• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-sensitive phototransistor based on vertical HfSe2/MoS2 heterostructure with broad-spectral response

    2022-12-28 09:55:28WenDeng鄧文LiShengWang汪禮勝JiaNingLiu劉嘉寧TaoXiang相韜andFengXiangChen陳鳳翔
    Chinese Physics B 2022年12期
    關(guān)鍵詞:鳳翔

    Wen Deng(鄧文), Li-Sheng Wang(汪禮勝), Jia-Ning Liu(劉嘉寧),Tao Xiang(相韜), and Feng-Xiang Chen(陳鳳翔)

    Department of Physics Science and Technology,School of Science,Wuhan University of Technology,Wuhan 430070,China

    Keywords: HfSe2/MoS2 heterostructure,phototransistor,high-sensitive,broad-spectral response

    1. Introduction

    In recent years,the two-dimensional(2D)transition metal dichalcogenides(TMDs)have attracted extensive attention in optoelectronic devices due to their unique structures and excellent photoelectric properties.[1–4]Among TMDs,the MoS2has been extensively employed in phototransistors,and many researches have shown that the MoS2phototransistors have good photodetection performance in the visible region.[3,5]However,the high dark current,slow photoresponse and high power of the MoS2phototransistors limit their further development. So, in order to improve these problems, researchers have made a lot of efforts, such as inserting a perovskite absorption layer,[6]Au nanoparticles or nanoarrays to enhance light absorption,[7–9]decorating different quantum dots (e.g., PbS,[10]MoS2,[11,12]HgTe,[13]) to gain high photoelectric detectivity,and constructing homojunctions and different types of heterostructures (e.g., WSe2/WSe2,[14]PtS2/WSe2,[15]WSe2/Bi2Se3,[16]Cu9S5/PtS2/WSe2,[17]) to improve photoresponse and achieve ultralow power or selfdriven detection,etc.[18–21]

    Among the methods of boosting the properties of photodetector, fabricating the van der Waals (vdW) heterostructures based on the vertical stacking of two 2D materials is a convenient and feasible approach, which can combine the advantages of the two materials, and produce some unusual properties and phenomena.[22]A series of MoS2-based vertical vdW heterostructure photodetectors,such as SnSe2/MoS2,[19]MoTe2/MoS2,[23]MoO3/MoS2,[24]GaSe/MoS2,[25]and PdSe2/MoS2,[20]have exhibited excellent photodetection performance. Recently,as another member of the 2D TMDs family, HfSe2has also demonstrated excellent electronic and photoelectronic properties due to its high carrier mobility and suitable bandgap.[21,26]Furthermore,it has a good band alignment with the MoS2,which will be beneficial for broadening spectral response range and improving the photoresponse sensitivity. However,HfSe2/MoS2heterostructure has not been well fabricated and studied for photodetector,and its photoelectric properties still remain unknown.

    In this paper, we fabricate a back-gated phototransistor based on the vertical HfSe2/MoS2heterostructure. The results indicate that the phototransistor exhibits gate tunable photoresponse and excellent photoelectric performances in a broadband ranging from near-ultraviolet (NUV) to near-infrared(NIR). Especially under zero bias, the device displays remarkable responsivity of 10.2 A/W, and ultralow dark current of 1.22 fA.Therefore,the HfSe2/MoS2heterostructure is an effective configuration for achieving high performance 2D MoS2-based phototransistors.

    2. Experimental details

    Figure 1(a) shows a structure schematic diagram of the HfSe2/MoS2vdW heterostructure phototransistor. The device is mainly composed of multilayers MoS2and HfSe2, SiO2dielectric layer, p+-Si substrate (back-gate electrode), and Cr/Au source and drain electrodes. Figure 1(b) displays the diagram of the preparation processes of the HfSe2/MoS2vdW heterostructure phototransistor.Firstly,the micromechanically exfoliated multilayer MoS2and HfSe2were transferred to heavily-doped p-type silicon substrate with 300 nm thermallygrown SiO2in sequence, then the UV mask lithography process was applied to pattern the source and drain regions. Subsequently,stacked Cr/Au(10 nm/50 nm)was deposited by using thermal evaporation,followed by a traditional lift-off process.Lastly,all the fabricated devices were annealed at 200?C for 30 min in an Ar ambient to reduce the contact resistance.

    The surface morphology and thickness of the HfSe2/MoS2vdW heterostructure were measured by using DI Nanoscope IV atomic force microscope (AFM). The channel size and surface morphology of the heterostructure were also characterized by a metallographic optical microscope. The Raman spectra were obtained from a LabRAM HR spectrometer with a 532 nm laser. The electrical characteristics and photoresponse of the heterostructure were measured with a Keithley 4200-SCS and a CME-OPS1000 tunable monochromatic light source for the illumination in atmospheric environment and electrically-shielded condition at room temperature.

    Fig.1. (a)Schematic view of the HfSe2/MoS2 phototransistor. (b)Diagram of the preparation processes of the HfSe2/MoS2 phototransistor.

    3. Results and discussion

    Figure 2(a)presents the optical image of the HfSe2/MoS2heterostructure. The smooth surface of the transferred 2D materials and the well surface morphology of the stacked heterojunction can be observed. The channel length (L) and width(W)of the phototransistors are measured at 5.9μm and 1.9 μm, respectively. Figure 2(b) shows the AFM image of the HfSe2/MoS2heterostructure. The flat and level of the surface morphology are more clearly observed. The inset shows the thicknesses of multilayer MoS2and HfSe2, which are estimated to be 18 nm(about 30 layers)and 32.6 nm(about 54 layers),respectively.

