• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TOPOLOGICAL ENTROPY OF PERIODIC COVEN CELLULAR AUTOMATA?

    2016-09-26 03:45:50WeibinLIU劉偉斌JihuaMA馬際華

    Weibin LIU(劉偉斌) Jihua MA(馬際華)

    School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China

    E-mail∶weibinliu@whu.edu.cn;jhma@whu.edu.cn

    ?

    TOPOLOGICAL ENTROPY OF PERIODIC COVEN CELLULAR AUTOMATA?

    Weibin LIU(劉偉斌) Jihua MA(馬際華)

    School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China

    E-mail∶weibinliu@whu.edu.cn;jhma@whu.edu.cn

    We investigate topological entropy of periodic Coven cellular automatas;that is,the maps FB∶{0,1}Z→{0,1}Zdefined by

    Cellular automata;periodic word;topological entropy

    2010 MR Subject Classification37B15;37B40;68Q80

    1 Introduction

    Cellular automata(CA,for short)was originally introduced by von Neumann and Ulam[23]in 1966 for modeling biological self-reproduction.In the mathematical literature,CA was initiated by Hedlund[15]in symbolic dynamical system as endomorphisms of the shift dynamical system in 1969,and in the next year,Conway[13]proposed his famous“game of life”,which received remarkable attention.In the early 1980s,Wolfram[26,27]studied computational aspects of CAs and classified CAs into four classes according to their behavior on finite configurations.

    The topological entropy of a dynamical system was presented in[1]and now it is a widely accepted measure of the complexity of dynamical systems.It is well known that the topological entropy of CAs is undecidable in general[16],however,there are numerous examples of CAs for which it is computable.For example,D'amico,Manzhi and Margara[10]computed the topological entropy of D-dimensional(D≥1)linear CAs over the ring Zm(m≥2)and provided an algorithm for computing the topological entropy of positively expansive CAs in 2003.

    In 1980,Coven[5]computed topological entropy of a class of CAs,that is,the maps FB:{0,1}Z→{0,1}Zinduced by block maps fB:{0,1}r+1→{0,1}such that

    where the r-block word B=b1···br∈{0,1}r(r≥2)was aperiodic(see Definition 2.1).And he proved that the topological entropy of these CAs was log2.In 1996,Blanchard and Maass[3]called those CAs studied in[5]aperiodic Coven CAs,and showed that aperiodic Coven CAs were regular,contained equicontinuous points without being equicontinuous,and were chain transitive but not topologically transitive.Therefore,the following problem was raised in[8].

    Problem 1.1(Problem 4,[8])Let({0,1}Z,F(xiàn)B)be a cellular automata whose local rule satisfies Eq.(1.1)with r≥2.For periodic B=b1···br∈{0,1}r,it is not known whether({0,1}Z,F(xiàn)B)is positive entropy,topologically transitive,chain transitive or sensitive.

    In this article,we partially answer this problem when B=b1···bris a periodic r-block word except 0rand 1r,whereThroughout this article,({0,1}Z,F(xiàn)B) is called a Coven CA if its local rule satisfies Eq.(1.1)with r≥2 and the r-block word B= b1···br∈{0,1}r.If B is a periodic(resp.aperiodic)word,then,({0,1}Z,F(xiàn)B)is called a periodic(resp.aperiodic)Coven CA.

    Here and throughout this article,the set P(B)denotes the set of all periods of B(see Definition 2.1),and write m=min{p:p∈P(B)},Bi=b1···bifor 1≤i≤r,and for any positive real number a,we denote by「a」the integral part of a.According to the Fine-Wilf periodicity lemma[11,20],we divide the set of periodic r-block words into four subsets Γ1,Γ2,Γ3,and Γ4as below.

    It is clear that Γ1,Γ2,Γ3,and Γ4are disjoint pairwise and{0,1}rcan be decomposed into the disjoint union

    Our first main result is the following.Let h(X,T)denote the topological entropy of a dynamical system(X,T).

    Theorem 1.2Let({0,1}Z,F(xiàn)B)be a periodic Coven CA with a periodic block word B∈{0,1}r{0r,1r}.

    (1)If B∈Γ1,then,h({0,1}Z,F(xiàn)B)=log2;

    (2)If B∈Γ2,then,h({0,1}Z,F(xiàn)B)=h({0,1}Z,F(xiàn)1k)where k=rm;

    (3)If B∈Γ3?Γ4,then,we have

    Remark 1.3For the Coven CA({0,1}Z,F(xiàn)B)with B=0kor 1k,we are not able to determine their topological entropy.

    In[5],Coven constructs a subsystem such that topological entropy of the subsystem is equal to that of the whole system.The main difficulty in this article is to construct a subsystem as that in[5].Due to periodicity of the block word,we construct two subsystems so that topological entropy of the whole system equals the maximization of that of two subsystems.In particular,when the block words belong to Γ1,both of them have the same topological entropy log2.

    In[19],K?urka divides CAs(AZ,F(xiàn))into four classes according to the existence of equicontinuous points.Denote by ε the set of equicontinuous points of(AZ,F(xiàn)).

    (K1)ε=AZ;

    (K2)?6=ε 6=AZ;

    (K3)(AZ,F(xiàn))is sensitive(that is,ε=?)but not positively expansive;

    (K4)(AZ,F(xiàn))is positively expansive.

    We show that any periodic Coven CA is not sensitive by the definition and hence not topologically transitive for the periodic word B∈{0,1}r{0r,1r}.

    Theorem 1.4Let({0,1}Z,F(xiàn)B)be a periodic Coven CA with B∈{0,1}r{0r,1r},then,({0,1}Z,F(xiàn)B)belongs to(K2).It follows that({0,1}Z,F(xiàn)B)is not topologically transitive.

    As a corollary,it follows that a periodic Coven CA is almost one-to-one when the periodic word B∈{0,1}r{0r,1r}.Here and throughout,the symbol“?”stands for“the cardinality of”.

    Corollary 1.5Let({0,1}Z,F(xiàn)B)be a periodic Coven CA with a periodic block word B∈{0,1}r{0r,1r},and let D be the collection of all x∈{0,1}Zsuch that the forward and backward σ-orbits are dense in{0,1}Z,that is, Then,F(xiàn)Bis almost one-to-one and?F?1B({y})=1 for every y∈D.

    This article is organized as follows.In Section 2,we introduce basic definitions and notions. In Section 3,we study some propositions of periodic Coven CAs and deal with Theorem 1.4 and Corollary 1.5.Theorem 1.2 is proved in Section 4.

