• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure

    2022-12-28 09:55:36ZhiHaiWu吳治海andLinBoXie謝林柏
    Chinese Physics B 2022年12期

    Zhi-Hai Wu(吳治海) and Lin-Bo Xie(謝林柏)

    Engineering Research Center of Internet of Things Technology Applications of MOE,School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China

    Keywords: multi-agent systems,synchronous self-sensing function failure,finite-time dynamical consensus,network topology connectivity recovery

    1. Introduction

    During the past twenty years, consensus of multi-agent systems (MASs), owing to its wide applications in multiple robot systems,wireless sensor networks,intelligent transportation systems,smart grids,social networks,and so on,has received a lot of attention from researchers in different disciplines. Consensus means that all agents under distributed control inputs called consensus protocols eventually reach a common value. According to different convergence time,consensus is divided into asymptotical and finite-time consensus. Compared with asymptotical consensus,[1–8]finite-time consensus possesses more advantages such as faster convergence rate,better disturbance rejection,and robustness to uncertainties. Also,in real application,an agent,such as an underwater robot and an unmanned aerial vehicle, is controlled for its desired motion by its acceleration rather than by its speed. Therefore, finite-time consensus problems of doubleintegrator MASs have been well studied.[9–14]

    Notice that successful implementation of all of the finitetime consensus protocols in Refs.[9–14]depends on the availability of the position and velocity state errors between an agent and its local neighbors. In general,to compute the state errors,an agent has to measure its own absolute states by satellite positioning systems such as GPS.However,in some complex work scenarios, it is hard for an agent to obtain its own absolute states based on satellite positioning systems. For example, a group of unmanned aerial vehicles are required to keep a particular formation, get into a thick forest, and complete a task of extinguishing a fire. Once a vehicle gets into the forest,which can be regarded as a typical indoor environment, its own absolute position and velocity states will be no longer measured by GPS.In this situation,the vehicle that has got into the forest is called to suffer from self-sensing function failure(SSFF).If the vehicle subject to SSFF is not controlled by a new measure, it will no longer keep the particular formation with other vehicles, which might result in the loss of timely completing the task of putting out the fire. One can see from this example that once an agent suffers from SSFF,its absolute states can be no longer measured by its sensors,making the state errors between itself and its local neighbours unavailable and further making itself unable to be controlled in a closed-loop manner. If an agent subject to SSFF is not given a novel control scheme,it cannot achieve consensus with other normal agents. Moreover,if an agent suffers from SSFF,its neighbours can no longer obtain its states in spite of keeping communicating with it. Hence,the occurrence of SSFF at an agent might destroy the connectivity of network topology among normal agents in the sense of obtaining information.If the connectivity of network topology among normal agents is not recovered, the subsystems composed of normal agents cannot reach consensus, let alone the whole MASs. In summary,SSFF can destroy the achievement of consensus among the whole MASs.

    Therefore, we need to find an appropriate strategy of recovering the connectivity of network topology among normal agents and a proper fault-tolerant finite-time consensus protocol to ensure that double-integrator MASs with partial agents subject to SSFF can still reach finite-time consensus. As far as we know, there is no open result on fault-tolerant finite-time consensus of double-integrator MASs with partial agents subject to SSFF.

    Based on the above considerations, in this paper we investigate the fault-tolerant finite-time consensus problems of double-integrator MASs with partial agents subject to SSFF.First, a strategy of recovering the connectivity of network topology among normal agents is proposed based on multihop communication together with agents subject to SSFF as routing nodes. Second, a fault-tolerant finite-time dynamical consensus protocol with time-varying gains is proposed.Third, convergence analysis is made in theory. Last, numerical simulations are provided to illustrate the effectiveness of the theoretical results.

    The main innovations of this paper are summarized as follows. First, different from sensor faults in Refs. [15–19],where the states or outputs of an agent mixed with sensor faults can be directly measured for designing consensus protocols,SSFF discussed in this paper means that if an agent suffers from SSFF, its states can be no longer directly measured for designing consensus protocols. Second, unlike the research idea on dynamical network topology in Ref. [20], where the conditions on dynamical network topology guaranteeing consensus are derived from the perspective of analysis,the method of actively recovering the network topology connectivity is proposed in this paper. Third, different from the consensus protocols in Refs.[9–14],where a closed-loop control scheme is always put on each agent, a fault-tolerant finite-time consensus protocol is proposed to cope with SSFF in this paper,where an agent is controlled in a closed-/open-loop manner before/after suffering from SSFF,respectively.

