• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy

    2022-12-28 09:55:28ZhaojunLiu劉昭君LianQingZhu祝連慶XianTongZheng鄭顯通YuanLiu柳淵LiDanLu鹿利單andDongLiangZhang張東亮
    Chinese Physics B 2022年12期
    關(guān)鍵詞:昭君

    Zhaojun Liu(劉昭君) Lian-Qing Zhu(祝連慶) Xian-Tong Zheng(鄭顯通) Yuan Liu(柳淵)Li-Dan Lu(鹿利單) and Dong-Liang Zhang(張東亮)

    1The School of Opto-Electronic Engineering,Changchun University of Science and Technology,Changchun 130022,China

    2Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument,Beijing Information Science&Technology University,Beijing 100192,China

    Keywords: InAs/GaSb type-II superlattice,molecular beam epitaxy,interface,mid-wave infrared

    1. Introduction

    Infrared (IR) detection technology is widely applied in biochemical gas detection, missile seekers, infrared imaging,night vision, and aerospace fields.[1–4]The third-generation infrared detectors based on narrow-bandgap semiconductors,including HgCdTe(MCT),quantum well infrared photodetectors(QWIP)and type-II superlattices(T2SL),have the characteristics of multi-color detection and high pixels,etc.[5]Compared with MCT, T2SL IR detectors have excellent material uniformity and lower band-to-band (BTB) tunneling current, which is due to the larger electron effective mass.[6,7]Both III–V growth and processing technology appear mature,and fabrication costs are low compared to QWIP.[8,9]Since 2000, InAs/GaSb T2SL photodetectors have made a significant breakthrough due to their intrinsic advantages, including structural stability[10–12]and a broad wavelength spectrum ranging from the mid-wave infrared(MWIR)to the very longwave infrared (VLWIR) regime.[13–15]The adjustable band alignment and the spatial separation of electrons and holes in the T2SL can reduce the Auger recombination rate by eliminating non-radiative pathways between valence bands[16–18]and enabling high operating temperature(HOT)device operation.

    There are neither common anions nor cations between InAs and GaSb. Together with the growth of the superlattice, In–Sb or Ga–As bonds may be formed at the interfaces(IFs).[19,20]To get enough quantum efficiency, the absorption thickness should be thick enough,leading to several thousands of interfaces between InAs and GaSb.[21]The interface structure features determine the carrier transport properties of the superlattice.[22]In addition,there is a 0.75%lattice mismatch between GaSb and InAs. InSb has been proved to be effective at compensating the tensile strain of InAs. However,the unoptimized InSb interface will cause microscopic defects and degrade the material quality. The quality and thickness of the InSb interface play a vital role in the achievement of high-quality growth and the strain balance of superlattices.[23]Liuet al.[24]reported a migration-enhanced epitaxy (MEE)method for the growth of the InSb layer of long wavelength InAs/GaSb T2SLs. Liet al.[25]introduced an MEE strategy for tuning strain by optimizing the InSb interface in the very long wavelength range.

    In this paper, we systematically optimized the crystal quality for the MWIR range by varying the thickness of the InSb interface to form the “InSb-like” interface directly. In detail, we report the optical and morphological properties of InAs/GaSb T2SLs for the mid-wavelength infrared band. Xray diffraction (XRD), high-resolution cross-sectional transmission electron microscopy(HRTEM),and atomic force microscopy(AFM)were used to characterize the material quality.To reveal how the InSb interface and the operating temperature influence the optical properties,photoluminescence(PL)measurements were performed.

    2. Simulation and experiment procedure

    We investigated the band engineering of the T2SL structures using thek· pmodel[26]and designed an InAs(8 ML)/GaSb (6 ML) structure. The simulation results show that the bandgap of the proposed T2SL structure is 0.258 eV,and the center wavelength is 4.81 μm, which is in the midwavelength infrared spectral range.

    Fig.1. Band simulation results of the InAs(8 ML)/GaSb(6 ML)T2SL structure.