    2 Preliminaries

    In this section,we will introduce some basic definitions and notions on dynamical systems and cellular automata.Readers may refer to[17,18,21,23,25]for more details.

    2.1Symbolic Dynamical Systems

    Let N be the set of nonnegative integers,Z be the set of integers,and A be a finite alphabet set with discrete topology and?A≥2.We write Anfor the set of all n-letter words over A and A?for the set of finite words on A.Denote by|u|the length of a word u∈A?.For two words u,v,we say that u is a factor of v,if v=aub,for some a,b∈A?.If a is empty,then,u is called a prefix of v;if b is empty,then,u is called a suffix of v;if both a and b are not empty,then,u is called a interior factor of v.

    Consider the set AZof the two-sided infinite sequence x:=(xi)i∈Z,where xi∈A.Write=ui···ujfor i≤j in Z.Endow AZwith the product topology and define the shiftσ:AZ→AZby σ(x)=(xi+1)i∈Zfor any x=(xi)i∈Z.A fundamental basis of closed and open sets of AZis the family of cylinder sets

    where u∈A?and i∈Z,that is,any point ofi[u]i+|u|?1has the same factor u from i to i+|u|?1.It is clear that AZis compact,metrizable and one metric compatible with this topology is the following:

    The endomorphism(AZ,σ)is called a two-sided full shift.

    Definition 2.1([20])Let u=u1···un∈Anbe a finite word.We say a word u is periodic if there is at least one p,1≤p≤n?1,such that ui=ui+pfor 1≤i≤n?p.The number p is called a period of u.The set of all periods of u is denoted by P(u)and m=min{p:p∈P(u)}is called the minimal period of u.A word u is aperiodic if P(u)=?.

    For example,let u=001000,then,P(u)={4,5}and m=4.

    Remark 2.2If u∈Anand m=min{p:p∈P(u)},then,m=1 if and only if u=anfor some a∈A.

    A dynamical system is a couple(X,T),where X is a compact set called the state space,and T:X→X is a continuous self-map.Let ?:X→Y between two dynamical systems(X,T)and(Y,S)be a continuous mapping such that ??T=S??.If ? is bijective,then,we say(X,T)and(Y,S)are conjugacy.If ? is injective,then,we say(X,T)is a subsystem of(Y,S).If ? is surjective,then,we say(Y,S)is a factor of(X,T).

    2.2Cellular Automata

    The map F:AZ→AZis called a CA if it is continuous and commutes with σ.Hedlund[15]gives an equivalent statement:there exist r1,r∈N and a local rule f:Ar1+r+1→A such that

    for every x∈AZ.The nonnegative integers r1and r are called the left and right radius of the CA respectively.If r1=0,we say that(AZ,F(xiàn))is one-sided.A one-sided CA is generally restricted to ANand denoted by(AN,F(xiàn)).We say(AZ,F(xiàn))is right-permutative if for any u∈Ar1+rand any b∈A,there exists a unique a∈A such that f(ua)=b.Likewise,(AZ,F(xiàn))is left-permutative if for any u∈Ar1+rand any b∈A,there exists a unique a∈A such that f(au)=b.A closed set X?ANis F-invariant if F(X)?X.

    We recall the definitions of some topological properties of CAs.

    Definition 2.3([18])Let(AZ,F(xiàn))be a CA.

    (1)(AZ,F(xiàn))is equicontinuous at x if for any ?>0,there exists δ>0 such that

    (2)(AZ,F(xiàn))is almost equicontinuous if the set of equicontinuous points is a residual set.

    (3)(AZ,F(xiàn))is sensitive if there exists ?>0 such that

    (4)(AZ,F(xiàn))is positively expansive if there exists ?>0 such that

    Remark 2.4By comparing the definitions of sensitive and equicontinuous,one can easily see that

    2.3Topological entropy of CA

    In this section,we introduce two equivalent definitions of topological entropy;readers may refer to[25]and[16]for more details.

    Bowen gives the definition of topological entropy using separating sets.Let n∈N,?>0,and K be a compact subset of AZ.A set E of K is called(n,?)-separating with respect to the map F,if x,y∈E,x 6=y,we have dn(x,y)>?The topological entropy of(K,F(xiàn))is defined by

    where sn(?,K,F(xiàn))is the largest cardinality of any(n,?)-separated subset of K with respect to the map F.

    In[16]it is shown that for one dimension cellular automata,the general definition of topological entropy translates to the following form.Let R(w,t)be the number of distinct rectangles of width w and height t occurring in a space-time evolution diagram of(AZ,F(xiàn))(see Figure 1 from[10]).It is easily to see that

    Figure 1R(w,t)is the number of distinct rectangles of width w and height t occurring in(AZ,F(xiàn))

    Given w and t,the number R(w,t)will be determined by computing the evolution of all block word of length w+(r1+r)(t?1).The topological entropy of(AZ,F(xiàn))is given by

    From the above,it follows that the topological entropy of(AZ,F(xiàn))is finite and satisfies

    The following properties of topological entropy will be very helpful in the sequel.

    Proposition 2.5([18])Let(X,T)and(Y,S)be two dynamical systems.

    (1)If(X,T)is a subsystem of(Y,S),then,h(X,T)≤h(Y,S).

    (2)If(Y,S)is a factor of(X,T),then,h(Y,S)≤h(X,T).

    Corollary 2.6([12])Let(X,T)be a dynamical system,and suppose that X is a metric space and a union of a collection{Xi:i∈J}of closed T-invariant subsets of X,then,

    3 Equicontinuity and Almost One-to-Oneness

    In this section,we mainly study some topological propositions of periodic Coven CAs.In[3],Blanchard and Maass showed that aperiodic Coven CAs were in class(K2).Theorem 1.4 implies that periodic Coven CAs are also in class(K2)and Corollary 1.5 reveals that periodic Coven CAs are almost one-to-one for the periodic word B∈{0,1}r{0r,1r}.

    Recall that({0,1}Z,F(xiàn)B)is a periodic Coven CA,if FB(x)iequals xi+1(mod 2)when xi+1···xi+r=B and equals xiotherwise,where B=b1···bris a given periodic word.And P(B)is the set of all periods of B and we call m=min{p:p∈P(B)}the minimal period of B. The following notations will be useful.Let~0=1,~1=0 and for an n-block C=c1···cn?1cnwith n≥2,let~C=c1···cn?1~cn.

    Proposition 3.1Every periodic Coven CA is not positively expansive.

    ProofLet({0,1}Z,F(xiàn)B)be a periodic Coven CA with a periodic block word B=b1···br. The proof will be divided into two cases.

