• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy

    2022-12-28 09:55:28ZhaojunLiu劉昭君LianQingZhu祝連慶XianTongZheng鄭顯通YuanLiu柳淵LiDanLu鹿利單andDongLiangZhang張東亮
    Chinese Physics B 2022年12期
    關(guān)鍵詞:昭君

    Zhaojun Liu(劉昭君) Lian-Qing Zhu(祝連慶) Xian-Tong Zheng(鄭顯通) Yuan Liu(柳淵)Li-Dan Lu(鹿利單) and Dong-Liang Zhang(張東亮)

    1The School of Opto-Electronic Engineering,Changchun University of Science and Technology,Changchun 130022,China

    2Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument,Beijing Information Science&Technology University,Beijing 100192,China

    Keywords: InAs/GaSb type-II superlattice,molecular beam epitaxy,interface,mid-wave infrared

    1. Introduction

    Infrared (IR) detection technology is widely applied in biochemical gas detection, missile seekers, infrared imaging,night vision, and aerospace fields.[1–4]The third-generation infrared detectors based on narrow-bandgap semiconductors,including HgCdTe(MCT),quantum well infrared photodetectors(QWIP)and type-II superlattices(T2SL),have the characteristics of multi-color detection and high pixels,etc.[5]Compared with MCT, T2SL IR detectors have excellent material uniformity and lower band-to-band (BTB) tunneling current, which is due to the larger electron effective mass.[6,7]Both III–V growth and processing technology appear mature,and fabrication costs are low compared to QWIP.[8,9]Since 2000, InAs/GaSb T2SL photodetectors have made a significant breakthrough due to their intrinsic advantages, including structural stability[10–12]and a broad wavelength spectrum ranging from the mid-wave infrared(MWIR)to the very longwave infrared (VLWIR) regime.[13–15]The adjustable band alignment and the spatial separation of electrons and holes in the T2SL can reduce the Auger recombination rate by eliminating non-radiative pathways between valence bands[16–18]and enabling high operating temperature(HOT)device operation.

    There are neither common anions nor cations between InAs and GaSb. Together with the growth of the superlattice, In–Sb or Ga–As bonds may be formed at the interfaces(IFs).[19,20]To get enough quantum efficiency, the absorption thickness should be thick enough,leading to several thousands of interfaces between InAs and GaSb.[21]The interface structure features determine the carrier transport properties of the superlattice.[22]In addition,there is a 0.75%lattice mismatch between GaSb and InAs. InSb has been proved to be effective at compensating the tensile strain of InAs. However,the unoptimized InSb interface will cause microscopic defects and degrade the material quality. The quality and thickness of the InSb interface play a vital role in the achievement of high-quality growth and the strain balance of superlattices.[23]Liuet al.[24]reported a migration-enhanced epitaxy (MEE)method for the growth of the InSb layer of long wavelength InAs/GaSb T2SLs. Liet al.[25]introduced an MEE strategy for tuning strain by optimizing the InSb interface in the very long wavelength range.

    In this paper, we systematically optimized the crystal quality for the MWIR range by varying the thickness of the InSb interface to form the “InSb-like” interface directly. In detail, we report the optical and morphological properties of InAs/GaSb T2SLs for the mid-wavelength infrared band. Xray diffraction (XRD), high-resolution cross-sectional transmission electron microscopy(HRTEM),and atomic force microscopy(AFM)were used to characterize the material quality.To reveal how the InSb interface and the operating temperature influence the optical properties,photoluminescence(PL)measurements were performed.

    2. Simulation and experiment procedure

    We investigated the band engineering of the T2SL structures using thek· pmodel[26]and designed an InAs(8 ML)/GaSb (6 ML) structure. The simulation results show that the bandgap of the proposed T2SL structure is 0.258 eV,and the center wavelength is 4.81 μm, which is in the midwavelength infrared spectral range.

    Fig.1. Band simulation results of the InAs(8 ML)/GaSb(6 ML)T2SL structure.

