品综合一区二区三区| 国产97色在线日韩免费| xxxwww97欧美| 免费在线观看成人毛片| 最新在线观看一区二区三区| 十分钟在线观看高清视频www| 久久久国产成人免费| bbb黄色大片| 亚洲成人久久爱视频| 制服诱惑二区| 午夜激情福利司机影院| 无人区码免费观看不卡| 亚洲人成伊人成综合网2020| 在线观看日韩欧美| 国产真实乱freesex| 久99久视频精品免费| 欧美日韩福利视频一区二区| xxxwww97欧美| 国产日本99.免费观看| 欧美色欧美亚洲另类二区| xxxwww97欧美| 久久久久久亚洲精品国产蜜桃av| 99在线视频只有这里精品首页| 欧美乱妇无乱码| 两人在一起打扑克的视频| 精品久久久久久成人av| 亚洲 欧美一区二区三区| 精品久久久久久久人妻蜜臀av| 日韩大尺度精品在线看网址| 人人妻人人看人人澡| 日韩精品中文字幕看吧| 欧美三级亚洲精品| 一二三四在线观看免费中文在| 少妇的丰满在线观看| 国产成人影院久久av| 欧美黑人欧美精品刺激| 成人国产一区最新在线观看| av电影中文网址| 国产精品永久免费网站| 高清毛片免费观看视频网站| 他把我摸到了高潮在线观看| 99久久久亚洲精品蜜臀av| 在线观看日韩欧美| 亚洲精品美女久久av网站| 女人高潮潮喷娇喘18禁视频| 成人国产综合亚洲| 法律面前人人平等表现在哪些方面| 日韩三级视频一区二区三区| 亚洲国产精品sss在线观看| 曰老女人黄片| 久久国产精品人妻蜜桃| 午夜久久久久精精品| 亚洲av中文字字幕乱码综合 | 久久精品91蜜桃| 成人国产一区最新在线观看| 成人三级黄色视频| 免费在线观看完整版高清| 国产黄a三级三级三级人| 一夜夜www| 丝袜美腿诱惑在线| 国产伦人伦偷精品视频| 日韩av在线大香蕉| 青草久久国产| 午夜激情福利司机影院| 亚洲国产中文字幕在线视频| 亚洲精品国产一区二区精华液| 日本一区二区免费在线视频| 好男人在线观看高清免费视频 | 人人澡人人妻人| 国产激情偷乱视频一区二区| 国产精品乱码一区二三区的特点| 免费观看精品视频网站| 久久精品国产综合久久久| 熟妇人妻久久中文字幕3abv| 国产精品免费视频内射| 999精品在线视频| 女人高潮潮喷娇喘18禁视频| 香蕉av资源在线| 国产午夜精品久久久久久| 51午夜福利影视在线观看| 黄片大片在线免费观看| av片东京热男人的天堂| 亚洲国产中文字幕在线视频| 99精品在免费线老司机午夜| 国产精品国产高清国产av| 老熟妇仑乱视频hdxx| 美女免费视频网站| 欧美黑人欧美精品刺激| 免费搜索国产男女视频| 国产精品美女特级片免费视频播放器 | 黑丝袜美女国产一区| 午夜福利在线观看吧| 国产国语露脸激情在线看| 人妻久久中文字幕网| 啦啦啦观看免费观看视频高清| 成人欧美大片| 老司机在亚洲福利影院| 亚洲精品中文字幕在线视频| 亚洲自拍偷在线| 十八禁网站免费在线| 欧美在线一区亚洲| 亚洲成人久久爱视频| 不卡一级毛片| 亚洲国产精品999在线| 亚洲男人天堂网一区| 51午夜福利影视在线观看| 国产色视频综合| 首页视频小说图片口味搜索| 91老司机精品| 又黄又粗又硬又大视频| 国产午夜福利久久久久久| 亚洲色图av天堂| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利成人在线免费观看| 久久久精品国产亚洲av高清涩受| 亚洲七黄色美女视频| 变态另类丝袜制服| 国产精品免费一区二区三区在线| 妹子高潮喷水视频| 变态另类成人亚洲欧美熟女| 美国免费a级毛片| 日日爽夜夜爽网站| 国产av一区在线观看免费| 午夜福利成人在线免费观看| 欧美丝袜亚洲另类 | 欧美乱妇无乱码| 亚洲一区高清亚洲精品| 国产激情欧美一区二区| 一二三四在线观看免费中文在| 亚洲熟女毛片儿| 午夜福利高清视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品国产精品久久久不卡| 国产欧美日韩精品亚洲av| 欧美成人一区二区免费高清观看 | 久久精品影院6| 黄频高清免费视频| 最近在线观看免费完整版| 