    Case 1.Assume that B∈{0r,1r},that is to say,b1=···=br=0 or 1.For any ?=2?s>0,we choose two points x=such that

    Case 2.Assume that the periodic word B∈{0,1}r{0r,1r}.It follows that the minimal period m of B satisfies m≥2.For any ?=2?s>0,we also choose two points x=andsuch that

    Both x and y in Case 1 or Case 2 are fixed points so that

    Therefore,({0,1}Z,F(xiàn))is not positively expansive.

    ProofDefine ?:{0,1}Z→{0,1}Zby ?(x)i=xi+1(mod 2),then it is easy to verify that ? is a bijective and continuous mapping such thatis conjugate to

    Proof of Theorem 1.4Notice that the minimal period m of B satisfies m≥2 because the periodic word B∈{0,1}r{0r,1r}.The proof will be divided into two parts.

    First,we shall prove that there is an equicontinous point in({0,1}Z,F(xiàn)B).That is to say,({0,1}Z,F(xiàn)B)is almost equicontinous by Remark 2.4 and Proposition 5.12 of[18].

    Now,it suffices to show that there exists a point which is not an equicontinuous point. Because the minimal period m≥2,we can choose the fixed point y=(yi)i∈Zsuch that

    which is the required point.

    As mentioned above,({0,1}Z,F(xiàn)B)belongs to(K2).By[7],it follows that({0,1}Z,F(xiàn)B)is not topologically transitive.

    A continuous map T:X→X of a compact metric space X is said to almost one-to-one if the set{x∈X:T?1(T(x))={x}}is residual in X.If a CA F:AZ→AZis surjective andμ is the uniform Bernoulli measure on AZ,then,there is a connection between hμ(AZ,F(xiàn))being zero and F being almost one-to-one on AZ.This is given by Theorem 1 of[22].

    Theorem 3.3([22])Let F:AZ→AZbe a a surjective cellular automata,andμbe the uniform Bernoulli measure on AZ.If hμ(AZ,F(xiàn))=0,then,F(xiàn) is almost one-to-one.

    Proof of Corollary 1.5From Theorem 1.4,({0,1}Z,F(xiàn)B)has at least one equicontinuous point for B∈{0,1}r{0r,1r},and({0,1}Z,F(xiàn)B)is surjective,then,hμ({0,1}Z,F(xiàn)B)=0 for the uniform Bernoulli measureμby Proposition 5.2 of[24].Hence,F(xiàn)Bis almost one-to-one by Theorem 3.3 and=1 for every y∈D by Corollary 2 of[22].

    4 Calculating Topological Entropy of Periodic Coven CAs

    This section is contributed to the proof of Theorem 1.2.Before so doing,we introduce the famous Fine-Wilf periodicity lemma(Lemma 4.1),which leads to classifications of the set ofperiodic block words,and then,we give an example,which reveals the importance of Theorem 1.2.

    Lemma 4.1([11,20])If u is a finite word having period p and q with q≤p.If|u|≥p+q?gcd(p,q),where gcd(p,q)denotes the greatest common divisor of p and q,then,u also has period gcd(p,q).

    ProofFor the proof,readers can see Theorem 8.1.4 of[20]for details.

    From the above lemma,we divide the set of periodic r-block words into four subsets Γ1,Γ2,Γ3,and Γ4(see Section 1).

    Before proving Theorem 1.2,we see the following two examples first.

    Example 4.2In Table 1 of[14],Guibas and Odlyzko describe 116 different legal correlations for{0,1}20.In summary,the number of aperiodic words,Γ1and Γ2are 281076,765534 and 306 respectively,and the remaining 1660 periodic words belong to Γ3?Γ4.From Theorem of[5],281076 aperiodic Coven CAs have the same topological entropy log2.From Theorem 1.2,765534 periodic Coven CAs corresponding to the word which belongs to Γ1also have the same topological entropy log2.

    Example 4.3Let({0,1}Z,F(xiàn)B)be a periodic Coven CA with the periodic block word B∈{0,1}r{0r,1r}.

    (1)For B=001001=(001)2,we have h({0,1}Z,F(xiàn)B)=h({0,1}Z,F(xiàn)11),where({0,1}Z,F(xiàn)11)is also a periodic Coven CA with F11(x)i=xi+xi+1·xi+2.

    (2)For B=010010=(010)2or B=0100100=(010)20,we obtain

    (3)For B=0100,we see h({0,1}Z,F(xiàn)B)=log2.

    Recall that({0,1}Z,F(xiàn)B)is a periodic Coven CA,if FB(x)iequals xi+1(mod 2)when=B and equals xiotherwise,where B=b1···bris a given periodic word.And P(B)is the set of all periods of B and we write Bi=b1···biand

    For example,B=001000,then,~P(B)={4,5,6}and

    The mapping~F acting on ENis considered as FBrestricted in EN,we denote~F by FBfor convenience.So,ENis a closed and FB-invariant set of{0,1}N.

    The trick of the proof of Theorem 1.2 is to construct two one-sided subsystems(EN,F(xiàn)B)and({Bm,~Bm}N,F(xiàn)B)so that h(EN,F(xiàn)B)=h({0,1}Z,F(xiàn)B)(Lemmas 4.4 and 4.5)and({Bm,~Bm}N,F(xiàn)B)is conjugate to some({0,1}N,F(xiàn)1k),where k depends on B(Lemma 4.7).Finally,we compare the topological entropy of(EN,F(xiàn)B)with that of({Bm,~Bm}N,F(xiàn)B)according to classifications of periodic words(Lemmas 4.8 and 4.9).

    After these preparations,we are able to compute the topological entropy of a periodic Coven CA by verifying the following five lemmas.Let O,then,closed and FB-invariant subset of{0,1}N.

    Lemma 4.4Let({0,1}Z,F(xiàn)B)and({0,1}N,F(xiàn)B)be two Coven CAs with any block word B∈{0,1}r,then,

    ProofFrom[16],for given width w and height t,one gets the same number R(w,t)on{0,1}Zand{0,1}N.Therefore,h({0,1}Z,F(xiàn)B)=h({0,1}N,F(xiàn)B).

    Lemma 4.5If B∈{0,1}r,then,h(EN,F(xiàn)B)=h({0,1}N,F(xiàn)B).

    ProofSuppose that B∈{0r,1r}.We consider B=1r(the case B=0ris similar),the minimal period of B is 1,thus,we have EN={0,1}N.There is nothing to prove.

    Suppose that B∈{0,1}r{0r,1r}.That is to say,the minimal period m of B satisfies m≥2,hence,EN{0,1}N.The method of the proof is similar to that of Theorem of[5].

