• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon

    2022-12-28 09:51:38WenzeGao高文澤ChiZhang張弛ZhengZhou周正andWeiXu許維
    Chinese Physics B 2022年12期
    關(guān)鍵詞:周正張弛

    Wenze Gao(高文澤), Chi Zhang(張弛), Zheng Zhou(周正), and Wei Xu(許維)

    Interdisciplinary Materials Research Center,College of Materials Science and Engineering,Tongji University,Shanghai 201804,China

    Keywords: on-surface synthesis,carbyne,scanning tunneling microscopy,atomic force microscopy

    1. Introduction

    The discovery and creation of new carbon allotropes have led to innovations in both chemistry and material science,which have enriched the applications of carbon-based materials and opened doors to new technologies.[1]Over the past decades, the precise control of carbon at the nanoscale has allowed continuous discoveries of low-dimensional carbon allotropes,including zero-dimensional(0D)fullerenes,[2]one-dimensional (1D) carbon nanotubes (CNTs),[3]and twodimensional(2D)graphene.[4]Compared to CNTs,a 1D carbon allotrope built with sp2-hybridized carbons whose length far exceeds the cross-sectional radius,carbyne is an infinite 1D carbon chain composed of sp-hybridized carbon atoms,which has the cross-sectional dimension reduced to a single carbon atom. As one of the most elusive carbon allotropes, carbyne has attracted significant attention since the 1960s.[5–7]In principle, carbyne can be either in a cumulenic form (with consecutive carbon–carbon double bonds) which exhibits metallic behavior,or in a polyynic form(with alternating single and triple bonds)showing semiconducting property(Fig.1),[8–10]and the latter form has been demonstrated to be energetically more favorable.[11]

    As an infinite carbon chain, carbyne has been theoretically predicted to possess lots of intriguing properties, such as room-temperature superconductivity,[12,13]high hydrogen storage capability,[14]and nonlinear optical properties.[15]Moreover, Young’s modulus and the anticipated stiffness of carbyne are greater than most known carbon allotropes, including diamond, graphene, and CNTs.[16]Despite having these advantages, carbyne was much less explored compared to other carbon allotropes (e.g., graphene) due to its high chemical reactivity and extreme instability. Thus, it was postulated to be impossible to synthesize in the laboratory.[17]Due to the difficulties in synthesis and isolation of individual carbyne, chemists also turned to the exploration of polyynes and cumulenes as model compounds (Fig. 1).[10,18,19]In recent years, various feasible synthetic routes for the preparation of carbyne-like nanostructures have been reported,such as bottom-up synthesis,[17,20,21]arc-discharge,[22–24]laser ablation,[25–27]heat-treatment,[28–30]fusion inside carbon nanotubes,[31,32]etc.,which inspired chemists to reexamine the accessibility and stability of carbyne. In 2016, a long linear carbon chain comprising more than 6000 carbon atoms was successfully synthesized using thin double-walled carbon nanotubes as confining nanoreactors,[33]and it is considered to be the longest carbon chain ever reported.

    In the past decade, on-surface synthesis has emerged as an extremely promising approach for atomically precise fabrication of novel nanostructures that can be hardly synthesizedviaconventional solution synthetic chemistry.[34,35]The rapid developments and combination of scanning tunneling microscopy(STM),[36,37]noncontact atomic force microscopy(nc-AFM),[38]and x-ray photoelectron spectroscopy (XPS)have allowed us to design andin situcharacterize novel carbon nanostructures with unprecedented resolution. Thus, elusive low-dimensional carbon allotropes have been successfully fabricated on surfaces, including these built with sp2-hybridized carbons (e.g., graphene nanoribbons[39,40]and biphenylene network[41])and sp-hybridized carbons(e.g.,polyynes[42]and cyclo[n]carbons[43,44]). Herein,we highlight recent works regarding the on-surface synthesis of 1D carbyne-like nanostructures (1D carbon nanostructures containing carbyne fragments),including polyyne compounds,cumulene compounds,and organometallic polyynes (i.e., metalated carbynes). We believe this review would shed light on the precise fabrication and characterization of ultimate single strands of carbyne by on-surface synthesis strategy.

    2. On-surface synthesis of polyynes

    Polyynes have been widely investigated as models for carbyne and have great potential as molecular wires for charge transport[45]owing to their nonlinear optical properties.[15]As the number of carbon atoms increases,long polyynes become inherently unstable because they tend to cross-link with each other in an exothermal reaction.[46]Notably,the development in the field of on-surface synthesis provides a promising strategy for atomically precise fabrication and in-depth investigation of long polyynes under highly controllable conditions.