    The samples were grown on n-type doped GaSb (100)substrates and a 500 nm GaSb buffer layer using a multichamber 3-inch wafer ultrahigh vacuum MBE system (Komponenten Octoplus 400). Firstly,the GaSb substrates were deoxidized at 520?C for 10 min, followed by a 500 nm GaSb buffer layer grown at 460?C with a V/III beam equivalent pressure (BEP) flux ratio value of 5.5. During the epitaxial growth, reflection high-energy electron diffraction (RHEED)was used forin-situmonitoring. When the 1×3 reconstruction pattern appears, the oxide layer has been removed. The growth temperature of the T2SLs structure was 380?C,which was consistent with the GaSb(2×5)→(1×3)reconstructed transition temperature,and the growth rates of InAs and GaSb were 1 ?A/s. The BEP of Sb is 2.96×10?6mbar,and the V/III BEP flux ratio value is 4 during the GaSb growth. The BEP of As is 5.74×10?6mbar,and the V/III BEP flux ratio value is 8 during the InAs growth.

    The insertion of InSb between the GaSb and InAs layers of the T2SL structure has proved beneficial for strain compensation and interface quality improvement.[27]As shown in Fig. 2(a), different thicknesses (0.3 ML, 0.5 ML, 0.7 ML) of the InSb interface layer are inserted in 120 periods of InAs(8 ML)/GaSb(6 ML)T2SLs,denoted as sample A,B,and C,respectively.

    The shutter sequence for the T2SL’s growth is shown in Fig.2(b). The GaSb epitaxial layers are soaked by Sb for 6 s,followed by an artificially added InSb interface layer. After InAs epitaxy, 6 s As soaking helps to prevent As from escaping from the surface and thus diffusing the surface atoms fully. The following InSb-like interfacial layers play a significant role in preventing the formation of a GaAs-like interface that adversely affects photoluminescence performance.

    Fig.2. (a)A schematic diagram of the InAs/GaSb T2SLs multilayer heterostructure. (b)The shutter sequence for the T2SL’s growth.

    3. Results and discussion

    3.1. The effect of the InSb interface layer on the quality and morphology

    Figure 3(a) shows the high-resolution XRD curve of the 2θ–ωscan at the GaSb (004) reflection for sample A. The sharp and distinct satellite peaks reveal excellent crystal quality. Figure 3(b)shows the XRD curves for the T2SLs with the InSb layer changing from 0.3 ML,0.5 ML,and 0.7 ML.The 0-th order peaks of the structure are on the left of the GaSb substrate peak,indicating that the T2SL’s structure is in compressive strain. The angle differences between the GaSb substrate and T2SL’s structure are 0.24?, 0.13?, and 0.05?as the thickness of the InSb layer decreases. The InSb interface can effectively compensate for the compressive strain between the InAs layer and GaSb substrate to realize the structure’s strain balance control. The FWHMs of the 0-th order peaks measured in ? mode are 33–39 arcsec,indicating the high crystal quality.

    Fig.3. (a)The XRD curve of the 2θ–ω scan around the GaSb(004)reflection for sample A.(b)The XRD close-ups around the substrate and the 0-th satellite of the three samples.

    Fig.4. The morphology of a 5μm×5μm scan area using AFM for(a)sample C,(b)sample B,and(c)sample A,and a 50μm×50μm scan area for(d)sample C,(e)sample B,and(f)sample A.

    The AFM morphologies are obtained on the surface of the GaSb layer. The AFM images of the three samples are shown in Fig.4, and all the samples showed minor RMS roughness.As shown in Figs. 4(a)–4(c), the samples have clear atomic steps with widths that are about 1μm. The V group elements that are more sensitive to temperature cannot diffuse well at low temperatures,leading to the discontinuous step edge. The bright spots of the uppermost GaSb layer in Fig. 4 are a frequently encountered difficulty in superlattice growth. There is no noticeable effect on crystal quality,verified by the XRD analysis in Fig.3. With the decrease in the InSb thickness,the number of bright spots is reduced,and the height decreases,indicating that the bright spots may also be related to the strain.

    3.2. TEM investigations

    HRTEM and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) were used to characterize the interface at the atomic scale. The spherical aberration electron microscope samples were prepared by focused ion beam (FIB) cutting. InAs and GaSb layers are distinguishable in Fig. 5(a), and the interfaces are smooth without any microscopic defects and dislocations.The superlattice structure of alternating growth of InAs and GaSb along the growth direction is consistent with the multilayer stack,as shown in Fig.2(a).

    The color images in Fig.5(b)can intuitively observe the anion–cation dumbbells of GaSb and InAs. In and Sb atoms are visually brighter and bigger,related to their higher atomic number. The atomic integrated intensity analysis is performed on a row of atoms along the[100]growth direction,as shown in Fig.5(b). We can distinguish the InAs,GaSb,and interface layer in that the strength of the atomic column is proportional to the atomic number.[8,28]The interfacial region between the InAs and GaSb layers can be identified by the transition of the atomic integral intensity. The atomic integrated intensities of anions and cations are almost equal in the interfacial region,indicating that the InSb interface is formed, which is consistent with the shutter sequence.

