• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon

    2022-12-28 09:51:38WenzeGao高文澤ChiZhang張弛ZhengZhou周正andWeiXu許維
    Chinese Physics B 2022年12期
    關(guān)鍵詞:周正張弛

    Wenze Gao(高文澤), Chi Zhang(張弛), Zheng Zhou(周正), and Wei Xu(許維)

    Interdisciplinary Materials Research Center,College of Materials Science and Engineering,Tongji University,Shanghai 201804,China

    Keywords: on-surface synthesis,carbyne,scanning tunneling microscopy,atomic force microscopy

    1. Introduction

    The discovery and creation of new carbon allotropes have led to innovations in both chemistry and material science,which have enriched the applications of carbon-based materials and opened doors to new technologies.[1]Over the past decades, the precise control of carbon at the nanoscale has allowed continuous discoveries of low-dimensional carbon allotropes,including zero-dimensional(0D)fullerenes,[2]one-dimensional (1D) carbon nanotubes (CNTs),[3]and twodimensional(2D)graphene.[4]Compared to CNTs,a 1D carbon allotrope built with sp2-hybridized carbons whose length far exceeds the cross-sectional radius,carbyne is an infinite 1D carbon chain composed of sp-hybridized carbon atoms,which has the cross-sectional dimension reduced to a single carbon atom. As one of the most elusive carbon allotropes, carbyne has attracted significant attention since the 1960s.[5–7]In principle, carbyne can be either in a cumulenic form (with consecutive carbon–carbon double bonds) which exhibits metallic behavior,or in a polyynic form(with alternating single and triple bonds)showing semiconducting property(Fig.1),[8–10]and the latter form has been demonstrated to be energetically more favorable.[11]

    As an infinite carbon chain, carbyne has been theoretically predicted to possess lots of intriguing properties, such as room-temperature superconductivity,[12,13]high hydrogen storage capability,[14]and nonlinear optical properties.[15]Moreover, Young’s modulus and the anticipated stiffness of carbyne are greater than most known carbon allotropes, including diamond, graphene, and CNTs.[16]Despite having these advantages, carbyne was much less explored compared to other carbon allotropes (e.g., graphene) due to its high chemical reactivity and extreme instability. Thus, it was postulated to be impossible to synthesize in the laboratory.[17]Due to the difficulties in synthesis and isolation of individual carbyne, chemists also turned to the exploration of polyynes and cumulenes as model compounds (Fig. 1).[10,18,19]In recent years, various feasible synthetic routes for the preparation of carbyne-like nanostructures have been reported,such as bottom-up synthesis,[17,20,21]arc-discharge,[22–24]laser ablation,[25–27]heat-treatment,[28–30]fusion inside carbon nanotubes,[31,32]etc.,which inspired chemists to reexamine the accessibility and stability of carbyne. In 2016, a long linear carbon chain comprising more than 6000 carbon atoms was successfully synthesized using thin double-walled carbon nanotubes as confining nanoreactors,[33]and it is considered to be the longest carbon chain ever reported.

    In the past decade, on-surface synthesis has emerged as an extremely promising approach for atomically precise fabrication of novel nanostructures that can be hardly synthesizedviaconventional solution synthetic chemistry.[34,35]The rapid developments and combination of scanning tunneling microscopy(STM),[36,37]noncontact atomic force microscopy(nc-AFM),[38]and x-ray photoelectron spectroscopy (XPS)have allowed us to design andin situcharacterize novel carbon nanostructures with unprecedented resolution. Thus, elusive low-dimensional carbon allotropes have been successfully fabricated on surfaces, including these built with sp2-hybridized carbons (e.g., graphene nanoribbons[39,40]and biphenylene network[41])and sp-hybridized carbons(e.g.,polyynes[42]and cyclo[n]carbons[43,44]). Herein,we highlight recent works regarding the on-surface synthesis of 1D carbyne-like nanostructures (1D carbon nanostructures containing carbyne fragments),including polyyne compounds,cumulene compounds,and organometallic polyynes (i.e., metalated carbynes). We believe this review would shed light on the precise fabrication and characterization of ultimate single strands of carbyne by on-surface synthesis strategy.

    2. On-surface synthesis of polyynes

    Polyynes have been widely investigated as models for carbyne and have great potential as molecular wires for charge transport[45]owing to their nonlinear optical properties.[15]As the number of carbon atoms increases,long polyynes become inherently unstable because they tend to cross-link with each other in an exothermal reaction.[46]Notably,the development in the field of on-surface synthesis provides a promising strategy for atomically precise fabrication and in-depth investigation of long polyynes under highly controllable conditions.

    Fig. 2. On-surface synthesis of polyynes by atomic manipulations. [(a)–(j)] On-surface synthesis of [(a)–(d)] triyne, [(e)–(h)] hexayne, and [(i) and(j)]octayne on bilayer NaCl on Cu(111). Reproduced with permission from Ref.[42]. Copyright 2018, Springer Nature. [(k)and(l)]Generation of cyclo[18]carbon on bilayer NaCl on Cu(111)based on two kinds of molecular precursors. (m)Formation of a linear polyyne chain via bond cleavage within the cyclic unit of C24O6. [(k)and(m)]Reproduced with permission from Ref.[43]. Copyright 2019, AAAS.(l)Reproduced with permission from Ref.[44]. Copyright 2020,American Chemical Society.