    Fig. 2. On-surface synthesis of polyynes by atomic manipulations. [(a)–(j)] On-surface synthesis of [(a)–(d)] triyne, [(e)–(h)] hexayne, and [(i) and(j)]octayne on bilayer NaCl on Cu(111). Reproduced with permission from Ref.[42]. Copyright 2018, Springer Nature. [(k)and(l)]Generation of cyclo[18]carbon on bilayer NaCl on Cu(111)based on two kinds of molecular precursors. (m)Formation of a linear polyyne chain via bond cleavage within the cyclic unit of C24O6. [(k)and(m)]Reproduced with permission from Ref.[43]. Copyright 2019, AAAS.(l)Reproduced with permission from Ref.[44]. Copyright 2020,American Chemical Society.

    In 2018, polyyne moieties were fabricated on surface and structurally characterized by scanning probe microscopy(SPM)for the first time by Pavliˇceket al.[42]By a combination of STM and nc-AFM techniques,the molecular precursor was precisely manipulated to induce the skeletal rearrangement at the molecular level, and simultaneously, the geometry of reactants, intermediates, and the final products were monitored with atomic resolution as shown in Figs. 2(a)–2(j). Accordingly,tri-,tetra-,hexa-,and octaynes were generated from the reductive rearrangement of the precursors (i.e., 1,1-dibromo alkenes)on bilayer NaCl supported by Cu(111)at 5 K.Interestingly,the skeleton rearrangement was triggered along with the cleavage of the C–Br bonds of precursors by the atomic manipulation using an STM/AFM tip. The nc-AFM images of the intact precursors,intermediates,and polyynes are shown in Figs.2(b)–2(d)and 2(f)–2(j). Following such a strategy,relatively long polyyne moieties, up to the octayne Ph–(C≡C)8–Ph,have been successfully fabricated with atomic precision.

    More interestingly, cyclic polyynes (cyclo[n]carbons)could also be prepared by this method. In 2019, Kaiseret al.[43]further applied these techniques to synthesize a cyclo[18]carbon allotrope from a cyclocarbon oxide molecule,C24O6(Fig. 2(k)). C24O6molecules were deposited onto Cu(111) precovered with bilayer NaCl islands at 5 K. By atomic manipulation,carbon monoxides were eliminated from C24O6, thus forming cyclo[18]carbon. The nc-AFM image of cyclo[18]carbon showed nine bright protrusions, revealing a polyynic structure with alternating single and triple bonds. Similarly, cyclo[18]carbon was also proved to be accessible by dehalogenation of a bromocyclocarbon precursor,C18Br6,as shown in Fig.2(l),with a much higher yield of cyclo[18]carbon(64%)compared to that in the case using C24O6(13%).[44]Furthermore, a linear polyyne chain could also be produced by breaking the bonds within the cyclic unit from the C24O6molecule(Fig.2(m)). The precision of the synthesis achieved by this approach opens a new window for the onsurface fabrication of carbon-rich materials and atomic-scale devices.

    3. On-surface synthesis of cumulenes

    Compared to polyynes, cumulenes have been less studied because their stability dramatically decreases in the presence of more consecutive double bonds.[10,47]Such instability has been undoubtedly a major obstacle in their synthesis and characterizations. Followed by the strategies in the preparation of long polyyne moieties,[20,21]the synthesis and stabilization of long cumulenes have been successfully achieved through rotaxination[48]and increase of steric bulk of end groups.[49]Additionally,on-surface synthesis also provides a convenient alternative approach for the fabrication of cumulene-containing nanostructures with atomic precision.

    Fig.3. On-surface synthesis of cumulenes. [(a)and(b)]On-surface synthesis of cis-and trans-cumulene compounds by dehalogenative C–C homocoupling reactions of alkenyl gem-dibromides. Reproduced with permission from Ref.[50]. Copyright 2017,Wiley-VCH.[(c)–(f)]Synthesis of different types of cumulene-containing polymers on Au(111). [(c)and(d)]Reproduced with permission from Ref.[51]. Copyright 2020,Springer Nature. [(e)and(f)]Reproduced with permission from Ref.[52]. Copyright 2020,Wiley-VCH.

    Sunet al.[50]firstly designed and reported the on-surface synthesis of cumulene moiety based on a dehalogenative homocoupling reaction of alkenyl gem-dibromides. As illustrated in Fig.3(a),they designed a 4-(2,2-dibromovinyl)-1,1’-biphenyl(bBVBP)molecular precursor functionalized with an alkenyl gem-dibromide group.Upon deposition onto Au(111)surface at room temperature, the bBVBP molecules were activated by the removal of halogen substituents and underwent C–C homocoupling reactions, formingcis- andtranscumulene products. The nc-AFM images showed sharp lines with a homogeneous contrast connecting the two biphenyl groups, which unambiguously demonstrated the formation of three consecutive C–C double bonds(Fig.3(b)).

