• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural stability and ion migration of Li2MnO3 cathode material under high pressures

    2023-12-15 11:51:32ZeRenXie謝澤仁SiSiZhou周思思BeiBeiHe賀貝貝HuanWenWang王歡文YanShengGong公衍生JunJin金俊XiangGongZhang張祥功andRuiWang汪銳
    Chinese Physics B 2023年12期
    關(guān)鍵詞:思思

    Ze-Ren Xie(謝澤仁), Si-Si Zhou(周思思), Bei-Bei He(賀貝貝), Huan-Wen Wang(王歡文),Yan-Sheng Gong(公衍生), Jun Jin(金俊), Xiang-Gong Zhang(張祥功), and Rui Wang(汪銳),?

    1Faculty of Materials Science and Chemistry,China University of Geosciences,Wuhan 430074,China

    2Wuhan Institute of Marine Electric Propulsion,Wuhan 430064,China

    Keywords: lithium-ion battery,Li2MnO3,high pressure,DFT computation

    1.Introduction

    The ocean covers 70% of the Earth’s surface, and areas deeper than 103meters occupy more than 90%of the overall ocean area.The deep sea contains abundant oil,gas resources,and mineral resources.In order to develop these resources,new types of diving technology and equipment are required to meet the demands of deep-sea resource exploration.[1,2]In 2020, China sent a manned submersible, named “Striver”,into Earth’s deepest ocean trench.Lithium-ion batteries were chosen and used because of their high energy density, low self-discharge, and long life.[3-8]When used under such a condition, the electrode materials in the battery also experience enormous pressure.[9-12]Therefore, the properties of cathode materials under high pressure are worth studying.So far, the characteristics of LiCoO2,[13]LiFePO4,[14]and Li[Li1/3Ti5/3]O4[15]under high pressures have been studied.

    However, as the material with the highest energy density, the structural evolution and migration energy barrier of Li-excess Mn-based materials under high pressures are not yet clear.[16-19]The Li-excess Mn-based materials can be denoted asxLi2MnO3(1-x)LiMnO2(0

    In this work,the equation of state,bulk modulus,steadystate volume,and migration energy barrier of LMO under high pressures are studied.It is reported that LMO still maintains a monoclinic phase at 12 GPa.[28]To avoid phase transition caused by pressure,[29]12 GPa was taken as the upper limit in this research.

    2.Method

    In this work, the Viennaab initiosimulation package(VASP[30])was used for spin-polarized density functional theory (DFT) calculations.The exchange-correlation function uses the Perdewe-Burkee-Ernzerhof (PBE) functional, and the electron-ion interaction is represented by the projector augmented wave (PAW) method.Considering the existence of strongly correlated electrons of Mn in Li2MnO3electrode materials, the method of GGA+U(U=3.9)[31,32]was used.In all calculations,the wave function had a plane wave cutoff energy of 600 eV.This set of parameters could make the residual stress between atoms in the optimized unit cell less than 0.01 eV·?A-1, and the total energy convergence threshold did not exceed 10-5eV.Relaxed structure calculations were performed at different constant volumes and the energy-volume data were fitted to a third-order Birch-Murnaghan equation of state(EOS):[33]

    The equation of state is a description of theP-Vstate relationship of a solid at constant temperature.TheE-Vequation(formula (1)) andP-Vequation (formula (2)) have the same four parameters,i.e.,E0(steady-state energy),V0(steady-state volume),B0(bulk elastic modulus), andB′1(first-order differential of elastic modulus to volume).By fitting theE-Vequation of the LMO,the relevant fitting parameters could be obtained to obtain theP-Vequation.The migration energy barriers of lithium ions in 2×2×1 supercell(96 atoms in total)were calculated by using the CINEB method,and the minimum energy for lithium-ion diffusion was obtained.Seven images were placed between the starting position and the ending position to simulate the process of lithium-ion migration.

    3.Results and discussion

    3.1.Structural stability of Li2MnO3 under high pressures

    The calculation reproduces the monoclinic structure of the LMO(space groupC2/m),and the calculation method of LDA+Uis used to optimize the structure for comparisons.The cell parameter values and experimental values[34]of all optimized structures are shown in Table 1.The calculation results show that the cell parameter values obtained by using the GGA+Ucalculation method are close to the experimental values,and the same as other research results.[35,36]

    Table 1.Calculated and measured values of LMO cell parameters.

