• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    POSITIVE STEADY STATES AND DYNAMICS FOR A DIFFUSIVE PREDATOR-PREY SYSTEM WITH A DEGENERACY?

    2016-09-26 03:45:43LuYANG楊璐

    Lu YANG(楊璐)

    School of Mathematics and Statistics,Lanzhou University,Lanzhou 730000,China

    Key Laboratory of Applied Mathematics and Complex Systems,Gansu 730000,China

    Yimin ZHANG(張貽民)

    Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China

    E-mail∶zhangyimin@wipm.ac.cn

    ?

    POSITIVE STEADY STATES AND DYNAMICS FOR A DIFFUSIVE PREDATOR-PREY SYSTEM WITH A DEGENERACY?

    Lu YANG(楊璐)

    School of Mathematics and Statistics,Lanzhou University,Lanzhou 730000,China

    Key Laboratory of Applied Mathematics and Complex Systems,Gansu 730000,China

    Yimin ZHANG(張貽民)

    Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China

    E-mail∶zhangyimin@wipm.ac.cn

    In this article,we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes.The heterogeneity here is created by the degeneracy of the intra-specific pressures for the prey.By the bifurcation method,the degree theory,and a priori estimates,we discuss the existence and multiplicity of positive steady states.Moreover,by the comparison argument,we also discuss the dynamical behavior for the diffusive predator-prey system.

    Predator-prey system;steady state solution;dynamical behavior

    2010 MR Subject Classification35J20;35J60

    1 Introduction

    In this article,we are concerned with the following predator-prey model,

    here λ,μ,b,c,m are constants,all positive exceptμ,which may take negative values;ν is the outward unit normal vector on?? and?ν=?/?ν;a(x),u0(x)and v0(x)are nonnegative continuous functions on a bounded smooth domain ??Rn.Moreover,there exists a subregion?0such thaand

    We assume that ?0is an open and connected subset of ?,and it has C2boundary??0.

    In recent years,there have been extensive attentions for the following diffusive predatorprey model with modified Leslie-Gower and Holling-Type II schemes:

    The homogeneous Neumann boundary condition means that model(1.3)is self-contained and has no population flux across the boundary??.All parameters appearing in model(1.3)are assumed to be positive constants.The constants d1and d2are the diffusion coefficient corresponding to u and v,and the initial data u0(x)and v0(x)are continuous functions.As the variables u and v account for the densities of prey and predator,they are required to be non-negative.It is clear that(1.3)has a unique global solution(u,v).In addition,if u06≡0,v06≡0,the solution is positive,that is,u(x,t)>0,v(x,t)>0 on ? for any t>0.For the more detailed biological background of the model,see[1]and references therein.The corresponding ODE version was discussed in[1],where the authors obtained some results for the global stability of the interior equilibrium.In[8,14],Du et al considered(1.3)with c2=0 and obtained many results for non-constant positive steady states in the so-called heterogeneous environment.In contrast,[25]was mainly devoted to the studies of effects of diffusion coefficients on the positive non-constant solutions to(1.3)when c2=0.In[3],Chen and Wang mainly investigated the large-time behavior of solutions and the existence and non-existence of non-constant positive steady states for the non-dimensionalized form of(1.3)with positive constant coefficients.

    The reaction-diffusion system with spatially homogeneous coefficients have been widely and extensively studied since the 1970s.While some interesting articles investigating the heterogeneous effect of environment have appeared in recent years.Dancer and Du[5]and Du et al[8,10-14]studied the effects of the heterogeneous environment caused by the protection zone or the degeneracy of some intra-specific pressures.The effects of spatially heterogeneous birth rates was shown by Dockery et al[6]and Hutson et al[15-18]for some diffusive competition models.

    More recently,in[27]Wang and Li consider the following predator-prey model with crossdiffusion and protection for the prey:

    where ??Rnis a bounded domain,?0is a smooth domain satisfying ?0??;ρ(x)=1 and b1(x)=b>0 in ??0,whereas ρ(x)=b1(x)=0 in ?0.The nonlinear diffusion term τ?[ρ(x)vu]is usually referred to as the cross-diffusion term.Such domain ?0ia called as protection zone,which was first proposed by Du and Shi in[11].In[27],they mainly investigatedthe effects of cross-diffusion and protection zone on positive steady states of(1.4).For more works on the predator-prey system with cross-diffusion,see[19-24,28]and references therein.

    In[5],Dancer and Du first studied the effect of the degeneracy of some intra-specific pressures on the diffusive Lotka-Volterra model and obtained some interesting results.Subsequently,in[13]Du and Shi investigated the Allee effect and bistability in the diffusive predator-prey model with the degeneracy of some intra-specific pressures and Holling-Type II functional responses.Motivated by some ideas in these works,we will deal with the existence and multiplicity of positive steady states and dynamical behavior of(1.1)in the spatially heterogeneous environment caused by the degeneracy of some intra-specific pressures for the prey.Finally,we point out that the main difference of(1.1)and(1.3)is the degeneracy and non-degeneracy of the coefficients for the item u2in the equation of the prey.In particular,the case of degeneracy for(1.1)does include the case of non-degeneracy(that is,?0=Φ),especially the case of the positive constant coefficients.To the best of our knowledge,even under the case of non-degeneracy our results are also new.

    The rest of this article is organized as follows.In Section 2,we give some preliminary results including the results of the linear eigenvalue problems with a weight function and the scalar elliptic equation with a degeneracy.In Section 3,we discuss the existence of positive steady state solutions to(1.1)by the bifurcation analysis and degree theory.In Section 4,we investigate the dynamical behavior of(1.1)by the comparison argument.