    Figure 2(c) displays the energy band alignment diagram of the HfSe2/MoS2heterostructure. The bottom of the conduction band, the top of the valence band and the electron work function of HfSe2(MoS2) are approximately?5.2 eV(?4.2 eV),?6.3 eV (?5.4 eV) and?5.5 eV (?4.6 eV),respectively,[27–29]respectively. After HfSe2is in contact with MoS2, a staggered (type II) band alignment is formed. The offsets of the conduction band and the valence band are about 1.0 eV and 0.9 eV,respectively. The Raman spectra of multilayer HfSe2and MoS2as well as the HfSe2/MoS2overlapped region are shown in Fig. 2(d), which are taken at room temperature by using a 532 nm laser. The MoS2has two Ramanactive peaks located at 407 cm?1(A1g) and 382 cm?1(E12g).The interpeak separation or frequency difference between A1gand E12gis 25 cm?1. Compared to the frequency difference of 16 cm?1for single-layer MoS2,[30]our micromechanical stripping MoS2flake should be multilayer MoS2, which is in agreement with the thickness measured by AFM. The HfSe2shows a Raman-active peak located at 198 cm?1(A1g), and lacks Egpeak at 146 cm?1, which indicates that the HfSe2flake is multilayer.[31]All characteristic peaks of both MoS2and HfSe2are observed in the stacked region, implying good formation of a vdW heterojunction.

    Fig.2. (a)Optical image,and(b)AFM image of the HfSe2/MoS2 heterostructure(inset: thicknesses of multilayer MoS2 and HfSe2 measured by AFM).(c)Energy band alignment diagram of the HfSe2/MoS2 heterostructure.(d)Raman spectra of HfSe2,MoS2,and their stacked region.

    Fig.3. (a)Transfer characteristics of the HfSe2/MoS2 phototransistor under dark at Vds=0.5 V,1 V,2 V.The inset is shown on a linear scale.(b) Output characteristics under dark at Vg =0 V and ±3 V. The inset is shown on a semi-logarithmic scale. (c) Transfer characteristic at Vds=0.5 V under dark and different wavelengths with 0.78 mW/cm2. (d)Output characteristics at Vg=0 V and±3 V under dark and 400 nm illumination with 0.78 mW/cm2. The inset shows the output characteristics with the Vds from ?25 mV to 25 mV.

    Figure 3(a)shows the transfer characteristics of the phototransistor under selected bias (Vds) of 0.5 V, 1 V, and 2 V,and the inset is shown on a linear scale. The threshold voltage(Vth)is extracted as?3.1 V from theIds–Vgcurve of the phototransistor atVds=0.5 V by the linear extrapolation method,which is marked in the inset of Fig.3(a). It can be seen from the structure of the device(see Fig.1(a))that the HfSe2/MoS2heterojunction is connected in series with HfSe2and MoS2,so the transfer characteristics of the device are also co-modulated by HfSe2and MoS2nanoflakes. When the back-gate voltage(Vg)is less than theVth(?3.1 V),the channel will be fully depleted and clamped off,resulting in the ultralow drain–source current (Ids). When theVgincreases from?3 V to 10 V, the channel gradually turns on and theIdsincreases sharply, indicating that the device has strong gating control effect. The output characteristics of the device for theVgof?3 V, 0 V and 3 V are shown in Fig. 3(b), and the inset is shown on a semi-logarithmic scale. An obvious gate-modulated rectifying behavior can be observed at theVgof?3 V and 0 V.The rectification factor is about 41 atVg=?3 V and|Vds|=2 V,and decreases to about 13 as theVgdecreases from 3 V to zero.However, forVg=3 V, the device does not display the rectification characteristic due to a large reverse current caused by the conduction of the channel at negative reverse bias.

    Figure 3(c) shows the transfer characteristics of the device under dark and different wavelengths illumination with 0.78 mW/cm2atVds=0.5 V.The significant enhancement of the photocurrent can be observed for the NUV and visible light illumination. It has been reported that both multilayer MoS2and multilayer HfSe2have relatively strong light absorption from NUV to visible region,[3,32–34]which induces an increase of photogenerated carriers in the HfSe2/MoS2heterojunction,resulting in a significant enhancement of the photocurrent.Under the illumination of NIR,there is a slight increase in the photocurrent, which is related to the weak absorption tail of the indirect band gap semiconductors MoS2and HfSe2.[3,35,36]Figure 3(d)displays the output characteristics under dark and 400 nm illumination with 0.78 mW/cm2. In semi-logarithmic coordinate, it can be clearly observed that the HfSe2/MoS2heterostructure has strong photoresponse and ultralow dark current. Under zero bias, forVg=3 V, the dark current is about 3.09 fA and the photocurrent reaches 1.6 nA;while forVg=0 V, the dark current is as low as 1.8 fA and the photocurrent is as high as 0.9 nA;forVg=?3 V,the dark current is further reduced to 1.22 fA,and the light-dark current on/off ratio exceeds 105,indicating that the prepared heterostructure not only has an ultralow dark current, but also exhibits gate tunability for light-dark current. The output characteristics of the device with bias voltage from?25 mV to 25 mV are shown in the inset of Fig. 3(d). Under 400 nm illumination with 0.78 mW/cm2, the photovoltaic characeristics of the device can be observed. The short-circuit current(Isc)and opencircuit voltage (Voc) are 0.9 nA and 15 mV atVg=0 V, respectively, implying that the vertically-stacked HfSe2/MoS2heterostructure can also be applied to self-powered photodetection for the illumination of 400 nm. However, for other wavelengths of light,the photovoltaic effect of the phototransistor is very weak,especially for the illumination of 800 nm and 900 nm,and no photovoltaic effect is observed.