    The rest of this paper is organized as follows. In Section 2, some preliminaries are provided and the problem is formulated. The strategy of recovering the connectivity of network topology among all normal agents is proposed in Section 3. The fault-tolerant finite-time dynamical consensus protocol is presented, and its effectiveness to guarantee finite-time dynamical consensus is demonstrated theoretically in Section 4. Numerical simulations are provided to illustrate the effectiveness of the theoretical results in Section 5. Conclusions with future research directions are included in Section 6.

    2. Preliminaries and problem formulation

    2.1. Algebraic graph theory

    2.2. Problem formulation

    For MASs withNagents, agentiand the available information flow between agentiand agentjare regarded as nodeviand edgeeijin an undirected graphG, respectively.For double-integrator MASs, the dynamics of agentican be described by

    i.e., reach finite-time dynamical consensus, where sgn(·) is the sign function,σ ∈(0,1), andTis a finite time relying on(pi(0),qi(0)),i ∈I.

    Definition 1 Agentiwith double-integrator dynamics(1)is called to suffer from SSFF att+i,if its position statepi(t)and velocity stateqi(t)can be measured only in[0,ti]but cannot be done in(ti,+∞),where 0≤ti<+∞.

    One can see from Eqs.(1)and(2)that to reach finite-time dynamical consensus among the whole MASs, agentineeds to get the states(pj(t),qj(t))of its neighboursj ∈Niand its own states(pi(t),qi(t)). However,just as we said above,once agentisuffers from SSFF, the closed-loop control scheme in Eqs.(1)and(2)can be no longer carried out,and the connectivity of network topology among normal agents might be destroyed,leading to the loss of finite-time dynamical consensus among the whole MASs.

    In the following, we will propose a strategy of recovering the connectivity of network topology among normal agents and a fault-tolerant finite-time dynamical consensus protocol to tackle SSFF and simultaneously guarantee the achievement of finite-time dynamical consensus among the whole MASs.

    Before moving on, we need to present the following assumptions.

    Assumption 1 SSFF is synchronous,i.e.,tF?ti=tj,t+F?t+i=t+j,?i,j ∈F,whereFrepresents the set of all agents subject to SSFF,and the number|F|of agents subject to SSFF satisfies 1≤|F|

    Assumption 2 The network topology before SSFF is fixed,undirected,and connected,and there is no factor bringing about the change of network topology except SSFF and carrying out the strategy of recovering the connectivity of network topology among normal agents to be presented.

    3. Network topology connectivity recovery

    In this section, a strategy of recovering the connectivity of network topology among normal agents is proposed,where Assumption 1 and Assumption 2 are satisfied. A specific example is used to better show the processes of the network topology connectivity recovery.

    For MASs with ten agents and the initial network topology shown in Fig. 1, without loss of generality, assume that agents 3,5,10 suffer from synchronous SSFF att+F.

    Fig.1. Network topology among all agents in[0,tF].

    Att+F, because agent 3 can no longer measure its own states by its own sensors,agent 3 knows that itself suffers from SSFF and immediately relays the states received from agent 2,agent 4,and agent 5 to agents 4,5,agents 2,5,and agents 2,4, respectively. However, because agent 5 also suffers from SSFF att+F,agent 3 cannot receive the states of agent 5,knows that agent 5 also suffers from SSFF,informs agent 5 to repay the states received from agents 6, 8 to it,i.e., agent 3, and immediately relays the states received from agent 2, agent 4,agent 6, and agent 8 to agents 6, 8, agents 6, 8, agents 2, 4,8, and agents 2, 4, 6, respectively. For agents 5, 10 subject to SSFF att+F,similar procedures are implemented simultaneously. It follows from the above procedures that when agents 3, 5, 10 suffer from synchronous SSFF att+F, new undirected edges (v2,v6), (v2,v8), (v4,v6), (v4,v8), (v6,v8), and (v7,v9)are added to the network topology among normal agents from the viewpoint of obtaining information,where multi-hop communication technology together with agents 3,5,10 as routing nodes is utilized. For these newly added edges, without loss of generality, all of their weights are set as 1. The new network topology among normal agents shown in Fig.2 is established via the above procedures,which is obviously connected in(tF,+∞).

    Fig.2. Network topology among normal agents in(tF,+∞).

    For general cases, it is obvious that under Assumption 1 and Assumption 2, the above strategy of recovering the connectivity of network topology among normal agents can guarantee that the new network topology among normal agents is connected in(tF,+∞).