    The samples were grown on n-type doped GaSb (100)substrates and a 500 nm GaSb buffer layer using a multichamber 3-inch wafer ultrahigh vacuum MBE system (Komponenten Octoplus 400). Firstly,the GaSb substrates were deoxidized at 520?C for 10 min, followed by a 500 nm GaSb buffer layer grown at 460?C with a V/III beam equivalent pressure (BEP) flux ratio value of 5.5. During the epitaxial growth, reflection high-energy electron diffraction (RHEED)was used forin-situmonitoring. When the 1×3 reconstruction pattern appears, the oxide layer has been removed. The growth temperature of the T2SLs structure was 380?C,which was consistent with the GaSb(2×5)→(1×3)reconstructed transition temperature,and the growth rates of InAs and GaSb were 1 ?A/s. The BEP of Sb is 2.96×10?6mbar,and the V/III BEP flux ratio value is 4 during the GaSb growth. The BEP of As is 5.74×10?6mbar,and the V/III BEP flux ratio value is 8 during the InAs growth.

    The insertion of InSb between the GaSb and InAs layers of the T2SL structure has proved beneficial for strain compensation and interface quality improvement.[27]As shown in Fig. 2(a), different thicknesses (0.3 ML, 0.5 ML, 0.7 ML) of the InSb interface layer are inserted in 120 periods of InAs(8 ML)/GaSb(6 ML)T2SLs,denoted as sample A,B,and C,respectively.

    The shutter sequence for the T2SL’s growth is shown in Fig.2(b). The GaSb epitaxial layers are soaked by Sb for 6 s,followed by an artificially added InSb interface layer. After InAs epitaxy, 6 s As soaking helps to prevent As from escaping from the surface and thus diffusing the surface atoms fully. The following InSb-like interfacial layers play a significant role in preventing the formation of a GaAs-like interface that adversely affects photoluminescence performance.

    Fig.2. (a)A schematic diagram of the InAs/GaSb T2SLs multilayer heterostructure. (b)The shutter sequence for the T2SL’s growth.

    3. Results and discussion

    3.1. The effect of the InSb interface layer on the quality and morphology

    Figure 3(a) shows the high-resolution XRD curve of the 2θ–ωscan at the GaSb (004) reflection for sample A. The sharp and distinct satellite peaks reveal excellent crystal quality. Figure 3(b)shows the XRD curves for the T2SLs with the InSb layer changing from 0.3 ML,0.5 ML,and 0.7 ML.The 0-th order peaks of the structure are on the left of the GaSb substrate peak,indicating that the T2SL’s structure is in compressive strain. The angle differences between the GaSb substrate and T2SL’s structure are 0.24?, 0.13?, and 0.05?as the thickness of the InSb layer decreases. The InSb interface can effectively compensate for the compressive strain between the InAs layer and GaSb substrate to realize the structure’s strain balance control. The FWHMs of the 0-th order peaks measured in ? mode are 33–39 arcsec,indicating the high crystal quality.

    Fig.3. (a)The XRD curve of the 2θ–ω scan around the GaSb(004)reflection for sample A.(b)The XRD close-ups around the substrate and the 0-th satellite of the three samples.

    Fig.4. The morphology of a 5μm×5μm scan area using AFM for(a)sample C,(b)sample B,and(c)sample A,and a 50μm×50μm scan area for(d)sample C,(e)sample B,and(f)sample A.

    The AFM morphologies are obtained on the surface of the GaSb layer. The AFM images of the three samples are shown in Fig.4, and all the samples showed minor RMS roughness.As shown in Figs. 4(a)–4(c), the samples have clear atomic steps with widths that are about 1μm. The V group elements that are more sensitive to temperature cannot diffuse well at low temperatures,leading to the discontinuous step edge. The bright spots of the uppermost GaSb layer in Fig. 4 are a frequently encountered difficulty in superlattice growth. There is no noticeable effect on crystal quality,verified by the XRD analysis in Fig.3. With the decrease in the InSb thickness,the number of bright spots is reduced,and the height decreases,indicating that the bright spots may also be related to the strain.

    3.2. TEM investigations

    HRTEM and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) were used to characterize the interface at the atomic scale. The spherical aberration electron microscope samples were prepared by focused ion beam (FIB) cutting. InAs and GaSb layers are distinguishable in Fig. 5(a), and the interfaces are smooth without any microscopic defects and dislocations.The superlattice structure of alternating growth of InAs and GaSb along the growth direction is consistent with the multilayer stack,as shown in Fig.2(a).

    The color images in Fig.5(b)can intuitively observe the anion–cation dumbbells of GaSb and InAs. In and Sb atoms are visually brighter and bigger,related to their higher atomic number. The atomic integrated intensity analysis is performed on a row of atoms along the[100]growth direction,as shown in Fig.5(b). We can distinguish the InAs,GaSb,and interface layer in that the strength of the atomic column is proportional to the atomic number.[8,28]The interfacial region between the InAs and GaSb layers can be identified by the transition of the atomic integral intensity. The atomic integrated intensities of anions and cations are almost equal in the interfacial region,indicating that the InSb interface is formed, which is consistent with the shutter sequence.