    To further clarify the operation mechanism of the phototransistors based on the vertically-stacked HfSe2/MoS2heterostructure, simplified energy band diagrams are shown in Fig.4. As shown in Fig.4(a), in the absence of applied voltage and illumination, when the Cr/Au electrode is in contact with MoS2, a Schottky contact will be formed between them because the work function of the electrode is higher than that of the MoS2(4.6 eV).[29]On the other hand,the HfSe2has a high work function of 5.5 eV,[27,28]so the electrode will form a perfect ohmic contact with the HfSe2. Moreover, near the HfSe2/MoS2heterojunction contact interface, there is a stable built-in electric field pointing from MoS2to HfSe2. As shown in Fig. 4(b), under illumination, the built-in electric field can drive the photogenerated electrons and holes to drift in the opposite directions, forming a photogenerated current from MoS2to HfSe2and resulting in the generation of photogenerated electric field from HfSe2to MoS2. The direction of the photogenerated electric field is opposite to that of the built-in electric field,which is similar to adding a forward bias to the heterojunction, so the intensity of the built-in electric field is reduced. As a result,the current caused by carrier diffusion is greater than the drift current, thus generating a net forward current.

    Figures 4(c)–4(e)show the schematic diagrams of simplified energy band under a forward bias and different back-gate voltages without illumination. ForVg=0 V,when a forward bias is applied, the built-in potential near the interface of the heterojunction will drop. As a result,only a small number of electrons with relatively high energy will move from MoS2to HfSe2to form a low dark current, as shown in Fig. 4(c).On the contrary,when a reverse bias is applied,the enhanced built-in potential barrier can effectively suppress the reverse current of the phototransistor, resulting in nonlinear rectification characteristic(see Fig.3(b)). If a positive back-gate voltage is applied, the quasi-Fermi level approaches closer to the conduction band, forming a lower Schottky barrier near the source end of the channel (see Fig. 4(d)) as compared to the state atVg=0 V (see Fig. 4(c)),[30]which contributes to the generation of a relatively high dark current (see the inset in Fig. 3(b)). Conversely, if a negative back-gate voltage is applied, the quasi-Fermi level is far away from the conduction band, resulting in a higher Schottky barrier near the source end of the channel (see Fig. 4(e)),[37]which further reduces the dark current (see the inset in Fig. 3(b)). Under illumination,the valence band electrons are excited to the conduction band,thus generating electron-hole pairs in MoS2, the depletion layer and HfSe2, as shown in Fig. 4(f). When a forward bias voltage is applied,the triangular barrier in the heterostructure will be lowered and narrowed,resulting in a large number of electrons to tunnel through the barrier.[16]Furthermore,the surface states of the electrode/MoS2interface can capture photogenerated carriers,which leads to the reduction of the Schottky barrier height.[38,39]Thus,the photogenerated charges can effectively move to the external circuit to generate a high photocurrent.

    Fig.4. Simplified schematic energy band diagrams of the HfSe2/MoS2 phototransistor(a)under open circuit without illumination,(b)under short circuit and illumination,(c)under Vg=0 V and Vds>0 V without illumination,(d)under Vg>0 V and Vds>0 V without illumination,(e)under Vg<0 V and Vds>0 V without illumination,(f)under Vg<0 V,Vds>0 V and illumination.

    Fig. 5. (a) Dependence of photocurrent on power density under 400 nm illumination at Vg =0 V and bias voltages of 0 V, 0.5 V, and 1 V,respectively. The dependence is fitted using Iph ∝Pα. (b)Responsivity(R),and(c)specific detectivity(D?)under different wavelengths with 0.78 mW/cm2 at Vg=0 V and bias voltages of 0 V and 0.5 V,respectively. (d)Dependence of R and D?on the back-gate voltage under 800 nm illumination with 0.78 mW/cm2 at Vds=0.5 V.

    To study the relationship between photocurrent and illumination power, we measured the photocurrent of the phototransistor under 400 nm illumination with different power densities atVg=0 V and bias voltages of 0 V, 0.5 V, and 1 V,respectively,as shown in Fig.5(a). The experimental data can be fitted by the power law ofIph∝Pα, whereαis an exponent andPis the light power density.αis a key parameter to reveal the photocurrent generation mechanism, which can distinguish the photoconductive and photogating effects.[40,41]The fitted values ofαare 0.78, 0.72 and 0.65 atVds=0 V,0.5 V,and 1 V,respectively. For the HfSe2/MoS2heterostructure phototransistor, photoinduced carrier excitation mainly involves photoconductive effect, photovoltaic effect and photogating effect, but its photovoltaic effect is relatively weak(Isc/Voc=0.9 nA/15 mV).Based on the transfer characteristic curves in Fig.3(a),whenVg(0 V)>Vth(–3.1 V),the channel is at on state. Therefore,the value ofα<1 indicates that the photogating effect dominates the optical response.

