• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure

    2022-12-28 09:55:36ZhiHaiWu吳治海andLinBoXie謝林柏
    Chinese Physics B 2022年12期

    Zhi-Hai Wu(吳治海) and Lin-Bo Xie(謝林柏)

    Engineering Research Center of Internet of Things Technology Applications of MOE,School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China

    Keywords: multi-agent systems,synchronous self-sensing function failure,finite-time dynamical consensus,network topology connectivity recovery

    1. Introduction

    During the past twenty years, consensus of multi-agent systems (MASs), owing to its wide applications in multiple robot systems,wireless sensor networks,intelligent transportation systems,smart grids,social networks,and so on,has received a lot of attention from researchers in different disciplines. Consensus means that all agents under distributed control inputs called consensus protocols eventually reach a common value. According to different convergence time,consensus is divided into asymptotical and finite-time consensus. Compared with asymptotical consensus,[1–8]finite-time consensus possesses more advantages such as faster convergence rate,better disturbance rejection,and robustness to uncertainties. Also,in real application,an agent,such as an underwater robot and an unmanned aerial vehicle, is controlled for its desired motion by its acceleration rather than by its speed. Therefore, finite-time consensus problems of doubleintegrator MASs have been well studied.[9–14]

    Notice that successful implementation of all of the finitetime consensus protocols in Refs.[9–14]depends on the availability of the position and velocity state errors between an agent and its local neighbors. In general,to compute the state errors,an agent has to measure its own absolute states by satellite positioning systems such as GPS.However,in some complex work scenarios, it is hard for an agent to obtain its own absolute states based on satellite positioning systems. For example, a group of unmanned aerial vehicles are required to keep a particular formation, get into a thick forest, and complete a task of extinguishing a fire. Once a vehicle gets into the forest,which can be regarded as a typical indoor environment, its own absolute position and velocity states will be no longer measured by GPS.In this situation,the vehicle that has got into the forest is called to suffer from self-sensing function failure(SSFF).If the vehicle subject to SSFF is not controlled by a new measure, it will no longer keep the particular formation with other vehicles, which might result in the loss of timely completing the task of putting out the fire. One can see from this example that once an agent suffers from SSFF,its absolute states can be no longer measured by its sensors,making the state errors between itself and its local neighbours unavailable and further making itself unable to be controlled in a closed-loop manner. If an agent subject to SSFF is not given a novel control scheme,it cannot achieve consensus with other normal agents. Moreover,if an agent suffers from SSFF,its neighbours can no longer obtain its states in spite of keeping communicating with it. Hence,the occurrence of SSFF at an agent might destroy the connectivity of network topology among normal agents in the sense of obtaining information.If the connectivity of network topology among normal agents is not recovered, the subsystems composed of normal agents cannot reach consensus, let alone the whole MASs. In summary,SSFF can destroy the achievement of consensus among the whole MASs.

    Therefore, we need to find an appropriate strategy of recovering the connectivity of network topology among normal agents and a proper fault-tolerant finite-time consensus protocol to ensure that double-integrator MASs with partial agents subject to SSFF can still reach finite-time consensus. As far as we know, there is no open result on fault-tolerant finite-time consensus of double-integrator MASs with partial agents subject to SSFF.

    Based on the above considerations, in this paper we investigate the fault-tolerant finite-time consensus problems of double-integrator MASs with partial agents subject to SSFF.First, a strategy of recovering the connectivity of network topology among normal agents is proposed based on multihop communication together with agents subject to SSFF as routing nodes. Second, a fault-tolerant finite-time dynamical consensus protocol with time-varying gains is proposed.Third, convergence analysis is made in theory. Last, numerical simulations are provided to illustrate the effectiveness of the theoretical results.

    The main innovations of this paper are summarized as follows. First, different from sensor faults in Refs. [15–19],where the states or outputs of an agent mixed with sensor faults can be directly measured for designing consensus protocols,SSFF discussed in this paper means that if an agent suffers from SSFF, its states can be no longer directly measured for designing consensus protocols. Second, unlike the research idea on dynamical network topology in Ref. [20], where the conditions on dynamical network topology guaranteeing consensus are derived from the perspective of analysis,the method of actively recovering the network topology connectivity is proposed in this paper. Third, different from the consensus protocols in Refs.[9–14],where a closed-loop control scheme is always put on each agent, a fault-tolerant finite-time consensus protocol is proposed to cope with SSFF in this paper,where an agent is controlled in a closed-/open-loop manner before/after suffering from SSFF,respectively.