    Such a C(sp2)–Br2substitution strategy has been widely applied to the on-surface synthesis of cumulene-containing nanostructures ever since this seminal work. Torreet al.[51]reported the synthesis of cumulene-bridged bisanthene polymers (CBBPs) by the dehalogenative homocoupling of 4Br-BiA precursors on Au (111) at 500 K, which were endowed with =CBr2functionalities (Fig. 3(c)). Highresolution STM and nc-AFM images of CBBPs are shown in Fig.3(d). Interestingly,the cumulenic bridges in CBBPs were further fused to pentalene bridges after annealing at 650 K,leading to defectfreeπ-conjugated ladder polymers. Besides, Urgelet al.[52]further extended the strategy to the synthesis of 1D cumulenecontaining polymers (CCPs) composed ofn-membered rings(n= 5, 6, 7) on Au (111) using similar functional groups(Fig. 3(e)). It is worth noting that the highly nonplanar conformation of the dibromomethylenes-functionalized precursors on Au (111) leads to the separated steps in selective debromination and coupling, and consequently, a selective tailto-tail/head-to-head monomer sequence in the polymer (as shown in Fig. 3(f)). The consecutive C–C double bonds are highlighted by blue arrows in the nc-AFM image. Moreover, other similar cumulene-containing nanostructures have also been systematically studied recently.[53–56]The investigations of theseπ-conjugated polymers linked by cumulene bridge open new avenues in the field of on-surface synthesis with prospects for applications in molecular electronics.

    4. The on-surface synthesis of organometallic polyynes

    Organometallic polyyne,a chain composed of alternating sp-hybridized carbon atoms and metal atoms, is a promising candidate for future electronic and optical devices due to its regulable electronic, optical, and magnetic properties by the incorporation of different transition metals.[57–59]Similar to the case of carbyne,the high chemical reactivity and extreme instability have been blocking the synthesis and characterization of organometallic polyynes,which may be enlightened or solved by applying an on-surface synthesis strategy.

    Fig.4. On-surface synthesis of acetylenic Cu-carbyne. [(a)and(b)]Illustration showing the formation of acetylenic Cu-carbyne on Cu(110)through dehydrogenative coupling of ethyne precursors. (c) Large-scale nc-AFM image and the corresponding STM image of acetylenic Cu-carbynes. (d)Equally scaled high-resolution nc-AFM image, STM image, DFT-optimized model, STM simulation and line-scan profile of a single acetylenic Cucarbyne chain on Cu(110). Reproduced with permission from Ref.[60]. Copyright 2016,American Chemical Society.

    In 2016, Sunet al.[60]firstly reported the synthesis of organometallic Cu-polyynes(i.e.,acetylenic Cu-carbynes)by dehydrogenation of ethyne (C2H2) molecules and coupling with copper atoms on Cu (110) as shown in Fig. 4. After deposition of C2H2onto Cu (110) held at 450 K, acetylenic Cu-carbyne chains were efficiently synthesized and extended along the close-packed [1ˉ10] direction of the substrate. The high-resolution nc-AFM images showed the characteristic protrusions of C–C triple bonds between neighboring two Cu atoms, which appeared as bright dots in the STM image, yet were not resolved in the nc-AFM image. These features further confirmed the formation of organometallic polyynes.This synthetic strategy would prompt the synthesis and characterization of other 1D organometallic polyynes with various incorporated metal atoms as well as periodic polyyne moieties.

    Inspired by the above strategy, the organometallic Aupolyynes (i.e., diacetylenic Au-carbynes) were successfully obtained through on-surface debrominative coupling of C4Br4molecule with a cumulene moiety (Br2C=C=C=CBr2) on Au(111).[61]Interestingly,thein-situskeleton rearrangement from a cumulene moiety to a diyne one (Br–C≡C–C≡C–Br)was directly triggered by cleaving two C–Br bonds within a C4Br4viaSTM tip manipulation. Thereafter, the complete debromination of C4Br4molecules was realized by further thermal treatment,with the formation of 1D diacetylenic Aucarbynes as shown in Fig. 5. Note that two discrete characteristic protrusions as indicated by blue arrows in the nc-AFM images corresponded to two adjacent C–C triple bonds.Moreover, the bandgap of a diacetylenic Au-carbyne on Au (111)was experimentally determined to be~2.0 eV by scanning tunneling spectroscopy (STS), indicating a semiconducting characteristic for potential applications in future molecular electronic devices.