    The cell with optimized structure is adopted for calculation,and the third-order Birch-Murnaghan equation of state is used to fit the energy-volume diagram of the LMO as shown in Fig.1(a).According to the fitting results,the bulk modulus of LMO is 109.1 GPa and its first derivative is 4.9.At zero pressure, the equilibrium volume of the LMO is 206.46 ?A3.The pressure-volume relation of LMO within 12 GPa is shown in Fig.1(b).The prediction shows that at 12 GPa,the volume of LMO cell is about 189.5 ?A3, and the volume is compressed by about 8%,indicating that LMO is sensitive to high pressure environment.

    Fig.1.(a)The energy-volume relation and(b)pressure-volume relation calculated by LMO based on the third-order Birch-Murnaghan equation of state.

    The research results in Ref.[12]show that the LMO structure is still stable at 12 GPa under experimental conditions.Therefore, we performed phonon calculation for verification,and the results are shown in Fig.2.There is no imaginary frequency in the phonon spectrum calculated under each pressure,which indicates that the atomic vibration is stable under the corresponding pressures.

    Fig.2.Orbital overlap Hamiltonian population between Mn-O in LMO at 0 GPa(a),4 GPa(b),and 8 GPa(c).

    3.2.Anisotropic compressibility of Li2MnO3 under highpressures

    Figure 3(a)shows the variations of LMO cell parametersa,b, andcwith pressures.The results show that the lattice parameters decrease with pressure increasing.At 12 GPa,lattice parameters are 4.862 ?A, 8.410 ?A, and 4.876 ?A, respectively.After normalization, lattice parameters are reduced by 2.59%, 2.55%, and 3.72%.The compression rate of the cell is almost the same in the direction of [100] and [010], so it can be considered that the compression of the LMO in the direction of[100]and[010]are isotropic under high pressures.However, the compression ratio in the direction of [001] is significantly higher than the two pressures above: about 1.45 times the compression ratio in the direction of [010], which shows anisotropic compression.According to the LMO structure(Fig.3(b)),the layered structure of LMO in the direction[001]leads to large compressible space between layers.

    To further study the compression mechanism of LMO under high pressures, the compression of chemical bonds and polyhedra in the cell are compared.Figure 3(c)shows that Li-O bond is compressed by 3.03%at 12 GPa,while Mn-O bond is compressed by only 1.58%.Similarly,figure 3(d)shows the volume compression ratio of the polyhedron LiO6(8.74%)is significantly higher than that of MnO6(4.31%).Obviously,the calculation results indicate that the Li-O bond is easier to compress than the Mn-O bond, resulting in stronger compressibility of the octahedron LiO6, and the compression ratio in the direction of cell [001] is different from that in the direction of [100] and [010].Like the research results in Ref.[37],the higher the pressure,the more serious the deformation is.The migration of transition metal manganese ions to the lithium layer may also be related to the inconsistent compression ratio of the polyhedron.

    Fig.3.(a)Influence of pressure on LMO cell parameters,(b)LMO cell structure,(c)normalized bond length change of Li-O and Mn-O bonds with pressures,and(d)normalized volume of polyhedral LiO6 and MnO6 versus pressures.

    3.3.Electronic structure of Li2MnO3 under highpressures

    Figure 4 shows the calculated electronic structures of LMO under different pressures.When the pressures are 0 GPa,4 GPa,and 8 GPa,the band gaps are 1.734 eV,1.799 eV,and 1.986 eV,respectively.When the pressure is 0 GPa,the calculated band gap is consistent with related research result,[38,39]and with the gradual increase of pressure, the band gap begins to expand.This means that it is harder for electrons in the occupied state to transition to the unoccupied state,and the electrical conductivity of the electrons will gradually decrease.This can regulate the electrical properties of the material.