    2 Some Preliminaries

    Linear eigenvalue problems will play important roles in our analysis.We define λD1(φ,O)and λN1(φ,O)to be the principal eigenvalues of??+φ over the region O,with Dirichlet or Neumann boundary conditions respectively.If the region O is omitted in the notation,then we understand that O=?.If the potential function φ is omitted,then we understand that φ=0. We recall some well-known properties of λD1(φ,O)and λN1(φ,O):

    When describing the bifurcation properties of steady state solutions to(1.1),we will need the knowledge of the scalar equation:

    Lemma 2.1([7,9])Problem(2.1)has a unique positive solution uλ(x)when 0<λ<λD1(?0),and it has no positive solution when λ≥λD1(?0).

    In the following analysis,we will fix 0<λ<λD1(?0),and we will use the predator growth rateμas a bifurcation parameter.We also fix the parameters b,m>0 unless otherwise stated. For simplicity of the notations,we will write p(u)=u/(1+mu),q(u)=1/(1+cu).It is easy to see that

    3 Steady State Solutions

    In this section,we will consider the structure of the set of nonnegative steady state solutions to(1.1)by the local bifurcation theory and global bifurcation theory.

    3.1Steady state solutions:bifurcation analysis

    For anyμ>0,(1.1)has two semi-trivial steady state solutions:(uλ,0)and(0,μ).So,we have two curves of these steady state solutions in the space of(μ,u,v):

    By the strong maximum principle,any nonnegative steady state solution(u,v)of(1.1)is either(0,0),or a semi-trivial solution,or a positive solution.

    From standard local bifurcation analysis,there is a bifurcation pointμ1=0 such that a smooth curve Γ′1of positive steady state solutions to(1.1)bifurcates from Γuat(μ,u,v)=(μ1,uλ,0).Similarly,there is another bifurcation pointμ2=λb?1such that a smooth curve of positive steady state solutionsto(1.1)bifurcates from Γvat(μ,u,v)=(μ2,0,μ2).From global bifurcation theory,each ofandis contained in a global branch of positive steady state solutions to(1.1).We call these branchesandrespectively.Then,as in[2]either Γ1and Γ2are both unbounded,or Γ1=Γ2.To show that the latter is the case,we prove the following proposition:

    Proposition 3.1Suppose that 0<λ<and that(u,v)is a positive steady state solution of(1.1).Then,the following hold:

    (i)The parameterμmust satisfy

    (ii)0<u(x)<uλ(x),andμ<v(x)<μ(1+c‖uλ‖∝),

    where uλis the unique positive solution of(2.1).

    ProofConclusion(ii)is a simple consequence of a standard comparison argument.

    For conclusion(i),from conclusion(ii)and the first equation of(1.1),we have

    which impliesμ<λb?1(1+m‖uλ‖∝).

    From Proposition 3.1,we conclude that(1.1)has no unbounded branches of positive steady state solutions when 0<λ<is fixed.Thus,the two local branches must be connected. To get a more precise local picture of Γ≡Γ1≡Γ2,we give more details on the bifurcation analysis by the bifurcation result of Crandall-Rabinowitz[4].

    Theorem 3.2Suppose that 0<λ<Then,there exists a continuum Γ of positive steady state solutions of(1.1)satisfying

    whereand Γ contains Γ1and Γ2.Moreover,the bifurcation of Γ1at(0,uλ,0)is supercritical(0)>0),and the bifurcation of Γ2at(λb?1,0,λb?1)is supercritical(0)>0)if m>m0and it is subcritical(0)<0)if 0≤m<m0,where m0is defined as

    ProofFirst,we use a change of variables v=μ+w(so that(u,w)=(0,0)is the trivial steady state solution).For p>1,let X={u∈W2,p(?):?νu=0},and let Y=Lp(?).Define F:R×X×X→Y×Y as

    At(μ,u,w)=(λb?1,0,0),it is easy to verify that the kernel N(F(u,w)(λb?1,0,0))=span{(1,cμ)},the range R(F(u,w)(λb?1,0,0))={(f,g)∈Y2:R?f(x)dx=0},and Fμ(u,w)(λb?1,0,0)[1,cμ]=[?b,cμ]6∈R(F(u,w)(λb?1,0,0)).Thus,we can apply the result of[4]to conclude that the set of positive steady state solutions to(1.1)near(λb?1,0,μ)is a smooth curve

    such thatμ2(0)=λb?1,u2(s)=s+o(s),and w2(s)=cs+o(s).Moreover,μ′2(0)can be calculated(see,for example,[26]):

    where a=|?|?1?a(x)dx,and l2is a linear functional on Y2defined by〈[f,g],l2〉=

    ?f(x)dx. By(3.5),we know thatμ′2(0)>0 if m>m0and thatμ′2(0)<0 if 0≤m<m0.

    We can do a similar analysis at(μ1,uλ,0),whereμ1=0.We change the variables w= uλ?u.Define G:R×X×X→Y×Y as

    Then,

    At(μ,w,v)=(μ1,0,0),it is easy to verify that the kernel N(G(w,v)(μ1,0,0))=span{(?1,1)},where ?1satisfies

    The range

    and

    Thus,we can apply the result of[4]to conclude that the set of positive steady state solutions to(1.1)near(μ1,0,0)is a smooth curve

    withμ1(0)=0,w1(s)=s?1(x)+o(s),and v1(s)=s+o(s).Moreover,

    where l1is a linear functional on Y2defined by〈[f,g],l1〉=R?g(x)dx.

    By virtue of Theorem 3.2,we immediately have the following conclusion.

    Corollary 3.3Suppose that 0<λ<Then,problem(1.1)has at least one positive steady state solution for allμ∈(0,λb?1).

    Remark 3.4Corollary 3.3 can also be proved by a continuation and topological degree argument.For the details,see the proof of[8],Theorem 3.4].

    3.2Steady state solutions:multiplicity

    Notice that in(1.1),if c=0,then the steady state solution of the second equation is v(x)≡0 or v(x)≡μ.Thus,any positive steady state solution of(1.1)(u,v)satisfies v=μ(μ≥0)and u is a solution of the following equation:

    where?μ?=sup{μ>0:(3.10)has a positive solution}≥λb?1.Moreover,Σ satisfies the following:

    (i)Near(μ,u)=(λb?1,0),Σ is a curve.