    The responsivity (R) and specific detectivity (D?) are critical parameters to evaluate the performance of a phototransistor. TheRindicates the photoelectric conversion efficiency of a phototransistor for light, which can be defined asR=Iph/(P·S), whereIphis the generated photocurrent,Pis the incident power density,andSis the effective photosensitive area of the phototransistor. TheD?shows the spectral detection rate of a phototransistor in unit surface area and unit bandwidth. The higherD?means the better sensitivity of the detector. It can be defined byD?=R·S1/2/(2e·Idark)1/2, whereeis the elementary charge andIdarkis the dark current.[25,42]Figures 5(b)and 5(c)show the calculatedRandD?of the phototransistor in the spectral range from 350 nm to 900 nm, respectively. AtVds=0.5 V andVg=0 V,theR(D?)improves from 38.7 A/W(3.79×1013cm·Hz1/2·W?1)to a maximum of 1.42×103A/W (1.39×1015cm·Hz1/2·W?1) with the illumination wavelength from 350 nm to 400 nm, and then reduces to 30.8 mA/W(3.02×1010cm·Hz1/2·W?1)for 900 nm. The change trend is basically consistent with the spectral response of multilayer HfSe2and MoS2.[3,25]In the absence of applied voltage, the tendency of theR(D?)with wavelength is in accordance with that when the bias voltage of 0.5 V is applied,but theR(D?)decreases by more than an order of magnitude as compared to the calculated value atVds=0.5 V for the illumination of the same wavelength. For example,theR(D?)is 10.2 A/W(1.43×1014cm·Hz1/2·W?1)for the 400 nm illumination in the self-powered mode. Furthermore,for the illumination of 800 nm and 900 nm,theRdecreases to 0.71 mA/W and 0.15 mA/W, respectively, which is due to the weak photoelectron conversion of HfSe2and MoS2for the NIR. Although the HfSe2/MoS2heterostructure has relatively low responsivity in the NIR region,D?of the device can still achieve 9.94×109cm·Hz1/2·W?1and 2.08×109cm·Hz1/2·W?1with no external voltage.

    Figure 5(d) illustrates the dependence ofRandD?on the back-gate voltage under illumination of 800 nm with 0.78 mW/cm2atVds=0.5 V.TheRincreases gradually with the increase of the back-gate voltage from?4 V to 5 V,which is consistent with the increasing trend of photocurrent with the back-gate voltage (see Fig. 3(c)). From Fig. 5(d), it can also be seen that theD?gradually tends to a saturation with the increase of the back-gate voltage. It is attributed to the rapid increase of dark current and the saturation of photogenerated current with the increase of the back-gate voltage(see Fig. 3(c)). The above results show that the HfSe2/MoS2heterostructure has an efficient gate tunability for theRandD?,which is especially helpful in improving the sensitivity of the NIR detection for the phototransistor operating in ultralow power consumption.

    Fig.6. (a)Time-dependent photocurrent response of the phototransistor under switched-on/off illumination of 400 nm with 0.78 mW/cm2 at Vg =0 V and selected bias of 0.1 V, 0.5 V, and 1 V. (b) Time-dependent photocurrent response of the phototransistor under switched-on/off illumination of 400 nm for different power densities at Vg=0 V and Vds=0 V.(c)and(d)Rising and falling edges of one-cycle photoresponse under 400 nm illumination with 0.78 mW/cm2 at Vg=0 V and selected bias of 0.5 V and 0 V,respectively.

    The transient photoresponse is also a crucial performance parameter for phototransistors. Figure 6(a) illustrates timedependent photoresponse under switched-on/off illumination of 400 nm with 0.78 mW/cm2atVg=0 V and bias of 0.1 V,0.5 V, and 1 V, respectively. A nearly identical response can be observed under periodically turning on and off light at each bias, demonstrating that the device has good stability and repeatability. Figure 6(b)exhibits obvious time-dependent photoresponse under switched-on/off illumination of 400 nm for different power densities without bias and the back-gate voltages.From Figs.6(a)and 6(b),it can also be seen that the generated photocurrent increases with increasing bias voltage and incident power density. Figures 6(c)and 6(d)show one entire on/off cycle of time-dependent photoresponse under 400 nm illumination with 0.78 mW/cm2atVg=0 V and selected bias of 0.5 V and 0 V,respectively. According to the time when theIdsincreases from 20% to 80% of the peakIdsand decreases from 80% to 20%, the corresponding response/recovery time of the phototransistor is 6.5 s/9 s (Fig. 6(c)) and 3.5 s/4 s(Fig. 6(d)), respectively. It shows that the time-dependent photoresponse of the phototransistor is relatively slow, but it is acceptable. The comparatively slow photoresponse may be mainly caused by the trapping effect and persistent photoconductivity effect.[43,44]When the phototransistor is illuminated, the photogenerated holes are captured in the traps located in thick HfSe2and MoS2,as well as at the interface of the two materials and maintained for a rather long time,which results in a long lifetime of the excited electrons in the conducting channel. Compared with zero bias,more electrons are attracted from the source into MoS2when a forward bias is applied,and the channel current eventually takes longer to increase to saturation.However,when the illumination is absent,a large number of induced electrons cannot quickly recombine with the trapped holes. Therefore,the response/recovery time atVds=0.5 V is greater than that atVds=0 V.A similar result has also been observed in photovoltaic photodetectors based on MoTe2/MoS2vertical heterojunctions.[23]

    To demonstrate the performance improvement achieved by the HfSe2/MoS2heterojunction compared to the stateof-the-art 2D material counterparts, we summarize the key figures-of-merit, including responsivity, specific detectivity,and response/recovery time, as listed in Table 1. It is obvious that the devices we fabricated exhibit considerable good responsivity and specific detectivity.