    Figure 5(c) shows the energy dispersive spectroscopy(EDS) mapping of sample A. In together with As and Ga together with Sb are distributed in the InAs and GaSb layers,respectively,and we can observe clear spatial separation. The ratio of group V to group III is almost 1:1 in Fig.5(d),and an apparent intensity flipping of the atomic columns can be observed in the adjacent layers. The element distribution profile of Sb atoms is comparatively wider than that of Ga atoms,indicating it is Sb-rich in the interfacial region. This also proves that the shutter sequence is effective.

    Fig. 5. (a) A HRTEM image of the InAs/GaSb multilayer structure of sample A. (b) A HAADF-STEM micrograph taken from sample A. The inset linear intensity profile along a selected row shows the InAs,GaSb,and interface layers. (c)EDS mapping of sample A.(d)Elemental integral intensity in the growth direction.

    3.3. Characterization of optical properties

    Figure 6(a) displays the PL spectra at 77 K for different thicknesses of the InSb interface layer. With the thickness of the InSb interface increasing, the wavelength of SL shows a redshift, and the bandgap decreases. The PL FWHM and maximum peak positions of the three samples are shown in Figs. 6(c) and 6(d). The FWHM of the PL is only 18 meV,17 meV, and 16.5 meV. The peak wavelengths are 4.78 μm(259 meV),5.02μm(247 meV),and 5.49μm(226 meV)for sample A,B,and C,respectively.The roughness and steepness of the interface affect the crystal quality,and the PL spectrum also reflects the excellent growth of the interface.

    It can be seen from Fig. 6(b) that the intensity of the luminescence peaks gradually decreases with increasing temperature. According to the Fermi–Dirac distribution law,the energy distribution of the conduction electrons becomes more concentrated when the temperature drops. When photoexcitation occurs at low temperatures, excited carriers are more densely distributed in the narrow high-energy state.The luminescence peak intensity shows more intense and sharper peaks due to the concentrated photons that are produced when carriers return back to lower energy levels.[29]The luminescence peaks’ redshift corresponds to the narrow bandgap energy,consistent with the empirical relationship between bandgap energy and the photon wavelength. The linearquadratic relation proposed by Varshni can explain:[30,31]

    whereEg(0) is the bandgap at zero temperature, andαandβare the intrinsic constants of the materials. Here,Eg(0)~0.26 eV and the Debye temperatureβ ~400 K, whileα ~0.277 meV describes the effect of electron–phonon interaction on the energy band. The atomic vibration amplitude increases when the temperature rises,and the electron vibration interaction significantly affectsEg(T). From 77 K up to 150 K, the position of the response peaks shifts 0.15μm,and the intensity is reduced by 59%. The PL results proved that the InAs/GaSb T2SLs obey temperature-dependence properties.

    Fig. 6. (a) Normalized PL spectra at 77 K, (c) the PL FWHM and (d) the PL peak positions for different thicknesses of the InSb interface layer.(b)Variable temperature PL spectra of sample A at 77 K,100 K,and 150 K.

    4. Conclusion

    We have optimized the strain-balanced InAs/GaSb T2SLs of the MWIR range by designing InSb interface layers systematically. The 120 periods of InAs (8 ML)/GaSb (6 ML)T2SLs with different thicknesses of the InSb interfaces have been grown at 380?C using MBE.The HRXRD and AFM results display excellent crystal quality and smooth morphology.The surface “bright spots” appear to be more apparent as the InSb interface thickness increases. From the HRTEM results,we can distinguish the clear interface of InAs, GaSb, and the interface layers. Using PL testing,the experiment wavelength is close to the simulated wavelength using thek·pmodel. The PL measurements also indicate that the InSb interface and the operating temperature can influence the optical properties. In conclusion,the design involving insertion of the InSb interface layer can effectively optimize the growth quality of epitaxial materials,and provides a new idea for focal plane growth.Further device-processing technology and device-level performance will be developed and demonstrated.

    Acknowledgments

    Project supported by the Beijing Scholars Program(Grant No.74A2111113),the Research Project of Beijing Education Committee(Grant No.KM202111232019),the National Natural Science Foundation of China(Grant No.62105039),and the Research Project of Beijing Information Science&Technology University(Grant No.2022XJJ07).