    (ii)Whenμ≤0,(3.10)has a unique positive solutionand:μ≤0}is a smooth curve.

    (iii)Forμ∈(?∞,?μ?),(3.10)has a maximal positive solutionand(x)is strictly decreasing with respect toμ.

    (iv)Forμ∈(?∞,λb?1),(3.10)has a minimal positive solutionis strictly decreasing with respect roμ.

    (v)If?μ?>λb?1,then(3.10)has a maximal positive solution forμ=?μ?and has at least two positive solutions for

    (vi)If?μ?>and 0<m<m0,then there exists?μ?∈(0,λb?1)such that(3.10) has at least three positive solutions forμ∈)andMoreover=0 uniformly for x∈?. All these solutions mentioned above can be chosen from the unbounded continuum Σ.

    On the basis of the results above,we can obtain a rather clear description of the set of positive steady state solutions of(1.1)for small c>0.

    Theorem 3.6Suppose that 0<λ<)and that b,c,m>0 are fixed.Let?μ?and ?μ?be the critical points defined as in Lemma 3.5.Then,the following hold:

    (i)Define

    and

    μ?=inf{μ>0:(1.1)has a positive steady state solution(u,v),and u

    (ii)Forμ∈(0,?μ?(1+c‖uλ‖∝)?1],(1.1)has a positive steady state solutionsatisfying

    (iii)If?μ?(1+c‖uλ‖∝)<λb?1,then forμ∈[?μ?(1+c‖uλ‖∝),λb?1),(1.1)has a positive steady state solution()satisfying

    (iv)If?μ?>λb?1(1+c‖uλ‖∝),then(1.1)has at least two positive steady state solutions for λb?1<μ≤?μ?(1+c‖uλ‖∝)?1.

    (v)If?μ?>λb?1(1+c‖uλ‖∝)and?μ?<λb?1(1+c‖uλ‖∝)?1,then(1.1)has at least three positive steady state solutions for?μ?(1+c‖uλ‖∝)<μ<λb?1. All these solutions above can be chosen from the continuum Γ.

    ProofIf(1.1)has a positive steady state solution(u,v),then from Proposition 3.1,μ<v<μ(1+c‖uλ‖∝).Thus,u is a subsolution of(3.10),and uλ>u is always a supersolution of(3.10),so(3.10)has a positive solution for thisμ.Hence,μ?≤?μ?.Similarly,?μ?≤μ?.The proofs of?μ?(1+c‖uλ‖∝)?1≤μ?andμ?≤?μ?(1+c‖uλ‖∝)are apparent from Part(ii)and(iii)to be proved below.

    We will show the existence of)forμ∈(0,?μ?(1+c‖uλ‖∝)?1].Let E=C(?),and let P={u∈E:u(x)≥0,x∈?}.Define an order interval in P2=P×P:

    where[u1,u2]={u∈E:u1(x)≤u(x)≤u2(x)}.We define an operator

    where(u,v)∈J1,and K is a positive constant.It is seen that a fixed point of A is a steady state solution of(1.1).We claim that when K is large enough,then A(u,v)∈J1for each(u,v)∈J1.Let(u,v)∈J1,and let A(u,v)=(u1,v1).We choose K large enough so that fK(x,u,v)=(λ+K)u?a(x)u2?buv/(1+mu)is strictly increasing in u and gK(u,v)=(μ+K)v?v2/(1+cu)is strictly increasing in v,for any u∈[minxand v∈[μ,μ(1+c‖uλ‖∝)].Then,

    and similarly,

    On the other hand,

    because the minimum of f1(v)=(μ+K)v?v2on[μ,μ(1+c‖uλ‖∝)]is achieved at v=μ;andbecause the maximum of f2(v)=(μ+K)v?v2/(1+c‖uλ‖∝)on[μ,μ(1+c‖uλ‖∝)]is achieved at v=μ(1+c‖uλ‖∝).Therefore,(u1,v1)=A(u,v)∈J1.As A is a compact operator from the convex set J1to J1,A has a fixed point in J1by the Schauder point theorem.This completes the proof of Part(ii),and the proof of Part(iii)is similar.

    We define a subset of R×P2for each~μ∈(0,?μ?(1+c‖uλ‖∝)?1]:

    We notice that{μ}×J1?J~μifμ∈(0,?μ?(1+c‖uλ‖∝)?1]andμ≤~μ.Thus,(μ)∈Jμfor 0<μ≤~μ.If(μ,u,v)∈?J~μandμ∈(0,~μ),then from the above calculation of(u1,v1)= A(u,v),we can see that either(μ,u1,v1)=(μ,0)or(μ,u1,v1)∈int(J~μ).Hence,(μ,u,v)cannot be a positive fixed point of A.

    Let Γ be the continuum of positive steady state solutions of(1.1)obtained in Theorem 3.2. Then,?!菾~μ6=Φ because the bifurcation at(0,0)is supercritical.From the arguments above,if(μ,u,v)∈?!?J~μ,then eitherμ=0 orμ=~μ.The latter case must happen because(1.1)has no positive steady state solution whenμ=0.From the connectedness of Γ,we see thatTherefore,has a component connecting(λb?1,0,λb?1)to a solution(μ,u,v)∈,and by the above discussion,we must haveμ=?μ?(1+c‖uλ‖∝)?1.Therefore,(1.1)has at least one positive steady state solution for λb?1<μ≤?μ?(1+c‖uλ‖∝)?1,which is onThis proves Part(iv).

    For Part(v),we use the minimal positive steady state solutions to define a set J similar toand then show thatcontains a positive solution in J and another one outside J.As the arguments are analogous,we omit the details.