    For the convenience of the following expression, we present the following definitions.

    Definition 2 SetV′is called maximum failure connected subset(MFCS)of graphG,if the following conditions are simultaneously satisfied: (i)V′?F;(ii)when any normal node is not used as a routing node,any two distinct nodes ofV′are connected; (iii) when any normal node is not used as a routing node,?vi ∈F ?V′,?vj ∈V′,nodeviand nodevjare not connected.

    According to Definition 2,Gin the above example only has two MFCSs,i.e.,{v3,v5}and{v10}.

    Definition 3 SetV′′is called maximum normal neighbor set(MNNS)of MFCSV′,ifV′′is only composed of all normal neighbor nodes of each node in MFCSV′.

    According to Definition 3,{v2,v4,v6,v8}and{v7,v9}are MNNSs of MFCSs{v3,v5}and{v10},respectively.

    According to Definition 4,MHNNSs of nodev3,nodev5,and nodev10are{v2,v4},{v6,v8},and{v7,v9},respectively.

    Remark 1 The core of the above strategy of recovering the connectivity of network topology among normal agents is to use multi-hop communication technology together with all agents subject to SSFF as routing nodes for reconnecting any two distinct nodes of each MNNS and ensuring that the subgraph composed of all nodes in each MNNS is a complete graph.

    Remark 2 Multi-hop communication technology has been successfully used in topology control and routing protocol design of wireless sensor networks, which are typical MASs, and has been used for designing consensus protocols of MASs to improve the convergence rate of achieving consensus in Refs.[21–25]. Besides,when the number of agents in an MFCS is not large,carrying out the proposed strategy of network topology connectivity recovery will not quite damage the distributed property of MASs.

    4. Fault-tolerant finite-time dynamical consensus protocol and convergence analysis

    In this section,a fault-tolerant finite-time dynamical consensus protocol is proposed for double-integrator MASs with partial agents subject to synchronous SSFF and its effectiveness to ensure finite-time dynamical consensus is theoretically demonstrated.

    For double-integrator MASs(1)satisfying Assumption 1 and Assumption 2, we propose the following fault-tolerant finite-time dynamical consensus protocol:

    Theorem 1 Under Assumption 1 and Assumption 2,double-integrator MASs(1)applying the proposed strategy of recovering the connectivity of network topology among normal agents and the fault-tolerant finite-time dynamical consensus protocol (3) reach finite-time dynamical consensus, provided that

    where?is a positive constant that can be arbitrarily chosen.

    Proof Substituting Eq.(3)into Eq.(1)gives the closedloop model of agenti(i ∈I ?F)in(tF,+∞)as follows:

    whereT?is a finite time relying on(pi(tF),qi(tF)),i ∈I ?F.

    Substituting Eq.(3)into Eq.(1)can also yield the open-loop model of agenti(i ∈F)in(tF,+∞)as follows:

    This means that double-integrator MASs (1) under the proposed strategy of recovering the connectivity of network topology among normal agents and the fault-tolerant finitetime dynamical consensus protocol(3)achieve finite-time dynamical consensus. The proof is completed.

    Remark 3 The effectiveness of the fault-tolerant finitetime dynamical consensus protocol (3) depends on the existence ofαi(t)satisfying condition(4)andβi(t)satisfying condition (5). It is easy to see that any constant gain does not satisfy condition (4) or condition (5). Fortunately, bothαi(t)satisfying condition (4) andβi(t) satisfying condition (5) really exist. It can be verified that

    in Eq.(3)is to compute control inputuj(t)(t ∈(tF,+∞))of agentj(j ∈Ni(t+F)hop) by agenti(i ∈F). For agenti(i ∈

    F), both of (pj(t),qj(t)) (j ∈Ni(t+F)hop) and (pm(t),qm(t))(m ∈Nj(t+F)), which are need while computing control inputuj(t)(t ∈(tF,+∞)),can be obtained by using multi-hop communication technology together with partial or all agents in an MFCS where agenti(i ∈F) is located as routing nodes.Similarly,when the number of nodes in an MFCS is not large,implementing the fault-tolerant finite-time dynamical consensus protocol(3)will not quite damage the distributed property of MASs.