色av中文字幕| 亚洲国产中文字幕在线视频| 亚洲国产精品成人综合色| 99精品久久久久人妻精品| 日本在线视频免费播放| 国产亚洲精品av在线| 亚洲中文字幕日韩| 在线视频色国产色| 女性生殖器流出的白浆| 在线观看免费日韩欧美大片| 午夜福利成人在线免费观看| 一区二区三区国产精品乱码| 在线观看免费视频日本深夜| 巨乳人妻的诱惑在线观看| 精品久久久久久久毛片微露脸| 一个人免费在线观看的高清视频| 大型av网站在线播放| 日本撒尿小便嘘嘘汇集6| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲精品av在线| 老汉色∧v一级毛片| 国产高清激情床上av| 久久久精品欧美日韩精品| 亚洲五月天丁香| 老司机午夜福利在线观看视频| 亚洲国产中文字幕在线视频| 香蕉久久夜色| 麻豆成人av在线观看| 亚洲精品一区av在线观看| 老汉色av国产亚洲站长工具| 最近最新中文字幕大全免费视频| 欧美黑人巨大hd| 国产97色在线日韩免费| 亚洲av中文字字幕乱码综合 | 欧美黄色片欧美黄色片| 亚洲av熟女| 久久精品国产99精品国产亚洲性色| 黄片播放在线免费| 日本成人三级电影网站| 97人妻精品一区二区三区麻豆 | 一本久久中文字幕| 久久草成人影院| 亚洲最大成人中文| 日韩精品青青久久久久久| 欧美日韩中文字幕国产精品一区二区三区| av超薄肉色丝袜交足视频| 色综合欧美亚洲国产小说| 香蕉久久夜色| 国产精品影院久久| 90打野战视频偷拍视频| 久99久视频精品免费| 高潮久久久久久久久久久不卡| 手机成人av网站| 97人妻精品一区二区三区麻豆 | 麻豆国产av国片精品| 我的亚洲天堂| 麻豆成人av在线观看| 国产免费av片在线观看野外av| 午夜福利免费观看在线| 免费在线观看亚洲国产| 国产成人精品久久二区二区免费| 一边摸一边做爽爽视频免费| 久久狼人影院| 男女之事视频高清在线观看| av片东京热男人的天堂| 精品国产国语对白av| 久久久久久九九精品二区国产 | 女人高潮潮喷娇喘18禁视频| a级毛片a级免费在线| 一级作爱视频免费观看| 精品久久久久久久久久免费视频| 国产精品1区2区在线观看.| 国产高清激情床上av| 母亲3免费完整高清在线观看| 精品午夜福利视频在线观看一区| 亚洲一区二区三区不卡视频| 欧美av亚洲av综合av国产av| 嫩草影院精品99| 精品国产乱码久久久久久男人| 制服诱惑二区| 国产精品一区二区免费欧美| 在线观看免费视频日本深夜| 久久中文看片网| 又大又爽又粗| xxx96com| 12—13女人毛片做爰片一| 99在线人妻在线中文字幕| tocl精华| 国产精品电影一区二区三区| 欧美日韩黄片免| 亚洲第一青青草原| 日韩大码丰满熟妇| 夜夜躁狠狠躁天天躁| 999精品在线视频| 亚洲中文av在线| 非洲黑人性xxxx精品又粗又长| 亚洲av电影不卡..在线观看| 成人国产综合亚洲| 国产又色又爽无遮挡免费看| 免费人成视频x8x8入口观看| 成年免费大片在线观看| 在线国产一区二区在线| 精品电影一区二区在线| 亚洲中文av在线| 国产区一区二久久| 中文资源天堂在线| 亚洲国产毛片av蜜桃av| 少妇裸体淫交视频免费看高清 | avwww免费| 日日干狠狠操夜夜爽| 午夜激情福利司机影院| 国产亚洲精品一区二区www| 搡老岳熟女国产| 亚洲全国av大片| 亚洲精品美女久久av网站| 麻豆成人午夜福利视频| 亚洲av片天天在线观看| 搡老岳熟女国产| 亚洲精品久久国产高清桃花| 免费在线观看日本一区| 国产爱豆传媒在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产亚洲av高清一级| 精品久久久久久成人av| 久久精品亚洲精品国产色婷小说| 国产精品影院久久| www.www免费av| 丁香六月欧美| 久久国产精品男人的天堂亚洲| 久久久精品欧美日韩精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品中文字幕在线视频| a级毛片a级免费在线| 