    Very recently,a new kind of organometallic polyynes,triacetylenic Ag-carbyne,has been successfully synthesizedviaan unexpected ring-opening reaction of completely debrominated hexabromobenzene (C6Br6) molecules on Ag (111) by Gaoet al.[62]As illustrated in Fig. 6, the whole scenario can be described as follows: a complete debromination of C6Br6molecules occurred at 300 K on Ag (111), resulting in the formation of unstable C6ring intermediates followed by subsequent transformation into the C6polyynic chainsviaa ring-opening process; afterward, the C6polyynic chains polymerized into triacetylenic Ag-carbynes. The nature of the polyynic segment within chains was clearly revealed by the nc-AFM image,showing three discrete characteristic protrusions of C–C triple bonds, as indicated by the yellow arrows. The debromination and ring-opening processes were demonstrated by extensive density functional theory (DFT)calculations. In addition,Yuet al.[63]further investigated the thermal-induced transformation between acetylenic Ag/Cucarbyne and diacetylenic ones. They theoretically predicted that the bandgap of organometallic polyynes would decrease with the increasing number of C–C triple bonds involved.It was also revealed by DFT calculations that the bandgaps would be metal-dependent with the order of Ag-carbyne>Cu-carbyne>Au-carbyne. Moreover,metalated carbyne ribbons with different incorporated metals might also be synthesized by using surface-assisted elimination reactions of methane tetrabromide molecular precursors and their subsequent polymerization. The bandgap of metalated carbyne ribbons would vary with its width based on theoretical calculations. These regulable electronic properties of organometallic polyynes thus provide a promising prospect for next generation semiconducting materials.

    Fig.5. On-surface synthesis of diacetylenic Au-carbyne. (a)Schematic illustration showing the formation of diacetylenic Au-carbyne from C4Br4. (b)STM image showing the formation of Au-carbyne chains on the Au(111)surface by heating the sample pre-covered with C4Br4 molecules to 300 K.(c) Equally scaled high-resolution STM image and the corresponding DFT-optimized model of a single diacetylenic Au-carbyne chain on Au (111).(d)Close-up STM images and the Laplace filtered nc-AFM images of the single chain, double chain, and triple chain, respectively. Reproduced with permission from Ref.[61]. Copyright 2020,American Chemical Society.

    Fig.6. On-surface synthesis of triacetylenic Ag-carbyne. (a)Schematic illustration showing the formation of triacetylenic Ag-carbyne from C6Br6. (b)A large-scale STM image showing the formation of triacetylenic Ag-carbynes on the Ag(111)surface by depositing C6Br6 molecules on the sample held at 300 K.(c)Constant-height nc-AFM image and the corresponding STM image of triacetylenic Ag-carbynes. (d)From top to bottom: an STM image,a simulated STM image,and top-and side-view DFT models of a single Ag-carbyne on Ag(111). Reproduced with permission from Ref.[62].Copyright 2022,American Chemical Society.

    Table 1 Representative carbyne-like nanostructures synthesized via the onsurface synthesis method.

    5. Conclusion and perspectives

    In summary, we have briefly reviewed recent advances in the on-surface synthesis of one-dimensional carbynelike nanostructures with sp-hybridized carbons, including polyynes,cumulenes,and organometallic polyynes(Table 1).On-surface synthesis strategy has exhibited its great potential for the preparation of nanostructures with atomic precision which are not accessible through conventional solution chemistry. Nonetheless, there are still many difficulties as well as challenges ahead. For instance, some precursors are too reactive to survive before the corresponding reactions start on noble metal surfaces, which prevents obtaining such interesting nanostructures. In addition, intrinsic carbyne structures,instead of metalated carbynes,are yet to be synthesized at the atomic scale, which may require a new synthetic approach.Moreover,the on-surface synthesis of novel nanostructures is currently restricted to metal surfaces,which limits its characterization and further application to a certain extent. For all these reasons, design of new precursors, exploration of new synthetic strategies, approach to transferring products from metal surfaces to other substrates,and even direct synthesis on semiconducting substrates deserve to be explored in the near future.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.22125203 and 21790351).