    In 2018, polyyne moieties were fabricated on surface and structurally characterized by scanning probe microscopy(SPM)for the first time by Pavliˇceket al.[42]By a combination of STM and nc-AFM techniques,the molecular precursor was precisely manipulated to induce the skeletal rearrangement at the molecular level, and simultaneously, the geometry of reactants, intermediates, and the final products were monitored with atomic resolution as shown in Figs. 2(a)–2(j). Accordingly,tri-,tetra-,hexa-,and octaynes were generated from the reductive rearrangement of the precursors (i.e., 1,1-dibromo alkenes)on bilayer NaCl supported by Cu(111)at 5 K.Interestingly,the skeleton rearrangement was triggered along with the cleavage of the C–Br bonds of precursors by the atomic manipulation using an STM/AFM tip. The nc-AFM images of the intact precursors,intermediates,and polyynes are shown in Figs.2(b)–2(d)and 2(f)–2(j). Following such a strategy,relatively long polyyne moieties, up to the octayne Ph–(C≡C)8–Ph,have been successfully fabricated with atomic precision.

    More interestingly, cyclic polyynes (cyclo[n]carbons)could also be prepared by this method. In 2019, Kaiseret al.[43]further applied these techniques to synthesize a cyclo[18]carbon allotrope from a cyclocarbon oxide molecule,C24O6(Fig. 2(k)). C24O6molecules were deposited onto Cu(111) precovered with bilayer NaCl islands at 5 K. By atomic manipulation,carbon monoxides were eliminated from C24O6, thus forming cyclo[18]carbon. The nc-AFM image of cyclo[18]carbon showed nine bright protrusions, revealing a polyynic structure with alternating single and triple bonds. Similarly, cyclo[18]carbon was also proved to be accessible by dehalogenation of a bromocyclocarbon precursor,C18Br6,as shown in Fig.2(l),with a much higher yield of cyclo[18]carbon(64%)compared to that in the case using C24O6(13%).[44]Furthermore, a linear polyyne chain could also be produced by breaking the bonds within the cyclic unit from the C24O6molecule(Fig.2(m)). The precision of the synthesis achieved by this approach opens a new window for the onsurface fabrication of carbon-rich materials and atomic-scale devices.

    3. On-surface synthesis of cumulenes

    Compared to polyynes, cumulenes have been less studied because their stability dramatically decreases in the presence of more consecutive double bonds.[10,47]Such instability has been undoubtedly a major obstacle in their synthesis and characterizations. Followed by the strategies in the preparation of long polyyne moieties,[20,21]the synthesis and stabilization of long cumulenes have been successfully achieved through rotaxination[48]and increase of steric bulk of end groups.[49]Additionally,on-surface synthesis also provides a convenient alternative approach for the fabrication of cumulene-containing nanostructures with atomic precision.

    Fig.3. On-surface synthesis of cumulenes. [(a)and(b)]On-surface synthesis of cis-and trans-cumulene compounds by dehalogenative C–C homocoupling reactions of alkenyl gem-dibromides. Reproduced with permission from Ref.[50]. Copyright 2017,Wiley-VCH.[(c)–(f)]Synthesis of different types of cumulene-containing polymers on Au(111). [(c)and(d)]Reproduced with permission from Ref.[51]. Copyright 2020,Springer Nature. [(e)and(f)]Reproduced with permission from Ref.[52]. Copyright 2020,Wiley-VCH.

    Sunet al.[50]firstly designed and reported the on-surface synthesis of cumulene moiety based on a dehalogenative homocoupling reaction of alkenyl gem-dibromides. As illustrated in Fig.3(a),they designed a 4-(2,2-dibromovinyl)-1,1’-biphenyl(bBVBP)molecular precursor functionalized with an alkenyl gem-dibromide group.Upon deposition onto Au(111)surface at room temperature, the bBVBP molecules were activated by the removal of halogen substituents and underwent C–C homocoupling reactions, formingcis- andtranscumulene products. The nc-AFM images showed sharp lines with a homogeneous contrast connecting the two biphenyl groups, which unambiguously demonstrated the formation of three consecutive C–C double bonds(Fig.3(b)).