    To begin with,(EN,F(xiàn)B)is regarded as a subsystem of({0,1}N,F(xiàn)B),hence,we have

    Now,according to Corollary 2.6([12]),it suffices to show thatfor each point x∈{0,1}N.

    In fact,each x∈{0,1}Nmust belong to one of the following situations.

    (S1)x∈EN;

    (S2)B appears infinitely often in x but σk(x)/∈ENfor all k≥0;

    (S3)x/∈ENbut σk(x)∈ENfor some k≥1;

    (S4)B appears only finitely often in x.

    Case(S1).Because ENis a closed and FB-invariant subset of{0,1}N,we infer thatEN,therefore,h(O(x),F(xiàn)B)≤h(EN,F(xiàn)B).

    Case(S2).We can write x=A1C1A2C2···AnCn···using the following procedure.Recall that~P(B)=P(B)∪{r},and

    Step 1.Underline the occurrence of B in x.Label the nonunderlined block by V1,V2,··· and label the block before V1by W0(W0may be empty)and the block between Vkand Vk+1by Wkfor k≥1.Obviously,Wk=Bp1···BplB∈E?for some l and pj∈~P(B),1≤j≤l. Therefore,the point x can be written as

    Step 2.Let VkWk=with∈(E{B})?,and Vk,16∈E?(Vk,1may be empty)such that any suffix of Vk,1does not belong to E.Then,we set

    Step 5.Let Ci=for i≥0 and Aj=for j≥1,then,we obtain the required decomposition.

    The decomposition x=C0A1C1A2C2···AnCn···has the following properties:

    (P1)Ci6=?for i≥1;

    (P2)B does not appear in Ai;

    (P3)Aidoes not end with any element of E;

    (P4)Ci∈E?and ends with B for every i≥1.If C06=?,so is C0.

    Recall that|u|denotes the length of the finite word u.Now,write FB(x)=···,where||=|Ai|and||=|Ci|.From Proposition 4.6 behind this lemma,we imply that the decomposition FB(x)=···also has properties(P1)-(P4).For each n≥1,(x)=···,where|,also has properties(P1)-(P4).

    Case(S3)In a manner similar to Case(S2),)is conjugate to the product of a rotation on a finite group andfor some y∈EN.Hence,

    Case(S4)Because B appears only finitely often in xis conjugate to a rotation on a finite group according to the definition of FB,thus,

    In conclusion,by Corollary 2.6([12]),

    Therefore,this lemma is proved.

    Proposition 4.6Let x belong to Case(S2)in the above lemma.If the decomposition···has properties(P1)-(P4),and···,where,then,the decomposition FB(x)also has properties(P1)-(P4).

    Proof

    (1)(P1)is clear.

    (2)Suppose that B appears infor some i in FB(x).Because fB:{0,1}r+1→{0,1}is the local rule of FB,for convenience,fBis also denoted by the map from{0,1}n+rto{0,1}nfor any integer n≥1.Because of periodicity of B,we have

    where P(B)is the set of all periods of B.It follows that an element ofmust appear in the same positions in x.Because B does not appear in Aiand B appear in,thus,orB~B appears in Aior AiCi.Because B does not appear in Ai,this appearance of B must entirely in Ci,and by Step 2 of Lemma 4.4,B~pB andB~B must entirely in Citoo,contrary to

    (4)Let Ci=E1E2···EsB,where each Ej∈E,and let D be the initial r-block ofBy the local ruleJ,whereand J= fB(BD).Because B must in,thus,D 6=B.If B is an interior block of BD,then,this interior factor B must in Ciby Step 1 of Lemma 4.4.Hence,B is not an interior factor of BD. Therefore,J=B.

    Lemma 4.7For B∈{0,1}r{0r,1r},the subsystem)is conjugate to({0,1}N,F(xiàn)1k)where k=,and hence

    In particular,if B∈Γ1,then,ProofLet({0,1}N,)be a periodic Coven CA defined by

    where k,m,and bmdepend on B.And define φ:{0,1}N→{Bm,~Bm}Nby

    the mapping φ is continuous and bijective,and satisfies φ?=FB?φ,then,({0,1}N,)is conjugate to

    If bm=1,then(x)=(x),?x∈{0,1}N.In the case of bm=0,by Proposition 3.2,({0,1}N,F(xiàn)bkm)is conjugate to({0,1}N,F(xiàn)1k).Therefore,

    In particular,if B∈Γ1,then,we have k=1,that is,F(xiàn)1k=F1with

    ProofAssume that B∈Γ1.For each p∈~P(B),define a map

    Let a mapping ?:EN→{Bm,~Bm}Nbe defined bythen,the mapping ? is continuous and surjective,but not injective.By Bowen's definition of topological entropy,for each y∈EN,there exists ?(y)∈{Bm,~Bm}Nsuch that

    From Corollary 2.6([12]),h(EN,F(xiàn)B)=h({Bm,~Bm}N,F(xiàn)B).

    Suppose that B∈Γ2,then there exists k≥2 such that r=km and

    Because Bmis aperiodic,it follows that ENand{Bm,~Bm}Nare identical,therefore,

    Lemma 4.9If B∈Γ3?Γ4,then,

    ProofWe only show that the lemma holds when B∈Γ4;the rest is analogous.

    Suppose that B∈Γ4,and write B=(Bm)kBt,where k≥2 and 1≤t<m.Observing that both{Bm,~Bm}Nand{B,~B}Nare closed and FB-invariant subsets of EN,and({B,~B}N,F(xiàn)B)is conjugate to({0,1}N,τ)with τ(x)i=xi+xi+1(mod 2),we see that

    Then,in a manner similar to B∈Γ1,by Bowen's definition of topological entropy,we have

    LetbE=EE,then we deduce thatbENand{Bm,~Bm}Nare identical.Therefore,

    Repeated application of Lemma 4.5 enables us to obtainIn fact,for any x in EN,let N1and N2denote the number of occurrences of elements ofin x and the number of occurrences of elements ofbE in x,respectively.The following table describes topological entropy of

    x∈ENN1N2h(O(x),F(xiàn)B)case 1finiteinfinite≤h({Bm,~Bm}N,F(xiàn)B)case 2infinitefinite≤log2 case 3infiniteinfinite≤log2

    If x∈ENbelongs to case 1,by Bowen's definition of topological entropy,for l large enough,for someTherefore,

    If x∈ENbelongs to case 2,for l large enough,sn(l,O(x),F(xiàn)B)≤2n,thus,

    If x∈ENbelongs to case 3,let

    Proof of Theorem 1.2From Lemmas 4.4 and 4.5,we have

    Suppose that B∈Γ1,from Lemmas 4.7 and 4.8,we obtainlog2.