    猜你喜歡
    昭君
    昭君出塞
    昭君思鄉(xiāng)
    黃河之聲(2022年3期)2022-06-21 06:27:10
    昭君
    黃河之聲(2021年6期)2021-06-18 13:57:14
    以君為寄青衫濕
    ——宋代詠昭君詩的承續(xù)與衍變
    中文信息(2021年11期)2021-03-27 14:52:16
    昭君出嫁
    昭君
    草原歌聲(2020年2期)2020-09-25 08:38:04
    千載琵芭語,不解昭君怨
    學生天地(2020年3期)2020-08-25 09:04:08
    談當代民族唱法如何演唱傳統(tǒng)粵曲——以《昭君出塞》為例
    樂府新聲(2019年2期)2019-11-29 07:34:24
    昭君別院
    中國三峽(2016年5期)2017-01-15 13:58:51
    昭君今若在,定驚故里殊 三峽庫區(qū)興山縣移民搬遷側(cè)記
    中國三峽(2016年5期)2017-01-15 13:58:50
    男人添女人高潮全过程视频| 日韩精品有码人妻一区| 久久影院123| 2021少妇久久久久久久久久久| 欧美成人午夜免费资源| 99re6热这里在线精品视频| 边亲边吃奶的免费视频| 国产精品三级大全| 久久精品夜色国产| 中文资源天堂在线| 亚洲精品亚洲一区二区| 狂野欧美激情性xxxx在线观看| 精品一区二区三区视频在线| 日韩一区二区视频免费看| 欧美三级亚洲精品| 日韩大片免费观看网站| 国内精品宾馆在线| 久久国产精品男人的天堂亚洲 | 黑人猛操日本美女一级片| 国内精品宾馆在线| 久热这里只有精品99| 国产免费福利视频在线观看| 亚洲国产欧美人成| 国产美女午夜福利| 成人一区二区视频在线观看| 国产在线视频一区二区| 国产精品人妻久久久久久| 久久国产亚洲av麻豆专区| 欧美zozozo另类| 亚洲色图综合在线观看| 97热精品久久久久久| 一本一本综合久久| 亚洲欧美中文字幕日韩二区| 啦啦啦啦在线视频资源| 久久精品国产鲁丝片午夜精品| 国产一区有黄有色的免费视频| av视频免费观看在线观看| 99国产精品免费福利视频| 国产高清不卡午夜福利| av网站免费在线观看视频| 亚洲精品自拍成人| 国产精品三级大全| 免费在线观看成人毛片| 亚洲精品一二三| 日韩一本色道免费dvd| 久久久久久久久大av| 一区二区三区免费毛片| 99热这里只有是精品在线观看| 久久久欧美国产精品| 男女啪啪激烈高潮av片| 久久综合国产亚洲精品| 九九爱精品视频在线观看| 性高湖久久久久久久久免费观看| 少妇人妻 视频| 卡戴珊不雅视频在线播放| 香蕉精品网在线| 免费看光身美女| 少妇人妻一区二区三区视频| 亚洲成人手机| tube8黄色片| 永久网站在线| 九色成人免费人妻av| 久久国产亚洲av麻豆专区| 一二三四中文在线观看免费高清| 精品国产露脸久久av麻豆| 身体一侧抽搐| 久久久久久九九精品二区国产| 这个男人来自地球电影免费观看 | 能在线免费看毛片的网站| 狂野欧美激情性bbbbbb| 国产久久久一区二区三区| 精品一品国产午夜福利视频| 伊人久久精品亚洲午夜| 交换朋友夫妻互换小说| 久久人人爽人人爽人人片va| 国产精品国产三级国产专区5o| 中文资源天堂在线| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久av不卡| 成人美女网站在线观看视频| 国产极品天堂在线| 久久97久久精品| 久久久久久人妻| 国产男女超爽视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 夜夜爽夜夜爽视频| freevideosex欧美| 