    Such a C(sp2)–Br2substitution strategy has been widely applied to the on-surface synthesis of cumulene-containing nanostructures ever since this seminal work. Torreet al.[51]reported the synthesis of cumulene-bridged bisanthene polymers (CBBPs) by the dehalogenative homocoupling of 4Br-BiA precursors on Au (111) at 500 K, which were endowed with =CBr2functionalities (Fig. 3(c)). Highresolution STM and nc-AFM images of CBBPs are shown in Fig.3(d). Interestingly,the cumulenic bridges in CBBPs were further fused to pentalene bridges after annealing at 650 K,leading to defectfreeπ-conjugated ladder polymers. Besides, Urgelet al.[52]further extended the strategy to the synthesis of 1D cumulenecontaining polymers (CCPs) composed ofn-membered rings(n= 5, 6, 7) on Au (111) using similar functional groups(Fig. 3(e)). It is worth noting that the highly nonplanar conformation of the dibromomethylenes-functionalized precursors on Au (111) leads to the separated steps in selective debromination and coupling, and consequently, a selective tailto-tail/head-to-head monomer sequence in the polymer (as shown in Fig. 3(f)). The consecutive C–C double bonds are highlighted by blue arrows in the nc-AFM image. Moreover, other similar cumulene-containing nanostructures have also been systematically studied recently.[53–56]The investigations of theseπ-conjugated polymers linked by cumulene bridge open new avenues in the field of on-surface synthesis with prospects for applications in molecular electronics.

    4. The on-surface synthesis of organometallic polyynes

    Organometallic polyyne,a chain composed of alternating sp-hybridized carbon atoms and metal atoms, is a promising candidate for future electronic and optical devices due to its regulable electronic, optical, and magnetic properties by the incorporation of different transition metals.[57–59]Similar to the case of carbyne,the high chemical reactivity and extreme instability have been blocking the synthesis and characterization of organometallic polyynes,which may be enlightened or solved by applying an on-surface synthesis strategy.

    Fig.4. On-surface synthesis of acetylenic Cu-carbyne. [(a)and(b)]Illustration showing the formation of acetylenic Cu-carbyne on Cu(110)through dehydrogenative coupling of ethyne precursors. (c) Large-scale nc-AFM image and the corresponding STM image of acetylenic Cu-carbynes. (d)Equally scaled high-resolution nc-AFM image, STM image, DFT-optimized model, STM simulation and line-scan profile of a single acetylenic Cucarbyne chain on Cu(110). Reproduced with permission from Ref.[60]. Copyright 2016,American Chemical Society.

    In 2016, Sunet al.[60]firstly reported the synthesis of organometallic Cu-polyynes(i.e.,acetylenic Cu-carbynes)by dehydrogenation of ethyne (C2H2) molecules and coupling with copper atoms on Cu (110) as shown in Fig. 4. After deposition of C2H2onto Cu (110) held at 450 K, acetylenic Cu-carbyne chains were efficiently synthesized and extended along the close-packed [1ˉ10] direction of the substrate. The high-resolution nc-AFM images showed the characteristic protrusions of C–C triple bonds between neighboring two Cu atoms, which appeared as bright dots in the STM image, yet were not resolved in the nc-AFM image. These features further confirmed the formation of organometallic polyynes.This synthetic strategy would prompt the synthesis and characterization of other 1D organometallic polyynes with various incorporated metal atoms as well as periodic polyyne moieties.

    Inspired by the above strategy, the organometallic Aupolyynes (i.e., diacetylenic Au-carbynes) were successfully obtained through on-surface debrominative coupling of C4Br4molecule with a cumulene moiety (Br2C=C=C=CBr2) on Au(111).[61]Interestingly,thein-situskeleton rearrangement from a cumulene moiety to a diyne one (Br–C≡C–C≡C–Br)was directly triggered by cleaving two C–Br bonds within a C4Br4viaSTM tip manipulation. Thereafter, the complete debromination of C4Br4molecules was realized by further thermal treatment,with the formation of 1D diacetylenic Aucarbynes as shown in Fig. 5. Note that two discrete characteristic protrusions as indicated by blue arrows in the nc-AFM images corresponded to two adjacent C–C triple bonds.Moreover, the bandgap of a diacetylenic Au-carbyne on Au (111)was experimentally determined to be~2.0 eV by scanning tunneling spectroscopy (STS), indicating a semiconducting characteristic for potential applications in future molecular electronic devices.

    Very recently,a new kind of organometallic polyynes,triacetylenic Ag-carbyne,has been successfully synthesizedviaan unexpected ring-opening reaction of completely debrominated hexabromobenzene (C6Br6) molecules on Ag (111) by Gaoet al.[62]As illustrated in Fig. 6, the whole scenario can be described as follows: a complete debromination of C6Br6molecules occurred at 300 K on Ag (111), resulting in the formation of unstable C6ring intermediates followed by subsequent transformation into the C6polyynic chainsviaa ring-opening process; afterward, the C6polyynic chains polymerized into triacetylenic Ag-carbynes. The nature of the polyynic segment within chains was clearly revealed by the nc-AFM image,showing three discrete characteristic protrusions of C–C triple bonds, as indicated by the yellow arrows. The debromination and ring-opening processes were demonstrated by extensive density functional theory (DFT)calculations. In addition,Yuet al.[63]further investigated the thermal-induced transformation between acetylenic Ag/Cucarbyne and diacetylenic ones. They theoretically predicted that the bandgap of organometallic polyynes would decrease with the increasing number of C–C triple bonds involved.It was also revealed by DFT calculations that the bandgaps would be metal-dependent with the order of Ag-carbyne>Cu-carbyne>Au-carbyne. Moreover,metalated carbyne ribbons with different incorporated metals might also be synthesized by using surface-assisted elimination reactions of methane tetrabromide molecular precursors and their subsequent polymerization. The bandgap of metalated carbyne ribbons would vary with its width based on theoretical calculations. These regulable electronic properties of organometallic polyynes thus provide a promising prospect for next generation semiconducting materials.