    Suppose that B∈Γ2,from Lemmas 4.4,4.7,and 4.8,it follows that

    Suppose that B∈Γ3?Γ4,from Lemmas 4.4,4.7,and 4.9,we have

    Thus,the proof is completed.

    From[2]it follows that the positive topological entropy implies chaotic in the sense of Li-Yorke.Thus,the following proposition is provided.

    Proposition 4.10Let({0,1}Z,F(xiàn)B)be a periodic Coven CA with the periodic block word B∈{0,1}r{0r,1r}.If B belongs to Γ1?Γ3?Γ4,then,({0,1}Z,F(xiàn)B)is chaotic in the sense of Li-Yorke.

    Example 4.11Table 1 of[14]also reveals that most of Coven CAs have positive entropy and then,they are chaotic in the sense of Li-Yorke.From Theorem of[5]and Theorem 1.2,we imply that at least 1048270 Coven CAs are chaotic in the sense of Li-Yorke with respect to 220=1048576 Coven CAs.

    5 Conclusion

    In this article,we compute the topological entropy and discuss topological transitive and sensitive when the periodic word B∈{0,1}r{0r,1r}.However,for B∈{0r,1r},this is still an open problem.

    References

    [1]Adler R,Konheim A,McAndrew M.Topological entropy.Trans Amer Math Soc,1965,114:309-319

    [2]Blanchard F,Glasner E,Kolyada S.On Li-Yorke pairs.J Reine Angew Math,2002,547:51-68

    [3]Blanchard F,Maass A.Dynamical behaviour of Coven’s aperiodic cellular automata.Theoret Comput Sci,1996,163:291-302

    [4]Blanchard F,Tisseur P.Some properties of cellular automata with equicontinous points.Ann Inst Henri Poincar′e,2000,36:569-582

    [5]Coven E M.Topological entropy of block maps.Proc Amer Math Soc,1980,78:590-594

    [6]Coven E M,Hedlund G A.Periods of some nonlinear shift registers.J Combina Theory,1979,27A:186-197

    [7]Codenotti B,Margara L.Transitive cellular automata are sensitive.Amer Math Monthly,1996,103:58-62

    [8]Delorme M,F(xiàn)ormenti E,Mazoyer J.Open problem on cellular automata.Technical report RR-2000-25. ′Ecole Normale Sup′erieure de Lyon,2000

    [9]Denker M,Grillenberger C,Sigmund K.Ergodic Theory on Compact Space.Berlin:Springer-Verlag,1976[10]D’amico M,Manzhi G,Margara L.On computing the entropy of cellular automata.Theoret Comput Sci,2003,290:1629-1646

    [11]Fine N J,Wilf H S.Uniqueness theorem for periodic functions.Proc Amer Math Soc,1965,16:109-114

    [12]Goodman T N T.Relating topological entropy and measure entropy.Bull London Math Soc,1971,3:176-180

    [13]Gardner M.Mathematical Games-The fantastic combinations of John Conway’s new solitaire game“l(fā)ife”. Sci Am,1970,223:120-123

    [14]Guibas L J,Odlyzko A M.Periods in strings.J Combin Theory,1981,30A:19-42

    [15]Hedlund G A.Endomorphisms and automorphisms of the shift dynamical system.Math Syst Theory,1969,3:320-375

    [16]Hurd L P,Kari J,Culik K.The topological entropy of cellular automata is uncomputable.Ergodic Theory Dynam Systems,1992,12:255-265

    [17]Kitchens B.Symbolic Dynamical,One-sided,Two-sided and Countable State Markov Shifts.Berlin:Springer,1998

    [18]K?urka P.Topological and Symbolic Dynamics.Cours Sp′ecialis′es-Collection SMF,2003

    [19]K?urka P.Languages,equicontinuity and attractors in cellular automata.Ergodic Theory Dynam Systems,1997,17(2):417-433

    [20]Lothaire M.Algebraic Combinatorics on Words.Cambridge:Cambridge University Press,2002

    [21]Lind D,Marcus B.An Introduction to Symbolic Dynamics and Coding.Cambridge:Cambridge University Press,1995

    [22]Moothathu T K S.Surjective cellular automata with zero entropy are almost one-to-one.Chaos Solitons Fractals,2011,44:415-417

    [23]von Neumann J.Theory of Self-reproducing Automata.Urbana:University of Illinios,1966

    [24]Tisseur P.Cellular automata and Lyapunov exponents.Nonlinearity,2000,13:1547-1560

    [25]Walters P.An Introduce to Ergodic Theory.New York:Springer-Verlag,1982

    [26]Wolfram S.Computation theory of cellular automata.Comm Math Phys,1984,96:15-57

    [27]Wolfram S.Theory and Application of Cellular Automata.Singapore:World Scientific,1986

    November 20,2014;revised June 2,2015.The first author is supported by the Fundamental Research Funds for the Central Universities(2012201020204),and the second author is supported by NSFC(11171128,11271148).

    where B=b1b2···br∈{0,1}r(r≥2),is a periodic word.In particular,we prove that if the minimal period of B is greater thanr2,the topological entropy is log2.