    Table 1. Comparisons of the performance of phototectors based on related materials.

    4. Conclusions

    We successfully fabricate the HfSe2/MoS2heterostructure phototransistor based on the back-gate structure by the micromechanical exfoliation method. The device exhibits excellent photoelectric performance in a wide broadband ranging from NUV to NIR with/without external bias voltage and has an efficient gate tunability for light-dark current with on/off ratio above 105. At a bias of 0.5 V, it exhibits a high responsivity of 1.42×103A/W and high specific detectivity of 1.39×1015cm·Hz1/2·W?1under 400 nm illumination of 0.78 mW/cm2. Moreover,the phototransistor can operate under zero bias with ultralow dark current of 1.22 fA,remarkable responsivity of 10.2 A/W,relatively high specific detectivity of 1.43×1014cm·Hz1/2·W?1, and acceptable response/recovery time of 3.5 s/4 s. These results should be attributed to the fact that the HfSe2/MoS2heterostructure not only improves the broadband photoresponse of the phototransistor but also greatly enhances its sensitivity. Therefore, the HfSe2/MoS2heterostructure phototransistor has potential applications in the fields of wide-spectrum response,self-driven photoelectric devices,and high sensitivity detection.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 51702245) and the Fundamental Research Funds for the Central Universities (Grant No.WUT2021III065JC).