    5. Numerical simulations

    Consider double-integrator MASs with ten agents and the initial network topology shown in Fig.1. Without loss of generality,all weights of edges are 1,the initial states of all agents are randomly set,and agents 3,5,10 suffer from synchronous SSFF withtF=3 s. The new network topology among normal agents shown in Fig. 2 is constructed by using the proposed strategy of network topology connectivity recovery. Numerical results of double-integrator MASs (1) under protocol (3)withα3(t)=α5(t)=α10(t)in Eq.(13),β3(t)=β5(t)=β10(t)in Eq.(14),?=3,andσ=0.5 are shown in Figs.3 and 4.It is easy to see from Figs.3 and 4 that double-integrator MASs(1)using the fault-tolerant finite-time dynamical consensus protocol (3) achieve finite-time dynamical consensus. Therefore,the results of Theorem 1 are numerically verified.

    Fig.4. Velocity states of systems(1)under protocol(3)

    6. Conclusions

    This paper studied the fault-tolerant finite-time dynamical consensus problems of double-integrator MASs with partial agents subject to synchronous SSFF. The strategy of network topology connectivity recovery and the fault-tolerant finite-time dynamical consensus protocol were proposed for resisting SSFF.Theoretical and numerical results showed that double-integrator MASs with partial agents subject to synchronous SSFF using the strategy of network topology connectivity recovery and the fault-tolerant finite-time dynamical consensus protocol can reach finite-time dynamical consensus. It should be noticed that SSFF was assumed to be synchronous in this paper. However, in real application, SSFF might be asynchronous. Therefore, in the future, we will investigate fault-tolerant finite-time dynamical consensus of double-integrator MASs with partial agents subject to asynchronous SSFF.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61876073) and the Fundamental Research Funds for the Central Universities of China (Grant No.JUSRP21920).