国产免费视频播放在线视频| 国产色爽女视频免费观看| 久久人妻熟女aⅴ| 精品午夜福利在线看| 国产老妇伦熟女老妇高清| av专区在线播放| 亚洲av中文av极速乱| 国产精品精品国产色婷婷| 国产69精品久久久久777片| 内射极品少妇av片p| 美女主播在线视频| 亚洲精品国产av成人精品| 在线观看人妻少妇| 国产极品天堂在线| 好男人视频免费观看在线| 国产大屁股一区二区在线视频| 夜夜看夜夜爽夜夜摸| 五月玫瑰六月丁香| 欧美精品亚洲一区二区| 岛国毛片在线播放| 久久久久视频综合| 日韩一区二区三区影片| 久久女婷五月综合色啪小说| 亚洲内射少妇av| 韩国av在线不卡| 国产精品99久久久久久久久| 九九久久精品国产亚洲av麻豆| 国产精品久久久久成人av| 亚洲第一av免费看| 免费人妻精品一区二区三区视频| 久久午夜福利片| 国产色爽女视频免费观看| 中文天堂在线官网| 欧美zozozo另类| 精品亚洲成国产av| 午夜日本视频在线| 一二三四中文在线观看免费高清| 国产高清三级在线| av播播在线观看一区| 日日摸夜夜添夜夜爱| 亚洲精品一区蜜桃| 三级国产精品欧美在线观看| 校园人妻丝袜中文字幕| 亚洲精品乱码久久久v下载方式| 肉色欧美久久久久久久蜜桃| 成人18禁高潮啪啪吃奶动态图 | 日日摸夜夜添夜夜爱| 国产日韩欧美亚洲二区| 亚洲真实伦在线观看| 久久97久久精品| 老女人水多毛片| 纵有疾风起免费观看全集完整版| 国产高清有码在线观看视频| 尤物成人国产欧美一区二区三区| 亚洲av国产av综合av卡| 一区二区三区四区激情视频| 青春草视频在线免费观看| av网站免费在线观看视频| 国产综合精华液| 女的被弄到高潮叫床怎么办| 三级国产精品欧美在线观看| 91在线精品国自产拍蜜月| 中文字幕人妻熟人妻熟丝袜美| 欧美精品人与动牲交sv欧美| 好男人视频免费观看在线| 一级毛片aaaaaa免费看小| 国产精品偷伦视频观看了| 毛片一级片免费看久久久久| 国产午夜精品一二区理论片| 美女国产视频在线观看| 天堂俺去俺来也www色官网| www.av在线官网国产| 我的女老师完整版在线观看| 建设人人有责人人尽责人人享有的 | 国产免费福利视频在线观看| 久久6这里有精品| 国产高清三级在线| 欧美日韩精品成人综合77777| 春色校园在线视频观看| 免费看光身美女| 97超视频在线观看视频| 美女视频免费永久观看网站| 肉色欧美久久久久久久蜜桃| 一区二区三区四区激情视频| av视频免费观看在线观看| 少妇被粗大猛烈的视频| 日韩 亚洲 欧美在线| 亚洲欧美日韩东京热| 各种免费的搞黄视频| 久久人人爽人人片av| 色综合色国产| 伦理电影免费视频| 久久久久久久亚洲中文字幕| 少妇丰满av| 久久久久网色| 黄色欧美视频在线观看| 国产精品偷伦视频观看了| 18禁在线无遮挡免费观看视频| 国产欧美日韩精品一区二区| 少妇人妻久久综合中文| 亚洲精品中文字幕在线视频 | 这个男人来自地球电影免费观看 | 亚洲色图综合在线观看| 赤兔流量卡办理| 欧美精品一区二区免费开放| 亚洲精品日本国产第一区| 久久精品国产亚洲av涩爱| 国产精品一及| 热99国产精品久久久久久7| 一个人免费看片子| 欧美激情国产日韩精品一区| 1000部很黄的大片| 九九久久精品国产亚洲av麻豆| 久久6这里有精品| 国产精品久久久久久精品古装| 91精品一卡2卡3卡4卡| 男的添女的下面高潮视频| 爱豆传媒免费全集在线观看| 精品久久久精品久久久| 丝瓜视频免费看黄片| 免费大片黄手机在线观看| 日本色播在线视频| 国产精品女同一区二区软件| 青春草国产在线视频| 国产av一区二区精品久久 | 亚洲国产精品一区三区| 久久国产精品男人的天堂亚洲 | 99热这里只有是精品50| 下体分泌物呈黄色| 熟女电影av网| 