    The rest of this paper is organized as follows. In Section 2, some preliminaries are provided and the problem is formulated. The strategy of recovering the connectivity of network topology among all normal agents is proposed in Section 3. The fault-tolerant finite-time dynamical consensus protocol is presented, and its effectiveness to guarantee finite-time dynamical consensus is demonstrated theoretically in Section 4. Numerical simulations are provided to illustrate the effectiveness of the theoretical results in Section 5. Conclusions with future research directions are included in Section 6.

    2. Preliminaries and problem formulation

    2.1. Algebraic graph theory

    2.2. Problem formulation

    For MASs withNagents, agentiand the available information flow between agentiand agentjare regarded as nodeviand edgeeijin an undirected graphG, respectively.For double-integrator MASs, the dynamics of agentican be described by

    i.e., reach finite-time dynamical consensus, where sgn(·) is the sign function,σ ∈(0,1), andTis a finite time relying on(pi(0),qi(0)),i ∈I.

    Definition 1 Agentiwith double-integrator dynamics(1)is called to suffer from SSFF att+i,if its position statepi(t)and velocity stateqi(t)can be measured only in[0,ti]but cannot be done in(ti,+∞),where 0≤ti<+∞.

    One can see from Eqs.(1)and(2)that to reach finite-time dynamical consensus among the whole MASs, agentineeds to get the states(pj(t),qj(t))of its neighboursj ∈Niand its own states(pi(t),qi(t)). However,just as we said above,once agentisuffers from SSFF, the closed-loop control scheme in Eqs.(1)and(2)can be no longer carried out,and the connectivity of network topology among normal agents might be destroyed,leading to the loss of finite-time dynamical consensus among the whole MASs.

    In the following, we will propose a strategy of recovering the connectivity of network topology among normal agents and a fault-tolerant finite-time dynamical consensus protocol to tackle SSFF and simultaneously guarantee the achievement of finite-time dynamical consensus among the whole MASs.

    Before moving on, we need to present the following assumptions.

    Assumption 1 SSFF is synchronous,i.e.,tF?ti=tj,t+F?t+i=t+j,?i,j ∈F,whereFrepresents the set of all agents subject to SSFF,and the number|F|of agents subject to SSFF satisfies 1≤|F|

    Assumption 2 The network topology before SSFF is fixed,undirected,and connected,and there is no factor bringing about the change of network topology except SSFF and carrying out the strategy of recovering the connectivity of network topology among normal agents to be presented.

    3. Network topology connectivity recovery

    In this section, a strategy of recovering the connectivity of network topology among normal agents is proposed,where Assumption 1 and Assumption 2 are satisfied. A specific example is used to better show the processes of the network topology connectivity recovery.

    For MASs with ten agents and the initial network topology shown in Fig. 1, without loss of generality, assume that agents 3,5,10 suffer from synchronous SSFF att+F.

    Fig.1. Network topology among all agents in[0,tF].

    Att+F, because agent 3 can no longer measure its own states by its own sensors,agent 3 knows that itself suffers from SSFF and immediately relays the states received from agent 2,agent 4,and agent 5 to agents 4,5,agents 2,5,and agents 2,4, respectively. However, because agent 5 also suffers from SSFF att+F,agent 3 cannot receive the states of agent 5,knows that agent 5 also suffers from SSFF,informs agent 5 to repay the states received from agents 6, 8 to it,i.e., agent 3, and immediately relays the states received from agent 2, agent 4,agent 6, and agent 8 to agents 6, 8, agents 6, 8, agents 2, 4,8, and agents 2, 4, 6, respectively. For agents 5, 10 subject to SSFF att+F,similar procedures are implemented simultaneously. It follows from the above procedures that when agents 3, 5, 10 suffer from synchronous SSFF att+F, new undirected edges (v2,v6), (v2,v8), (v4,v6), (v4,v8), (v6,v8), and (v7,v9)are added to the network topology among normal agents from the viewpoint of obtaining information,where multi-hop communication technology together with agents 3,5,10 as routing nodes is utilized. For these newly added edges, without loss of generality, all of their weights are set as 1. The new network topology among normal agents shown in Fig.2 is established via the above procedures,which is obviously connected in(tF,+∞).

    Fig.2. Network topology among normal agents in(tF,+∞).

    For general cases, it is obvious that under Assumption 1 and Assumption 2, the above strategy of recovering the connectivity of network topology among normal agents can guarantee that the new network topology among normal agents is connected in(tF,+∞).

    For the convenience of the following expression, we present the following definitions.