久久久久国产一级毛片高清牌| 色婷婷久久久亚洲欧美| 国产免费av片在线观看野外av| 黄片大片在线免费观看| 精品国产国语对白av| 亚洲国产精品sss在线观看| 亚洲精品久久国产高清桃花| 国内精品久久久久精免费| 国产精品影院久久| 亚洲av第一区精品v没综合| 日韩欧美国产在线观看| 伊人久久大香线蕉亚洲五| 国产亚洲精品久久久久5区| 伦理电影免费视频| 不卡一级毛片| 国产伦人伦偷精品视频| 一本精品99久久精品77| 大型黄色视频在线免费观看| 国产高清有码在线观看视频 | 啦啦啦 在线观看视频| 国产区一区二久久| 国产精品一区二区精品视频观看| 香蕉av资源在线| 国内精品久久久久久久电影| 亚洲色图av天堂| 国产欧美日韩精品亚洲av| 午夜激情福利司机影院| 又黄又粗又硬又大视频| 丰满的人妻完整版| tocl精华| 国产精品乱码一区二三区的特点| 男女做爰动态图高潮gif福利片| 久久午夜亚洲精品久久| 9191精品国产免费久久| 欧美黑人精品巨大| 久久香蕉激情| 亚洲国产精品合色在线| 在线天堂中文资源库| 狂野欧美激情性xxxx| 黄网站色视频无遮挡免费观看| 国产成年人精品一区二区| 人人妻人人澡人人看| 亚洲国产精品合色在线| АⅤ资源中文在线天堂| 免费看日本二区| av免费在线观看网站| 亚洲精品美女久久av网站| 最新在线观看一区二区三区| 成年版毛片免费区| 免费电影在线观看免费观看| x7x7x7水蜜桃| 手机成人av网站| 91麻豆精品激情在线观看国产| 国产成人影院久久av| 亚洲国产日韩欧美精品在线观看 | 日韩 欧美 亚洲 中文字幕| 成人手机av| netflix在线观看网站| 在线观看一区二区三区| 两性夫妻黄色片| 国产亚洲精品一区二区www| 国产精品免费一区二区三区在线| 一本一本综合久久| 欧美 亚洲 国产 日韩一| 日本 av在线| 人人妻人人澡人人看| 又黄又爽又免费观看的视频| 88av欧美| 老司机午夜十八禁免费视频| 久久国产精品影院| 欧美性猛交黑人性爽| 久久伊人香网站| 国产高清视频在线播放一区| 满18在线观看网站| 国产激情欧美一区二区| 欧美在线黄色| 中文字幕人妻熟女乱码| 欧美 亚洲 国产 日韩一| 91麻豆精品激情在线观看国产| 男人的好看免费观看在线视频 | 亚洲精品av麻豆狂野| 波多野结衣av一区二区av| 十八禁人妻一区二区| 91在线观看av| 岛国视频午夜一区免费看| 可以免费在线观看a视频的电影网站| 亚洲三区欧美一区| 制服丝袜大香蕉在线| 两个人看的免费小视频| 色在线成人网| 夜夜爽天天搞| 国产1区2区3区精品| 国产精品久久久久久精品电影 | 国产伦在线观看视频一区| 欧美黑人欧美精品刺激| 精品午夜福利视频在线观看一区| 日本黄色视频三级网站网址| 国产亚洲精品久久久久5区| 精品国产乱子伦一区二区三区| 男女午夜视频在线观看| 中国美女看黄片| 亚洲自偷自拍图片 自拍| 欧美激情极品国产一区二区三区| 久久久久久亚洲精品国产蜜桃av| 一二三四在线观看免费中文在| 亚洲熟妇熟女久久| 成人亚洲精品av一区二区| 欧美一区二区精品小视频在线| 免费看美女性在线毛片视频| x7x7x7水蜜桃| 国产爱豆传媒在线观看 | 悠悠久久av| 国内毛片毛片毛片毛片毛片| 美女扒开内裤让男人捅视频| 午夜福利高清视频| 18禁裸乳无遮挡免费网站照片 | 老司机在亚洲福利影院| 天天添夜夜摸| 国产精品野战在线观看| 黄片小视频在线播放| 午夜福利成人在线免费观看| 男人舔女人的私密视频| 国产成人影院久久av| 久久久久国产精品人妻aⅴ院| 国产精品久久久久久精品电影 | 搞女人的毛片| 亚洲第一青青草原| 国产亚洲欧美精品永久| 午夜福利18| 国内精品久久久久久久电影| 一区二区三区高清视频在线| 免费看十八禁软件| 两性午夜刺激爽爽歪歪视频在线观看 | 美国免费a级毛片| 亚洲精品国产精品久久久不卡| 亚洲国产精品久久男人天堂| 天天躁狠狠躁夜夜躁狠狠躁| 女警被强在线播放| 亚洲国产欧美日韩在线播放| 又大又爽又粗| 婷婷亚洲欧美| 亚洲av第一区精品v没综合| 色综合婷婷激情| 十八禁网站免费在线| 