    日韩大尺度精品在线看网址| 一进一出抽搐gif免费好疼| 国产亚洲精品久久久久久毛片| 国产精品久久久久久久电影 | 国产精品久久电影中文字幕| 亚洲在线观看片| 亚洲在线观看片| av天堂中文字幕网| 日本与韩国留学比较| 国产免费av片在线观看野外av| 久久精品aⅴ一区二区三区四区| 男女床上黄色一级片免费看| 性色av乱码一区二区三区2| 18禁美女被吸乳视频| 在线观看午夜福利视频| 国产精华一区二区三区| 国产精品亚洲av一区麻豆| 99热这里只有精品一区 | 人妻久久中文字幕网| 国产久久久一区二区三区| xxx96com| 亚洲午夜精品一区,二区,三区| 国产一级毛片七仙女欲春2| 亚洲 欧美 日韩 在线 免费| av国产免费在线观看| 亚洲成人久久性| 黄色日韩在线| 动漫黄色视频在线观看| 精华霜和精华液先用哪个| 久久精品人妻少妇| 宅男免费午夜| 51午夜福利影视在线观看| 嫁个100分男人电影在线观看| av女优亚洲男人天堂 | 五月伊人婷婷丁香| 九九热线精品视视频播放| 日日干狠狠操夜夜爽| 亚洲成av人片免费观看| 蜜桃久久精品国产亚洲av| 亚洲欧洲精品一区二区精品久久久| 99久久成人亚洲精品观看| 亚洲av中文字字幕乱码综合| 国产亚洲av高清不卡| 日韩欧美国产一区二区入口| 久久99热这里只有精品18| АⅤ资源中文在线天堂| 亚洲18禁久久av| 国产高清有码在线观看视频| 啪啪无遮挡十八禁网站| 美女高潮的动态| 久久久久精品国产欧美久久久| 脱女人内裤的视频| 欧美不卡视频在线免费观看| 久久人人精品亚洲av| 久久中文看片网| 叶爱在线成人免费视频播放| 精品久久久久久久毛片微露脸| 天天添夜夜摸| 黄片大片在线免费观看| 国产成人欧美在线观看| 亚洲人成电影免费在线| 日本一本二区三区精品| 欧美日本视频| 中文亚洲av片在线观看爽| 免费看a级黄色片| 免费电影在线观看免费观看| 欧美激情在线99| 操出白浆在线播放| 亚洲天堂国产精品一区在线| 国产伦在线观看视频一区| 午夜免费成人在线视频| 97超视频在线观看视频| 老鸭窝网址在线观看| 精品一区二区三区视频在线 | 91在线精品国自产拍蜜月 | 国产精品av久久久久免费| 精品一区二区三区四区五区乱码| 精品国产乱子伦一区二区三区| 国产午夜福利久久久久久| 美女高潮喷水抽搐中文字幕| 国产成人一区二区三区免费视频网站| 亚洲国产欧美网| 国产av在哪里看| 叶爱在线成人免费视频播放| 国内久久婷婷六月综合欲色啪| 黄色成人免费大全| 99热只有精品国产| 久久久久九九精品影院| 亚洲av成人一区二区三| 国产精品一区二区三区四区久久| 日韩欧美在线乱码| 国产真人三级小视频在线观看| 制服丝袜大香蕉在线| 桃色一区二区三区在线观看| 欧美乱码精品一区二区三区| 亚洲欧美日韩无卡精品| 99国产综合亚洲精品| 成年人黄色毛片网站| 啦啦啦韩国在线观看视频| 日韩欧美在线乱码| 色哟哟哟哟哟哟| 中文亚洲av片在线观看爽| 成人三级黄色视频| 在线观看美女被高潮喷水网站 | www.www免费av| 啪啪无遮挡十八禁网站| 精品久久蜜臀av无| 中文资源天堂在线| 午夜福利在线在线| 久久久国产欧美日韩av| 国产精品九九99| 一个人观看的视频www高清免费观看 | 免费在线观看影片大全网站| 久久这里只有精品中国| 少妇裸体淫交视频免费看高清| 中国美女看黄片| 日本撒尿小便嘘嘘汇集6| 中文在线观看免费www的网站| 亚洲成av人片在线播放无| 国产精品98久久久久久宅男小说| 无遮挡黄片免费观看| 五月玫瑰六月丁香| 色播亚洲综合网| 无人区码免费观看不卡| 午夜精品一区二区三区免费看| 岛国在线观看网站| 亚洲人成网站在线播放欧美日韩| 一a级毛片在线观看| 国产精品日韩av在线免费观看| 亚洲黑人精品在线| www国产在线视频色| 亚洲av成人精品一区久久| 国产精品99久久久久久久久| 身体一侧抽搐| 午夜免费观看网址| 狠狠狠狠99中文字幕| 香蕉国产在线看| 欧美日韩亚洲国产一区二区在线观看| 一本综合久久免费| 免费看a级黄色片| 床上黄色一级片| 叶爱在线成人免费视频播放| av片东京热男人的天堂| 国产欧美日韩精品一区二区| 亚洲精品在线美女| 香蕉av资源在线| 91av网站免费观看| 久久久久性生活片| 少妇的逼水好多| 欧美日韩综合久久久久久 | 女人被狂操c到高潮| 啦啦啦韩国在线观看视频| 成人高潮视频无遮挡免费网站| 午夜视频精品福利| 久久天堂一区二区三区四区| 久久精品91无色码中文字幕| 熟女少妇亚洲综合色aaa.| 亚洲av中文字字幕乱码综合| 国内少妇人妻偷人精品xxx网站 | 最新美女视频免费是黄的| 两性午夜刺激爽爽歪歪视频在线观看| 免费看a级黄色片| 97人妻精品一区二区三区麻豆| 长腿黑丝高跟| 一本一本综合久久| 啦啦啦韩国在线观看视频| 国产乱人伦免费视频| 免费看a级黄色片| 国产一区二区激情短视频| 欧美xxxx黑人xx丫x性爽| 欧美一级毛片孕妇| 亚洲欧美日韩东京热| 欧美日本亚洲视频在线播放| 久久中文字幕一级| 亚洲第一欧美日韩一区二区三区| 熟妇人妻久久中文字幕3abv| 午夜福利高清视频| 日韩三级视频一区二区三区| 国产欧美日韩一区二区精品| 国产精品电影一区二区三区| 两个人的视频大全免费| 十八禁网站免费在线| 色精品久久人妻99蜜桃| 久久久久精品国产欧美久久久| 国产精品国产高清国产av| 婷婷精品国产亚洲av| 亚洲自拍偷在线| 亚洲中文av在线| 性色avwww在线观看| 午夜福利成人在线免费观看| 国产免费男女视频| 村上凉子中文字幕在线| 婷婷六月久久综合丁香| a级毛片在线看网站| 中文字幕久久专区| 婷婷六月久久综合丁香| 国产亚洲欧美98| 国产精品98久久久久久宅男小说| 午夜福利免费观看在线| 国产人伦9x9x在线观看| 91av网一区二区| 一边摸一边抽搐一进一小说| 在线观看舔阴道视频| 热99在线观看视频| aaaaa片日本免费| 欧美日韩瑟瑟在线播放| 淫秽高清视频在线观看| 最新美女视频免费是黄的| av天堂在线播放| 一个人观看的视频www高清免费观看 | 欧美极品一区二区三区四区| 又黄又爽又免费观看的视频| 美女午夜性视频免费| 搡老妇女老女人老熟妇| 欧洲精品卡2卡3卡4卡5卡区| 国产成人精品无人区| 久久久久久久久免费视频了| 成人av一区二区三区在线看| 久久久久久久久久黄片| 国产亚洲精品久久久com| 丰满人妻熟妇乱又伦精品不卡| 三级男女做爰猛烈吃奶摸视频| 日韩 欧美 亚洲 中文字幕| 最近视频中文字幕2019在线8| 亚洲人成电影免费在线| 精品熟女少妇八av免费久了| 亚洲欧洲精品一区二区精品久久久| 日韩国内少妇激情av| 又黄又爽又免费观看的视频| 色综合亚洲欧美另类图片| 母亲3免费完整高清在线观看| 色综合欧美亚洲国产小说| 久久久久久久久中文| 欧美一区二区精品小视频在线| 一区福利在线观看| 偷拍熟女少妇极品色| 国产日本99.