    天堂√8在线中文| 汤姆久久久久久久影院中文字幕 | av卡一久久| 亚洲四区av| 尤物成人国产欧美一区二区三区| 国产精品1区2区在线观看.| 亚洲精品亚洲一区二区| 国产精品日韩av在线免费观看| 国语对白做爰xxxⅹ性视频网站| 欧美 日韩 精品 国产| 小蜜桃在线观看免费完整版高清| 亚洲av中文av极速乱| 一级a做视频免费观看| 亚洲欧美清纯卡通| 天堂网av新在线| 人体艺术视频欧美日本| 在线免费观看的www视频| 嫩草影院入口| 国产91av在线免费观看| 岛国毛片在线播放| 亚洲伊人久久精品综合| 18禁在线无遮挡免费观看视频| 亚洲av不卡在线观看| kizo精华| 亚洲精品,欧美精品| 男女边吃奶边做爰视频| 在线免费十八禁| 真实男女啪啪啪动态图| 两个人的视频大全免费| 夫妻午夜视频| a级毛色黄片| 97超碰精品成人国产| 国产永久视频网站| 激情 狠狠 欧美| 最近2019中文字幕mv第一页| 免费看不卡的av| 永久网站在线| 国产男人的电影天堂91| 水蜜桃什么品种好| 中文资源天堂在线| 婷婷色综合大香蕉| 日韩欧美精品免费久久| 国产色婷婷99| av网站免费在线观看视频 | 欧美成人午夜免费资源| 精品不卡国产一区二区三区| 在线免费观看的www视频| 午夜免费激情av| 国产乱人偷精品视频| 欧美不卡视频在线免费观看| 69人妻影院| av女优亚洲男人天堂| 老女人水多毛片| 国产白丝娇喘喷水9色精品| eeuss影院久久| 69人妻影院| 如何舔出高潮| 成人高潮视频无遮挡免费网站| 国产午夜精品久久久久久一区二区三区| 激情五月婷婷亚洲| 干丝袜人妻中文字幕| 亚洲性久久影院| av在线观看视频网站免费| 搡老乐熟女国产| 亚洲欧美中文字幕日韩二区| 中文字幕av在线有码专区| 男人舔奶头视频| 国国产精品蜜臀av免费| 韩国高清视频一区二区三区| www.av在线官网国产| eeuss影院久久| 一区二区三区四区激情视频| 色尼玛亚洲综合影院| 亚洲成色77777| 热99在线观看视频| 毛片一级片免费看久久久久| 乱码一卡2卡4卡精品| 成人亚洲欧美一区二区av| 日韩制服骚丝袜av| 国产精品嫩草影院av在线观看| 又黄又爽又刺激的免费视频.| 最近中文字幕2019免费版| 亚洲综合色惰| 麻豆成人午夜福利视频| 亚洲国产日韩欧美精品在线观看| 3wmmmm亚洲av在线观看| 一区二区三区乱码不卡18| 日韩欧美国产在线观看| 国产爱豆传媒在线观看| 超碰av人人做人人爽久久| 亚洲精品456在线播放app| 国产伦在线观看视频一区| 男女边摸边吃奶| 国产精品爽爽va在线观看网站| 免费黄色在线免费观看| 久久鲁丝午夜福利片| 又大又黄又爽视频免费| 美女cb高潮喷水在线观看| 国产高清三级在线| 亚洲激情五月婷婷啪啪| 一区二区三区四区激情视频| 亚洲av成人精品一区久久| 两个人的视频大全免费| 在线观看美女被高潮喷水网站| 又爽又黄无遮挡网站| 久久鲁丝午夜福利片| 亚洲av成人精品一二三区| 亚洲高清免费不卡视频| 青春草视频在线免费观看| ponron亚洲| 一级毛片 在线播放| 91久久精品国产一区二区三区| 久久热精品热| 最近最新中文字幕免费大全7| 久久精品人妻少妇| 久久久久久久午夜电影| 好男人在线观看高清免费视频| 亚洲久久久久久中文字幕| 亚洲丝袜综合中文字幕| 全区人妻精品视频| 久久久成人免费电影| 女人十人毛片免费观看3o分钟| 久久人人爽人人片av| 波多野结衣巨乳人妻| 国产高潮美女av| 日韩欧美三级三区| 最后的刺客免费高清国语| 久久久久久久国产电影| 亚洲,欧美,日韩| 亚洲精品乱码久久久久久按摩| 国产男人的电影天堂91| 性色avwww在线观看| 成人亚洲精品av一区二区| 人妻一区二区av| 午夜福利高清视频| 2018国产大陆天天弄谢| 亚洲最大成人手机在线| 国产久久久一区二区三区| 国产伦在线观看视频一区| 亚洲精品亚洲一区二区| 欧美精品国产亚洲| 毛片一级片免费看久久久久| 嘟嘟电影网在线观看| 日日摸夜夜添夜夜添av毛片| 精品人妻偷拍中文字幕| 中文精品一卡2卡3卡4更新| 97热精品久久久久久| 极品教师在线视频| 中文字幕av在线有码专区| 一区二区三区高清视频在线| 亚洲av男天堂| av国产久精品久网站免费入址| 韩国av在线不卡| 日本一本二区三区精品| 