    In order to better expound the influence of pressure on the stability of the cell in terms of electronic structure, we calculate the projected crystal orbital Hamilton populations(pCOHPs)of Mn and O atoms under different pressures, and the results are shown in Fig.5.Figures 5(a)-5(c) show the-pCOHP graphs of LMO under 0 GPa,4 GPa,and 8 GPa,respectively.The integral of pCOHP(IpCOHP)is used to determine the influence of pressure on the stability of Mn-O bond.According to Fig.5(a), it can be found that at 0 GPa, there are some anti-bonding components in a range from-1.8 eV to 0 eV, and below-1.8 eV, bonding components are the main components.At this time,the stability of Mn-O bond is mainly contributed by bonding electrons.However, at 4 GPa and 8 GPa,it can be seen from the-pCOHP diagram that there are a large number of anti-bonding electrons below the fermi level,which reduces the stability of Mn-O bond.This is also illustrated in IpCOHP.The IpCOHP values at 0 GPa, 4 GPa,and 8 GPa are-2.12,-0.73,and-0.57,respectively,showing a gradually increasing trend.Therefore,pressure can affect the stability of Mn-O chemical bond in LMO cells to a certain extent.

    Fig.4.LMO electronic structure changing with energy at 0 GPa,4 GPa,and 8 GPa,respectively.

    Fig.5.pCOHP between Mn atom and O atom at 0 GPa(a),4 GPa(b),and 8 GPa(c),respectively.

    3.4.Li-ion migration barrier energy of Li2MnO3 under high-pressures

    The CINEB method is used to calculate the migration path and migration energy barrier of Li+in LMO under highpressure compression,[40]and the ion migration paths are shown in Fig.3(b), where path 1 represents the migration of Li+at Wyckoff position 4h[41]in the lithium layers to site 2bin the transition metal layers, and path 2 represents the migration of Li+at site 4hin the lithium layer to site 2cin the lithium layer.At 0 GPa,the migration energy barrier of path 1 and path 2 are 0.589 eV and 0.499 eV,respectively,as shown in Fig.6(a).The calculation of the path 2 energy barrier is almost consistent with the related literature reports.The calculation results show that the Li+migration energy barrier height of path 1 is about 0.09 eV higher than that of path 2.Figure 6(a)also shows that the energy of Li+at site 2bis very higher than that at site 2c.This study indicates the huge difference in energy between the two paths from the perspective of energy,and Li+in the lithium layer is more prone to delithium.

    Fig.6.Migration barriers of different paths at 0 GPa(a)and(b)calculated variations of Li+ migration barrier energy with volume of path 2 under different pressures.

    Based on the calculation of diffusion path 2, we studied the influence of pressure on the diffusion energy barrier.The migration energy barrier of Li+increases from about 0.499 eV at 0 GPa(825.38 ?A3in volume)to nearly 0.795 eV at 12 GPa(747.37 ?A3in volume), and the change process is almost linear.This indicates that under the condition of cell compression,the ion migration channel will limit the migration of Li+,thus leading the ion conductivity to decrease.The decrease of ionic conductivity at high pressure makes LMO unsuitable as energy device for exploration in high-pressure environment such as deep sea or deep ground.

    4.Conclusions

    The structural stability and electrical conductivity of Li2MnO3under high pressures are studied theoretically by using the first-principles calculations.The results show that the bulk modulus of the LMO is 109.1 GPa and the equilibrium volume is 206.46 ?A3.Under the same pressure,the compression rate of lattice parameters in the direction[100]and[010]are almost the same,but the compression rate of cell parameters in the direction[001]is obviously larger.The Li-O bond is more easily compressed than the Mn-O bond.The Li+at the 4hsite in the lithium layer at 12 GPa is more likely to migrate to the 2csite in the same lithium layer,and the diffusion energy barrier increases almost linearly with the increase of the pressure.These research deepens our understanding of the structural and electrical properties of layered Li-excess Li2MnO3under high pressures and can help us predict the effect of high voltage modification, which will provide useful information about the structural stability and conductive properties of cathode materials in the high pressure environment.

    Acknowledgement

    Project supported by the Research on High Power Flexible Battery in All Sea Depth,China(Grant No.2020-XXXXXX-246-00).