    Definition 2 SetV′is called maximum failure connected subset(MFCS)of graphG,if the following conditions are simultaneously satisfied: (i)V′?F;(ii)when any normal node is not used as a routing node,any two distinct nodes ofV′are connected; (iii) when any normal node is not used as a routing node,?vi ∈F ?V′,?vj ∈V′,nodeviand nodevjare not connected.

    According to Definition 2,Gin the above example only has two MFCSs,i.e.,{v3,v5}and{v10}.

    Definition 3 SetV′′is called maximum normal neighbor set(MNNS)of MFCSV′,ifV′′is only composed of all normal neighbor nodes of each node in MFCSV′.

    According to Definition 3,{v2,v4,v6,v8}and{v7,v9}are MNNSs of MFCSs{v3,v5}and{v10},respectively.

    According to Definition 4,MHNNSs of nodev3,nodev5,and nodev10are{v2,v4},{v6,v8},and{v7,v9},respectively.

    Remark 1 The core of the above strategy of recovering the connectivity of network topology among normal agents is to use multi-hop communication technology together with all agents subject to SSFF as routing nodes for reconnecting any two distinct nodes of each MNNS and ensuring that the subgraph composed of all nodes in each MNNS is a complete graph.

    Remark 2 Multi-hop communication technology has been successfully used in topology control and routing protocol design of wireless sensor networks, which are typical MASs, and has been used for designing consensus protocols of MASs to improve the convergence rate of achieving consensus in Refs.[21–25]. Besides,when the number of agents in an MFCS is not large,carrying out the proposed strategy of network topology connectivity recovery will not quite damage the distributed property of MASs.

    4. Fault-tolerant finite-time dynamical consensus protocol and convergence analysis

    In this section,a fault-tolerant finite-time dynamical consensus protocol is proposed for double-integrator MASs with partial agents subject to synchronous SSFF and its effectiveness to ensure finite-time dynamical consensus is theoretically demonstrated.

    For double-integrator MASs(1)satisfying Assumption 1 and Assumption 2, we propose the following fault-tolerant finite-time dynamical consensus protocol:

    Theorem 1 Under Assumption 1 and Assumption 2,double-integrator MASs(1)applying the proposed strategy of recovering the connectivity of network topology among normal agents and the fault-tolerant finite-time dynamical consensus protocol (3) reach finite-time dynamical consensus, provided that

    where?is a positive constant that can be arbitrarily chosen.

    Proof Substituting Eq.(3)into Eq.(1)gives the closedloop model of agenti(i ∈I ?F)in(tF,+∞)as follows:

    whereT?is a finite time relying on(pi(tF),qi(tF)),i ∈I ?F.

    Substituting Eq.(3)into Eq.(1)can also yield the open-loop model of agenti(i ∈F)in(tF,+∞)as follows:

    This means that double-integrator MASs (1) under the proposed strategy of recovering the connectivity of network topology among normal agents and the fault-tolerant finitetime dynamical consensus protocol(3)achieve finite-time dynamical consensus. The proof is completed.

    Remark 3 The effectiveness of the fault-tolerant finitetime dynamical consensus protocol (3) depends on the existence ofαi(t)satisfying condition(4)andβi(t)satisfying condition (5). It is easy to see that any constant gain does not satisfy condition (4) or condition (5). Fortunately, bothαi(t)satisfying condition (4) andβi(t) satisfying condition (5) really exist. It can be verified that

    in Eq.(3)is to compute control inputuj(t)(t ∈(tF,+∞))of agentj(j ∈Ni(t+F)hop) by agenti(i ∈F). For agenti(i ∈

    F), both of (pj(t),qj(t)) (j ∈Ni(t+F)hop) and (pm(t),qm(t))(m ∈Nj(t+F)), which are need while computing control inputuj(t)(t ∈(tF,+∞)),can be obtained by using multi-hop communication technology together with partial or all agents in an MFCS where agenti(i ∈F) is located as routing nodes.Similarly,when the number of nodes in an MFCS is not large,implementing the fault-tolerant finite-time dynamical consensus protocol(3)will not quite damage the distributed property of MASs.