    Figure 5(c) shows the energy dispersive spectroscopy(EDS) mapping of sample A. In together with As and Ga together with Sb are distributed in the InAs and GaSb layers,respectively,and we can observe clear spatial separation. The ratio of group V to group III is almost 1:1 in Fig.5(d),and an apparent intensity flipping of the atomic columns can be observed in the adjacent layers. The element distribution profile of Sb atoms is comparatively wider than that of Ga atoms,indicating it is Sb-rich in the interfacial region. This also proves that the shutter sequence is effective.

    Fig. 5. (a) A HRTEM image of the InAs/GaSb multilayer structure of sample A. (b) A HAADF-STEM micrograph taken from sample A. The inset linear intensity profile along a selected row shows the InAs,GaSb,and interface layers. (c)EDS mapping of sample A.(d)Elemental integral intensity in the growth direction.

    3.3. Characterization of optical properties

    Figure 6(a) displays the PL spectra at 77 K for different thicknesses of the InSb interface layer. With the thickness of the InSb interface increasing, the wavelength of SL shows a redshift, and the bandgap decreases. The PL FWHM and maximum peak positions of the three samples are shown in Figs. 6(c) and 6(d). The FWHM of the PL is only 18 meV,17 meV, and 16.5 meV. The peak wavelengths are 4.78 μm(259 meV),5.02μm(247 meV),and 5.49μm(226 meV)for sample A,B,and C,respectively.The roughness and steepness of the interface affect the crystal quality,and the PL spectrum also reflects the excellent growth of the interface.

    It can be seen from Fig. 6(b) that the intensity of the luminescence peaks gradually decreases with increasing temperature. According to the Fermi–Dirac distribution law,the energy distribution of the conduction electrons becomes more concentrated when the temperature drops. When photoexcitation occurs at low temperatures, excited carriers are more densely distributed in the narrow high-energy state.The luminescence peak intensity shows more intense and sharper peaks due to the concentrated photons that are produced when carriers return back to lower energy levels.[29]The luminescence peaks’ redshift corresponds to the narrow bandgap energy,consistent with the empirical relationship between bandgap energy and the photon wavelength. The linearquadratic relation proposed by Varshni can explain:[30,31]

    whereEg(0) is the bandgap at zero temperature, andαandβare the intrinsic constants of the materials. Here,Eg(0)~0.26 eV and the Debye temperatureβ ~400 K, whileα ~0.277 meV describes the effect of electron–phonon interaction on the energy band. The atomic vibration amplitude increases when the temperature rises,and the electron vibration interaction significantly affectsEg(T). From 77 K up to 150 K, the position of the response peaks shifts 0.15μm,and the intensity is reduced by 59%. The PL results proved that the InAs/GaSb T2SLs obey temperature-dependence properties.

    Fig. 6. (a) Normalized PL spectra at 77 K, (c) the PL FWHM and (d) the PL peak positions for different thicknesses of the InSb interface layer.(b)Variable temperature PL spectra of sample A at 77 K,100 K,and 150 K.

    4. Conclusion

    We have optimized the strain-balanced InAs/GaSb T2SLs of the MWIR range by designing InSb interface layers systematically. The 120 periods of InAs (8 ML)/GaSb (6 ML)T2SLs with different thicknesses of the InSb interfaces have been grown at 380?C using MBE.The HRXRD and AFM results display excellent crystal quality and smooth morphology.The surface “bright spots” appear to be more apparent as the InSb interface thickness increases. From the HRTEM results,we can distinguish the clear interface of InAs, GaSb, and the interface layers. Using PL testing,the experiment wavelength is close to the simulated wavelength using thek·pmodel. The PL measurements also indicate that the InSb interface and the operating temperature can influence the optical properties. In conclusion,the design involving insertion of the InSb interface layer can effectively optimize the growth quality of epitaxial materials,and provides a new idea for focal plane growth.Further device-processing technology and device-level performance will be developed and demonstrated.

    Acknowledgments

    Project supported by the Beijing Scholars Program(Grant No.74A2111113),the Research Project of Beijing Education Committee(Grant No.KM202111232019),the National Natural Science Foundation of China(Grant No.62105039),and the Research Project of Beijing Information Science&Technology University(Grant No.2022XJJ07).