    Fig.5. On-surface synthesis of diacetylenic Au-carbyne. (a)Schematic illustration showing the formation of diacetylenic Au-carbyne from C4Br4. (b)STM image showing the formation of Au-carbyne chains on the Au(111)surface by heating the sample pre-covered with C4Br4 molecules to 300 K.(c) Equally scaled high-resolution STM image and the corresponding DFT-optimized model of a single diacetylenic Au-carbyne chain on Au (111).(d)Close-up STM images and the Laplace filtered nc-AFM images of the single chain, double chain, and triple chain, respectively. Reproduced with permission from Ref.[61]. Copyright 2020,American Chemical Society.

    Fig.6. On-surface synthesis of triacetylenic Ag-carbyne. (a)Schematic illustration showing the formation of triacetylenic Ag-carbyne from C6Br6. (b)A large-scale STM image showing the formation of triacetylenic Ag-carbynes on the Ag(111)surface by depositing C6Br6 molecules on the sample held at 300 K.(c)Constant-height nc-AFM image and the corresponding STM image of triacetylenic Ag-carbynes. (d)From top to bottom: an STM image,a simulated STM image,and top-and side-view DFT models of a single Ag-carbyne on Ag(111). Reproduced with permission from Ref.[62].Copyright 2022,American Chemical Society.

    Table 1 Representative carbyne-like nanostructures synthesized via the onsurface synthesis method.

    5. Conclusion and perspectives

    In summary, we have briefly reviewed recent advances in the on-surface synthesis of one-dimensional carbynelike nanostructures with sp-hybridized carbons, including polyynes,cumulenes,and organometallic polyynes(Table 1).On-surface synthesis strategy has exhibited its great potential for the preparation of nanostructures with atomic precision which are not accessible through conventional solution chemistry. Nonetheless, there are still many difficulties as well as challenges ahead. For instance, some precursors are too reactive to survive before the corresponding reactions start on noble metal surfaces, which prevents obtaining such interesting nanostructures. In addition, intrinsic carbyne structures,instead of metalated carbynes,are yet to be synthesized at the atomic scale, which may require a new synthetic approach.Moreover,the on-surface synthesis of novel nanostructures is currently restricted to metal surfaces,which limits its characterization and further application to a certain extent. For all these reasons, design of new precursors, exploration of new synthetic strategies, approach to transferring products from metal surfaces to other substrates,and even direct synthesis on semiconducting substrates deserve to be explored in the near future.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.22125203 and 21790351).