国产成人a∨麻豆精品| 国产在线男女| 亚洲精品色激情综合| 超碰97精品在线观看| 日本黄大片高清| 一区二区三区四区激情视频| 国产精品人妻久久久久久| 七月丁香在线播放| 欧美3d第一页| 亚洲一区二区三区欧美精品| 中文乱码字字幕精品一区二区三区| 国产探花极品一区二区| 免费av中文字幕在线| 老熟女久久久| 精品久久久久久久久亚洲| 麻豆成人午夜福利视频| 精品国产一区二区三区久久久樱花 | 在线免费观看不下载黄p国产| 亚洲色图av天堂| 精品一区在线观看国产| 成人综合一区亚洲| 丰满人妻一区二区三区视频av| 亚洲成人一二三区av| 寂寞人妻少妇视频99o| 日本爱情动作片www.在线观看| 成人一区二区视频在线观看| 各种免费的搞黄视频| 欧美 日韩 精品 国产| 天天躁夜夜躁狠狠久久av| 久久午夜福利片| 麻豆成人av视频| 国产成人精品婷婷| 涩涩av久久男人的天堂| 在线观看一区二区三区| 一级av片app| 亚洲av欧美aⅴ国产| 欧美日韩国产mv在线观看视频 | 一本久久精品| 久久久久久久久久久免费av| 国产综合精华液| 成年女人在线观看亚洲视频| 亚洲精品色激情综合| 中文字幕免费在线视频6| 亚洲一区二区三区欧美精品| 人妻少妇偷人精品九色| 亚洲欧美一区二区三区黑人 | videos熟女内射| 国产真实伦视频高清在线观看| 麻豆成人午夜福利视频| 大陆偷拍与自拍| 亚洲精品久久午夜乱码| 欧美老熟妇乱子伦牲交| 一边亲一边摸免费视频| av黄色大香蕉| 99久久精品热视频| 超碰97精品在线观看| 国内少妇人妻偷人精品xxx网站| 最后的刺客免费高清国语| 亚洲久久久国产精品| 有码 亚洲区| 老女人水多毛片| 久久精品国产自在天天线| 免费黄色在线免费观看| 国产女主播在线喷水免费视频网站| 18禁在线无遮挡免费观看视频| 亚洲在久久综合| 成人特级av手机在线观看| 国产高清三级在线| 九九久久精品国产亚洲av麻豆| 免费看日本二区| 亚洲一区二区三区欧美精品| 国产黄色视频一区二区在线观看| 欧美精品一区二区大全| 在线免费十八禁| 色网站视频免费| 校园人妻丝袜中文字幕| 99re6热这里在线精品视频| 国产精品欧美亚洲77777| 又黄又爽又刺激的免费视频.| 精品国产三级普通话版| 狠狠精品人妻久久久久久综合| 国产亚洲5aaaaa淫片| 国产淫片久久久久久久久| 国产精品一区二区在线观看99| 色视频在线一区二区三区| 国产伦精品一区二区三区四那| 爱豆传媒免费全集在线观看| tube8黄色片| 亚洲怡红院男人天堂| 超碰97精品在线观看| 亚洲av中文av极速乱| 亚洲高清免费不卡视频| 成人午夜精彩视频在线观看| 国产男人的电影天堂91| 亚洲图色成人| 亚洲一区二区三区欧美精品| 国产亚洲精品久久久com| av福利片在线观看| 欧美日韩国产mv在线观看视频 | 久久久久精品性色| 大话2 男鬼变身卡| 中文乱码字字幕精品一区二区三区| 美女脱内裤让男人舔精品视频| 午夜福利视频精品| 网址你懂的国产日韩在线| 天堂8中文在线网| 人人妻人人看人人澡| 少妇的逼好多水| 国产成人a区在线观看| 七月丁香在线播放| 国产高清三级在线| 777米奇影视久久| av在线老鸭窝| 日韩三级伦理在线观看| 黄色欧美视频在线观看| 国产亚洲欧美精品永久| 欧美97在线视频| 亚州av有码| 免费黄频网站在线观看国产| 成人国产av品久久久| 伦精品一区二区三区| 激情五月婷婷亚洲| 国产色婷婷99| 精品久久国产蜜桃| 国产伦精品一区二区三区四那| 久久人人爽人人爽人人片va| 久久国产精品男人的天堂亚洲 | 久久精品国产亚洲av涩爱| 日韩强制内射视频| 中文资源天堂在线| 色视频在线一区二区三区| 欧美日本视频| 欧美一区二区亚洲| 不卡视频在线观看欧美| 自拍欧美九色日韩亚洲蝌蚪91 | 色视频www国产| 国产在线男女| 26uuu在线亚洲综合色| 国语对白做爰xxxⅹ性视频网站| 久久精品熟女亚洲av麻豆精品| 亚洲精品视频女| 国产黄片视频在线免费观看| 亚洲三级黄色毛片| 精品国产乱码久久久久久小说| 最后的刺客免费高清国语| 赤兔流量卡办理| 亚洲欧美成人综合另类久久久| 麻豆成人午夜福利视频| 亚洲国产日韩一区二区| 一级片'在线观看视频| 久热久热在线精品观看| 国产有黄有色有爽视频| 久久久精品94久久精品| 欧美 日韩 精品 国产| 成人黄色视频免费在线看| 国产一级毛片在线| 精品久久久久久久久亚洲| 久久久久久久大尺度免费视频| 国产亚洲5aaaaa淫片| 建设人人有责人人尽责人人享有的 | 97在线视频观看| 国产av一区二区精品久久 | 夜夜爽夜夜爽视频| 免费av中文字幕在线| 亚洲人成网站在线观看播放| 国产精品女同一区二区软件| www.av在线官网国产| 国产成人免费无遮挡视频| 国产精品.久久久| 大片免费播放器 马上看| 国产精品一区二区在线观看99| 欧美xxxx黑人xx丫x性爽| 欧美日韩综合久久久久久| 亚洲高清免费不卡视频| 日本-黄色视频高清免费观看| 国产亚洲精品久久久com| 在线看a的网站| 国产人妻一区二区三区在| 久久久亚洲精品成人影院| 97精品久久久久久久久久精品| 亚洲精品亚洲一区二区| 亚洲精品中文字幕在线视频 | 国产亚洲91精品色在线| 精品一品国产午夜福利视频| 久久影院123| 亚洲在久久综合| 久久 成人 亚洲| av天堂中文字幕网| 国产精品熟女久久久久浪| 91久久精品电影网| 秋霞在线观看毛片| 欧美日韩精品成人综合77777| 成年av动漫网址| 亚洲综合色惰| 久久精品熟女亚洲av麻豆精品| 免费av中文字幕在线| 免费看不卡的av| 青青草视频在线视频观看| 伊人久久精品亚洲午夜| 欧美成人一区二区免费高清观看| 我的老师免费观看完整版| 欧美精品亚洲一区二区| 亚洲欧美日韩无卡精品| 丝瓜视频免费看黄片| 日韩大片免费观看网站| 日韩欧美一区视频在线观看 | 婷婷色av中文字幕| 亚洲国产av新网站| 久久久久久久久久久丰满| 亚洲精品日韩av片在线观看| 日韩欧美精品免费久久| 少妇的逼好多水| 久久久久久人妻| 男女下面进入的视频免费午夜| 妹子高潮喷水视频| 亚洲欧美精品专区久久| 王馨瑶露胸无遮挡在线观看| av专区在线播放| 久久久久久久久大av| 干丝袜人妻中文字幕| 在线看a的网站| 免费观看性生交大片5| 一级毛片aaaaaa免费看小| 久久精品国产自在天天线| 一级黄片播放器| av.在线天堂| 91在线精品国自产拍蜜月| 赤兔流量卡办理| 777米奇影视久久| 国产深夜福利视频在线观看| 国产黄频视频在线观看| 国产精品一区www在线观看| 国产av码专区亚洲av| 嫩草影院新地址| 97超碰精品成人国产| 五月玫瑰六月丁香| 99久久人妻综合| 亚洲成人中文字幕在线播放| 免费黄色在线免费观看| 永久网站在线| 国产成人免费无遮挡视频| 久久久久国产网址| 中文字幕免费在线视频6| 日本vs欧美在线观看视频 | 人妻制服诱惑在线中文字幕| 亚洲精品国产av成人精品| 日韩人妻高清精品专区| 欧美成人精品欧美一级黄| 久久久久精品久久久久真实原创| 久久久a久久爽久久v久久| 一级毛片 在线播放| 亚洲精品乱码久久久v下载方式| 成人国产麻豆网| 久久久久久久亚洲中文字幕| 国产国拍精品亚洲av在线观看| 狠狠精品人妻久久久久久综合| 精品国产三级普通话版| 联通29元200g的流量卡| 免费大片18禁| 精品国产一区二区三区久久久樱花 | 国产高清三级在线| 久久影院123| 一个人看的www免费观看视频| 五月天丁香电影| 久久99蜜桃精品久久| 欧美成人午夜免费资源| 麻豆国产97在线/欧美| 