    4 Dynamical Behavior

    First,we recall the dynamics of the auxiliary equation:

    Lemma 4.1([13])Suppose that 0<λ<and that b,c,m>0 are fixed.Then,all solutions u(x,t)of(4.1)are globally bounded,and the following hold:

    (ii)Ifμ>?μ?,then 0 is globally asymptotically stable.

    (iii)If 0<μ<λb?1,then for any u0

    (iv)If 0<μ≤?μ?,then for any u0,thenu(x,t)=if u0(x)≥(x),then

    where Vμ,1(x)is the unique positive solution of

    with U=U?μ?.

    (v)If?μ?<λb?1,?μ?<μ<λb?1,and u0(x)then

    if u0(x)≤U?μ?(x),then

    where Vμ,2(x)is the unique positive solution of(4.3)with

    (vi)If?μ?<λb?1,then there exists?μ?∈(λb?1,?μ?)such that λ=and for λb?1≤μ<?μ?,if u0(x)≤U?μ?(x),then

    Now,on the basis of the above results,we are in position to deal with the dynamics of(1.1).

    Theorem 4.2Suppose that 0<λ<(?0)and that b,c,m>0 are fixed.Then,all solutions(u(x,t),v(x,t))of(1.1)are globally bounded,and v(x,t)satisfies

    and the asymptotic behavior of u(x,t)is as follows:

    (ii)Ifμ>?μ?,thenu(x,t)=0 andv(x,t)=μuniformly for x∈?.

    (iii)If 0<μ<?μ?(1+c‖uλ‖∝)?1,and u0(x)≥U?μ?(x),then

    where Vμ,1is defined in Lemma 4.1.

    (iv)Suppose that?μ?<λb?1.Let?μ?be the constant defined in Lemma 4.1.Then for ?μ?(1+c‖uλ‖∝)≤μ<?μ?,if u0(x)≤U?μ?(x),then

    where Vμ,2is defined in Lemma 4.1,and forμ≥?μ?,if u0(x)≤(x),then limt→∝u(x,t)=0 and limt→∝v(x,t)=μuniformly for x∈?.

    ProofBy the comparison principle,we have 0≤u(x,t)≤u(x,t)≤uλ(x)andμ≤(x,t)≤v(x,t)≤μ(1+c‖u‖∝).Thus,all solutions are globally bounded.

    Asμ<0,then v=0 is globally asymptotically stable for the dynamics of vt??v=μv?[1+ c(‖uλ‖∝+1)]?1v2with Neumann boundary condition.Thus,v(x,t)→0 as t→∞.Hence,for any small δ>0 which satisfies λ?bδ>0,there exists T2>T1such that v(x,t)≤δ for t≥T2.Then,As λ?bδ>0,then u=uλ?bδis globally asymptotically stable for the dynamics of ut??u=(λ?bδ)u?a(x)u2with Neumann boundary condition.Thus,u(x,t)≥.As δ→0,we obtain limt→∝u(x,t)=uλ(x).The proof of Part(ii)is similar because u=0 is globally asymptotically stable for the dynamics of(4.1).

    Next,we prove Part(iii).By the estimate for v(x,t)in(4.6),for any η>0,there exists T3>0 such that for t>T3,

    Then,the estimate for u(x,t)can be obtained by using Part(iv)of Lemma 4.1 and letting η→0.The proof of Part(iv)is similar.

    Remark 4.3When the prey has a weak growth rate,that is,λ∈(0)),Theorem 4.2 describes the persistence and extinction phenomena of the two species according to the range of the predator growth rate.

    Remark 4.4When the prey has a strong growth rate,that is,λ>,the structure of the set of nonnegative steady state solutions to(1.1)and the dynamical behavior of(1.1)are both more complicated,which is one of our research works in the future.

    References

    [1]Aziz-Alaoui M A,Okiye M D.Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-Type II schemes.Appl Math Lett,2003,16:1069-1075

    [2]Blat J,Brown K J.Global bifurcation of positive solutions in some systems of elliptic equations.SIAM J Math Anal,1986,17:1339-1353

    [3]Chen B,Wang M X.Qualitative analysis for a diffusive predator-prey model.Computers and Mathematics with Applications,2008,55:339-355

    [4]Crandall M G,Rabinowitz P H.Bifurcation from simple eigenvalues.J Funct Anal,1971,8:321-340

    [5]Dancer E N,Du Y H.Effects of certain degeneracies in the predator-prey model.SIAM J Math Anal,2002,34:292-314

    [6]Dockery J,Hutson V,Mischaikow K,Pernarowski M.The evolution of slow dispersal rates:a reactiondiffusion model.J Math Biol,1998,37:61-83

    [7]Du Y H.Order Structure and Topological Methods in Nonlinear Partial Differential Equations.Vol 1. Maximum Principles and Applications.Singapore:World Scientific,2005

    [8]Du Y H,Hsu S B.A diffusive predator-prey model in heterogeneous environment.J Differential Equ,2004,203:331-364

    [9]Du Y H,Huang Q.Blow-up solutions for a class of semilinear elliptic and parabolic equations.SIAM J Math Anal,1999,31:1-18

    [10]Du Y H,Peng R,Wang M X.Effect of a protection zone in the diffusive Leslie predator-prey model.J Differential Equ,2009,246:3932-3956

    [11]Du Y H,Shi J P.A diffusive predator-prey model with a protection zone.J Differential Equ,2006,229:63-91

    [12]Du Y H,Shi J P.Some recent results on diffusive predator-prey models in spatially heterogeneous environment//Brummer H,Zhao X,Zou X.Nonlinear Dynamics and Evolution Equations.Fields Inst Commun. Vol 48.Providence,RI:Amer Math Soc,2006:95-135

    [13]Du Y H,Shi J P.Allee effect and bistability in a spatially heterogeneous predator-prey model.Trans Amer Math Soc,2007,359(9):4557-4593

    [14]Du Y H,Wang M X.Asymptotic behaviour of positive steady-states to a predator-prey model.Proc Roy Soc Edinburgh A,2006,136:759-779