    猜你喜歡
    周正張弛
    Floquet spectrum and universal dynamics of a periodically driven two-atom system
    Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
    Influence of particle size on the breaking of aluminum particle shells
    A 90?mixed-mode twisted nematic liquid-crystal-on-silicon with an insulating protrusion structure?
    Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings?
    李偉賢、葉子康、周已程、周正男作品
    大觀(2020年9期)2020-01-25 16:24:08
    “種”珍珠真神奇
    秋天
    勻變速直線運動規(guī)律應(yīng)用中的一類典型易錯題
    張弛的褲子撕掉了
    中亚洲国语对白在线视频| 久久久久国产一级毛片高清牌| 国产亚洲欧美精品永久| 黑人操中国人逼视频| 一级黄色大片毛片| 国产精品麻豆人妻色哟哟久久| 久久久水蜜桃国产精品网| 啪啪无遮挡十八禁网站| 欧美一级毛片孕妇| 天天躁日日躁夜夜躁夜夜| 麻豆成人av在线观看| 日韩成人在线观看一区二区三区| 人人妻人人爽人人添夜夜欢视频| 亚洲av欧美aⅴ国产| 免费不卡黄色视频| 免费一级毛片在线播放高清视频 | 亚洲国产欧美一区二区综合| 亚洲国产欧美在线一区| 一本久久精品| 久久精品国产a三级三级三级| 国产不卡av网站在线观看| 久久中文字幕一级| 日本vs欧美在线观看视频| 怎么达到女性高潮| 日本黄色视频三级网站网址 | 亚洲国产精品一区二区三区在线| 桃花免费在线播放| 成人精品一区二区免费| 老汉色∧v一级毛片| 日韩欧美一区二区三区在线观看 | 亚洲精华国产精华精| 国产精品亚洲av一区麻豆| 啦啦啦视频在线资源免费观看| 国产日韩欧美视频二区| 久久久欧美国产精品| 亚洲欧美一区二区三区黑人| 久久久久视频综合| 国产成+人综合+亚洲专区| 午夜视频精品福利| 亚洲熟妇熟女久久| 国产熟女午夜一区二区三区| 91老司机精品| 久久久久久免费高清国产稀缺| 国产主播在线观看一区二区| 精品福利永久在线观看| 黑人猛操日本美女一级片| 欧美 亚洲 国产 日韩一| av线在线观看网站| 久久久国产精品麻豆| 亚洲天堂av无毛| 亚洲欧洲精品一区二区精品久久久| 香蕉久久夜色| 精品亚洲成国产av| 男女床上黄色一级片免费看| 叶爱在线成人免费视频播放| 国产区一区二久久| 久久精品亚洲精品国产色婷小说| 亚洲美女黄片视频| 肉色欧美久久久久久久蜜桃| 欧美一级毛片孕妇| 一级a爱视频在线免费观看| 精品视频人人做人人爽| 电影成人av| 久久久国产一区二区| 久久精品亚洲熟妇少妇任你| 少妇精品久久久久久久| 在线看a的网站| 婷婷丁香在线五月| 亚洲专区国产一区二区| 高清视频免费观看一区二区| 麻豆国产av国片精品| 日本av手机在线免费观看| 不卡一级毛片| 久久久国产精品麻豆| 老司机午夜十八禁免费视频| 亚洲情色 制服丝袜| 天堂俺去俺来也www色官网| 亚洲成人国产一区在线观看| 这个男人来自地球电影免费观看| 亚洲色图综合在线观看| 久久精品国产a三级三级三级| 亚洲性夜色夜夜综合| 99久久精品国产亚洲精品| 好男人电影高清在线观看| 亚洲色图综合在线观看| 黄片小视频在线播放| 涩涩av久久男人的天堂| 久热这里只有精品99| 少妇被粗大的猛进出69影院| 国产精品国产av在线观看| 人人妻人人爽人人添夜夜欢视频| www.999成人在线观看| 国产一区二区激情短视频| 狠狠婷婷综合久久久久久88av| 夜夜爽天天搞| 免费观看a级毛片全部| 人人妻人人澡人人看| 久久久久国产一级毛片高清牌| 亚洲情色 制服丝袜| 成人永久免费在线观看视频 | 久久国产精品大桥未久av| 如日韩欧美国产精品一区二区三区| 国产午夜精品久久久久久| 国产精品亚洲一级av第二区| 日韩免费av在线播放| 老熟女久久久| 久久国产精品男人的天堂亚洲| 搡老岳熟女国产| 黄片小视频在线播放| 国产伦人伦偷精品视频| 亚洲熟女精品中文字幕| 首页视频小说图片口味搜索| 色视频在线一区二区三区| 手机成人av网站| 老汉色∧v一级毛片| 国产主播在线观看一区二区| 日韩视频一区二区在线观看| 男女边摸边吃奶| 亚洲伊人久久精品综合| 国产精品久久久久久精品电影小说| avwww免费| 一边摸一边抽搐一进一小说 | 