    猜你喜歡
    昭君
    昭君出塞
    昭君思鄉(xiāng)
    黃河之聲(2022年3期)2022-06-21 06:27:10
    昭君
    黃河之聲(2021年6期)2021-06-18 13:57:14
    以君為寄青衫濕
    ——宋代詠昭君詩的承續(xù)與衍變
    中文信息(2021年11期)2021-03-27 14:52:16
    昭君出嫁
    昭君
    草原歌聲(2020年2期)2020-09-25 08:38:04
    千載琵芭語,不解昭君怨
    學生天地(2020年3期)2020-08-25 09:04:08
    談當代民族唱法如何演唱傳統(tǒng)粵曲——以《昭君出塞》為例
    樂府新聲(2019年2期)2019-11-29 07:34:24
    昭君別院
    中國三峽(2016年5期)2017-01-15 13:58:51
    昭君今若在,定驚故里殊 三峽庫區(qū)興山縣移民搬遷側(cè)記
    中國三峽(2016年5期)2017-01-15 13:58:50
    国语自产精品视频在线第100页| 久久久成人免费电影| 亚洲av日韩精品久久久久久密| 亚洲精品影视一区二区三区av| 欧美xxxx性猛交bbbb| 老女人水多毛片| 亚洲欧美日韩东京热| 久久欧美精品欧美久久欧美| 欧美一区二区国产精品久久精品| 日韩 亚洲 欧美在线| 久久久久精品国产欧美久久久| 国产男靠女视频免费网站| 黄片小视频在线播放| 国产精品久久久久久人妻精品电影| 中国美女看黄片| 桃色一区二区三区在线观看| 可以在线观看毛片的网站| 日本成人三级电影网站| 久久亚洲精品不卡| 最近中文字幕高清免费大全6 | 在线观看美女被高潮喷水网站 | 亚洲经典国产精华液单 | 丰满人妻熟妇乱又伦精品不卡| 国产成+人综合+亚洲专区| 国产乱人视频| 国产一区二区在线av高清观看| 午夜老司机福利剧场| 久久精品国产99精品国产亚洲性色| 99精品在免费线老司机午夜| .国产精品久久| 精品人妻视频免费看| 亚洲国产欧美人成| 1024手机看黄色片| 啦啦啦韩国在线观看视频| 欧美最新免费一区二区三区 | 日韩 亚洲 欧美在线| 亚洲av成人精品一区久久| 老熟妇乱子伦视频在线观看| 一区福利在线观看| 啪啪无遮挡十八禁网站| 精品午夜福利视频在线观看一区| 伊人久久精品亚洲午夜| 亚洲国产精品999在线| 乱人视频在线观看| 桃色一区二区三区在线观看| 免费av观看视频| 1000部很黄的大片| 久久久久久久久久黄片| 美女cb高潮喷水在线观看| 欧洲精品卡2卡3卡4卡5卡区| h日本视频在线播放| 村上凉子中文字幕在线| 乱人视频在线观看| 99热这里只有是精品在线观看 | 狠狠狠狠99中文字幕| 中文字幕精品亚洲无线码一区| 免费观看精品视频网站| 1000部很黄的大片| 天堂√8在线中文| 久久午夜福利片| 校园春色视频在线观看| 亚洲专区国产一区二区| 久久精品国产亚洲av香蕉五月| 欧美日韩乱码在线| 亚洲第一欧美日韩一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 搡老岳熟女国产| 中文字幕熟女人妻在线| 一级黄片播放器| 麻豆一二三区av精品| 亚洲中文字幕一区二区三区有码在线看| 色综合亚洲欧美另类图片| 亚洲七黄色美女视频| 国产亚洲欧美98| 在线观看舔阴道视频| 91久久精品电影网| a级毛片a级免费在线| 久久久国产成人免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品三级大全| 国产麻豆成人av免费视频| 欧美最黄视频在线播放免费| 男人舔奶头视频| 女生性感内裤真人,穿戴方法视频| 男人和女人高潮做爰伦理| 