    猜你喜歡
    周正張弛
    Floquet spectrum and universal dynamics of a periodically driven two-atom system
    Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
    Influence of particle size on the breaking of aluminum particle shells
    A 90?mixed-mode twisted nematic liquid-crystal-on-silicon with an insulating protrusion structure?
    Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings?
    李偉賢、葉子康、周已程、周正男作品
    大觀(2020年9期)2020-01-25 16:24:08
    “種”珍珠真神奇
    秋天
    勻變速直線運動規(guī)律應(yīng)用中的一類典型易錯題
    張弛的褲子撕掉了
    免费观看在线日韩| 国产极品天堂在线| 国内揄拍国产精品人妻在线| 国产精品女同一区二区软件| 日韩 亚洲 欧美在线| 99久久人妻综合| 日本欧美视频一区| 成人高潮视频无遮挡免费网站| 22中文网久久字幕| av免费在线看不卡| 王馨瑶露胸无遮挡在线观看| 国产久久久一区二区三区| 国产伦在线观看视频一区| 欧美精品一区二区大全| 成人国产av品久久久| 亚洲国产毛片av蜜桃av| 亚洲成色77777| 中文欧美无线码| 有码 亚洲区| 午夜老司机福利剧场| 国产精品蜜桃在线观看| 国产一区二区三区综合在线观看 | 精品一区二区三区视频在线| 精品亚洲成国产av| av.在线天堂| 99热国产这里只有精品6| 中国国产av一级| 国产 精品1| 乱码一卡2卡4卡精品| 国产精品99久久久久久久久| 婷婷色麻豆天堂久久| 自拍欧美九色日韩亚洲蝌蚪91 | 国产爽快片一区二区三区| 久久婷婷青草| 交换朋友夫妻互换小说| 精品午夜福利在线看| 美女内射精品一级片tv| 亚洲精品乱码久久久v下载方式| 欧美+日韩+精品| 亚洲精品日韩在线中文字幕| 欧美少妇被猛烈插入视频| 日本欧美国产在线视频| 国产淫语在线视频| 日韩人妻高清精品专区| 精品久久国产蜜桃| 狂野欧美激情性bbbbbb| 午夜免费男女啪啪视频观看| 欧美精品人与动牲交sv欧美| 国产精品爽爽va在线观看网站| 久久久色成人| 日韩一区二区三区影片| 又黄又爽又刺激的免费视频.| 国产淫语在线视频| 亚洲av国产av综合av卡| 我要看日韩黄色一级片| 亚洲精品第二区| av专区在线播放| av福利片在线观看| 亚洲伊人久久精品综合| 国产精品女同一区二区软件| 中文字幕亚洲精品专区| 秋霞伦理黄片| .国产精品久久| 久久久午夜欧美精品| 精品国产三级普通话版| 97超视频在线观看视频| 国产高清有码在线观看视频| 国精品久久久久久国模美| 亚洲精品日本国产第一区| 蜜桃久久精品国产亚洲av| 亚洲性久久影院| 国产熟女欧美一区二区| 制服丝袜香蕉在线| 亚洲色图av天堂| 男的添女的下面高潮视频| 国产精品成人在线| 久久99热这里只有精品18| 18禁裸乳无遮挡动漫免费视频| 国产亚洲91精品色在线| 成人影院久久| 91精品国产国语对白视频| 日本一二三区视频观看| 观看av在线不卡| 日韩大片免费观看网站| 97在线视频观看| 国精品久久久久久国模美| av不卡在线播放| 人妻系列 视频| 特大巨黑吊av在线直播| 中文字幕久久专区| 亚洲一区二区三区欧美精品| av一本久久久久| 最近的中文字幕免费完整| 日韩欧美一区视频在线观看 | 亚洲天堂av无毛| 欧美日韩视频高清一区二区三区二| 日韩亚洲欧美综合| 亚洲图色成人| 欧美日韩综合久久久久久| 亚洲成人中文字幕在线播放| 伦理电影免费视频| 欧美xxxx性猛交bbbb| 一级爰片在线观看| 交换朋友夫妻互换小说| 久久久久人妻精品一区果冻| 99热6这里只有精品| 欧美一级a爱片免费观看看| 亚洲色图av天堂| 日本色播在线视频| 久久综合国产亚洲精品| 韩国高清视频一区二区三区| 青春草视频在线免费观看| 全区人妻精品视频| 亚洲av成人精品一二三区| 久久精品久久精品一区二区三区| 嘟嘟电影网在线观看| 日本欧美视频一区| 日韩一本色道免费dvd| 国产成人精品婷婷| 人妻少妇偷人精品九色| 国产av一区二区精品久久 | 日韩三级伦理在线观看| 亚洲av免费高清在线观看| 国产日韩欧美在线精品| 