欧美人与性动交α欧美软件| 精品国产一区二区三区四区第35| 国产欧美日韩一区二区精品| 高清欧美精品videossex| 日韩 欧美 亚洲 中文字幕| a级毛片在线看网站| 久久午夜综合久久蜜桃| 国产精品影院久久| 中亚洲国语对白在线视频| 午夜免费鲁丝| 欧美av亚洲av综合av国产av| 亚洲人成电影观看| 中文字幕高清在线视频| 久久亚洲精品不卡| 亚洲天堂av无毛| 黑人操中国人逼视频| av在线播放免费不卡| 丝袜人妻中文字幕| av电影中文网址| 国产不卡一卡二| 俄罗斯特黄特色一大片| aaaaa片日本免费| 大片电影免费在线观看免费| 午夜久久久在线观看| 99九九在线精品视频| 亚洲国产欧美日韩在线播放| 国产在线观看jvid| 考比视频在线观看| 精品少妇黑人巨大在线播放| 亚洲av日韩在线播放| 国产欧美日韩综合在线一区二区| 丰满人妻熟妇乱又伦精品不卡| 最近最新中文字幕大全电影3 | 黄片大片在线免费观看| 制服人妻中文乱码| 水蜜桃什么品种好| 老熟女久久久| 视频区欧美日本亚洲| 欧美黄色淫秽网站| 不卡一级毛片| 天天操日日干夜夜撸| 成人18禁高潮啪啪吃奶动态图| 成人av一区二区三区在线看| 国产免费福利视频在线观看| 啦啦啦中文免费视频观看日本| 亚洲成人免费av在线播放| 亚洲av欧美aⅴ国产| 50天的宝宝边吃奶边哭怎么回事| 免费看a级黄色片| 日韩视频一区二区在线观看| 亚洲国产av影院在线观看| 99九九在线精品视频| 欧美黑人精品巨大| 99热国产这里只有精品6| 成人影院久久| 国产精品久久久久久精品古装| 亚洲精品国产精品久久久不卡| 这个男人来自地球电影免费观看| 午夜日韩欧美国产| 久热这里只有精品99| 精品午夜福利视频在线观看一区 | 99国产综合亚洲精品| 夫妻午夜视频| 老熟女久久久| 国产黄色免费在线视频| 啦啦啦视频在线资源免费观看| 亚洲美女黄片视频| 成人黄色视频免费在线看| 亚洲午夜理论影院| 久久中文看片网| 日韩一卡2卡3卡4卡2021年| 国产精品久久久久成人av| 国产精品免费一区二区三区在线 | 国产亚洲欧美精品永久| 12—13女人毛片做爰片一| 国产有黄有色有爽视频| 人人妻人人添人人爽欧美一区卜| 女人高潮潮喷娇喘18禁视频| 在线观看免费日韩欧美大片| 色老头精品视频在线观看| 亚洲精品美女久久久久99蜜臀| e午夜精品久久久久久久| 精品少妇一区二区三区视频日本电影| 久久久国产精品麻豆| 女性生殖器流出的白浆| 欧美精品一区二区大全| 一级毛片电影观看| 97在线人人人人妻| 又大又爽又粗| 一本久久精品| 19禁男女啪啪无遮挡网站| 成年女人毛片免费观看观看9 | 午夜激情av网站| 性高湖久久久久久久久免费观看| 黄色丝袜av网址大全| 好男人电影高清在线观看| 国产精品 国内视频| 男男h啪啪无遮挡| 日韩 欧美 亚洲 中文字幕| 国产熟女午夜一区二区三区| 久久国产精品影院| 91av网站免费观看| 精品一区二区三区av网在线观看 | 亚洲国产av新网站| 一二三四在线观看免费中文在| 午夜福利在线免费观看网站| 黑人欧美特级aaaaaa片| 亚洲第一av免费看| 欧美日韩一级在线毛片| 在线观看www视频免费| 欧美日韩亚洲综合一区二区三区_| 久久久久久久久免费视频了| h视频一区二区三区| 在线观看免费午夜福利视频| 久久精品国产综合久久久| 极品少妇高潮喷水抽搐| 免费少妇av软件| 亚洲欧美日韩另类电影网站| 久久久精品区二区三区| 精品一区二区三卡| 国产精品自产拍在线观看55亚洲 | 天天添夜夜摸| 桃花免费在线播放| 香蕉久久夜色| 搡老岳熟女国产| 纵有疾风起免费观看全集完整版| 老司机福利观看| 成年人午夜在线观看视频| 久久狼人影院| 男女边摸边吃奶| 国产日韩一区二区三区精品不卡| 亚洲熟女毛片儿| 久久中文看片网| 亚洲人成电影免费在线| 国产成人免费无遮挡视频| 国产xxxxx性猛交| 欧美日韩成人在线一区二区| 国产成人av激情在线播放| 好男人电影高清在线观看| 中文字幕人妻丝袜制服| 国产人伦9x9x在线观看| 亚洲中文字幕日韩| www.999成人在线观看| 精品久久久久久电影网| 色婷婷久久久亚洲欧美| 欧美老熟妇乱子伦牲交| 欧美日韩一级在线毛片| 一本大道久久a久久精品| 免费少妇av软件| 亚洲av国产av综合av卡| 精品国内亚洲2022精品成人 | 国产老妇伦熟女老妇高清| 久热这里只有精品99| 制服诱惑二区| 丁香六月欧美| 少妇精品久久久久久久| 51午夜福利影视在线观看| 18禁裸乳无遮挡动漫免费视频| 老司机深夜福利视频在线观看| av欧美777| 18在线观看网站| 啦啦啦中文免费视频观看日本| 伊人久久大香线蕉亚洲五| 肉色欧美久久久久久久蜜桃| 欧美大码av| 成人特级黄色片久久久久久久 | 免费观看a级毛片全部| 国产免费视频播放在线视频| 国产野战对白在线观看| 精品免费久久久久久久清纯 | 精品国产乱子伦一区二区三区| 国产一区二区三区视频了| 亚洲,欧美精品.