久久久久久久亚洲中文字幕 | 国产美女午夜福利| 窝窝影院91人妻| 国产乱人视频| 精品免费久久久久久久清纯| 久久精品国产亚洲av天美| 免费无遮挡裸体视频| 一a级毛片在线观看| 国产高清有码在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 国产黄片美女视频| 波多野结衣高清作品| 亚洲欧美日韩高清专用| 免费一级毛片在线播放高清视频| 日韩精品青青久久久久久| a级毛片a级免费在线| 亚洲欧美激情综合另类| 婷婷亚洲欧美| 亚洲自偷自拍三级| 能在线免费观看的黄片| 窝窝影院91人妻| 国产精品久久久久久亚洲av鲁大| 听说在线观看完整版免费高清| 中文字幕精品亚洲无线码一区| 91在线观看av| 久久国产乱子伦精品免费另类| 我要搜黄色片| 如何舔出高潮| 亚洲国产高清在线一区二区三| 精品午夜福利在线看| 国产淫片久久久久久久久 | 黄色女人牲交| av女优亚洲男人天堂| 亚洲av中文字字幕乱码综合| 丁香欧美五月| 99riav亚洲国产免费| 国产 一区 欧美 日韩| av在线蜜桃| 久久精品综合一区二区三区| 亚洲精品456在线播放app | 黄色女人牲交| 欧美色视频一区免费| 看片在线看免费视频| 男人舔奶头视频| 欧美日韩乱码在线| 老女人水多毛片| 麻豆久久精品国产亚洲av| 变态另类丝袜制服| 一级av片app| 看十八女毛片水多多多| 美女高潮喷水抽搐中文字幕| 亚洲人成伊人成综合网2020| 久久国产精品人妻蜜桃| 亚洲成人久久性| 亚洲av电影在线进入| 国产亚洲欧美98| 黄色一级大片看看| 精品午夜福利在线看| 国产成人av教育| 久久久久久久久久成人| 色吧在线观看| 久久99热6这里只有精品| 国内精品一区二区在线观看| 国产精品,欧美在线| 国产欧美日韩一区二区精品| 成人永久免费在线观看视频| 九九久久精品国产亚洲av麻豆| 高清毛片免费观看视频网站| 在线观看舔阴道视频| 一区福利在线观看| 欧美色视频一区免费| 18+在线观看网站| 97人妻精品一区二区三区麻豆| 69av精品久久久久久| 99久久成人亚洲精品观看| 麻豆久久精品国产亚洲av| or卡值多少钱| 中出人妻视频一区二区| 国产精品一区二区性色av| 中文字幕熟女人妻在线| 级片在线观看| 99久久久亚洲精品蜜臀av| 亚洲最大成人av| 老司机福利观看| av天堂中文字幕网| 我要看日韩黄色一级片| 天堂影院成人在线观看| 午夜免费成人在线视频| 国产精品久久视频播放| 亚洲国产日韩欧美精品在线观看| 香蕉av资源在线| 国产欧美日韩一区二区精品| 特级一级黄色大片| 欧美精品国产亚洲| 精品午夜福利视频在线观看一区| 91久久精品电影网| 亚洲五月天丁香| 99热精品在线国产| 欧美bdsm另类| 中文字幕精品亚洲无线码一区| 在线十欧美十亚洲十日本专区| 香蕉av资源在线| 国产麻豆成人av免费视频| 亚洲欧美日韩东京热| 97超视频在线观看视频| 欧美中文日本在线观看视频| 国产高潮美女av| 天美传媒精品一区二区| 久久久久久久亚洲中文字幕 | 亚洲美女搞黄在线观看 | av天堂中文字幕网| 18禁在线播放成人免费| 淫妇啪啪啪对白视频| 自拍偷自拍亚洲精品老妇| 中亚洲国语对白在线视频| 国产欧美日韩精品一区二区| 久久婷婷人人爽人人干人人爱| 亚洲最大成人手机在线| 日韩国内少妇激情av| 97超视频在线观看视频| 亚洲av电影不卡..在线观看| 大型黄色视频在线免费观看| 中国美女看黄片| 小蜜桃在线观看免费完整版高清| 亚洲av美国av| 婷婷丁香在线五月| 波多野结衣高清无吗| 欧美激情在线99| 国内精品久久久久精免费| 午夜福利18| 午夜福利视频1000在线观看| 国产伦一二天堂av在线观看| 国产欧美日韩一区二区三| 午夜精品久久久久久毛片777| 亚洲va日本ⅴa欧美va伊人久久| 国产91精品成人一区二区三区| 在线看三级毛片| .