    5. Numerical simulations

    Consider double-integrator MASs with ten agents and the initial network topology shown in Fig.1. Without loss of generality,all weights of edges are 1,the initial states of all agents are randomly set,and agents 3,5,10 suffer from synchronous SSFF withtF=3 s. The new network topology among normal agents shown in Fig. 2 is constructed by using the proposed strategy of network topology connectivity recovery. Numerical results of double-integrator MASs (1) under protocol (3)withα3(t)=α5(t)=α10(t)in Eq.(13),β3(t)=β5(t)=β10(t)in Eq.(14),?=3,andσ=0.5 are shown in Figs.3 and 4.It is easy to see from Figs.3 and 4 that double-integrator MASs(1)using the fault-tolerant finite-time dynamical consensus protocol (3) achieve finite-time dynamical consensus. Therefore,the results of Theorem 1 are numerically verified.

    Fig.4. Velocity states of systems(1)under protocol(3)

    6. Conclusions

    This paper studied the fault-tolerant finite-time dynamical consensus problems of double-integrator MASs with partial agents subject to synchronous SSFF. The strategy of network topology connectivity recovery and the fault-tolerant finite-time dynamical consensus protocol were proposed for resisting SSFF.Theoretical and numerical results showed that double-integrator MASs with partial agents subject to synchronous SSFF using the strategy of network topology connectivity recovery and the fault-tolerant finite-time dynamical consensus protocol can reach finite-time dynamical consensus. It should be noticed that SSFF was assumed to be synchronous in this paper. However, in real application, SSFF might be asynchronous. Therefore, in the future, we will investigate fault-tolerant finite-time dynamical consensus of double-integrator MASs with partial agents subject to asynchronous SSFF.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61876073) and the Fundamental Research Funds for the Central Universities of China (Grant No.JUSRP21920).