    猜你喜歡
    鳳翔
    鄉(xiāng)村主力“回流”——鳳翔區(qū)農(nóng)民“棄城返鄉(xiāng)”現(xiàn)象觀察
    Optically-controlled resistive switching effects of CdS nanowire memtransistor?
    宋金時(shí)期陜西鳳翔府榷場(chǎng)位置略考
    廣東省清遠(yuǎn)市清城區(qū)鳳翔小學(xué)
    定西市安定區(qū)鳳翔幼兒園
    甘肅教育(2020年12期)2020-04-13 06:24:16
    鳳翔探索“提醒制”
    讓“摔不爛”的鳳翔泥塑成為帶動(dòng)發(fā)展的“金子”——記鳳翔泥塑國(guó)家級(jí)代表性傳承人胡新明
    村“兩委”換屆“十嚴(yán)禁”
    鳳翔 十項(xiàng)措施釋放改革紅利
    淺析鳳翔泥塑對(duì)現(xiàn)代家居產(chǎn)品設(shè)計(jì)的啟示
    色播在线永久视频| 一本大道久久a久久精品| 国产亚洲精品久久久久5区| 国产又爽黄色视频| 亚洲av电影在线进入| 亚洲午夜精品一区,二区,三区| 麻豆av在线久日| 午夜福利在线在线| 真人一进一出gif抽搐免费| 久久欧美精品欧美久久欧美| 色尼玛亚洲综合影院| 国产精品自产拍在线观看55亚洲| 女性被躁到高潮视频| 精品欧美国产一区二区三| 村上凉子中文字幕在线| 一级毛片精品| 欧美在线一区亚洲| 国产在线观看jvid| 久久久久国产精品人妻aⅴ院| 国产成人影院久久av| 精品国产亚洲在线| 好看av亚洲va欧美ⅴa在| 久久青草综合色| 夜夜躁狠狠躁天天躁| 欧美日韩亚洲国产一区二区在线观看| 黄色片一级片一级黄色片| 嫁个100分男人电影在线观看| 日日干狠狠操夜夜爽| 香蕉丝袜av| 女生性感内裤真人,穿戴方法视频| 国产真人三级小视频在线观看| 亚洲中文字幕日韩| 亚洲va日本ⅴa欧美va伊人久久| 国产又黄又爽又无遮挡在线| 免费看日本二区| 国产欧美日韩精品亚洲av| 日韩成人在线观看一区二区三区| 又紧又爽又黄一区二区| 欧美乱码精品一区二区三区| 怎么达到女性高潮| 听说在线观看完整版免费高清| 久久天躁狠狠躁夜夜2o2o| 一级a爱片免费观看的视频| 亚洲专区字幕在线| 中文在线观看免费www的网站 | 亚洲电影在线观看av| 少妇熟女aⅴ在线视频| 淫妇啪啪啪对白视频| 久久久久国产一级毛片高清牌| 国产亚洲av嫩草精品影院| 亚洲黑人精品在线| 国产高清激情床上av| 国产精品久久久av美女十八| 欧美三级亚洲精品| 女性被躁到高潮视频| 黄色毛片三级朝国网站| 观看免费一级毛片| 久久久国产成人精品二区| 人人妻人人澡人人看| 欧美日韩一级在线毛片| 啪啪无遮挡十八禁网站| 男女之事视频高清在线观看| 日韩视频一区二区在线观看| 免费高清视频大片| 国产又色又爽无遮挡免费看| 久久人人精品亚洲av| 国产精品综合久久久久久久免费| 婷婷亚洲欧美| 国产精品野战在线观看| 久久 成人 亚洲| 免费在线观看日本一区| 成人欧美大片| www.熟女人妻精品国产| 日韩欧美在线二视频| 欧美国产日韩亚洲一区| 婷婷丁香在线五月| 亚洲第一欧美日韩一区二区三区| 别揉我奶头~嗯~啊~动态视频| 两性夫妻黄色片| 1024视频免费在线观看| 1024视频免费在线观看| 一本久久中文字幕| 欧美色视频一区免费| 午夜精品久久久久久毛片777| 久久午夜亚洲精品久久| 午夜精品在线福利| 好男人在线观看高清免费视频 | 国产在线精品亚洲第一网站| 国产v大片淫在线免费观看| 精品欧美一区二区三区在线| 亚洲第一欧美日韩一区二区三区| 国产激情久久老熟女| 成人亚洲精品av一区二区| 亚洲国产中文字幕在线视频| 成人国语在线视频| 91麻豆av在线| 久久久国产成人精品二区| 成年免费大片在线观看| 精品无人区乱码1区二区| 亚洲成人久久爱视频| 久久久久国内视频| 给我免费播放毛片高清在线观看| 日韩大码丰满熟妇| 啪啪无遮挡十八禁网站| 高清毛片免费观看视频网站| 一本一本综合久久| 国产成人影院久久av| 精品久久久久久久末码| 在线天堂中文资源库| 久久精品影院6| 亚洲无线在线观看| 日韩视频一区二区在线观看| 亚洲av第一区精品v没综合| 久久中文字幕一级| 久久中文字幕人妻熟女| 免费观看人在逋| 欧美在线一区亚洲| 青草久久国产| 99国产综合亚洲精品| 亚洲精品国产精品久久久不卡| 色综合亚洲欧美另类图片| 国产精品久久久久久精品电影 | 久久精品91无色码中文字幕| 高清毛片免费观看视频网站| 18禁黄网站禁片午夜丰满| 国产麻豆成人av免费视频| www国产在线视频色| 法律面前人人平等表现在哪些方面| 最新美女视频免费是黄的| 啦啦啦韩国在线观看视频| 亚洲国产欧美网| 日本三级黄在线观看| 91大片在线观看| 69av精品久久久久久| 51午夜福利影视在线观看| 亚洲av熟女| 久久午夜亚洲精品久久| 精品无人区乱码1区二区| 亚洲男人的天堂狠狠| 国产精品 欧美亚洲| 一本精品99久久精品77| 看免费av毛片| 国产精品乱码一区二三区的特点| 国产午夜福利久久久久久| 久久欧美精品欧美久久欧美| 精华霜和精华液先用哪个| 少妇被粗大的猛进出69影院| 精品乱码久久久久久99久播| 免费高清在线观看日韩| 免费人成视频x8x8入口观看| 99在线视频只有这里精品首页| 欧美黄色淫秽网站| 日韩欧美在线二视频| 丁香六月欧美| 日韩精品中文字幕看吧| 