免费观看| 国产激情偷乱视频一区二区| 999精品在线视频| 色综合亚洲欧美另类图片| 一边摸一边抽搐一进一小说| 国产久久久一区二区三区| 国内精品一区二区在线观看| 国产高清激情床上av| 一夜夜www| 国产成人欧美在线观看| 成人高潮视频无遮挡免费网站| 日韩成人在线观看一区二区三区| 51午夜福利影视在线观看| 色视频www国产| 人人妻人人看人人澡| 又粗又爽又猛毛片免费看| 国产精品久久久久久精品电影| 丝袜人妻中文字幕| 亚洲成a人片在线一区二区| 国产伦在线观看视频一区| 人人妻人人澡欧美一区二区| cao死你这个sao货| 高清在线国产一区| 精品一区二区三区视频在线观看免费| 欧美性猛交╳xxx乱大交人| e午夜精品久久久久久久| 又黄又粗又硬又大视频| 午夜a级毛片| 亚洲精品中文字幕一二三四区| 在线免费观看不下载黄p国产 | 国产精品亚洲av一区麻豆| 久久久久久久久中文| 午夜影院日韩av| av视频在线观看入口| 色综合欧美亚洲国产小说| 亚洲熟女毛片儿| 久久精品国产清高在天天线| 久久久久九九精品影院| 国产av麻豆久久久久久久| 日韩免费av在线播放| 欧美一区二区国产精品久久精品| 桃色一区二区三区在线观看| 一个人看视频在线观看www免费 | 亚洲国产日韩欧美精品在线观看 | 两人在一起打扑克的视频| 一级毛片女人18水好多| 嫩草影视91久久| 亚洲九九香蕉| 一卡2卡三卡四卡精品乱码亚洲| 老熟妇乱子伦视频在线观看| 美女高潮喷水抽搐中文字幕| 三级毛片av免费| 国产熟女xx| 亚洲国产看品久久| www.www免费av| 欧美最黄视频在线播放免费| 国产一区二区三区视频了| 19禁男女啪啪无遮挡网站| 午夜激情福利司机影院| 精品一区二区三区av网在线观看| av在线蜜桃| 亚洲精品国产精品久久久不卡| 亚洲欧美激情综合另类| 一二三四在线观看免费中文在| 他把我摸到了高潮在线观看| 国产真实乱freesex| 亚洲专区字幕在线| 久久99热这里只有精品18| 又大又爽又粗| 99国产精品99久久久久| 亚洲乱码一区二区免费版| 叶爱在线成人免费视频播放| 精品一区二区三区av网在线观看| 久久久成人免费电影| 久久精品国产99精品国产亚洲性色| 成人国产一区最新在线观看| 欧美日韩一级在线毛片| 999精品在线视频| 俺也久久电影网| 日韩精品中文字幕看吧| 日本a在线网址| 波多野结衣巨乳人妻| 老汉色av国产亚洲站长工具| 日韩大尺度精品在线看网址| 亚洲精品美女久久av网站| 日本一本二区三区精品| 五月玫瑰六月丁香| 人妻丰满熟妇av一区二区三区| 男女做爰动态图高潮gif福利片| 久久久国产成人精品二区| 91字幕亚洲| av女优亚洲男人天堂 | 后天国语完整版免费观看| 国产精品1区2区在线观看.| 欧美一区二区国产精品久久精品| 国产视频内射| 色老头精品视频在线观看| 欧美午夜高清在线| 精品熟女少妇八av免费久了| 一进一出抽搐gif免费好疼| 成年人黄色毛片网站| 欧美日韩精品网址| 18禁美女被吸乳视频| 国产伦一二天堂av在线观看| 国产精品女同一区二区软件 | 亚洲欧美日韩卡通动漫| 不卡av一区二区三区| 天天添夜夜摸| 国产成+人综合+亚洲专区| 欧美性猛交黑人性爽| 国产激情偷乱视频一区二区| 90打野战视频偷拍视频| 亚洲国产日韩欧美精品在线观看 | 老司机午夜十八禁免费视频| 亚洲精品一区av在线观看| 国产精品美女特级片免费视频播放器 | 国产精品98久久久久久宅男小说| 久久天躁狠狠躁夜夜2o2o| 岛国在线观看网站| 国产精品 国内视频| 网址你懂的国产日韩在线| 91在线精品国自产拍蜜月 | 日韩成人在线观看一区二区三区| 成年女人毛片免费观看观看9| 色在线成人网| 欧美成人免费av一区二区三区| 亚洲成人中文字幕在线播放| 美女扒开内裤让男人捅视频| 亚洲美女视频黄频| 制服人妻中文乱码| 十八禁网站免费在线| 午夜精品一区二区三区免费看| 欧美黑人欧美精品刺激| 人妻丰满熟妇av一区二区三区| 中文字幕人妻丝袜一区二区| 国内精品久久久久精免费| 99热只有精品国产| 久久久精品大字幕| 亚洲精品美女久久av网站| 99精品在免费线老司机午夜| 国产三级黄色录像| 中文字幕av在线有码专区| 亚洲中文av在线| 国产探花在线观看一区二区| 亚洲精品色激情综合| 观看免费一级毛片| 国产精品一区二区三区四区久久| 99热精品在线国产| 精品久久久久久久毛片微露脸| 91在线观看av| 少妇裸体淫交视频免费看高清| 老司机深夜福利视频在线观看| 少妇裸体淫交视频免费看高清| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩乱码在线| 网址你懂的国产日韩在线| 精品久久久久久久末码| 亚洲中文字幕日韩| 精品欧美国产一区二区三| 免费在线观看影片大全网站| 国产成人一区二区三区免费视频网站| 村上凉子中文字幕在线| 亚洲男人的天堂狠狠| 一区福利在线观看| xxx96com| 国产精品日韩av在线免费观看| 人人妻人人看人人澡| 久久中文字幕人妻熟女| 天天一区二区日本电影三级| 免费人成视频x8x8入口观看| 国产精品久久久久久久电影 | 欧美最黄视频在线播放免费| 亚洲av电影在线进入| 