    麻豆成人午夜福利视频| 99国产精品免费福利视频| av天堂中文字幕网| 黄片wwwwww| 日韩强制内射视频| 熟女人妻精品中文字幕| 少妇精品久久久久久久| 大陆偷拍与自拍| 日韩中字成人| av国产精品久久久久影院| 国产精品99久久99久久久不卡 | 男人狂女人下面高潮的视频| 色5月婷婷丁香| 中文字幕av成人在线电影| 亚洲av男天堂| 亚洲成人手机| 尤物成人国产欧美一区二区三区| 久久女婷五月综合色啪小说| 国产成人91sexporn| 啦啦啦中文免费视频观看日本| 免费在线观看成人毛片| 在线播放无遮挡| 国产永久视频网站| 黑人猛操日本美女一级片| 毛片女人毛片| 美女中出高潮动态图| 九九在线视频观看精品| www.色视频.com| 午夜福利视频精品| 男人狂女人下面高潮的视频| 精品少妇黑人巨大在线播放| 观看av在线不卡| 丰满迷人的少妇在线观看| 国产成人aa在线观看| 夜夜爽夜夜爽视频| 国产有黄有色有爽视频| 久久国产精品大桥未久av | 国内少妇人妻偷人精品xxx网站| 岛国毛片在线播放| 国产欧美亚洲国产| 欧美日韩综合久久久久久| 日韩欧美 国产精品| 亚洲欧美精品专区久久| 日韩不卡一区二区三区视频在线| 日韩不卡一区二区三区视频在线| 搡女人真爽免费视频火全软件| 国产一区亚洲一区在线观看| 欧美精品国产亚洲| 偷拍熟女少妇极品色| 国语对白做爰xxxⅹ性视频网站| 下体分泌物呈黄色| 免费看日本二区| 久久久久久久国产电影| 午夜免费观看性视频| 国产在线免费精品| 亚洲精品视频女| 午夜日本视频在线| 欧美日韩精品成人综合77777| 久久久久视频综合| 亚洲欧洲日产国产| 亚洲av电影在线观看一区二区三区| 一区二区三区四区激情视频| 春色校园在线视频观看| av视频免费观看在线观看| 伊人久久精品亚洲午夜| 人妻制服诱惑在线中文字幕| 亚洲国产精品999| av网站免费在线观看视频| 国产亚洲91精品色在线| 99热全是精品| 熟女av电影| 欧美亚洲 丝袜 人妻 在线| 99九九线精品视频在线观看视频| 男人狂女人下面高潮的视频| 人人妻人人澡人人爽人人夜夜| 国内揄拍国产精品人妻在线| 成人无遮挡网站| av在线app专区| 欧美区成人在线视频| 久久久久久久久大av| 最后的刺客免费高清国语| 尤物成人国产欧美一区二区三区| 中文天堂在线官网| 精品久久国产蜜桃| 国产精品99久久99久久久不卡 | 亚洲国产毛片av蜜桃av| 国内少妇人妻偷人精品xxx网站| av一本久久久久| 亚洲精品成人av观看孕妇| 蜜桃在线观看..| 午夜福利在线在线| 啦啦啦视频在线资源免费观看| 国产91av在线免费观看| 亚洲欧美一区二区三区黑人 | 国产中年淑女户外野战色| 国产成人午夜福利电影在线观看| 91aial.com中文字幕在线观看| 日韩成人av中文字幕在线观看| 极品教师在线视频| 亚洲成人av在线免费| 丰满人妻一区二区三区视频av| 中文字幕精品免费在线观看视频 | av在线播放精品| 中文字幕亚洲精品专区| 99视频精品全部免费 在线| 亚州av有码| 女性被躁到高潮视频| 国产欧美日韩精品一区二区| av播播在线观看一区| 校园人妻丝袜中文字幕| 亚洲精品一区蜜桃| av在线蜜桃| 欧美另类一区| 极品教师在线视频| 亚洲电影在线观看av| 欧美精品国产亚洲| 亚洲精品456在线播放app| www.av在线官网国产| www.色视频.com| 高清欧美精品videossex| 亚洲第一av免费看| 亚洲精品日韩在线中文字幕| 女人十人毛片免费观看3o分钟| 久久精品国产亚洲av天美| 大陆偷拍与自拍| 777米奇影视久久| 国产精品一区www在线观看| 亚洲av中文字字幕乱码综合| 精品人妻视频免费看| 久久韩国三级中文字幕| 日韩视频在线欧美| 少妇人妻一区二区三区视频| 美女cb高潮喷水在线观看| 男女无遮挡免费网站观看| 日韩一本色道免费dvd| 丰满迷人的少妇在线观看| 蜜桃亚洲精品一区二区三区| 国产av码专区亚洲av| 国产成人精品婷婷| 国产亚洲一区二区精品| 波野结衣二区三区在线| 又粗又硬又长又爽又黄的视频| 日韩 亚洲 欧美在线| 亚洲国产精品999| 久久久久精品久久久久真实原创| 中文乱码字字幕精品一区二区三区| 小蜜桃在线观看免费完整版高清| 少妇被粗大猛烈的视频| 国产淫片久久久久久久久| 欧美高清成人免费视频www| 国产精品无大码| 91精品伊人久久大香线蕉| 久久久a久久爽久久v久久| 久久久亚洲精品成人影院| 18禁在线播放成人免费| 国产在线一区二区三区精| 亚洲欧美一区二区三区黑人 | 妹子高潮喷水视频| av福利片在线观看| 黑人猛操日本美女一级片| 国产v大片淫在线免费观看| 黄色日韩在线| 有码 亚洲区| 男人狂女人下面高潮的视频| 欧美精品一区二区大全| 在线观看免费高清a一片| 久久久久久久亚洲中文字幕| 日日啪夜夜撸| 啦啦啦视频在线资源免费观看| 又黄又爽又刺激的免费视频.