天天躁夜夜躁狠狠久久av| 久久人人爽人人爽人人片va| 日韩免费高清中文字幕av| 国产欧美日韩一区二区三区在线 | 日本猛色少妇xxxxx猛交久久| 插阴视频在线观看视频| 成人二区视频| 黄色配什么色好看| 日日撸夜夜添| 天天躁日日操中文字幕| 国产精品国产三级国产专区5o| 免费少妇av软件| 国产av码专区亚洲av| 欧美日韩精品成人综合77777| 99九九线精品视频在线观看视频| 乱系列少妇在线播放| 国产色爽女视频免费观看| 亚洲丝袜综合中文字幕| 久久精品人妻少妇| 国产成人91sexporn| 亚洲aⅴ乱码一区二区在线播放| 久久久久国产精品人妻一区二区| 成人一区二区视频在线观看| 国产乱人视频| 国产精品女同一区二区软件| 国产91av在线免费观看| av天堂中文字幕网| 爱豆传媒免费全集在线观看| 亚洲va在线va天堂va国产| 亚洲精品一区蜜桃| 日韩欧美 国产精品| 久久久久久伊人网av| 国产精品久久久久久av不卡| 免费黄频网站在线观看国产| 在线观看av片永久免费下载| 久久 成人 亚洲| 久久久久性生活片| 五月开心婷婷网| 国产极品天堂在线| 欧美性感艳星| 亚洲av综合色区一区| 日日摸夜夜添夜夜添av毛片| 亚洲欧美精品专区久久| 一级二级三级毛片免费看| 简卡轻食公司| 国产毛片在线视频| 亚洲综合色惰| 国产片特级美女逼逼视频| 国产色婷婷99| 成人毛片a级毛片在线播放| 大码成人一级视频| 99热全是精品| 高清视频免费观看一区二区| 久久精品国产自在天天线| 少妇裸体淫交视频免费看高清| 国产69精品久久久久777片| 秋霞伦理黄片| 亚洲精品乱码久久久久久按摩| 亚洲综合色惰| 国产亚洲精品久久久com| 观看免费一级毛片| 日日啪夜夜撸| 青春草亚洲视频在线观看| 久久国内精品自在自线图片| 亚洲av成人精品一区久久| 成人亚洲精品一区在线观看 | 日本av手机在线免费观看| 国产亚洲一区二区精品| 日韩,欧美,国产一区二区三区| 久久久亚洲精品成人影院| 中国三级夫妇交换| 中文乱码字字幕精品一区二区三区| 在线播放无遮挡| 91aial.com中文字幕在线观看| 有码 亚洲区| 高清不卡的av网站| 黄色一级大片看看| 国产免费福利视频在线观看| 日日啪夜夜撸| av又黄又爽大尺度在线免费看| 国产免费视频播放在线视频| 亚洲精品第二区| 伊人久久国产一区二区| 亚洲性久久影院| 成人毛片60女人毛片免费| 亚洲美女视频黄频| 成人漫画全彩无遮挡| 国产片特级美女逼逼视频| 乱码一卡2卡4卡精品| 色综合色国产| 黄片无遮挡物在线观看| 大码成人一级视频| 亚洲精品国产av成人精品| 老熟女久久久| 亚洲色图av天堂| 欧美精品一区二区免费开放| 日韩强制内射视频| 毛片女人毛片| 国产深夜福利视频在线观看| 黄色配什么色好看| 欧美日韩在线观看h| 高清日韩中文字幕在线| 天堂8中文在线网| 啦啦啦视频在线资源免费观看| 精品一区二区三区视频在线| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久久免费av| 亚洲精品日韩av片在线观看| 丰满乱子伦码专区| 老司机影院成人| 又爽又黄a免费视频| 日韩,欧美,国产一区二区三区| 日产精品乱码卡一卡2卡三| 丰满乱子伦码专区| 美女cb高潮喷水在线观看| 成年av动漫网址| 十八禁网站网址无遮挡 | 亚洲国产精品999| 国内少妇人妻偷人精品xxx网站| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲在久久综合| 精品久久久久久电影网| 少妇 在线观看| 国产黄片美女视频| 国产精品爽爽va在线观看网站| 国产在线一区二区三区精| 国产乱人视频| 婷婷色综合www| 99re6热这里在线精品视频| www.色视频.com| 在线免费观看不下载黄p国产| 网址你懂的国产日韩在线| 黑人高潮一二区| 久久99热6这里只有精品| 亚洲成色77777| 日韩中文字幕视频在线看片 | 久久热精品热| 成人影院久久| 一级毛片aaaaaa免费看小| 人妻 亚洲 视频| 免费看光身美女| 亚洲一区二区三区欧美精品| 国产男女内射视频| 亚洲精品日本国产第一区| 国产91av在线免费观看| 内射极品少妇av片p| 2022亚洲国产成人精品| 色哟哟·www| 日本一二三区视频观看| 欧美成人午夜免费资源| 国产在线视频一区二区| 日日啪夜夜撸| 中文精品一卡2卡3卡4更新| 午夜激情福利司机影院| 成人免费观看视频高清| 久久人人爽av亚洲精品天堂 | 国产亚洲午夜精品一区二区久久| 精品亚洲成a人片在线观看 | 一个人免费看片子| 男女下面进入的视频免费午夜| 