    [15]Hutson V,Lou Y,Mischaikow K.Spatial heterogeneity of resources versus Lotka-Volterra dynamics.J Differential Equ,2002,185:97-136

    [16]Hutson V,Lou Y,Mischaikow K.Convergence in competition models with small diffusion coefficients.J Differential Equ,2005,211:135-161

    [17]Hutson V,Lou Y,Mischaikow K,Pol′a?cik P.Competing species near a degenerate limit.SIAM J Math Anal,2003,35:453-491

    [18]Hutson V,Mischaikow K,Pol′a?cik P.The evolution of dispersal rates in a heterogeneous time-periodic environment.J Math Biol,2001,43:501-533

    [19]Kadota T,Kuto K.Positive steady states for a prey-predator model with some nonlinear diffusion terms. J Math Anal Appl,2006,323:1387-1401

    [20]Kuto K.Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment.Nonlinear Anal RWA,2009,10:943-965

    [21]Ko W,Ryu K.Coexistence states of a nonlinear Lotka-Volterra type predator-prey model with crossdiffusion.Nonlinear Anal,2009,71:e1109-e1115

    [22]Lou Y,Ni W M.Diffusion vs cross-diffusion.J Differential Equ,1996,131:79-131

    [23]Lou Y,Ni W M.Diffusion,self-diffusion and cross-diffusion:an elliptic approach.J Differential Equ,1999,154:157-190

    [24]Oeda K.Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone.J Differential Equ,2011,250:3988-4009

    [25]Peng R,Wang M X.Positive steady states of the Holling-Tanner prey-predator model with diffusion.Proc Roy Soc Edinburgh,2005,135A:149-164

    [26]Shi J P.Persistence and bifurcation of degenerate solutions.J Funct Anal,1999,169(2):494-531

    [27]Wang Y X,Li W T.Effects of cross-diffusion and heterogeneous environment on positive steady states of a prey-predator system.Nonlinear Anal RWA,2013,14:1235-1246

    [28]Wang Y X,Li W T.Fish-Hook shaped global bifurcation branch of a spatially heterogeneous cooperative system with cross-diffusion.J Differential Equ,2011,251:1670-1695

    November 11,2014;revised October 12,2015.The research was supported by the National Natural Science Foundation of China(11361053,11201204,11471148,11471330,145RJZA112).