| 日韩av在线免费看完整版不卡| 人人妻人人添人人爽欧美一区卜 | 亚洲天堂av无毛| 欧美成人一区二区免费高清观看| 欧美日本视频| 亚洲精品色激情综合| 国产中年淑女户外野战色| 女人久久www免费人成看片| 日韩大片免费观看网站| 天堂俺去俺来也www色官网| 亚洲色图av天堂| 亚洲国产欧美在线一区| 纯流量卡能插随身wifi吗| 肉色欧美久久久久久久蜜桃| 综合色丁香网| 成人美女网站在线观看视频| 日韩中字成人| 少妇人妻精品综合一区二区| 大陆偷拍与自拍| 精品一区在线观看国产| 亚洲精品一区蜜桃| 亚洲精品日韩在线中文字幕| 高清欧美精品videossex| 中国美白少妇内射xxxbb| 草草在线视频免费看| 国产淫片久久久久久久久| 国产美女午夜福利| 成人免费观看视频高清| 狂野欧美激情性xxxx在线观看| 亚洲精品乱码久久久v下载方式| av网站免费在线观看视频| 欧美zozozo另类| 欧美一级a爱片免费观看看| 日本av免费视频播放| 性色avwww在线观看| 亚洲人成网站在线观看播放| 十分钟在线观看高清视频www | 亚洲av不卡在线观看| 亚洲欧美一区二区三区黑人 | 内地一区二区视频在线| 午夜福利在线在线| 在线 av 中文字幕| 国产一区二区三区综合在线观看 | 欧美人与善性xxx| 国产精品一及| 女的被弄到高潮叫床怎么办| 蜜臀久久99精品久久宅男| 国产免费一区二区三区四区乱码| 久久精品国产亚洲av涩爱| 亚州av有码| 成人二区视频| 日本-黄色视频高清免费观看| 亚洲国产精品一区三区| 大又大粗又爽又黄少妇毛片口| 亚洲精品,欧美精品| 中文字幕精品免费在线观看视频 | 大香蕉97超碰在线| 久久鲁丝午夜福利片| 少妇的逼好多水| 免费黄网站久久成人精品| 久久久亚洲精品成人影院| 六月丁香七月| 99国产精品免费福利视频| 啦啦啦在线观看免费高清www| 欧美 日韩 精品 国产| 中文天堂在线官网| 国产精品久久久久成人av| 久久久久久久久久成人| 97在线视频观看| 99久久人妻综合| 亚洲av国产av综合av卡| 中文字幕精品免费在线观看视频 | 亚洲av免费高清在线观看| 99国产精品免费福利视频| 2018国产大陆天天弄谢| 丝袜喷水一区| 久久精品国产自在天天线| 最近2019中文字幕mv第一页| 人体艺术视频欧美日本| 少妇猛男粗大的猛烈进出视频| 国产av一区二区精品久久 | 美女视频免费永久观看网站| 男女啪啪激烈高潮av片| 女性被躁到高潮视频| 国产精品.久久久| 久久久久人妻精品一区果冻| 美女中出高潮动态图| 搡女人真爽免费视频火全软件| 韩国av在线不卡| 国产精品久久久久久久电影| 最近中文字幕高清免费大全6| 亚洲精品自拍成人| 97在线视频观看| 国产深夜福利视频在线观看| 在线看a的网站| 成人漫画全彩无遮挡| 欧美3d第一页| 亚洲最大成人中文| 欧美另类一区| 一级毛片aaaaaa免费看小| 国内揄拍国产精品人妻在线| 一级av片app| 日韩一本色道免费dvd| 中文字幕精品免费在线观看视频 | 国产老妇伦熟女老妇高清| 国产成人精品福利久久| 天堂8中文在线网| 联通29元200g的流量卡| 亚洲精品乱久久久久久| 国产在线一区二区三区精| 亚洲欧美日韩无卡精品| 99热这里只有是精品在线观看| 人妻夜夜爽99麻豆av| 久久午夜福利片| 麻豆成人av视频| 九色成人免费人妻av| 亚洲av在线观看美女高潮| 日本与韩国留学比较| 国产片特级美女逼逼视频| 亚洲成色77777| 午夜免费鲁丝| 国产伦理片在线播放av一区| 男女国产视频网站| 中文字幕久久专区| 我的女老师完整版在线观看| 欧美成人午夜免费资源| 26uuu在线亚洲综合色| 久久人人爽人人片av| 永久免费av网站大全| videossex国产| 国产欧美亚洲国产| 91在线精品国自产拍蜜月| 国产午夜精品一二区理论片| 一级a做视频免费观看| 观看免费一级毛片| 十分钟在线观看高清视频www | 成人一区二区视频在线观看| av又黄又爽大尺度在线免费看| 