人人妻人人爽人人添夜夜欢视频 | 久久精品夜色国产| 国内揄拍国产精品人妻在线| 日本欧美视频一区| 成人影院久久| 亚洲成色77777| 丝袜脚勾引网站| 日本午夜av视频| 少妇精品久久久久久久| 亚洲av电影在线观看一区二区三区| 久久鲁丝午夜福利片| 国产精品久久久久成人av| 蜜臀久久99精品久久宅男| 亚洲图色成人| 欧美国产精品一级二级三级 | 99久久精品热视频| 午夜视频国产福利| 啦啦啦视频在线资源免费观看| 免费观看在线日韩| 三级国产精品片| 免费不卡的大黄色大毛片视频在线观看| 久久久精品免费免费高清| 一区二区三区四区激情视频| av在线蜜桃| 美女视频免费永久观看网站| av又黄又爽大尺度在线免费看| 久久亚洲国产成人精品v| av国产久精品久网站免费入址| 久久热精品热| 丝瓜视频免费看黄片| 夫妻午夜视频| 一个人看的www免费观看视频| 国产精品一区www在线观看| 婷婷色综合大香蕉| 免费人成在线观看视频色| 亚洲精品久久午夜乱码| 身体一侧抽搐| 中文字幕亚洲精品专区| 午夜激情久久久久久久| 黄色配什么色好看| av女优亚洲男人天堂| 成人黄色视频免费在线看| 在线观看一区二区三区激情| 日本av手机在线免费观看| 天堂中文最新版在线下载| 超碰97精品在线观看| 亚洲精品色激情综合| 国产精品99久久久久久久久| 美女内射精品一级片tv| 成人亚洲欧美一区二区av| 国模一区二区三区四区视频| 女性被躁到高潮视频| 99re6热这里在线精品视频| 深爱激情五月婷婷| 麻豆成人av视频| 久久99热这里只频精品6学生| 精品国产露脸久久av麻豆| 国产亚洲一区二区精品| 日韩三级伦理在线观看| 免费看光身美女| 男人爽女人下面视频在线观看| 看非洲黑人一级黄片| 久久这里有精品视频免费| 国产免费视频播放在线视频| 亚洲精品乱码久久久久久按摩| 亚洲国产精品国产精品| 丰满迷人的少妇在线观看| 亚洲电影在线观看av| 美女高潮的动态| 日韩大片免费观看网站| 99国产精品免费福利视频| 日韩亚洲欧美综合| 最新中文字幕久久久久| 久久久欧美国产精品| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美精品专区久久| 国产免费又黄又爽又色| 国产成人免费无遮挡视频| 男女边摸边吃奶| 精品亚洲成a人片在线观看 | 97超碰精品成人国产| 日韩免费高清中文字幕av| 精品人妻视频免费看| 男女无遮挡免费网站观看| 午夜福利视频精品| 国产精品国产三级专区第一集| videos熟女内射| 黄色怎么调成土黄色| 亚洲av欧美aⅴ国产| 亚洲国产精品国产精品| 超碰av人人做人人爽久久| 高清黄色对白视频在线免费看 | 黄色日韩在线| 国产精品国产三级国产专区5o| 亚州av有码| 黄色一级大片看看| 国产精品久久久久久精品电影小说 | 水蜜桃什么品种好| 精品一区二区免费观看| 91狼人影院| 亚洲国产精品成人久久小说| 日韩制服骚丝袜av| 99re6热这里在线精品视频| 久久精品国产亚洲av天美| 激情五月婷婷亚洲| 亚洲国产高清在线一区二区三| 晚上一个人看的免费电影| 一级毛片电影观看| 国产av码专区亚洲av| 极品教师在线视频| 欧美另类一区| 亚洲国产高清在线一区二区三| 18禁动态无遮挡网站| 男女国产视频网站| 精品熟女少妇av免费看| 18禁动态无遮挡网站| 成人影院久久| 亚洲av日韩在线播放| 久久精品国产亚洲av天美| 青青草视频在线视频观看| 男的添女的下面高潮视频| 中文在线观看免费www的网站| 天美传媒精品一区二区| 91午夜精品亚洲一区二区三区| av在线老鸭窝| 午夜福利视频精品| 街头女战士在线观看网站| 日韩视频在线欧美| videossex国产| 婷婷色综合大香蕉| 国产精品不卡视频一区二区|