国产精品久久| 欧美日韩中文字幕国产精品一区二区三区| 欧美极品一区二区三区四区| 亚洲精品亚洲一区二区| 精品久久久久久久末码| 波多野结衣巨乳人妻| 色噜噜av男人的天堂激情| 好男人在线观看高清免费视频| 内射极品少妇av片p| 99热只有精品国产| 亚洲一区高清亚洲精品| 亚洲专区国产一区二区| 国产黄色小视频在线观看| 国产色婷婷99| 久久久成人免费电影| 国产中年淑女户外野战色| av天堂中文字幕网| 国产高清有码在线观看视频| 免费在线观看日本一区| 免费av毛片视频| 97超级碰碰碰精品色视频在线观看| av福利片在线观看| 精品免费久久久久久久清纯| 看片在线看免费视频| 成人国产一区最新在线观看| 国产高清有码在线观看视频| 亚洲av中文字字幕乱码综合| 久久国产乱子伦精品免费另类| 亚洲aⅴ乱码一区二区在线播放| 国产探花在线观看一区二区| 精品国产三级普通话版| 国产成人欧美在线观看| 午夜福利在线观看免费完整高清在 | 黄色丝袜av网址大全| 在线观看av片永久免费下载| 亚洲欧美清纯卡通| 国产乱人伦免费视频| 精品久久国产蜜桃| 亚洲av成人精品一区久久| 97人妻精品一区二区三区麻豆| 好男人在线观看高清免费视频| 又黄又爽又免费观看的视频| 国产精品女同一区二区软件 | 人妻夜夜爽99麻豆av| 岛国在线免费视频观看| 一本综合久久免费| 欧美日韩中文字幕国产精品一区二区三区| 国产综合懂色| 国产一区二区在线观看日韩| 亚洲一区高清亚洲精品| 91久久精品电影网| 欧美乱妇无乱码| 婷婷亚洲欧美| 男女之事视频高清在线观看| 成人一区二区视频在线观看| 国产91精品成人一区二区三区| 男人狂女人下面高潮的视频| 嫩草影视91久久| 久久久久国内视频| 一个人看的www免费观看视频| 欧美性猛交黑人性爽| 最近最新中文字幕大全电影3| 欧美日本亚洲视频在线播放| 亚洲国产色片| 999久久久精品免费观看国产| 51午夜福利影视在线观看| 欧美潮喷喷水| 欧美黑人欧美精品刺激| 国产大屁股一区二区在线视频| 亚洲美女黄片视频| 国产麻豆成人av免费视频| av中文乱码字幕在线| 99riav亚洲国产免费| 黄色配什么色好看| 一夜夜www| 免费一级毛片在线播放高清视频| 波多野结衣高清作品| 亚洲精品乱码久久久v下载方式| 国产精品久久久久久亚洲av鲁大| 精品人妻熟女av久视频| 夜夜看夜夜爽夜夜摸| 欧美zozozo另类| 国产亚洲精品av在线| 亚洲国产欧洲综合997久久,| 久久久精品大字幕| 亚洲av免费在线观看| 亚洲av不卡在线观看| 午夜免费成人在线视频| 午夜激情福利司机影院| 两个人的视频大全免费| 欧美乱妇无乱码| 国产精品1区2区在线观看.| 美女xxoo啪啪120秒动态图 | 久久亚洲真实| 在线十欧美十亚洲十日本专区| 国产精品爽爽va在线观看网站| 夜夜躁狠狠躁天天躁| 亚洲美女视频黄频| 欧美另类亚洲清纯唯美| 成人三级黄色视频| 国产单亲对白刺激| 日韩欧美精品v在线| 日韩有码中文字幕| 小说图片视频综合网站| 18美女黄网站色大片免费观看| 一个人看视频在线观看www免费| 综合色av麻豆| 国产伦精品一区二区三区四那| 亚洲av美国av| 99久久成人亚洲精品观看| 日韩中字成人| 一级av片app| 婷婷精品国产亚洲av在线| 国产精品嫩草影院av在线观看 | 久久精品人妻少妇| 一级作爱视频免费观看| 国产精品久久久久久久电影| 高清毛片免费观看视频网站| 久久香蕉精品热| 啪啪无遮挡十八禁网站| 亚洲色图av天堂| 嫩草影院新地址| 色5月婷婷丁香| 久久久久久国产a免费观看| 亚洲av成人精品一区久久| 他把我摸到了高潮在线观看| 婷婷丁香在线五月| 国产不卡一卡二| 蜜桃亚洲精品一区二区三区| 18禁黄网站禁片免费观看直播| 国产单亲对白刺激| 搡老岳熟女国产| 欧美丝袜亚洲另类 | 99在线人妻在线中文字幕| av在线老鸭窝| 亚洲精品色激情综合| 国产在视频线在精品| 久久精品夜夜夜夜夜久久蜜豆| 亚洲第一欧美日韩一区二区三区| av国产免费在线观看| xxxwww97欧美| av中文乱码字幕在线| 国产日本99.