    ?Corresponding author

    日韩欧美一区视频在线观看| 色吧在线观看| 久久性视频一级片| 国产女主播在线喷水免费视频网站| 天天躁狠狠躁夜夜躁狠狠躁| 老司机在亚洲福利影院| 国产人伦9x9x在线观看| 啦啦啦在线观看免费高清www| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一级毛片在线| 一本久久精品| 最近最新中文字幕免费大全7| 亚洲色图 男人天堂 中文字幕| 人人妻人人澡人人看| 中文字幕色久视频| 成人漫画全彩无遮挡| 国精品久久久久久国模美| 在现免费观看毛片| 精品少妇一区二区三区视频日本电影 | 叶爱在线成人免费视频播放| 国产 一区精品| 一本色道久久久久久精品综合| av免费观看日本| 男人操女人黄网站| 国产精品久久久久久精品古装| 亚洲欧洲精品一区二区精品久久久 | 无遮挡黄片免费观看| 久久国产亚洲av麻豆专区| 精品一区二区免费观看| 成人国语在线视频| 街头女战士在线观看网站| 国产欧美亚洲国产| 美女视频免费永久观看网站| 国产成人91sexporn| 亚洲av日韩在线播放| 人妻一区二区av| 嫩草影视91久久| 国产精品av久久久久免费| 在现免费观看毛片| 国产片内射在线| 伦理电影免费视频| 久久人人爽av亚洲精品天堂| 亚洲精品久久午夜乱码| 日韩一区二区视频免费看| 97人妻天天添夜夜摸| 国产精品女同一区二区软件| 中文字幕色久视频| 天美传媒精品一区二区| 美国免费a级毛片| 国产亚洲av高清不卡| 九九爱精品视频在线观看| 国产色婷婷99| 国产av一区二区精品久久| 999久久久国产精品视频| 亚洲欧洲日产国产| 最近最新中文字幕大全免费视频 | 国产乱来视频区| 国产精品一二三区在线看| 亚洲五月色婷婷综合| 亚洲国产看品久久| 中文字幕人妻丝袜制服| 欧美少妇被猛烈插入视频| 97人妻天天添夜夜摸| 国产av一区二区精品久久| 日韩av不卡免费在线播放| 国产精品三级大全| 最近2019中文字幕mv第一页| 老汉色av国产亚洲站长工具| 国产麻豆69| 国产成人a∨麻豆精品| 18禁观看日本| 国产高清不卡午夜福利| 国产成人欧美在线观看 | 日日啪夜夜爽| 精品福利永久在线观看| 久久综合国产亚洲精品| 九九爱精品视频在线观看| 国产成人精品在线电影| 日韩大片免费观看网站| 777久久人妻少妇嫩草av网站| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美一区二区综合| 久久热在线av| 亚洲精品国产av蜜桃| 大香蕉久久网| 18禁裸乳无遮挡动漫免费视频| 婷婷色综合www| 国产成人系列免费观看| 丝袜人妻中文字幕| 久久青草综合色| 黄色 视频免费看| 久久久久精品人妻al黑| 日本vs欧美在线观看视频| 亚洲自偷自拍图片 自拍| 午夜影院在线不卡| 18在线观看网站| 亚洲国产精品一区三区| 成年av动漫网址| 国产成人精品在线电影| 国产亚洲欧美精品永久| 亚洲五月色婷婷综合| 人妻一区二区av| 欧美人与性动交α欧美精品济南到| av国产精品久久久久影院| 午夜精品国产一区二区电影| av.在线天堂| 777米奇影视久久| 老司机影院成人| 久久精品熟女亚洲av麻豆精品| 中文天堂在线官网| 人人妻人人添人人爽欧美一区卜| 中文字幕制服av| 欧美国产精品一级二级三级| 大片免费播放器 马上看| 国产深夜福利视频在线观看| 亚洲av日韩在线播放| 美女扒开内裤让男人捅视频| 国产亚洲一区二区精品| 国产高清不卡午夜福利| 国产亚洲欧美精品永久| 欧美成人精品欧美一级黄| 在线天堂中文资源库| 日韩精品有码人妻一区| 欧美人与性动交α欧美软件| 考比视频在线观看| 如日韩欧美国产精品一区二区三区| 久久久久精品国产欧美久久久 | svipshipincom国产片| av女优亚洲男人天堂| 亚洲精品一二三| 欧美日韩视频精品一区| 久久韩国三级中文字幕| 丝袜喷水一区| 汤姆久久久久久久影院中文字幕| 热re99久久国产66热| 久久久国产欧美日韩av| 十八禁人妻一区二区| 我的亚洲天堂| 在线观看人妻少妇| 欧美最新免费一区二区三区| 久久毛片免费看一区二区三区| 国产黄频视频在线观看| 美国免费a级毛片| 日韩一区二区视频免费看| 最新的欧美精品一区二区| 午夜老司机福利片| 亚洲自偷自拍图片 自拍| 乱人伦中国视频| 久久天堂一区二区三区四区| 亚洲精品美女久久久久99蜜臀 | 欧美精品一区二区大全| 日本91视频免费播放| a 毛片基地| 在线 av 中文字幕| 国产成人av激情在线播放| 黑人猛操日本美女一级片| 成年女人毛片免费观看观看9 | 国产精品香港三级国产av潘金莲 | 亚洲国产看品久久| 国产毛片在线视频| 亚洲伊人久久精品综合| 国产精品嫩草影院av在线观看| 日韩精品免费视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 99久久99久久久精品蜜桃| 免费少妇av软件| 久久99精品国语久久久| 日韩欧美精品免费久久| 亚洲国产精品999| 人人妻人人澡人人看| 国产老妇伦熟女老妇高清| 久久天堂一区二区三区四区| 成人国产av品久久久| 毛片一级片免费看久久久久| 视频在线观看一区二区三区| 久久久久精品久久久久真实原创| 久久影院123| 久久久久久久精品精品| 日本欧美国产在线视频| 国产一区有黄有色的免费视频| 天天添夜夜摸| 满18在线观看网站| 性少妇av在线| 一本大道久久a久久精品| 丝袜脚勾引网站| 免费少妇av软件| 国产成人精品久久久久久| 视频区图区小说| 久久 成人 亚洲| 亚洲欧美日韩另类电影网站| 午夜福利一区二区在线看| 亚洲视频免费观看视频| 五月开心婷婷网| 日韩一本色道免费dvd| 国产精品亚洲av一区麻豆 | 久久久国产欧美日韩av| 天天添夜夜摸| 日韩伦理黄色片| 国产亚洲欧美精品永久| 久久热在线av| 久久久精品国产亚洲av高清涩受| 天美传媒精品一区二区| 麻豆乱淫一区二区| 国产毛片在线视频| 