国产午夜精品论理片| 少妇裸体淫交视频免费看高清| 亚洲最大成人中文| 亚洲黑人精品在线| 国产亚洲精品一区二区www| 亚洲av免费在线观看| 嫩草影院入口| 日本免费a在线| 最近最新中文字幕大全电影3| 午夜视频精品福利| 色精品久久人妻99蜜桃| 国产毛片a区久久久久| 日本免费a在线| 成人一区二区视频在线观看| 日韩欧美三级三区| 午夜久久久久精精品| 日本在线视频免费播放| 欧美黄色淫秽网站| 免费看a级黄色片| 中文字幕精品亚洲无线码一区| 999精品在线视频| 久久午夜亚洲精品久久| 国产亚洲av高清不卡| 亚洲精华国产精华精| 亚洲欧美日韩东京热| 日本免费a在线| 韩国av一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 91老司机精品| 99精品欧美一区二区三区四区| 国产av一区在线观看免费| 男人舔女人下体高潮全视频| 性欧美人与动物交配| 亚洲 国产 在线| 桃红色精品国产亚洲av| 在线观看66精品国产| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩东京热| 99国产综合亚洲精品| 国产亚洲精品av在线| 国产精品九九99| 亚洲av成人精品一区久久| 亚洲,欧美精品.| 日本一本二区三区精品| 日本 av在线| 熟女少妇亚洲综合色aaa.| 精华霜和精华液先用哪个| 国内精品久久久久久久电影| 成人av一区二区三区在线看| 欧美色视频一区免费| 日韩中文字幕欧美一区二区| 在线观看午夜福利视频| 国产精品一区二区精品视频观看| 欧美日韩乱码在线| 国产精品乱码一区二三区的特点| 两个人视频免费观看高清| 又黄又粗又硬又大视频| 免费观看人在逋| 欧美乱码精品一区二区三区| 欧美性猛交╳xxx乱大交人| 91九色精品人成在线观看| 国产一区二区在线av高清观看| 免费观看精品视频网站| 免费高清视频大片| 国产在线精品亚洲第一网站| 免费av毛片视频| 日本在线视频免费播放| 一级a爱片免费观看的视频| 在线免费观看不下载黄p国产 | 久久久久久人人人人人| 男人和女人高潮做爰伦理| 亚洲国产高清在线一区二区三| 欧美xxxx黑人xx丫x性爽| 精品不卡国产一区二区三区| 免费人成视频x8x8入口观看| 香蕉久久夜色| 偷拍熟女少妇极品色| 中文字幕高清在线视频| 黄片小视频在线播放| 久久久精品大字幕| 亚洲精品色激情综合| 色尼玛亚洲综合影院| 91av网一区二区| 性欧美人与动物交配| 亚洲真实伦在线观看| tocl精华| 小说图片视频综合网站| 免费人成视频x8x8入口观看| 国产精品一区二区三区四区免费观看 | 午夜福利成人在线免费观看| 亚洲国产精品sss在线观看| 成人三级做爰电影| 国内揄拍国产精品人妻在线| 国产激情久久老熟女| 国内揄拍国产精品人妻在线| 蜜桃久久精品国产亚洲av| 搡老岳熟女国产| 美女 人体艺术 gogo| 999久久久国产精品视频| 日韩高清综合在线| 国产黄a三级三级三级人| 91麻豆av在线| 午夜福利高清视频| 丝袜人妻中文字幕| 亚洲欧美精品综合一区二区三区| 亚洲七黄色美女视频| 色综合婷婷激情| АⅤ资源中文在线天堂| 亚洲在线观看片| 免费电影在线观看免费观看| 国内久久婷婷六月综合欲色啪| 日本与韩国留学比较| e午夜精品久久久久久久| 成年女人看的毛片在线观看| 亚洲狠狠婷婷综合久久图片| 久久久久久久久免费视频了| 亚洲美女视频黄频| 亚洲人成电影免费在线| 在线观看免费视频日本深夜| 一个人观看的视频www高清免费观看 | 精品久久久久久久人妻蜜臀av| 国产精品一区二区三区四区久久| xxx96com| 久久精品影院6| 丁香六月欧美| 国产av不卡久久| 国产精品一区二区免费欧美| 热99在线观看视频| 黄色丝袜av网址大全| 亚洲美女视频黄频| 午夜久久久久精精品| 99热只有精品国产| 国产综合懂色| 老汉色av国产亚洲站长工具| 精品一区二区三区av网在线观看| 国产高清激情床上av| 国产精品永久免费网站| 草草在线视频免费看| 欧美中文综合在线视频| 99re在线观看精品视频| 欧美大码av| 久久精品aⅴ一区二区三区四区| 色综合欧美亚洲国产小说| 在线观看一区二区三区| 欧美极品一区二区三区四区| 五月伊人婷婷丁香| 狂野欧美白嫩少妇大欣赏| 亚洲精品在线观看二区| 女人被狂操c到高潮| av欧美777| 欧美成人免费av一区二区三区| 97人妻精品一区二区三区麻豆| 成人鲁丝片一二三区免费| 男人舔女人的私密视频| aaaaa片日本免费| 美女免费视频网站| 国产激情久久老熟女| 亚洲激情在线av| 精品国内亚洲2022精品成人| a级毛片a级免费在线| 国产精品乱码一区二三区的特点| 母亲3免费完整高清在线观看| 午夜两性在线视频| 亚洲人成电影免费在线| av中文乱码字幕在线| 久久精品国产99精品国产亚洲性色| 午夜福利欧美成人| 国产 一区 欧美 日韩| 国产三级黄色录像| 亚洲va日本ⅴa欧美va伊人久久| 欧美成人一区二区免费高清观看 | 91在线精品国自产拍蜜月 | 黄色 视频免费看| 99久久国产精品久久久| 91av网一区二区| av黄色大香蕉| 免费高清视频大片| 国产亚洲精品一区二区www| 99久久无色码亚洲精品果冻| 婷婷精品国产亚洲av在线| 国产 一区 欧美 日韩| 国产高清有码在线观看视频| 91字幕亚洲| 最新美女视频免费是黄的| 两个人视频免费观看高清| 成人国产一区最新在线观看| 亚洲欧洲精品一区二区精品久久久| 一个人免费在线观看电影 | 午夜福利成人在线免费观看| 久久久久久大精品| 午夜福利在线观看免费完整高清在 | 综合色av麻豆| 亚洲专区国产一区二区| 免费在线观看成人毛片| 国产精品一区二区三区四区久久| 国产乱人伦免费视频| 最新在线观看一区二区三区| www.999成人在线观看| 成人高潮视频无遮挡免费网站| 久9热在线精品视频| 精品国产美女av久久久久小说| 国产午夜精品论理片| 亚洲人成电影免费在线| 美女黄网站色视频| 亚洲国产欧美网| 最近在线观看免费完整版|