免费观看| 日本免费一区二区三区高清不卡| 精品熟女少妇八av免费久了| 亚洲 国产 在线| 成人av在线播放网站| 午夜福利在线观看免费完整高清在 | 91在线观看av| a级毛片a级免费在线| 国产精品人妻久久久久久| 色综合站精品国产| netflix在线观看网站| 色综合站精品国产| 国产亚洲精品综合一区在线观看| 最近视频中文字幕2019在线8| 亚洲午夜理论影院| 我要看日韩黄色一级片| 国产精品亚洲美女久久久| 嫩草影院精品99| 中文字幕高清在线视频| 国产一区二区三区在线臀色熟女| 日日摸夜夜添夜夜添av毛片 | 国产视频内射| 人人妻人人澡欧美一区二区| 麻豆av噜噜一区二区三区| 亚洲美女黄片视频| 亚洲第一欧美日韩一区二区三区| 少妇被粗大猛烈的视频| 亚洲男人的天堂狠狠| eeuss影院久久| 欧美日韩亚洲国产一区二区在线观看| 男女下面进入的视频免费午夜| 欧美极品一区二区三区四区| 国产精品av视频在线免费观看| 欧美高清性xxxxhd video| 少妇被粗大猛烈的视频| 欧美国产日韩亚洲一区| 男女床上黄色一级片免费看| 窝窝影院91人妻| 国产一区二区激情短视频| 国产av麻豆久久久久久久| 亚洲国产欧美人成| 91在线观看av| 久久6这里有精品| 日韩精品中文字幕看吧| 夜夜爽天天搞| 一级黄色大片毛片| 午夜精品在线福利| 日韩人妻高清精品专区| 老司机午夜十八禁免费视频| 亚洲美女黄片视频| 一卡2卡三卡四卡精品乱码亚洲| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产精品久久男人天堂| 色吧在线观看| 免费人成在线观看视频色| 女生性感内裤真人,穿戴方法视频| 日日摸夜夜添夜夜添小说| 琪琪午夜伦伦电影理论片6080| 中文字幕av在线有码专区| 露出奶头的视频| 91狼人影院| 女人十人毛片免费观看3o分钟| 成年版毛片免费区| 一本久久中文字幕| 国产一级毛片七仙女欲春2| 成年人黄色毛片网站| 国产一区二区三区视频了| 麻豆成人午夜福利视频| 午夜福利在线在线| 欧美另类亚洲清纯唯美| 国产91精品成人一区二区三区| 日本一本二区三区精品| 90打野战视频偷拍视频| 99国产精品一区二区三区| 嫩草影院新地址| 成年版毛片免费区| 美女cb高潮喷水在线观看| 1000部很黄的大片| 欧美色欧美亚洲另类二区| 五月伊人婷婷丁香| 99久久成人亚洲精品观看| 亚州av有码| 美女被艹到高潮喷水动态| 亚洲在线观看片| 88av欧美| 99久久精品一区二区三区| a级毛片a级免费在线| 国产成+人综合+亚洲专区| 久久6这里有精品| 在线a可以看的网站| 精品一区二区三区视频在线| 欧美又色又爽又黄视频| 欧美极品一区二区三区四区| 日本精品一区二区三区蜜桃| 91在线观看av| 丝袜美腿在线中文| av在线蜜桃| 少妇人妻精品综合一区二区 | 1024手机看黄色片| 亚洲乱码一区二区免费版| 人妻久久中文字幕网| 免费av毛片视频| 可以在线观看毛片的网站| 国内毛片毛片毛片毛片毛片| 亚洲精品一卡2卡三卡4卡5卡| 欧美乱妇无乱码| av天堂在线播放| 内地一区二区视频在线| 变态另类丝袜制服| 日韩国内少妇激情av| 日韩欧美精品免费久久 | 亚洲欧美精品综合久久99| 国产精品一及| 看片在线看免费视频| 美女 人体艺术 gogo| 久久精品国产自在天天线| 一本精品99久久精品77| 午夜福利免费观看在线| 国产乱人伦免费视频| 