美女主播在线视频| 亚洲成人手机| 晚上一个人看的免费电影| 亚洲欧美成人精品一区二区| 国产精品久久久久久人妻精品电影 | 国产亚洲av高清不卡| 少妇精品久久久久久久| 成年人免费黄色播放视频| 青草久久国产| 男女国产视频网站| 色婷婷久久久亚洲欧美| 国产免费又黄又爽又色| 美女脱内裤让男人舔精品视频| 99久久精品国产亚洲精品| 久久久久久久久免费视频了| 高清欧美精品videossex| 麻豆精品久久久久久蜜桃| 久久婷婷青草| 国产成人精品无人区| 成人国产av品久久久| xxxhd国产人妻xxx| 在线免费观看不下载黄p国产| 久热这里只有精品99| 亚洲七黄色美女视频| 亚洲伊人久久精品综合| netflix在线观看网站| 亚洲图色成人| 亚洲av日韩精品久久久久久密 | 中文字幕另类日韩欧美亚洲嫩草| 中文字幕人妻熟女乱码| 国产成人av激情在线播放| 亚洲三区欧美一区| 一本一本久久a久久精品综合妖精| 黄片无遮挡物在线观看| 久久综合国产亚洲精品| 久久久久久免费高清国产稀缺| 少妇被粗大的猛进出69影院| 国产成人精品久久二区二区91 | 最近2019中文字幕mv第一页| 男女无遮挡免费网站观看| 精品福利永久在线观看| 国产亚洲午夜精品一区二区久久| 咕卡用的链子| 亚洲精品国产av蜜桃| 久久久久精品人妻al黑| 免费观看a级毛片全部| 亚洲 欧美一区二区三区| 亚洲成人一二三区av| 免费在线观看完整版高清| av免费观看日本| 热re99久久国产66热| 国产乱来视频区| 午夜免费观看性视频| 电影成人av| 欧美少妇被猛烈插入视频| 亚洲国产精品成人久久小说| 搡老岳熟女国产| 亚洲欧美精品自产自拍| 色综合欧美亚洲国产小说| 精品少妇一区二区三区视频日本电影 | 亚洲av电影在线观看一区二区三区| 亚洲欧美一区二区三区久久| 久久久久网色| 波多野结衣av一区二区av| 亚洲一区二区三区欧美精品| 久久精品久久久久久噜噜老黄| 中文字幕精品免费在线观看视频| 国产淫语在线视频| 日韩av在线免费看完整版不卡| 两个人看的免费小视频| 国产深夜福利视频在线观看| 成人毛片60女人毛片免费| 欧美国产精品一级二级三级| 韩国av在线不卡| 赤兔流量卡办理| 天天躁夜夜躁狠狠久久av| 国产精品人妻久久久影院| 天天躁日日躁夜夜躁夜夜| 丝瓜视频免费看黄片| 大陆偷拍与自拍| 高清av免费在线| 性色av一级| 久久精品人人爽人人爽视色| 一级毛片 在线播放| 黄色怎么调成土黄色| 乱人伦中国视频| 久久国产精品大桥未久av| 性少妇av在线| 丝袜美足系列| 亚洲精品一区蜜桃| 90打野战视频偷拍视频| 日韩一卡2卡3卡4卡2021年| 国产1区2区3区精品| 另类精品久久| 欧美老熟妇乱子伦牲交| 婷婷色综合大香蕉| 人人澡人人妻人| 国产精品99久久99久久久不卡 | av网站免费在线观看视频| 一本—道久久a久久精品蜜桃钙片| 最近中文字幕高清免费大全6| 欧美成人午夜精品| 欧美变态另类bdsm刘玥| 国产精品 国内视频| 最近最新中文字幕免费大全7| 国产免费视频播放在线视频| 久热爱精品视频在线9| 亚洲欧美色中文字幕在线| 国产毛片在线视频| 婷婷色麻豆天堂久久| 青青草视频在线视频观看| 侵犯人妻中文字幕一二三四区| 日韩中文字幕欧美一区二区 | 久久人人97超碰香蕉20202| 赤兔流量卡办理| 亚洲欧美一区二区三区黑人| 日韩一卡2卡3卡4卡2021年| 精品一区二区三区av网在线观看 | 国产男女内射视频| 精品国产国语对白av| 三上悠亚av全集在线观看| 国产一区二区三区综合在线观看| 国产精品国产三级专区第一集| 成人国产av品久久久| 99久久精品国产亚洲精品| 国产老妇伦熟女老妇高清| 人人妻人人爽人人添夜夜欢视频| 国产黄频视频在线观看| 欧美日韩国产mv在线观看视频| 91精品三级在线观看| 久久久亚洲精品成人影院| 啦啦啦在线免费观看视频4| 久久久久久人人人人人| 国产成人精品久久久久久| 国产一区亚洲一区在线观看| 午夜激情av网站| 国产一区二区激情短视频 | 女人久久www免费人成看片| 国产精品 欧美亚洲| 亚洲精品国产av蜜桃| 亚洲精品aⅴ在线观看| 亚洲欧洲精品一区二区精品久久久 | 精品卡一卡二卡四卡免费| 国产精品麻豆人妻色哟哟久久| 又大又爽又粗| av国产精品久久久久影院| 高清在线视频一区二区三区| 亚洲av日韩在线播放| 成人18禁高潮啪啪吃奶动态图| 少妇人妻精品综合一区二区| 黄片小视频在线播放| 最黄视频免费看| 卡戴珊不雅视频在线播放| 婷婷色av中文字幕| 老司机影院毛片| 视频在线观看一区二区三区| 观看美女的网站| 人人妻,人人澡人人爽秒播 | 女人被躁到高潮嗷嗷叫费观| 成年人免费黄色播放视频| 国产一区二区三区av在线| 日韩欧美精品免费久久| 精品一品国产午夜福利视频| 日本色播在线视频| 国产片特级美女逼逼视频| 亚洲精品久久午夜乱码| 最近中文字幕高清免费大全6| 亚洲国产毛片av蜜桃av| 母亲3免费完整高清在线观看| 亚洲国产精品一区三区| 国产爽快片一区二区三区| 亚洲精品,欧美精品| 美国免费a级毛片| 精品一品国产午夜福利视频| 一区在线观看完整版| 亚洲自偷自拍图片 自拍| 天美传媒精品一区二区| 国产成人精品久久久久久| 午夜免费男女啪啪视频观看| 亚洲国产日韩一区二区| 亚洲成人国产一区在线观看 | 中文字幕亚洲精品专区| 日韩 欧美 亚洲 中文字幕| 精品人妻熟女毛片av久久网站| 看免费成人av毛片| 天天躁夜夜躁狠狠久久av| 亚洲精品乱久久久久久| 好男人视频免费观看在线| 国产精品久久久久久精品古装| 精品一区二区三卡| 国产伦人伦偷精品视频| 久久这里只有精品19| 最近中文字幕高清免费大全6| 一级a爱视频在线免费观看| 精品国产一区二区三区四区第35| 欧美日韩一区二区视频在线观看视频在线| 亚洲天堂av无毛| 久久影院123| 国产精品一二三区在线看| 免费在线观看完整版高清| 大香蕉久久成人网| 久久热在线av| 久久久久久免费高清国产稀缺| 午夜免费观看性视频| 一级片免费观看大全| 