    猜你喜歡
    思思
    李思思漆畫作品
    收藏與投資(2022年7期)2022-08-02 08:27:52
    小魚捉迷藏
    陸思思作品
    藝術(shù)家(2020年9期)2020-11-03 11:34:06
    夏思思
    田思思作品
    English
    長(zhǎng)不大的調(diào)皮蛋
    The Exploration of Group Work in College English Teaching
    東方教育(2016年4期)2016-12-14 21:22:52
    Discussion of the relationship between the constructionist and news media
    卷宗(2016年7期)2016-09-26 00:37:43
    數(shù)學(xué)王國(guó)里的爭(zhēng)論
    日日摸夜夜添夜夜添av毛片| 永久免费av网站大全| 久久久午夜欧美精品| 亚洲av免费在线观看| 欧美性猛交╳xxx乱大交人| 一本久久精品| 亚洲精品456在线播放app| 男女无遮挡免费网站观看| 欧美最新免费一区二区三区| 亚洲精品自拍成人| 七月丁香在线播放| 69av精品久久久久久| 免费在线观看成人毛片| 国产 一区 欧美 日韩| 国产精品不卡视频一区二区| 亚洲精品aⅴ在线观看| 精品国产三级普通话版| 久久影院123| 午夜爱爱视频在线播放| 亚洲天堂国产精品一区在线| 九草在线视频观看| 2021天堂中文幕一二区在线观| 欧美精品国产亚洲| 日韩免费高清中文字幕av| 欧美日韩亚洲高清精品| 一个人看视频在线观看www免费| 欧美亚洲 丝袜 人妻 在线| 国产精品三级大全| 性插视频无遮挡在线免费观看| a级毛色黄片| 人妻 亚洲 视频| 纵有疾风起免费观看全集完整版| 爱豆传媒免费全集在线观看| 日日摸夜夜添夜夜爱| 蜜桃亚洲精品一区二区三区| 18+在线观看网站| 久久热精品热| 九色成人免费人妻av| 亚洲va在线va天堂va国产| 亚洲国产成人一精品久久久| 十八禁网站网址无遮挡 | 国产成人精品福利久久| av国产免费在线观看| 在线观看国产h片| 日韩 亚洲 欧美在线| 午夜精品一区二区三区免费看| 成人亚洲欧美一区二区av| 搡女人真爽免费视频火全软件| 午夜免费鲁丝| 欧美成人精品欧美一级黄| 在线精品无人区一区二区三 | 我要看日韩黄色一级片| 午夜爱爱视频在线播放| 日韩一区二区视频免费看| 大话2 男鬼变身卡| 日韩三级伦理在线观看| 高清欧美精品videossex| 久久精品国产鲁丝片午夜精品| 黄色一级大片看看| 最近中文字幕高清免费大全6| 成年人午夜在线观看视频| 国产69精品久久久久777片| 99久国产av精品国产电影| 色视频www国产| 日韩欧美一区视频在线观看 | 国产精品爽爽va在线观看网站| av国产久精品久网站免费入址| 在线免费观看不下载黄p国产| 男女那种视频在线观看| 国产成人精品福利久久| 国产黄频视频在线观看| 亚洲内射少妇av| 成人无遮挡网站| 秋霞在线观看毛片| 日韩视频在线欧美| 亚洲av二区三区四区| freevideosex欧美| 国产国拍精品亚洲av在线观看| 最近中文字幕高清免费大全6| 人妻少妇偷人精品九色| 国产乱人偷精品视频| 日韩成人伦理影院| 制服丝袜香蕉在线| 日本wwww免费看| 国产视频首页在线观看| 日韩亚洲欧美综合| 精品人妻一区二区三区麻豆| 伦精品一区二区三区| 神马国产精品三级电影在线观看| 国产成年人精品一区二区| 欧美zozozo另类| 国产中年淑女户外野战色| 国产日韩欧美在线精品| 麻豆成人av视频| 亚洲av欧美aⅴ国产| 