欧美色视频一区免费| 色在线成人网| 最近最新中文字幕大全电影3| 欧美一区二区国产精品久久精品| 欧美激情久久久久久爽电影| 午夜福利视频1000在线观看| av在线观看视频网站免费| 别揉我奶头 嗯啊视频| 99在线人妻在线中文字幕| 欧美乱色亚洲激情| 亚洲欧美清纯卡通| 国产三级在线视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品永久免费网站| 女生性感内裤真人,穿戴方法视频| 免费看光身美女| 国产精华一区二区三区| 最好的美女福利视频网| 中文字幕人妻熟人妻熟丝袜美| 欧美一区二区国产精品久久精品| 伦理电影大哥的女人| 真人一进一出gif抽搐免费| 午夜福利18| 国产又黄又爽又无遮挡在线| 欧美性猛交╳xxx乱大交人| 在线a可以看的网站| 51国产日韩欧美| 国产不卡一卡二| 免费观看精品视频网站| 两个人视频免费观看高清| 三级国产精品欧美在线观看| 性欧美人与动物交配| 国产欧美日韩一区二区三| 成人精品一区二区免费| 免费人成视频x8x8入口观看| 我的老师免费观看完整版| 中出人妻视频一区二区| 长腿黑丝高跟| 亚洲va日本ⅴa欧美va伊人久久| 亚洲最大成人手机在线| 亚洲精品日韩av片在线观看| 国产色婷婷99| 岛国在线免费视频观看| 国产高潮美女av| 午夜福利成人在线免费观看| 日本精品一区二区三区蜜桃| 99国产精品一区二区三区| 男人和女人高潮做爰伦理| 亚洲欧美日韩无卡精品| 亚洲av成人精品一区久久| 午夜亚洲福利在线播放| 永久网站在线| 婷婷丁香在线五月| 床上黄色一级片| 成年版毛片免费区| 少妇人妻精品综合一区二区 | 成人亚洲精品av一区二区| 少妇的逼好多水| 亚洲国产精品合色在线| 精品熟女少妇八av免费久了| 亚洲美女视频黄频| 国产亚洲精品综合一区在线观看| 日韩欧美精品免费久久 | 国产在视频线在精品| 乱人视频在线观看| 动漫黄色视频在线观看| 极品教师在线视频| 色哟哟·www| 亚洲av五月六月丁香网| 美女 人体艺术 gogo| 国产欧美日韩一区二区三| 韩国av一区二区三区四区| 午夜老司机福利剧场| 亚洲美女黄片视频| 日韩大尺度精品在线看网址| 色播亚洲综合网| 97碰自拍视频| 老女人水多毛片| 一个人免费在线观看电影| 国内精品美女久久久久久| 成人亚洲精品av一区二区| 国产精品日韩av在线免费观看| 亚洲经典国产精华液单 | 精品国产三级普通话版| 免费av观看视频| 美女cb高潮喷水在线观看| 精华霜和精华液先用哪个| 丁香六月欧美| 18美女黄网站色大片免费观看| 亚洲真实伦在线观看| 99热这里只有是精品50| 69人妻影院| 在线观看av片永久免费下载| 精品久久久久久久久久久久久| 乱人视频在线观看| 亚洲一区二区三区色噜噜| 精品99又大又爽又粗少妇毛片 | 欧美xxxx性猛交bbbb| 婷婷六月久久综合丁香| 好看av亚洲va欧美ⅴa在| 18禁裸乳无遮挡免费网站照片| 精品人妻视频免费看| 欧美潮喷喷水| 一边摸一边抽搐一进一小说| 村上凉子中文字幕在线| 99精品在免费线老司机午夜| 久久午夜福利片| 精品久久久久久,| 国产色婷婷99| 最近最新免费中文字幕在线| av中文乱码字幕在线| 欧美一级a爱片免费观看看| 在线观看美女被高潮喷水网站 | 午夜激情福利司机影院| 18禁黄网站禁片免费观看直播| 99久久精品一区二区三区| 午夜福利在线观看吧| 国产午夜精品久久久久久一区二区三区 | 成人鲁丝片一二三区免费| 欧美午夜高清在线| 久久伊人香网站| 亚洲,欧美精品.| 亚洲无线观看免费| 夜夜爽天天搞| 亚洲乱码一区二区免费版| 国产精品电影一区二区三区| 久久亚洲真实| 久久人人精品亚洲av| av专区在线播放| 久久久久九九精品影院| 一级a爱片免费观看的视频| 看黄色毛片网站|