中文亚洲av片在线观看爽| 日韩精品青青久久久久久| 国产主播在线观看一区二区| АⅤ资源中文在线天堂| 亚洲五月天丁香| 国产色视频综合| 婷婷丁香在线五月| 免费在线观看日本一区| 婷婷亚洲欧美| 精品人妻1区二区| 日韩欧美三级三区| 亚洲av熟女| 桃红色精品国产亚洲av| 国产成人av教育| 久久午夜综合久久蜜桃| 757午夜福利合集在线观看| 日本黄色视频三级网站网址| 精品人妻1区二区| 1024香蕉在线观看| 叶爱在线成人免费视频播放| 国产成人影院久久av| 91麻豆av在线| 麻豆一二三区av精品| 亚洲精品在线美女| 精品久久久久久,| 久久久久久大精品| 一边摸一边抽搐一进一小说| 真人一进一出gif抽搐免费| 成年女人毛片免费观看观看9| 50天的宝宝边吃奶边哭怎么回事| 欧美 亚洲 国产 日韩一| 欧美亚洲日本最大视频资源| 成人三级黄色视频| 成人亚洲精品一区在线观看| 欧美成人一区二区免费高清观看 | 久久婷婷成人综合色麻豆| 男人舔奶头视频| 日本 av在线| 免费高清在线观看日韩| 亚洲色图 男人天堂 中文字幕| 成人三级做爰电影| 欧美一级a爱片免费观看看 | 岛国在线观看网站| 在线观看www视频免费| 在线观看一区二区三区| 99国产综合亚洲精品| 色播亚洲综合网| 欧美色欧美亚洲另类二区| 精品一区二区三区av网在线观看| 欧美日韩精品网址| 婷婷精品国产亚洲av在线| 丰满的人妻完整版| 搡老妇女老女人老熟妇| 1024手机看黄色片| svipshipincom国产片| 精品国内亚洲2022精品成人| 国产成+人综合+亚洲专区| 国产精品亚洲一级av第二区| 亚洲av成人不卡在线观看播放网| www日本黄色视频网| 90打野战视频偷拍视频| 给我免费播放毛片高清在线观看| 久久精品国产99精品国产亚洲性色| 黄片播放在线免费| 免费在线观看视频国产中文字幕亚洲| 每晚都被弄得嗷嗷叫到高潮| 波多野结衣高清作品| 久久天躁狠狠躁夜夜2o2o| 国产97色在线日韩免费| 亚洲在线自拍视频| 婷婷亚洲欧美| 日韩成人在线观看一区二区三区| 国产精品九九99| 色精品久久人妻99蜜桃| 亚洲成a人片在线一区二区| 人人澡人人妻人| 黑人操中国人逼视频| 亚洲中文字幕一区二区三区有码在线看 | 免费一级毛片在线播放高清视频| 国语自产精品视频在线第100页| 韩国精品一区二区三区| 亚洲精品久久成人aⅴ小说| 免费女性裸体啪啪无遮挡网站| 精品熟女少妇八av免费久了| 成人18禁在线播放| 少妇被粗大的猛进出69影院| 欧美黑人精品巨大| 哪里可以看免费的av片| 视频在线观看一区二区三区| 亚洲一区高清亚洲精品| 黄色毛片三级朝国网站| 日本黄色视频三级网站网址| 此物有八面人人有两片| 99在线人妻在线中文字幕| 桃红色精品国产亚洲av| 老司机午夜福利在线观看视频| 国产成人精品久久二区二区免费| 精品一区二区三区视频在线观看免费| 国产av一区二区精品久久| 精品国产乱码久久久久久男人| 久99久视频精品免费| 级片在线观看| 欧美不卡视频在线免费观看 | 成人av一区二区三区在线看| 亚洲,欧美精品.| 国产成人精品久久二区二区91| 精品日产1卡2卡| 欧美一级a爱片免费观看看 | 亚洲国产高清在线一区二区三 | 亚洲性夜色夜夜综合| 国产真实乱freesex| 久久人妻av系列| 精品福利观看| 精品国产一区二区三区四区第35| 香蕉丝袜av| 欧美一级毛片孕妇| 中文字幕高清在线视频| 男人舔女人的私密视频| 男女床上黄色一级片免费看| 日韩大码丰满熟妇| 法律面前人人平等表现在哪些方面| 欧美精品啪啪一区二区三区| 12—13女人毛片做爰片一| 免费在线观看完整版高清| 午夜福利视频1000在线观看| 亚洲男人的天堂狠狠| 亚洲色图av天堂| 美女午夜性视频免费| 日韩视频一区二区在线观看| 可以在线观看的亚洲视频| 久久青草综合色| ponron亚洲| 国产欧美日韩精品亚洲av| 欧美在线一区亚洲| 法律面前人人平等表现在哪些方面| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美一区视频在线观看| 两个人视频免费观看高清| 首页视频小说图片口味搜索| 亚洲国产欧美网| 波多野结衣高清无吗| videosex国产| 在线av久久热| 岛国在线观看网站| 男女下面进入的视频免费午夜 | 黄片大片在线免费观看| 最新美女视频免费是黄的| 少妇 在线观看| 在线视频色国产色| 久久久久久国产a免费观看| 两性夫妻黄色片| 中文字幕久久专区| 伊人久久大香线蕉亚洲五| 亚洲人成77777在线视频| 免费在线观看亚洲国产| 香蕉久久夜色| 欧美又色又爽又黄视频| 日韩三级视频一区二区三区| 久久久久国内视频| 亚洲第一欧美日韩一区二区三区| 岛国在线观看网站| 国产高清激情床上av| 亚洲五月婷婷丁香| 最近最新中文字幕大全电影3 | 精华霜和精华液先用哪个| 日韩视频一区二区在线观看| 日韩一卡2卡3卡4卡2021年| 黑人欧美特级aaaaaa片| 亚洲熟女毛片儿| 亚洲精品粉嫩美女一区| 欧美日韩福利视频一区二区| 怎么达到女性高潮| 夜夜看夜夜爽夜夜摸| 岛国视频午夜一区免费看| 麻豆国产av国片精品| 热re99久久国产66热| 精品电影一区二区在线| 深夜精品福利| 青草久久国产| 亚洲精品av麻豆狂野| 国产三级在线视频| 久久中文字幕一级| 三级毛片av免费| 国产伦一二天堂av在线观看| 亚洲欧美日韩无卡精品| 亚洲狠狠婷婷综合久久图片| 久9热在线精品视频| 亚洲av中文字字幕乱码综合 | 国产欧美日韩一区二区精品| 看片在线看免费视频| 无遮挡黄片免费观看| 亚洲精品色激情综合| 亚洲国产看品久久| 国产97色在线日韩免费| 亚洲片人在线观看| 老司机午夜福利在线观看视频| 国产一区二区三区视频了| 免费看a级黄色片| 精品国产乱码久久久久久男人| www.