激情五月婷婷亚洲| 欧美亚洲日本最大视频资源| 欧美老熟妇乱子伦牲交| 欧美日韩成人在线一区二区| 欧美国产精品一级二级三级| 久久精品亚洲熟妇少妇任你| 欧美97在线视频| 亚洲欧美一区二区三区黑人| 自拍欧美九色日韩亚洲蝌蚪91| 丝袜美足系列| 97在线人人人人妻| 亚洲成色77777| 一级毛片 在线播放| 国语对白做爰xxxⅹ性视频网站| 国产一级毛片在线| 国产精品一区二区在线观看99| 波多野结衣一区麻豆| 亚洲情色 制服丝袜| 天天躁日日躁夜夜躁夜夜| av女优亚洲男人天堂| 日韩视频在线欧美| 亚洲精品视频女| 久久综合国产亚洲精品| 亚洲国产欧美日韩在线播放| 五月开心婷婷网| 久久这里只有精品19| 美国免费a级毛片| 亚洲av在线观看美女高潮| 成人亚洲欧美一区二区av| 亚洲伊人久久精品综合| 99九九在线精品视频| 青春草视频在线免费观看| 美女中出高潮动态图| 国产欧美亚洲国产| 亚洲av男天堂| 中文乱码字字幕精品一区二区三区| 精品国产一区二区三区四区第35| 国产福利在线免费观看视频| 中文精品一卡2卡3卡4更新| 97人妻天天添夜夜摸| 男女床上黄色一级片免费看| 制服诱惑二区| 一区二区三区四区激情视频| 成年av动漫网址| 午夜福利在线免费观看网站| 成人国产av品久久久| 在线观看免费日韩欧美大片| 青青草视频在线视频观看| 晚上一个人看的免费电影| 黄色一级大片看看| 国产女主播在线喷水免费视频网站| 国产成人欧美在线观看 | 999精品在线视频| 看十八女毛片水多多多| 国产男女内射视频| 18禁观看日本| 久久久亚洲精品成人影院| 日日摸夜夜添夜夜爱| 国产精品香港三级国产av潘金莲 | 少妇人妻 视频| 秋霞在线观看毛片| videosex国产| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久人人做人人爽| 亚洲国产av新网站| 97人妻天天添夜夜摸| 亚洲人成77777在线视频| 国产视频首页在线观看| 欧美亚洲日本最大视频资源| 日日啪夜夜爽| 熟女av电影| 亚洲,欧美,日韩| 美女午夜性视频免费| 国产野战对白在线观看| 妹子高潮喷水视频| 亚洲精品国产av蜜桃| 日韩一本色道免费dvd| 老司机影院成人| 国产伦人伦偷精品视频| 色播在线永久视频| 女性生殖器流出的白浆| 91国产中文字幕| 日日撸夜夜添| 免费av中文字幕在线| 国产精品一区二区在线不卡| 久久韩国三级中文字幕| 欧美激情 高清一区二区三区| 777米奇影视久久| 在线亚洲精品国产二区图片欧美| 纵有疾风起免费观看全集完整版| 嫩草影院入口| 成年人免费黄色播放视频| 一边亲一边摸免费视频| 日日啪夜夜爽| 一区在线观看完整版| 97精品久久久久久久久久精品| 免费观看av网站的网址| 啦啦啦视频在线资源免费观看| 亚洲精品一二三| 在线观看三级黄色| 伊人久久国产一区二区| 国产黄频视频在线观看| 下体分泌物呈黄色| 成人亚洲欧美一区二区av| 亚洲色图综合在线观看| 亚洲欧美成人精品一区二区| 一边亲一边摸免费视频| 乱人伦中国视频| 国产黄频视频在线观看| 亚洲精品日本国产第一区| 天天添夜夜摸| 啦啦啦中文免费视频观看日本| 少妇被粗大的猛进出69影院| 一级毛片 在线播放| 18禁观看日本| 精品国产乱码久久久久久小说| 啦啦啦啦在线视频资源| 午夜日本视频在线| 天天躁日日躁夜夜躁夜夜| 岛国毛片在线播放| 国产男女内射视频| 国产免费又黄又爽又色| 国产一区二区在线观看av| 亚洲美女搞黄在线观看| 欧美精品一区二区免费开放| 亚洲欧美一区二区三区国产| 中文字幕人妻丝袜制服| 大片免费播放器 马上看| 老汉色av国产亚洲站长工具| 男女高潮啪啪啪动态图| 亚洲国产毛片av蜜桃av| bbb黄色大片| 老司机靠b影院| 免费高清在线观看视频在线观看| 老司机在亚洲福利影院| 纵有疾风起免费观看全集完整版| 婷婷色综合www| 波野结衣二区三区在线| xxxhd国产人妻xxx| 亚洲国产精品999| 午夜久久久在线观看| 欧美精品高潮呻吟av久久| 国产精品久久久久久精品电影小说| 51午夜福利影视在线观看| 国产免费一区二区三区四区乱码| 欧美日本中文国产一区发布| 在线观看国产h片| 少妇被粗大的猛进出69影院| 国产精品三级大全| 久久精品熟女亚洲av麻豆精品| 亚洲成国产人片在线观看| av线在线观看网站| 看非洲黑人一级黄片| 国产精品久久久久久久久免| 免费高清在线观看视频在线观看| 亚洲欧美精品综合一区二区三区| 亚洲一码二码三码区别大吗| 亚洲精品日本国产第一区| 免费女性裸体啪啪无遮挡网站| 一级毛片我不卡| 最近中文字幕2019免费版| 中文字幕高清在线视频| av有码第一页| 午夜免费鲁丝| 亚洲成人国产一区在线观看 | 熟女少妇亚洲综合色aaa.| 午夜福利视频在线观看免费| 最新在线观看一区二区三区 | 91精品伊人久久大香线蕉| 亚洲精品美女久久av网站| 欧美久久黑人一区二区| 91精品三级在线观看| 精品一区二区三区av网在线观看 | 精品亚洲乱码少妇综合久久| 国产国语露脸激情在线看| 国产成人欧美| 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美日韩在线播放| 亚洲熟女精品中文字幕| 黄色 视频免费看| 久久精品亚洲av国产电影网| 亚洲av综合色区一区| 欧美亚洲 丝袜 人妻 在线| 天堂俺去俺来也www色官网| 91aial.com中文字幕在线观看| 亚洲五月色婷婷综合| 青草久久国产| 丝瓜视频免费看黄片| 操美女的视频在线观看| 久久久国产欧美日韩av| 亚洲精品国产一区二区精华液| 两个人免费观看高清视频| 亚洲精品久久午夜乱码| 欧美日韩综合久久久久久| 国产在视频线精品| 久久久久久久久久久久大奶| 青春草国产在线视频| 香蕉国产在线看| 国产爽快片一区二区三区| 国产麻豆69| 国产亚洲av片在线观看秒播厂| 精品久久久久久电影网| 精品亚洲成国产av| 午夜久久久在线观看| 18禁国产床啪视频网站| 最近中文字幕高清免费大全6|