| 一进一出抽搐动态| 黄色a级毛片大全视频| 水蜜桃什么品种好| 亚洲精品美女久久av网站| 99热网站在线观看| 777久久人妻少妇嫩草av网站| a级片在线免费高清观看视频| 视频区图区小说| 久久精品国产综合久久久| 在线观看一区二区三区激情| 天天操日日干夜夜撸| 精品一区二区三区av网在线观看 | 18禁美女被吸乳视频| 中文字幕色久视频| 成年版毛片免费区| 亚洲av美国av| 99热国产这里只有精品6| 两性午夜刺激爽爽歪歪视频在线观看 | 丁香欧美五月| 十八禁人妻一区二区| 一级毛片精品| 国产在线精品亚洲第一网站| 91字幕亚洲| 国产精品av久久久久免费| 国产亚洲午夜精品一区二区久久| 另类精品久久| 99国产综合亚洲精品| 久久久久精品国产欧美久久久| 悠悠久久av| 国产精品自产拍在线观看55亚洲 | 搡老岳熟女国产| 两个人免费观看高清视频| 国产黄色免费在线视频| 50天的宝宝边吃奶边哭怎么回事| av线在线观看网站| 亚洲av日韩在线播放| 天堂8中文在线网| 极品少妇高潮喷水抽搐| 日韩人妻精品一区2区三区| 国产在线精品亚洲第一网站| 免费看a级黄色片| 亚洲av国产av综合av卡| 精品少妇内射三级| 日韩精品免费视频一区二区三区| 男人操女人黄网站| 国产亚洲精品一区二区www | 国产精品九九99| 成年女人毛片免费观看观看9 | 91麻豆精品激情在线观看国产 | 亚洲综合色网址| videos熟女内射| 最黄视频免费看| 悠悠久久av| 男人操女人黄网站| 三上悠亚av全集在线观看| 国产熟女午夜一区二区三区| 国产欧美日韩一区二区三区在线| bbb黄色大片| 18禁观看日本| 菩萨蛮人人尽说江南好唐韦庄| 欧美+亚洲+日韩+国产| 国产极品粉嫩免费观看在线| 久久精品国产a三级三级三级| 国产国语露脸激情在线看| 国产欧美日韩一区二区三区在线| 中文字幕人妻熟女乱码| 韩国精品一区二区三区| 女人精品久久久久毛片| 亚洲第一av免费看| 国产亚洲欧美精品永久| 午夜福利一区二区在线看| 最新在线观看一区二区三区| 午夜福利视频在线观看免费| 国产成人欧美在线观看 | 国产精品av久久久久免费| 欧美日韩国产mv在线观看视频| 久久国产精品大桥未久av| 99九九在线精品视频| 亚洲性夜色夜夜综合| 一区二区三区乱码不卡18| 亚洲av电影在线进入| 久久国产亚洲av麻豆专区| 日韩三级视频一区二区三区| 免费一级毛片在线播放高清视频 | 精品福利观看| 高清毛片免费观看视频网站 | 久久青草综合色| 亚洲av美国av| 午夜成年电影在线免费观看| 91字幕亚洲| 亚洲av美国av| 性少妇av在线| av国产精品久久久久影院| 国产成人系列免费观看| 午夜福利在线观看吧| 91精品国产国语对白视频| 久久亚洲精品不卡| 精品国产一区二区久久| 老熟妇乱子伦视频在线观看| 一个人免费在线观看的高清视频| xxxhd国产人妻xxx| 精品亚洲成a人片在线观看| 欧美精品人与动牲交sv欧美| 99国产精品99久久久久| 亚洲视频免费观看视频| 老司机午夜十八禁免费视频| 精品国产超薄肉色丝袜足j| 久久精品国产亚洲av高清一级| 亚洲av成人一区二区三| 免费在线观看完整版高清| 日本vs欧美在线观看视频| 国产精品久久久久久精品古装| 69av精品久久久久久 | 丁香欧美五月| 人人妻人人澡人人爽人人夜夜| 久久99热这里只频精品6学生| 日本黄色日本黄色录像| netflix在线观看网站| 免费高清在线观看日韩| 大片免费播放器 马上看| 捣出白浆h1v1| 亚洲成人手机| 男女免费视频国产| 国产精品亚洲一级av第二区| 欧美人与性动交α欧美精品济南到| 另类精品久久| 亚洲国产av新网站| 国产真人三级小视频在线观看| √禁漫天堂资源中文www| 国产91精品成人一区二区三区 | 极品教师在线免费播放| av不卡在线播放| 国产免费福利视频在线观看| 亚洲精品成人av观看孕妇| 超色免费av| 精品一区二区三区视频在线观看免费 | 欧美+亚洲+日韩+国产| 国产成人免费观看mmmm| 亚洲精品久久成人aⅴ小说| 成人18禁在线播放| 国产欧美日韩精品亚洲av| 国产又色又爽无遮挡免费看| 最新美女视频免费是黄的| 99在线人妻在线中文字幕 | 老熟女久久久| 成人三级做爰电影| 80岁老熟妇乱子伦牲交| 看免费av毛片| 香蕉丝袜av| 岛国在线观看网站| 国产黄频视频在线观看| 亚洲av成人不卡在线观看播放网| 99久久国产精品久久久| 色在线成人网| av一本久久久久| 久久久久精品人妻al黑| 亚洲av成人一区二区三| 