欧美激情久久久久久爽电影| 亚洲欧美精品专区久久| 久久久久久国产a免费观看| 午夜福利视频1000在线观看| 国产精品熟女久久久久浪| 中文字幕制服av| 美女被艹到高潮喷水动态| 成人亚洲精品一区在线观看 | 国产亚洲午夜精品一区二区久久 | 一本一本综合久久| 中文字幕制服av| 麻豆成人av视频| 91午夜精品亚洲一区二区三区| 日韩欧美三级三区| 国产精品久久久久久av不卡| 超碰97精品在线观看| av专区在线播放| 日本黄大片高清| 日日撸夜夜添| 两个人视频免费观看高清| a级毛色黄片| a级一级毛片免费在线观看| 亚洲一区高清亚洲精品| 国产日韩欧美在线精品| 国产精品.久久久| 2021天堂中文幕一二区在线观| 亚洲国产欧美在线一区| 亚洲国产最新在线播放| 直男gayav资源| 亚洲色图av天堂| 日本午夜av视频| 免费看美女性在线毛片视频| 亚洲欧美中文字幕日韩二区| 久久久久久久亚洲中文字幕| 人妻制服诱惑在线中文字幕| 日韩精品青青久久久久久| 777米奇影视久久| 一级毛片我不卡| 蜜桃久久精品国产亚洲av| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩无卡精品| 床上黄色一级片| 一本一本综合久久| 日韩 亚洲 欧美在线| 最近最新中文字幕大全电影3| 青春草视频在线免费观看| 亚洲色图av天堂| 中文欧美无线码| av在线天堂中文字幕| 人妻系列 视频| 啦啦啦韩国在线观看视频| av.在线天堂| 亚洲国产精品专区欧美| 成人无遮挡网站| 欧美成人午夜免费资源| 免费无遮挡裸体视频| 少妇被粗大猛烈的视频| 欧美zozozo另类| 中文字幕制服av| 国产精品.久久久| 3wmmmm亚洲av在线观看| 搡老妇女老女人老熟妇| 婷婷色av中文字幕| 国产亚洲精品av在线| 日产精品乱码卡一卡2卡三| 日韩强制内射视频| 久久久色成人| 亚洲在线观看片| av.在线天堂| 爱豆传媒免费全集在线观看| 国模一区二区三区四区视频| 国产乱人偷精品视频| 老司机影院毛片| 久久久久久久久大av| 一个人观看的视频www高清免费观看| 成人亚洲精品av一区二区| 国产毛片a区久久久久| 深夜a级毛片| 亚洲av一区综合| 亚洲一区高清亚洲精品| 久久久久久久久久成人| 中文欧美无线码| 啦啦啦中文免费视频观看日本| 亚洲av不卡在线观看| 免费无遮挡裸体视频| 精品久久久久久电影网| 国语对白做爰xxxⅹ性视频网站| 乱码一卡2卡4卡精品| 一级毛片黄色毛片免费观看视频| 久久久久久伊人网av| 一区二区三区乱码不卡18| 国产一区有黄有色的免费视频 | 久久久久久久久大av| 亚洲精品乱久久久久久| 国产亚洲最大av| 搡老妇女老女人老熟妇| 午夜老司机福利剧场| 狂野欧美白嫩少妇大欣赏| 欧美日韩亚洲高清精品| 日韩电影二区| 亚洲欧美日韩东京热| 国产老妇女一区| 亚洲精品久久久久久婷婷小说| 黄片无遮挡物在线观看| 国产精品国产三级国产av玫瑰| 国产精品美女特级片免费视频播放器| 免费观看精品视频网站| 精品熟女少妇av免费看| 日韩大片免费观看网站| 成人性生交大片免费视频hd| 午夜视频国产福利| 亚洲乱码一区二区免费版| 91久久精品国产一区二区成人| 国产在视频线在精品| 午夜福利在线观看免费完整高清在| 国产成人福利小说| 久久精品国产亚洲网站| 内射极品少妇av片p| 热99在线观看视频| 美女内射精品一级片tv| 99久久人妻综合| 欧美xxⅹ黑人| 亚洲最大成人av| 男人狂女人下面高潮的视频| 久久久欧美国产精品| 精品人妻视频免费看| 丰满少妇做爰视频| 久久久久久久久久久丰满| 免费av不卡在线播放| 国产精品人妻久久久影院| 午夜福利视频精品| 国产一区有黄有色的免费视频 | 久久久久久久午夜电影| 成年免费大片在线观看| 久久鲁丝午夜福利片| 亚洲av男天堂| 成人av在线播放网站| 日韩成人伦理影院| 国内揄拍国产精品人妻在线| 2021少妇久久久久久久久久久| 国产探花在线观看一区二区| 久久99精品国语久久久| 一个人免费在线观看电影| 99热这里只有精品一区| 亚洲欧美一区二区三区黑人 | 久久久国产一区二区| 乱系列少妇在线播放| 国产单亲对白刺激| 国产精品一区二区三区四区免费观看| 成人国产麻豆网| 亚洲av免费高清在线观看| 97超碰精品成人国产| 在线观看一区二区三区| 