九九爱精品视频在线观看| 日产精品乱码卡一卡2卡三| 老司机影院成人| 久久久久久久久久人人人人人人| 毛片一级片免费看久久久久| 大香蕉久久网| 少妇猛男粗大的猛烈进出视频| 99国产精品免费福利视频| 久久ye,这里只有精品| 国产免费又黄又爽又色| 亚洲av福利一区| 97在线人人人人妻| 亚洲av男天堂| 国产 一区 欧美 日韩| 日韩不卡一区二区三区视频在线| 欧美高清性xxxxhd video| 国产 一区精品| 韩国av在线不卡| 天天躁夜夜躁狠狠久久av| 久久国内精品自在自线图片| 亚洲欧美精品自产自拍| 亚洲四区av| 国产有黄有色有爽视频| 免费观看的影片在线观看| 亚洲成色77777| 高清不卡的av网站| 亚洲性久久影院| 成人18禁高潮啪啪吃奶动态图 | 国产视频内射| 国产精品国产三级专区第一集| av女优亚洲男人天堂| 肉色欧美久久久久久久蜜桃| 国内精品宾馆在线| 两个人的视频大全免费| 黄色视频在线播放观看不卡| 欧美精品一区二区大全| 国产黄色视频一区二区在线观看| 午夜福利高清视频| 狂野欧美白嫩少妇大欣赏| 午夜福利网站1000一区二区三区| 亚洲精品日本国产第一区| 制服丝袜香蕉在线| 国产精品久久久久久精品电影小说 | 中国三级夫妇交换| 国产 一区 欧美 日韩| 亚洲av男天堂| 一级爰片在线观看| 国产一区亚洲一区在线观看| 丝袜喷水一区| 国产成人精品婷婷| a级一级毛片免费在线观看| 一边亲一边摸免费视频| 国产伦精品一区二区三区四那| 一级片'在线观看视频| 又黄又爽又刺激的免费视频.| 色吧在线观看| tube8黄色片| 97超视频在线观看视频| 免费少妇av软件| 成人国产av品久久久| 高清欧美精品videossex| 国产有黄有色有爽视频| 在现免费观看毛片| 天天躁夜夜躁狠狠久久av| 国产美女午夜福利| av在线观看视频网站免费| 99热6这里只有精品| 亚洲精品亚洲一区二区| 人妻系列 视频| 国产极品天堂在线| 欧美丝袜亚洲另类| 国产一区二区在线观看日韩| 久久久久久久久久久丰满| 少妇被粗大猛烈的视频| 国产精品久久久久久精品古装| 日本与韩国留学比较| 少妇 在线观看| 午夜福利在线在线| 成人二区视频| 亚洲欧洲国产日韩| av黄色大香蕉| 日韩中文字幕视频在线看片 | 一级二级三级毛片免费看| 91狼人影院| 久久久久久久精品精品| 大香蕉久久网| 亚洲va在线va天堂va国产| 欧美三级亚洲精品| 国产成人aa在线观看| 亚洲av国产av综合av卡| 亚洲av综合色区一区| 婷婷色综合大香蕉| 尤物成人国产欧美一区二区三区| 777米奇影视久久| 久久精品熟女亚洲av麻豆精品| 高清av免费在线| 80岁老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图 | 欧美极品一区二区三区四区| 久久久久久久久大av| 亚洲国产毛片av蜜桃av| 色哟哟·www| 蜜桃在线观看..| 天堂8中文在线网| 看免费成人av毛片| 好男人视频免费观看在线| 全区人妻精品视频| 男人爽女人下面视频在线观看| 边亲边吃奶的免费视频| 秋霞在线观看毛片| 欧美日韩在线观看h| 如何舔出高潮| 亚洲av.av天堂| 成人美女网站在线观看视频| 欧美少妇被猛烈插入视频| 国产精品人妻久久久久久| 欧美日韩视频高清一区二区三区二| 成人高潮视频无遮挡免费网站| 亚洲,一卡二卡三卡| 成人免费观看视频高清| 国产亚洲精品久久久com| av网站免费在线观看视频| 亚洲欧美清纯卡通| 91午夜精品亚洲一区二区三区| 天堂俺去俺来也www色官网| 久久99精品国语久久久| 纯流量卡能插随身wifi吗| 亚洲伊人久久精品综合| 亚洲三级黄色毛片| 美女xxoo啪啪120秒动态图| 久久鲁丝午夜福利片| 好男人视频免费观看在线| 成年美女黄网站色视频大全免费 | 午夜福利视频精品| 制服丝袜香蕉在线| 国产精品国产三级国产专区5o| 日本午夜av视频| 伊人久久国产一区二区| 亚洲内射少妇av| 日日摸夜夜添夜夜添av毛片| 久久6这里有精品| 人妻一区二区av| 一二三四中文在线观看免费高清| h日本视频在线播放| 久久国内精品自在自线图片| 男人舔奶头视频| 干丝袜人妻中文字幕| 日韩伦理黄色片| av黄色大香蕉| 欧美少妇被猛烈插入视频| 伦精品一区二区三区| 99久久综合免费| 日本-黄色视频高清免费观看| 最近2019中文字幕mv第一页| 欧美日韩精品成人综合77777| av在线app专区| 亚洲内射少妇av| 人妻一区二区av| 99久久综合免费| 1000部很黄的大片| 天堂俺去俺来也www色官网| 日韩精品有码人妻一区| 99热这里只有是精品50| 亚洲内射少妇av| 国产精品99久久久久久久久| 一区二区三区免费毛片| 日韩欧美 国产精品| 干丝袜人妻中文字幕| www.