观看免费一级毛片| av欧美777| 老司机午夜福利在线观看视频| 少妇粗大呻吟视频| 国产精华一区二区三区| 亚洲人成网站在线播放欧美日韩| 成在线人永久免费视频| 国产激情欧美一区二区| 岛国视频午夜一区免费看| 亚洲第一电影网av| 日韩精品免费视频一区二区三区| 人人妻人人澡人人看| 麻豆久久精品国产亚洲av| 一区二区三区精品91| 亚洲精品一卡2卡三卡4卡5卡| 国产精品自产拍在线观看55亚洲| 亚洲人成网站高清观看| 久久天堂一区二区三区四区| 特大巨黑吊av在线直播 | 亚洲色图 男人天堂 中文字幕| 亚洲色图av天堂| 老司机在亚洲福利影院| av有码第一页| 久久久久久久久中文| 亚洲av日韩精品久久久久久密| 看免费av毛片| 天堂√8在线中文| 男男h啪啪无遮挡| 欧美日韩亚洲综合一区二区三区_| 亚洲午夜理论影院| 性色av乱码一区二区三区2| 手机成人av网站| 色精品久久人妻99蜜桃| 国产精品一区二区精品视频观看| av有码第一页| 国产成人av激情在线播放| 老汉色av国产亚洲站长工具| 中文字幕av电影在线播放| 国产精品日韩av在线免费观看| 日韩大尺度精品在线看网址| 波多野结衣高清作品| 一进一出抽搐动态| 精品一区二区三区av网在线观看| 男人舔奶头视频| 亚洲成人久久爱视频| 天天躁夜夜躁狠狠躁躁| 男人操女人黄网站| 动漫黄色视频在线观看| 亚洲色图 男人天堂 中文字幕| 久热爱精品视频在线9| 久久亚洲真实| 香蕉久久夜色| 免费观看人在逋| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕av电影在线播放| 亚洲国产欧洲综合997久久, | 国产精品久久久久久精品电影 | 国产一区在线观看成人免费| 久久草成人影院| av在线播放免费不卡| 99热这里只有精品一区 | 别揉我奶头~嗯~啊~动态视频| 精品一区二区三区视频在线观看免费| av超薄肉色丝袜交足视频| 又紧又爽又黄一区二区| 午夜福利在线观看吧| 一级a爱视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产男靠女视频免费网站| 久久精品国产99精品国产亚洲性色| 午夜免费成人在线视频| 在线av久久热| 波多野结衣av一区二区av| 精品一区二区三区四区五区乱码| 麻豆久久精品国产亚洲av| 久久香蕉激情| 老熟妇仑乱视频hdxx| 日韩有码中文字幕| 一区二区三区高清视频在线| 啪啪无遮挡十八禁网站| 窝窝影院91人妻| videosex国产| 国产在线精品亚洲第一网站| 国产真人三级小视频在线观看| 国产极品粉嫩免费观看在线| 国产爱豆传媒在线观看 | 18禁裸乳无遮挡免费网站照片 | 欧美日韩瑟瑟在线播放| 99在线人妻在线中文字幕| 久久 成人 亚洲| 欧美性猛交╳xxx乱大交人| 精品国产国语对白av| 国产精品精品国产色婷婷| 国产伦一二天堂av在线观看| 狠狠狠狠99中文字幕| 欧美精品啪啪一区二区三区| 免费搜索国产男女视频| 熟女电影av网| 免费在线观看黄色视频的| 97碰自拍视频| xxxwww97欧美| 巨乳人妻的诱惑在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产精品久久男人天堂| 在线永久观看黄色视频| xxx96com| 亚洲中文av在线| 亚洲专区字幕在线| 日本 欧美在线| 动漫黄色视频在线观看| 一级作爱视频免费观看| 午夜免费成人在线视频| 亚洲成国产人片在线观看| 国产不卡一卡二| xxx96com| 女性生殖器流出的白浆| 国产成人精品久久二区二区免费| 国产一区二区在线av高清观看| 窝窝影院91人妻| 极品教师在线免费播放| 日韩国内少妇激情av| av超薄肉色丝袜交足视频| 亚洲精品在线美女| 日韩有码中文字幕| 国产三级在线视频| 成人三级做爰电影| 他把我摸到了高潮在线观看| 欧美一级a爱片免费观看看 | 欧美性猛交黑人性爽| 无限看片的www在线观看| 久久精品成人免费网站| 国产一区二区三区视频了| 99久久国产精品久久久| 午夜福利欧美成人|