一本久久精品| 国产午夜精品一二区理论片| 精品人妻视频免费看| 亚洲高清免费不卡视频| 免费少妇av软件| 国产极品天堂在线| 久久6这里有精品| 亚洲在线自拍视频| 免费看a级黄色片| 嫩草影院入口| 欧美潮喷喷水| 亚洲欧美精品专区久久| 在线观看免费高清a一片| 亚洲人成网站高清观看| 2022亚洲国产成人精品| 一个人观看的视频www高清免费观看| 国产免费又黄又爽又色| 亚洲真实伦在线观看| 毛片一级片免费看久久久久| 黄色欧美视频在线观看| 亚洲精品自拍成人| 69人妻影院| 久久久久久久亚洲中文字幕| 国内少妇人妻偷人精品xxx网站| 一级毛片久久久久久久久女| 又爽又黄a免费视频| 天天躁夜夜躁狠狠久久av| 亚洲精品久久午夜乱码| 真实男女啪啪啪动态图| 日产精品乱码卡一卡2卡三| 日韩av在线大香蕉| 亚洲在线观看片| 亚洲自拍偷在线| videossex国产| 80岁老熟妇乱子伦牲交| 欧美日韩精品成人综合77777| 国模一区二区三区四区视频| 精品久久久久久久人妻蜜臀av| av免费观看日本| 大香蕉97超碰在线| 小蜜桃在线观看免费完整版高清| 国产一区二区在线观看日韩| 男插女下体视频免费在线播放| 中文字幕av在线有码专区| 91aial.com中文字幕在线观看| 能在线免费看毛片的网站| 午夜免费男女啪啪视频观看| 九九久久精品国产亚洲av麻豆| 国产美女午夜福利| 99re6热这里在线精品视频| 高清日韩中文字幕在线| 人妻少妇偷人精品九色| 久久久久国产网址| 亚洲怡红院男人天堂| 国产精品美女特级片免费视频播放器| 欧美变态另类bdsm刘玥| 热99在线观看视频| 成人av在线播放网站| 特级一级黄色大片| 99久久中文字幕三级久久日本| 非洲黑人性xxxx精品又粗又长| 精品少妇黑人巨大在线播放| 丰满人妻一区二区三区视频av| 国产精品美女特级片免费视频播放器| 久久久久国产网址| 久久久国产一区二区| 女的被弄到高潮叫床怎么办| 欧美xxⅹ黑人| 啦啦啦中文免费视频观看日本| 久久久久久久亚洲中文字幕| 国产三级在线视频| 亚洲综合精品二区| 日韩在线高清观看一区二区三区| 美女大奶头视频| 精品欧美国产一区二区三| 日韩国内少妇激情av| 亚洲熟妇中文字幕五十中出| 特大巨黑吊av在线直播| 两个人的视频大全免费| av在线播放精品| 可以在线观看毛片的网站| 看非洲黑人一级黄片| 五月天丁香电影| 欧美激情久久久久久爽电影| 国产av不卡久久| 久久久久久久大尺度免费视频| 欧美精品一区二区大全| 在线观看美女被高潮喷水网站| 国产一区有黄有色的免费视频 | 国产精品爽爽va在线观看网站| 久久精品国产鲁丝片午夜精品| 免费高清在线观看视频在线观看| 亚洲高清免费不卡视频| 18+在线观看网站| 男女下面进入的视频免费午夜| 最近中文字幕高清免费大全6| 中文在线观看免费www的网站| 国产黄片美女视频| 亚洲美女视频黄频| 成人av在线播放网站| 久久久久久久久久久免费av| 国国产精品蜜臀av免费| 国产乱人偷精品视频| 汤姆久久久久久久影院中文字幕 | 国产综合懂色| 日本与韩国留学比较| 五月天丁香电影| 伦理电影大哥的女人| 欧美另类一区| 色尼玛亚洲综合影院| 国产av在哪里看| 99久久精品国产国产毛片| 伊人久久精品亚洲午夜| 国产黄a三级三级三级人| 亚洲美女搞黄在线观看| 天天躁夜夜躁狠狠久久av| 一区二区三区免费毛片| 国产伦在线观看视频一区| 九色成人免费人妻av| 三级国产精品片| 久久鲁丝午夜福利片| 床上黄色一级片| 别揉我奶头 嗯啊视频| 亚洲乱码一区二区免费版| 久久久色成人| 精品酒店卫生间| 丰满乱子伦码专区| 亚洲在线自拍视频| 亚洲怡红院男人天堂| 啦啦啦啦在线视频资源| 国产女主播在线喷水免费视频网站 | 国产黄片视频在线免费观看| 国产欧美日韩精品一区二区| 最新中文字幕久久久久| 三级毛片av免费| 精品熟女少妇av免费看| 久久韩国三级中文字幕| 中文资源天堂在线| 国产黄a三级三级三级人| av线在线观看网站| 亚洲成人精品中文字幕电影| 成人性生交大片免费视频hd| 国产精品一区二区在线观看99 | 久久精品国产亚洲网站| 成人毛片60女人毛片免费| 天天躁日日操中文字幕| 成人国产麻豆网| 麻豆乱淫一区二区| 日韩欧美 国产精品| 午夜免费激情av| 黄色日韩在线| 69av精品久久久久久| 