水蜜桃什么品种好| 国产免费福利视频在线观看| 性色avwww在线观看| 久久精品国产亚洲av涩爱| 国产精品免费大片| av黄色大香蕉| 99热国产这里只有精品6| 少妇熟女欧美另类| 久久久久久九九精品二区国产| 嫩草影院入口| 大香蕉久久网| 少妇裸体淫交视频免费看高清| 成人午夜精彩视频在线观看| 欧美精品国产亚洲| 国产日韩欧美亚洲二区| 久久国产乱子免费精品| 久久人人爽人人片av| 永久网站在线| 亚洲精品久久午夜乱码| 欧美老熟妇乱子伦牲交| 日韩av免费高清视频| 国产深夜福利视频在线观看| 黄片wwwwww| 国产精品99久久99久久久不卡 | 人人妻人人看人人澡| 高清日韩中文字幕在线| 国产乱人偷精品视频| 免费高清在线观看视频在线观看| 女性被躁到高潮视频| 免费大片黄手机在线观看| 免费久久久久久久精品成人欧美视频 | 伦理电影免费视频| 联通29元200g的流量卡| 九九久久精品国产亚洲av麻豆| 99热6这里只有精品| 肉色欧美久久久久久久蜜桃| 校园人妻丝袜中文字幕| 免费看不卡的av| 大码成人一级视频| 国产日韩欧美亚洲二区| 亚洲欧洲国产日韩| 国产乱来视频区| 国产精品一区二区在线观看99| 多毛熟女@视频| 成人二区视频| 国产真实伦视频高清在线观看| 春色校园在线视频观看| 熟女电影av网| 国产精品久久久久久av不卡| 最近最新中文字幕大全电影3| 男女边摸边吃奶| 丰满少妇做爰视频| 日韩成人伦理影院| 欧美日韩在线观看h| 欧美成人午夜免费资源| 中文欧美无线码| 国产 精品1| 国产av精品麻豆| 一区二区三区四区激情视频| 国产av一区二区精品久久 | 下体分泌物呈黄色| 日本-黄色视频高清免费观看| 午夜福利视频精品| 黄色配什么色好看| 久久6这里有精品| kizo精华| 欧美性感艳星| 伦精品一区二区三区| 欧美少妇被猛烈插入视频| 99热这里只有是精品50| 亚洲美女视频黄频| 99热这里只有精品一区| 国产黄频视频在线观看| 亚洲欧美中文字幕日韩二区| 日本免费在线观看一区| 国产高清有码在线观看视频| 91狼人影院| 一级片'在线观看视频| 免费黄频网站在线观看国产| 各种免费的搞黄视频| 亚洲欧美中文字幕日韩二区| 亚洲三级黄色毛片| 成年免费大片在线观看| 国产伦精品一区二区三区四那| 中文字幕av成人在线电影| 一本色道久久久久久精品综合| 97热精品久久久久久| 午夜精品国产一区二区电影| 国产成人精品福利久久| 免费观看a级毛片全部| 久久久久久九九精品二区国产| 爱豆传媒免费全集在线观看| 十分钟在线观看高清视频www | 久久国产精品大桥未久av | 欧美成人午夜免费资源| 大香蕉久久网| 最黄视频免费看| 国产高清国产精品国产三级 | 欧美精品人与动牲交sv欧美| 一级a做视频免费观看| 久久久久性生活片| 另类亚洲欧美激情| 欧美日韩在线观看h| 插阴视频在线观看视频| 久久毛片免费看一区二区三区| 男女下面进入的视频免费午夜| 亚洲综合精品二区| 熟妇人妻不卡中文字幕| 色综合色国产| 精品久久久久久久久av| 久久久久久久国产电影| 身体一侧抽搐| 偷拍熟女少妇极品色| 精品亚洲成a人片在线观看 | av在线播放精品| 内地一区二区视频在线| 日韩一本色道免费dvd| 久久国产亚洲av麻豆专区| 日韩一区二区视频免费看| 国内揄拍国产精品人妻在线| 免费在线观看成人毛片| 人体艺术视频欧美日本| 久久久久久久精品精品| 精品视频人人做人人爽| 搡女人真爽免费视频火全软件| 国产视频内射| 三级国产精品欧美在线观看| 一区二区三区四区激情视频| 亚洲图色成人| 日韩人妻高清精品专区| 免费av中文字幕在线| 涩涩av久久男人的天堂| 国产精品福利在线免费观看| 嫩草影院入口| av专区在线播放| 2022亚洲国产成人精品| 日韩免费高清中文字幕av| 久久精品国产亚洲av涩爱| 精品久久久久久久久av| 亚洲精品一区蜜桃| 黄片无遮挡物在线观看| 亚洲精品日本国产第一区| 亚洲中文av在线| a级毛片免费高清观看在线播放| 国产久久久一区二区三区| 久久99蜜桃精品久久| 丝袜脚勾引网站| 亚洲激情五月婷婷啪啪| 国产精品久久久久久精品古装| 精华霜和精华液先用哪个| 欧美成人午夜免费资源| 在线观看三级黄色| 国产午夜精品一二区理论片| 少妇裸体淫交视频免费看高清| 色综合色国产| 99久国产av精品国产电影| 久久热精品热| 91精品国产九色| 久久99热这里只有精品18| 在线观看一区二区三区激情| 成人影院久久| 国产精品.