亚洲黑人精品在线| 蜜桃国产av成人99| 久久这里只有精品19| 国产精品久久久av美女十八| 色尼玛亚洲综合影院| 天堂动漫精品| 黑人操中国人逼视频| 国产成人精品无人区| 国产精品免费视频内射| 中文字幕人妻熟女乱码| 国产精品久久久av美女十八| 国产日韩一区二区三区精品不卡| 午夜福利免费观看在线| 99国产精品一区二区三区| 免费看十八禁软件| 蜜桃国产av成人99| 女人精品久久久久毛片| 日韩欧美一区二区三区在线观看 | 我要看黄色一级片免费的| a级毛片在线看网站| 欧美亚洲日本最大视频资源| 日本vs欧美在线观看视频| 老司机在亚洲福利影院| 青草久久国产| 男女午夜视频在线观看| 国产成人啪精品午夜网站| 亚洲久久久国产精品| 久久精品国产综合久久久| 欧美在线一区亚洲| 丝袜在线中文字幕| e午夜精品久久久久久久| 欧美黑人精品巨大| 亚洲精品av麻豆狂野| 俄罗斯特黄特色一大片| 精品少妇一区二区三区视频日本电影| 国产国语露脸激情在线看| 国产又爽黄色视频| 50天的宝宝边吃奶边哭怎么回事| 久久人妻福利社区极品人妻图片| 黑人巨大精品欧美一区二区mp4| 国产熟女午夜一区二区三区| 丁香欧美五月| 50天的宝宝边吃奶边哭怎么回事| 久久人妻福利社区极品人妻图片| 午夜两性在线视频| 99久久精品国产亚洲精品| 久热这里只有精品99| 亚洲色图综合在线观看| 亚洲国产精品一区二区三区在线| 超碰97精品在线观看| 桃花免费在线播放| 91麻豆精品激情在线观看国产 | 亚洲欧洲日产国产| 岛国毛片在线播放| 激情在线观看视频在线高清 | 国产片内射在线| 女性生殖器流出的白浆| 精品福利观看| 视频区图区小说| 一区福利在线观看| 啦啦啦视频在线资源免费观看| 满18在线观看网站| 蜜桃国产av成人99| 精品午夜福利视频在线观看一区 | 丰满人妻熟妇乱又伦精品不卡| 国产三级黄色录像| 9热在线视频观看99| 69精品国产乱码久久久| 国产精品久久久av美女十八| 国产成人av激情在线播放| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲一区二区精品| 成人国语在线视频| 99精品欧美一区二区三区四区| 午夜福利影视在线免费观看| 日韩大码丰满熟妇| 国产亚洲精品第一综合不卡| 国产成人啪精品午夜网站| 日本黄色日本黄色录像| 色播在线永久视频| 色精品久久人妻99蜜桃| 精品亚洲乱码少妇综合久久| 一级毛片电影观看| 日韩视频一区二区在线观看| www日本在线高清视频| 成人手机av| 日韩欧美国产一区二区入口| 夫妻午夜视频| 国产一区二区三区综合在线观看| 日日爽夜夜爽网站| a级毛片在线看网站| www.自偷自拍.com| √禁漫天堂资源中文www| 日韩熟女老妇一区二区性免费视频| 亚洲色图av天堂| 人人妻人人澡人人看| avwww免费| 在线观看免费高清a一片| 69av精品久久久久久 | 免费不卡黄色视频| 久久久欧美国产精品| 精品久久久精品久久久| 99riav亚洲国产免费| 在线观看人妻少妇| 国产一区二区 视频在线| 国产伦人伦偷精品视频| 免费在线观看影片大全网站| 国产男女内射视频| 国产三级黄色录像| 水蜜桃什么品种好| 三级毛片av免费| kizo精华| 我要看黄色一级片免费的| 波多野结衣一区麻豆| 午夜福利视频在线观看免费| 精品少妇久久久久久888优播| 91av网站免费观看| 悠悠久久av| 国产亚洲欧美精品永久| 午夜福利免费观看在线| 日韩一区二区三区影片| 狂野欧美激情性xxxx| 成年人免费黄色播放视频| 午夜激情av网站| 日本vs欧美在线观看视频| 一本一本久久a久久精品综合妖精| 无限看片的www在线观看| 麻豆国产av国片精品| 久久精品aⅴ一区二区三区四区| 啦啦啦在线免费观看视频4| 狠狠婷婷综合久久久久久88av| 亚洲国产欧美日韩在线播放| av片东京热男人的天堂| 日本欧美视频一区| 中文字幕最新亚洲高清| 国产一区二区激情短视频| 色婷婷av一区二区三区视频| 国产日韩欧美视频二区| 涩涩av久久男人的天堂| 国产高清国产精品国产三级| 精品久久久久久久毛片微露脸| 亚洲午夜精品一区,二区,三区| 青草久久国产| 久久久国产欧美日韩av| 久久影院123| 岛国毛片在线播放| 在线十欧美十亚洲十日本专区| 久久精品亚洲av国产电影网| 亚洲伊人色综图| 国产成人啪精品午夜网站| 一本一本久久a久久精品综合妖精| 久久午夜综合久久蜜桃| 五月天丁香电影| 亚洲精华国产精华精| 老司机在亚洲福利影院| 亚洲av国产av综合av卡| 国产一区二区三区视频了| 美女主播在线视频| 日韩欧美国产一区二区入口| 人妻久久中文字幕网| 欧美午夜高清在线| 中文字幕av电影在线播放| 性色av乱码一区二区三区2|