欧美+日韩+精品| 亚洲av电影在线观看一区二区三区 | 狂野欧美白嫩少妇大欣赏| 亚洲电影在线观看av| 欧美xxxx黑人xx丫x性爽| 少妇熟女aⅴ在线视频| 在现免费观看毛片| 国产v大片淫在线免费观看| 久久热精品热| 亚洲精品日本国产第一区| 国内精品一区二区在线观看| 久久综合国产亚洲精品| 大又大粗又爽又黄少妇毛片口| 国产成人91sexporn| 蜜桃亚洲精品一区二区三区| 午夜福利在线在线| 水蜜桃什么品种好| 欧美三级亚洲精品| 欧美成人a在线观看| 国产成人精品福利久久| 综合色丁香网| 欧美日本视频| 午夜激情久久久久久久| videos熟女内射| www.色视频.com| 99热这里只有精品一区| 亚洲成人精品中文字幕电影| 久久人人爽人人片av| 亚洲激情五月婷婷啪啪| av女优亚洲男人天堂| 日本免费在线观看一区| 午夜福利在线观看吧| 国产黄片美女视频| 免费观看性生交大片5| 91狼人影院| 嫩草影院精品99| 久久精品熟女亚洲av麻豆精品 | 国产老妇伦熟女老妇高清| 国产av码专区亚洲av| 欧美成人一区二区免费高清观看| 看十八女毛片水多多多| 久久精品久久精品一区二区三区| 国产午夜精品论理片| 听说在线观看完整版免费高清| 免费看不卡的av| 淫秽高清视频在线观看| 美女被艹到高潮喷水动态| 中文精品一卡2卡3卡4更新| 国产精品麻豆人妻色哟哟久久 | 精品人妻一区二区三区麻豆| 国产伦精品一区二区三区视频9| 如何舔出高潮| 日本色播在线视频| 一级av片app| av免费观看日本| 欧美日韩亚洲高清精品| 哪个播放器可以免费观看大片| 女人被狂操c到高潮| 亚洲自拍偷在线| 国产v大片淫在线免费观看| 亚洲不卡免费看| 亚洲成人精品中文字幕电影| 天堂俺去俺来也www色官网 | 一夜夜www| 日本熟妇午夜| av在线播放精品| 国产精品一区二区三区四区免费观看| 两个人视频免费观看高清| 亚洲性久久影院| 成人漫画全彩无遮挡| 亚洲欧美成人精品一区二区| 欧美另类一区| 少妇的逼水好多| 搡老乐熟女国产| 尾随美女入室| 在线观看美女被高潮喷水网站| 色5月婷婷丁香| 丰满乱子伦码专区| 欧美变态另类bdsm刘玥| 国产视频首页在线观看| 天堂av国产一区二区熟女人妻| 一边亲一边摸免费视频| 午夜免费观看性视频| 国产国拍精品亚洲av在线观看| 久久午夜福利片| 人人妻人人澡人人爽人人夜夜 | 中文字幕免费在线视频6| 久久久久精品久久久久真实原创| 亚洲不卡免费看| 免费av毛片视频| av线在线观看网站| 七月丁香在线播放| 国产在视频线在精品| 在线免费观看的www视频| 天堂网av新在线| 国产成年人精品一区二区| 亚洲在线观看片| 777米奇影视久久| 成人欧美大片| 男女边吃奶边做爰视频| 亚洲av中文字字幕乱码综合| 色哟哟·www| 波多野结衣巨乳人妻| 国产精品精品国产色婷婷| 波多野结衣巨乳人妻| 亚洲最大成人av| 国产午夜精品论理片| 综合色丁香网| 99久久九九国产精品国产免费| 女人十人毛片免费观看3o分钟| 少妇熟女欧美另类| 汤姆久久久久久久影院中文字幕 | 尾随美女入室| 校园人妻丝袜中文字幕| 亚洲色图av天堂| 插阴视频在线观看视频| 亚洲欧美一区二区三区黑人 | 免费av毛片视频| 国产在线一区二区三区精| 精品一区二区免费观看| 国产一区有黄有色的免费视频 | 日本欧美国产在线视频| av在线蜜桃| 精品一区二区三区视频在线| 日韩一本色道免费dvd| 秋霞在线观看毛片| 91aial.com中文字幕在线观看| 久久久久久久大尺度免费视频| 九九久久精品国产亚洲av麻豆| 中文在线观看免费www的网站| 亚州av有码| 看黄色毛片网站| 校园人妻丝袜中文字幕| 免费无遮挡裸体视频| 性色avwww在线观看| 永久免费av网站大全| 国产黄色视频一区二区在线观看| 中文天堂在线官网| 一级黄片播放器| 免费看a级黄色片| 久久草成人影院| 亚洲国产精品专区欧美| 欧美一级a爱片免费观看看| 一级毛片电影观看| 欧美日本视频| 69av精品久久久久久| av.在线天堂| 非洲黑人性xxxx精品又粗又长| 国产不卡一卡二| 尤物成人国产欧美一区二区三区| 国产亚洲91精品色在线| 国产激情偷乱视频一区二区| 免费看美女性在线毛片视频| 三级经典国产精品| 免费看日本二区| 国产伦精品一区二区三区视频9|