色视频.com| 一级毛片aaaaaa免费看小| 免费大片18禁| 最近中文字幕2019免费版| 乱系列少妇在线播放| 亚洲天堂av无毛| 乱码一卡2卡4卡精品| 免费av中文字幕在线| 欧美人与善性xxx| 97热精品久久久久久| 午夜福利高清视频| 中文字幕制服av| 五月玫瑰六月丁香| 欧美人与善性xxx| 午夜老司机福利剧场| 交换朋友夫妻互换小说| 久热久热在线精品观看| 国产一区亚洲一区在线观看| 色5月婷婷丁香| 王馨瑶露胸无遮挡在线观看| 91久久精品电影网| 亚洲国产成人一精品久久久| 啦啦啦在线观看免费高清www| 人妻一区二区av| 精品久久久精品久久久| 汤姆久久久久久久影院中文字幕| 九九爱精品视频在线观看| 九色成人免费人妻av| 不卡视频在线观看欧美| 热99国产精品久久久久久7| 国产极品天堂在线| 97在线人人人人妻| 日韩强制内射视频| 老司机影院毛片| 亚洲欧美中文字幕日韩二区| 少妇被粗大猛烈的视频| 久久精品熟女亚洲av麻豆精品| 亚洲精品久久午夜乱码| 免费观看av网站的网址| 秋霞在线观看毛片| 久久久久久久久大av| 国产成人午夜福利电影在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲精品日韩在线中文字幕| 国产乱人偷精品视频| 91久久精品国产一区二区三区| 大香蕉久久网| 乱系列少妇在线播放| 久久精品久久久久久噜噜老黄| 联通29元200g的流量卡| 亚洲,一卡二卡三卡| 国产免费一级a男人的天堂| 干丝袜人妻中文字幕| 亚洲精品乱久久久久久| 99国产精品免费福利视频| 2021少妇久久久久久久久久久| 国产精品偷伦视频观看了| 在线观看人妻少妇| 深爱激情五月婷婷| 免费观看av网站的网址| 男人狂女人下面高潮的视频| 国产男人的电影天堂91| 国产一区二区三区综合在线观看 | 亚洲熟女精品中文字幕| 欧美97在线视频| 日本av手机在线免费观看| 大话2 男鬼变身卡| 亚洲av不卡在线观看| 日本猛色少妇xxxxx猛交久久| 日韩,欧美,国产一区二区三区| 在线 av 中文字幕| 男女下面进入的视频免费午夜| 午夜免费观看性视频| 欧美成人a在线观看| 久久精品人妻少妇| 精品人妻一区二区三区麻豆| 我要看日韩黄色一级片| 一级毛片黄色毛片免费观看视频| 久久99热6这里只有精品| 免费不卡的大黄色大毛片视频在线观看| 18禁裸乳无遮挡免费网站照片| 免费人妻精品一区二区三区视频| videos熟女内射| 亚洲国产精品一区三区| 欧美xxⅹ黑人| 在线亚洲精品国产二区图片欧美 | 日韩中文字幕视频在线看片 | 国产精品嫩草影院av在线观看| 婷婷色综合大香蕉| 久久久精品免费免费高清| 亚洲成人手机| 只有这里有精品99| 精品久久久噜噜| 国产黄片视频在线免费观看| 亚洲av欧美aⅴ国产| 丝瓜视频免费看黄片| 中国国产av一级| 亚洲国产高清在线一区二区三| 蜜桃亚洲精品一区二区三区| 麻豆国产97在线/欧美| .国产精品久久| 天堂俺去俺来也www色官网| 五月玫瑰六月丁香| 五月开心婷婷网| 欧美xxxx性猛交bbbb| 亚洲伊人久久精品综合| 亚洲,欧美,日韩| 在线免费十八禁| 亚洲欧美成人综合另类久久久| 亚洲精品一二三| 最近手机中文字幕大全| 欧美日韩精品成人综合77777| 久热这里只有精品99| av国产久精品久网站免费入址| 街头女战士在线观看网站| 男人添女人高潮全过程视频| 国产免费视频播放在线视频| 日产精品乱码卡一卡2卡三| 精品人妻一区二区三区麻豆| 观看美女的网站| 纵有疾风起免费观看全集完整版| 99热这里只有精品一区| 亚洲精品国产色婷婷电影| 欧美三级亚洲精品| 久久久久久人妻| 99九九线精品视频在线观看视频| 三级国产精品欧美在线观看| 久久精品国产亚洲av天美| 超碰av人人做人人爽久久| 我的老师免费观看完整版| 久久久久久久久久久丰满| 综合色丁香网| 日韩人妻高清精品专区| 伊人久久国产一区二区| 久久久久久久精品精品| 日韩av在线免费看完整版不卡| av在线老鸭窝| 毛片一级片免费看久久久久| 中文欧美无线码|