九九久久精品国产亚洲av麻豆| 一级毛片久久久久久久久女| 好男人在线观看高清免费视频| 蜜桃久久精品国产亚洲av| 成年女人在线观看亚洲视频 | 亚洲婷婷狠狠爱综合网| 91精品国产九色| 国产午夜精品一二区理论片| 国产女主播在线喷水免费视频网站| 久久99热这里只有精品18| 日本av手机在线免费观看| 国产乱来视频区| 日韩电影二区| 亚洲欧美一区二区三区黑人 | 欧美极品一区二区三区四区| 中文在线观看免费www的网站| 人妻制服诱惑在线中文字幕| 自拍偷自拍亚洲精品老妇| 中国三级夫妇交换| 深爱激情五月婷婷| 99热全是精品| 精品久久久久久久人妻蜜臀av| 国产熟女欧美一区二区| 久久99热这里只有精品18| 亚洲aⅴ乱码一区二区在线播放| 国产69精品久久久久777片| 日韩欧美一区视频在线观看 | 国产伦精品一区二区三区四那| 看免费成人av毛片| 亚洲美女视频黄频| 丝袜美腿在线中文| 亚洲精品第二区| 99久久精品一区二区三区| 九九在线视频观看精品| 精品一区二区免费观看| 亚洲av免费高清在线观看| av黄色大香蕉| 高清午夜精品一区二区三区| 亚洲欧洲日产国产| 人妻少妇偷人精品九色| 联通29元200g的流量卡| 亚洲电影在线观看av| 国产男人的电影天堂91| 热99国产精品久久久久久7| av线在线观看网站| 寂寞人妻少妇视频99o| 美女国产视频在线观看| 91精品伊人久久大香线蕉| 国产精品久久久久久精品古装| 色综合色国产| 少妇丰满av| 美女xxoo啪啪120秒动态图| 午夜老司机福利剧场| 亚洲精品第二区| 真实男女啪啪啪动态图| 九九爱精品视频在线观看| 日本三级黄在线观看| 欧美成人精品欧美一级黄| 中文字幕制服av| 嘟嘟电影网在线观看| 亚洲国产色片| 免费观看的影片在线观看| 热99国产精品久久久久久7| 美女cb高潮喷水在线观看| 一级毛片我不卡| 免费观看的影片在线观看| 插阴视频在线观看视频| 亚洲精品成人av观看孕妇| 免费人成在线观看视频色| 国产免费一级a男人的天堂| 五月玫瑰六月丁香| av女优亚洲男人天堂| 夜夜爽夜夜爽视频| 国产精品久久久久久久电影| 国产欧美另类精品又又久久亚洲欧美| 日韩亚洲欧美综合| 久久久欧美国产精品| 在线观看av片永久免费下载| 亚洲国产精品成人综合色| 性色av一级| 直男gayav资源| av在线app专区| 亚洲人成网站在线播| 免费黄频网站在线观看国产| 国产伦精品一区二区三区四那| 看十八女毛片水多多多| 亚洲激情五月婷婷啪啪| av又黄又爽大尺度在线免费看| 日本爱情动作片www.在线观看| 亚洲成人久久爱视频| 欧美极品一区二区三区四区| 晚上一个人看的免费电影| 精品久久久久久久人妻蜜臀av| 国产精品一区二区性色av| 国产精品无大码| 国产成人免费观看mmmm| av在线播放精品| 老司机影院成人| 国产91av在线免费观看| 亚洲丝袜综合中文字幕| 一级爰片在线观看| 美女被艹到高潮喷水动态| 91狼人影院| 高清午夜精品一区二区三区| 国产爱豆传媒在线观看| 3wmmmm亚洲av在线观看| 日本午夜av视频| 精品久久久久久电影网| 最近最新中文字幕免费大全7| 精品久久久久久电影网| 国产av不卡久久| 大码成人一级视频| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品不卡视频一区二区| 国产爱豆传媒在线观看| 欧美少妇被猛烈插入视频| 少妇熟女欧美另类| 亚洲欧美日韩东京热| 97人妻精品一区二区三区麻豆| 国产高清有码在线观看视频| 亚洲图色成人| 国产精品久久久久久久电影| 99久久精品热视频| 禁无遮挡网站| 成人午夜精彩视频在线观看| 国产爱豆传媒在线观看| 久久97久久精品| 国产爽快片一区二区三区| 美女脱内裤让男人舔精品视频| 