久久久| 国产在视频线精品| 亚洲精品乱码久久久久久按摩| 干丝袜人妻中文字幕| 少妇人妻 视频| 老女人水多毛片| 午夜激情久久久久久久| 国产伦理片在线播放av一区| 一二三四中文在线观看免费高清| 免费大片黄手机在线观看| 天天躁日日操中文字幕| 黑丝袜美女国产一区| 亚洲,一卡二卡三卡| 亚洲国产精品999| 国产午夜精品久久久久久一区二区三区| 啦啦啦啦在线视频资源| 男女下面进入的视频免费午夜| 久久久久性生活片| 久久精品久久久久久噜噜老黄| 妹子高潮喷水视频| 成人国产麻豆网| 蜜桃亚洲精品一区二区三区| 国产成人91sexporn| 晚上一个人看的免费电影| 伦理电影大哥的女人| av不卡在线播放| 伦理电影大哥的女人| 毛片女人毛片| 久久国产精品大桥未久av | 乱系列少妇在线播放| 日本免费在线观看一区| 日韩一区二区三区影片| 久久热精品热| 亚洲国产成人一精品久久久| 街头女战士在线观看网站| 直男gayav资源| av在线观看视频网站免费| 亚洲人成网站在线播| 亚洲一区二区三区欧美精品| 久久久久久人妻| 婷婷色综合大香蕉| 日本欧美视频一区| 久久久久久久久大av| 中文字幕久久专区| 精品一区在线观看国产| 久久精品国产亚洲网站| av免费观看日本| 一个人免费看片子| 99热网站在线观看| h视频一区二区三区| 99久久中文字幕三级久久日本| 大又大粗又爽又黄少妇毛片口| 日韩中文字幕视频在线看片 | 我的女老师完整版在线观看| 欧美极品一区二区三区四区| 黑人高潮一二区| 丝袜喷水一区| 亚洲精品国产成人久久av| 夜夜爽夜夜爽视频| 一级二级三级毛片免费看| 小蜜桃在线观看免费完整版高清| 免费观看性生交大片5| 国产伦理片在线播放av一区| 国产成人91sexporn| 赤兔流量卡办理| 久久久久视频综合| 亚洲人成网站在线观看播放| 成人特级av手机在线观看| 伦理电影大哥的女人| 啦啦啦视频在线资源免费观看| 免费观看在线日韩| 国语对白做爰xxxⅹ性视频网站| 22中文网久久字幕| 亚洲欧美一区二区三区国产| 欧美日韩精品成人综合77777| 韩国高清视频一区二区三区| 色吧在线观看| 国产在线一区二区三区精| 欧美另类一区| 精品一区二区三卡| 久久97久久精品| 精品少妇黑人巨大在线播放| 大香蕉97超碰在线| 高清黄色对白视频在线免费看 | 亚洲人成网站在线播| 日韩伦理黄色片| 久久婷婷青草| 丰满乱子伦码专区| 免费av不卡在线播放| 亚洲,一卡二卡三卡| 国产女主播在线喷水免费视频网站| 在现免费观看毛片| 婷婷色综合大香蕉| 蜜桃久久精品国产亚洲av| 国产精品三级大全| 联通29元200g的流量卡| 国精品久久久久久国模美| 伦理电影大哥的女人| 国产精品99久久99久久久不卡 | 日本色播在线视频| 国产成人精品一,二区| 国产精品成人在线| 国产一区有黄有色的免费视频| www.色视频.com| 亚洲欧美成人精品一区二区| 久久久国产一区二区| 久久这里有精品视频免费| a级毛片免费高清观看在线播放| 国产精品麻豆人妻色哟哟久久| 亚洲精品乱久久久久久| 久久精品国产亚洲网站| 18禁裸乳无遮挡动漫免费视频| 精品亚洲乱码少妇综合久久| www.色视频.com| 中文在线观看免费www的网站| 噜噜噜噜噜久久久久久91| 久久久精品免费免费高清| 91精品国产国语对白视频| 看十八女毛片水多多多| 国产精品99久久99久久久不卡 | 搡女人真爽免费视频火全软件| 日韩一区二区视频免费看| 2018国产大陆天天弄谢| 亚洲成色77777| 欧美xxxx黑人xx丫x性爽| 这个男人来自地球电影免费观看 | 国产色婷婷99| 国精品久久久久久国模美| 你懂的网址亚洲精品在线观看| 国产精品熟女久久久久浪| 久久国产乱子免费精品| 亚洲美女搞黄在线观看| 男女国产视频网站| 久久毛片免费看一区二区三区| 一区二区三区乱码不卡18| 欧美日韩综合久久久久久| 啦啦啦啦在线视频资源| 在线观看一区二区三区| 蜜桃在线观看..| 超碰av人人做人人爽久久| 国产精品一区二区性色av| 亚洲va在线va天堂va国产| 人妻夜夜爽99麻豆av| 亚洲欧美清纯卡通| 国产精品久久久久久久电影| 观看美女的网站| 不卡视频在线观看欧美| 国产高清国产精品国产三级 | 久久久亚洲精品成人影院| 成年人午夜在线观看视频| 日本wwww免费看| 久久久久久人妻| 亚洲av电影在线观看一区二区三区| 免费少妇av软件| 毛片一级片免费看久久久久| 亚洲欧美日韩东京热| 天美传媒精品一区二区| 国产伦在线观看视频一区| 亚洲av免费高清在线观看| 国产免费福利视频在线观看| 欧美成人午夜免费资源| 偷拍熟女少妇极品色| 成人免费观看视频高清| 天堂俺去俺来也www色官网| 日本与韩国留学比较| 精品久久久噜噜| 97在线视频观看| 精品熟女少妇av免费看| 美女cb高潮喷水在线观看| 最新中文字幕久久久久|