久久国产乱子免费精品| 国产成人a∨麻豆精品| tube8黄色片| 男的添女的下面高潮视频| 69人妻影院| 九九爱精品视频在线观看| 夫妻性生交免费视频一级片| 精品一区在线观看国产| 亚洲久久久久久中文字幕| 一个人看的www免费观看视频| av免费观看日本| 国产成人精品婷婷| 欧美一区二区亚洲| 日日摸夜夜添夜夜爱| 亚洲人与动物交配视频| 欧美成人精品欧美一级黄| 五月天丁香电影| 久久精品国产亚洲网站| 国产日韩欧美亚洲二区| 精品久久久久久久人妻蜜臀av| 五月开心婷婷网| 天天躁夜夜躁狠狠久久av| 99久久精品热视频| 美女xxoo啪啪120秒动态图| 国产精品国产三级专区第一集| 国产男女内射视频| 卡戴珊不雅视频在线播放| 免费黄色在线免费观看| 精品一区二区三卡| 欧美一级a爱片免费观看看| 午夜福利视频精品| 91久久精品国产一区二区成人| 成人无遮挡网站| 嘟嘟电影网在线观看| 国产精品麻豆人妻色哟哟久久| 欧美老熟妇乱子伦牲交| 久久这里有精品视频免费| 91狼人影院| 一个人看视频在线观看www免费| 国产女主播在线喷水免费视频网站| 国产精品偷伦视频观看了| 丰满人妻一区二区三区视频av| 国产精品精品国产色婷婷| 一区二区三区乱码不卡18| 国产v大片淫在线免费观看| 夜夜爽夜夜爽视频| 九草在线视频观看| 三级经典国产精品| 黄色日韩在线| 美女脱内裤让男人舔精品视频| 国产一区二区三区av在线| 在线观看三级黄色| 女人十人毛片免费观看3o分钟| 欧美xxxx黑人xx丫x性爽| 国产淫片久久久久久久久| 狠狠精品人妻久久久久久综合| 国产又色又爽无遮挡免| 1000部很黄的大片| 日韩大片免费观看网站| 午夜亚洲福利在线播放| 国产综合懂色| 国产乱人视频| 男插女下体视频免费在线播放| 免费人成在线观看视频色| 亚洲真实伦在线观看| 舔av片在线| 国产精品伦人一区二区| 亚洲精品一二三| 精品熟女少妇av免费看| 免费av毛片视频| 欧美成人一区二区免费高清观看| 成人美女网站在线观看视频| 中文欧美无线码| 一区二区三区免费毛片| av专区在线播放| 国产爱豆传媒在线观看| 亚洲av免费在线观看| 99热全是精品| 九九在线视频观看精品| 夫妻午夜视频| 亚洲人与动物交配视频| 久久精品国产亚洲av涩爱| 一级毛片电影观看| 亚洲不卡免费看| 国产午夜福利久久久久久| 舔av片在线| 亚洲精品456在线播放app| 亚洲,欧美,日韩| 在线观看一区二区三区| 午夜激情福利司机影院| 日韩国内少妇激情av| 亚洲自偷自拍三级| 麻豆成人午夜福利视频| 黄色配什么色好看| 国产成年人精品一区二区| 亚洲精品成人av观看孕妇| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久久av| 美女视频免费永久观看网站| 欧美三级亚洲精品| 天美传媒精品一区二区| 日韩一区二区视频免费看| 最新中文字幕久久久久| 午夜爱爱视频在线播放| 亚洲国产精品999| 男女下面进入的视频免费午夜| 99久久精品国产国产毛片| 美女被艹到高潮喷水动态| 亚洲国产av新网站| 国产精品伦人一区二区| 欧美三级亚洲精品| 99九九线精品视频在线观看视频| av在线老鸭窝| 久久国产乱子免费精品| 欧美xxxx性猛交bbbb| 色网站视频免费| 搡老乐熟女国产| 国产亚洲av片在线观看秒播厂| 欧美亚洲 丝袜 人妻 在线| 亚洲综合精品二区| 亚洲在久久综合| 国产成人福利小说| 亚洲成人一二三区av| 欧美三级亚洲精品| 久久99热这里只频精品6学生| 久久精品熟女亚洲av麻豆精品| 97人妻精品一区二区三区麻豆| 超碰av人人做人人爽久久| tube8黄色片| 国产一区二区在线观看日韩| 午夜爱爱视频在线播放| 熟女电影av网| 国精品久久久久久国模美| 男人添女人高潮全过程视频| av播播在线观看一区| 国产老妇伦熟女老妇高清| 色综合色国产| 舔av片在线| 涩涩av久久男人的天堂| 国产黄色免费在线视频| 亚洲精品日本国产第一区| 日本-黄色视频高清免费观看| 国产综合精华液| 一级毛片aaaaaa免费看小| 搡女人真爽免费视频火全软件| 亚洲欧美一区二区三区国产| 成人毛片60女人毛片免费| 久久久久久伊人网av| 一本一本综合久久| 精华霜和精华液先用哪个| 久久人人爽人人爽人人片va| 国语对白做爰xxxⅹ性视频网站| 亚洲av成人精品一区久久| 男女啪啪激烈高潮av片| 国产伦精品一区二区三区视频9| 性插视频无遮挡在线免费观看| 国产精品麻豆人妻色哟哟久久| 日本午夜av视频| 亚洲最大成人手机在线| 小蜜桃在线观看免费完整版高清| 天堂中文最新版在线下载 | 久久久久久久亚洲中文字幕| 九九在线视频观看精品| 日韩三级伦理在线观看| 欧美xxxx黑人xx丫x性爽| 精品久久久噜噜| 中文欧美无线码| 日韩成人av中文字幕在线观看| 国产老妇伦熟女老妇高清| 99久久精品一区二区三区| 久久久久久久久久久免费av| 午夜福利网站1000一区二区三区| 久久久久久伊人网av| 最近手机中文字幕大全| 蜜桃久久精品国产亚洲av| 日日摸夜夜添夜夜添av毛片| 男女边摸边吃奶| 亚洲内射少妇av| 狂野欧美白嫩少妇大欣赏| 人人妻人人看人人澡| 久久女婷五月综合色啪小说 | 听说在线观看完整版免费高清| 一本久久精品| 黄色欧美视频在线观看| 日韩av不卡免费在线播放| 青春草亚洲视频在线观看| 男人和女人高潮做爰伦理| 亚洲在线观看片| 国内精品美女久久久久久| 精品久久久久久久久av| 午夜激情福利司机影院| 黄色配什么色好看| 亚洲综合色惰| 国产91av在线免费观看| 国产精品无大码| 色婷婷久久久亚洲欧美| 久久久久久久久久人人人人人人| 亚洲国产精品成人综合色| 80岁老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 国产日韩欧美在线精品| 免费不卡的大黄色大毛片视频在线观看| 99热这里只有是精品在线观看| 中文天堂在线官网| 婷婷色综合www| 亚洲最大成人中文| 一级a做视频免费观看| 欧美变态另类bdsm刘玥| 国国产精品蜜臀av免费| 精品一区二区三卡| 日韩三级伦理在线观看| 亚洲欧美日韩另类电影网站 | 亚洲成人久久爱视频| 久久久久国产网址| 美女xxoo啪啪120秒动态图| 亚洲精品一二三| 97在线视频观看| av在线老鸭窝| 日韩伦理黄色片| 国产黄片视频在线免费观看| 18+在线观看网站| 亚洲欧美一区二区三区国产| 国产精品国产av在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产在线一区二区三区精| 日韩av不卡免费在线播放| 一区二区三区乱码不卡18| 欧美 日韩 精品 国产| 亚洲av欧美aⅴ国产| 一级毛片我不卡| 欧美激情久久久久久爽电影| 又粗又硬又长又爽又黄的视频| 欧美日韩亚洲高清精品| 中文欧美无线码| 秋霞在线观看毛片| 男女下面进入的视频免费午夜| 亚洲av不卡在线观看| 国产精品福利在线免费观看| a级毛色黄片| 在线观看一区二区三区| 亚洲不卡免费看| 草草在线视频免费看| 黄色欧美视频在线观看| 亚洲av免费在线观看| 极品少妇高潮喷水抽搐| 大片电影免费在线观看免费| 丝袜喷水一区| 亚洲av福利一区| 欧美一级a爱片免费观看看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品国产av成人精品| 亚洲av二区三区四区| 毛片一级片免费看久久久久| 亚洲成人av在线免费| 精品久久久精品久久久| 大香蕉久久网| av卡一久久| 99re6热这里在线精品视频| 一级毛片久久久久久久久女| 人妻制服诱惑在线中文字幕| 国精品久久久久久国模美| 亚洲,欧美,日韩| 天美传媒精品一区二区| 一个人看视频在线观看www免费| 久久精品久久精品一区二区三区| 黄色一级大片看看| 精品久久久精品久久久| 2022亚洲国产成人精品| 国产精品伦人一区二区| 丰满人妻一区二区三区视频av| 国产高清三级在线| 一级二级三级毛片免费看| 国产探花极品一区二区| 午夜免费鲁丝| 色综合色国产| 欧美激情在线99| 国产老妇女一区| 亚洲国产精品成人综合色| 伊人久久精品亚洲午夜| 国产精品女同一区二区软件| 中文资源天堂在线| 免费观看的影片在线观看| 精品久久久噜噜| 永久免费av网站大全| 男男h啪啪无遮挡| 人人妻人人澡人人爽人人夜夜| 久久99热这里只有精品18| 亚洲av在线观看美女高潮| 国产精品秋霞免费鲁丝片| 狠狠精品人妻久久久久久综合| 欧美激情久久久久久爽电影| 亚洲av免费在线观看| 成人美女网站在线观看视频| 美女国产视频在线观看| 日日啪夜夜爽| 永久网站在线| 午夜爱爱视频在线播放| 亚洲av欧美aⅴ国产| 黄色视频在线播放观看不卡| 亚洲精品aⅴ在线观看| 99热6这里只有精品| 亚洲怡红院男人天堂| 国产色婷婷99| 久久久精品94久久精品| 女人久久www免费人成看片| 久久久色成人| av播播在线观看一区| 国产精品蜜桃在线观看| 午夜激情久久久久久久| 欧美激情久久久久久爽电影| av女优亚洲男人天堂| 亚洲天堂国产精品一区在线| 熟女电影av网| 69av精品久久久久久| 亚洲最大成人中文| 男人爽女人下面视频在线观看| 国产女主播在线喷水免费视频网站| 亚洲精品中文字幕在线视频 | 亚洲,一卡二卡三卡| 黄色日韩在线| 欧美精品国产亚洲| 少妇熟女欧美另类| 免费看a级黄色片| 人妻系列 视频| 国产精品一区二区性色av| 国产黄片视频在线免费观看| 国产69精品久久久久777片| 亚洲成人中文字幕在线播放| 18禁裸乳无遮挡免费网站照片| 欧美潮喷喷水| 亚洲欧美中文字幕日韩二区| 亚洲在久久综合| 精品少妇久久久久久888优播| 内射极品少妇av片p| xxx大片免费视频| av在线播放精品| 在线免费十八禁| 亚洲最大成人中文| 久久韩国三级中文字幕| 国产成人午夜福利电影在线观看| 亚洲av福利一区| 中文资源天堂在线| 亚洲国产av新网站| 热re99久久精品国产66热6| 久久国产乱子免费精品| 大话2 男鬼变身卡| 亚洲av一区综合| 人妻制服诱惑在线中文字幕| 久久午夜福利片| 中文欧美无线码| 亚洲美女搞黄在线观看| 久久影院123| 国产毛片a区久久久久| 97精品久久久久久久久久精品| 蜜臀久久99精品久久宅男| 人妻系列 视频| 五月开心婷婷网| 色播亚洲综合网| 亚洲电影在线观看av| 最近手机中文字幕大全| 日韩成人伦理影院| 久久人人爽av亚洲精品天堂 | 国产91av在线免费观看| 爱豆传媒免费全集在线观看| 亚洲欧美中文字幕日韩二区| 亚洲精品视频女| 色视频www国产| 人人妻人人爽人人添夜夜欢视频 | 亚洲在线观看片| 精品一区在线观看国产| 97热精品久久久久久| av网站免费在线观看视频| 最近的中文字幕免费完整| 成人毛片60女人毛片免费| 一个人观看的视频www高清免费观看| 肉色欧美久久久久久久蜜桃 | 丰满少妇做爰视频| 黄色日韩在线| 免费观看性生交大片5| 一边亲一边摸免费视频| 一区二区av电影网| 毛片一级片免费看久久久久| 又爽又黄无遮挡网站| 汤姆久久久久久久影院中文字幕| 麻豆成人午夜福利视频| 在线a可以看的网站| 亚洲精品国产色婷婷电影| 国产欧美日韩精品一区二区| 夫妻午夜视频| 亚洲久久久久久中文字幕| 大陆偷拍与自拍|