熟女人妻精品国产| 国产高清视频在线播放一区| 免费高清在线观看日韩| 成熟少妇高潮喷水视频| 日本黄色视频三级网站网址| 国产精品二区激情视频| 99在线视频只有这里精品首页| 97超级碰碰碰精品色视频在线观看| 又黄又粗又硬又大视频| 日韩精品免费视频一区二区三区| 18美女黄网站色大片免费观看| 黄片播放在线免费| 亚洲 欧美 日韩 在线 免费| 女生性感内裤真人,穿戴方法视频| 国内精品久久久久久久电影| 91在线观看av| 免费av毛片视频| 国产国语露脸激情在线看| 一级毛片高清免费大全| 亚洲国产精品999在线| 亚洲aⅴ乱码一区二区在线播放 | 国产精品久久电影中文字幕| 日韩中文字幕欧美一区二区| 久久久久久大精品| 欧美另类亚洲清纯唯美| 悠悠久久av| 日本a在线网址| 午夜久久久在线观看| 亚洲三区欧美一区| 亚洲av日韩精品久久久久久密| 精品午夜福利视频在线观看一区| 又黄又爽又免费观看的视频| 久久天堂一区二区三区四区| 久久久精品国产亚洲av高清涩受| 777久久人妻少妇嫩草av网站| 波多野结衣高清作品| 特大巨黑吊av在线直播 | 欧美zozozo另类| 欧美一级a爱片免费观看看 | 99国产极品粉嫩在线观看| 欧美zozozo另类| 午夜免费鲁丝| 亚洲欧美日韩无卡精品| av超薄肉色丝袜交足视频| 怎么达到女性高潮| 精品国产一区二区三区四区第35| 中亚洲国语对白在线视频| 中文字幕av电影在线播放| av天堂在线播放| 最近最新免费中文字幕在线| 国产激情欧美一区二区| 丁香欧美五月| 欧美成人一区二区免费高清观看 | 99在线人妻在线中文字幕| 国产成人欧美在线观看| 精品国产亚洲在线| 嫩草影院精品99| 精品一区二区三区av网在线观看| 亚洲自拍偷在线| 欧美人与性动交α欧美精品济南到| 日韩国内少妇激情av| 免费高清视频大片| 特大巨黑吊av在线直播 | 两性夫妻黄色片| 欧美乱色亚洲激情| 国产91精品成人一区二区三区| 99久久精品国产亚洲精品| 成年版毛片免费区| 国产精品精品国产色婷婷| 国产又黄又爽又无遮挡在线| 少妇粗大呻吟视频| 午夜亚洲福利在线播放| 啦啦啦观看免费观看视频高清| 丁香欧美五月| 男人操女人黄网站| 一本综合久久免费| www.999成人在线观看| 国内精品久久久久久久电影| 老司机在亚洲福利影院| 成人亚洲精品一区在线观看| 特大巨黑吊av在线直播 | 亚洲成av人片免费观看| 国产伦在线观看视频一区| 国产精品免费一区二区三区在线| 午夜久久久久精精品| 久久国产亚洲av麻豆专区| 国产高清激情床上av| 国产视频内射| 色哟哟哟哟哟哟| 日本a在线网址| 亚洲国产欧美网| 亚洲第一青青草原| 成人三级做爰电影| 久久欧美精品欧美久久欧美| 午夜免费激情av| 中文字幕精品免费在线观看视频| 国产成年人精品一区二区| 国产单亲对白刺激| 国产一区二区三区视频了| 欧美在线一区亚洲| 9191精品国产免费久久| 亚洲av美国av| 精品日产1卡2卡| www.自偷自拍.com| 成人手机av| 亚洲精品一卡2卡三卡4卡5卡| av在线天堂中文字幕| 91大片在线观看| 巨乳人妻的诱惑在线观看| 国产麻豆成人av免费视频| 在线观看免费视频日本深夜| 免费观看人在逋| 国产精品电影一区二区三区| 少妇被粗大的猛进出69影院| xxxwww97欧美| 日本黄色视频三级网站网址| 99久久无色码亚洲精品果冻| 香蕉久久夜色| 黄色视频不卡| 一本精品99久久精品77| 男人舔女人下体高潮全视频| 欧美色欧美亚洲另类二区| 少妇粗大呻吟视频| 这个男人来自地球电影免费观看| 中文字幕精品免费在线观看视频| 变态另类丝袜制服| 九色国产91popny在线| 久久亚洲精品不卡| 99久久精品国产亚洲精品| 欧美亚洲日本最大视频资源| 欧美成人一区二区免费高清观看 | 满18在线观看网站| 很黄的视频免费| 悠悠久久av| 免费观看人在逋| 精品久久久久久久人妻蜜臀av| 黄片小视频在线播放| 久久伊人香网站| 国产成人系列免费观看| 黄色片一级片一级黄色片| 动漫黄色视频在线观看| 99久久无色码亚洲精品果冻| 无限看片的www在线观看| 美女高潮到喷水免费观看| 欧美大码av| 黄色女人牲交| 精品日产1卡2卡| 欧美av亚洲av综合av国产av| 午夜老司机福利片| 老司机靠b影院| 两性夫妻黄色片| 国产视频一区二区在线看| 99久久无色码亚洲精品果冻| 亚洲自偷自拍图片 自拍| 国产精品日韩av在线免费观看| 久久人妻av系列| av欧美777| 国产亚洲欧美精品永久| 久久国产乱子伦精品免费另类| 亚洲欧美激情综合另类| ponron亚洲| 国产熟女午夜一区二区三区| 亚洲熟女毛片儿| 在线观看午夜福利视频| 曰老女人黄片| 国产黄色小视频在线观看| 91在线观看av| 亚洲狠狠婷婷综合久久图片| 久久 成人 亚洲| 久久精品影院6| 淫妇啪啪啪对白视频| 黄片小视频在线播放| 亚洲天堂国产精品一区在线| 国内揄拍国产精品人妻在线 | 欧美一级a爱片免费观看看 | 亚洲熟妇中文字幕五十中出| 欧美久久黑人一区二区| 在线永久观看黄色视频| 法律面前人人平等表现在哪些方面| 男人舔女人下体高潮全视频| 成人国语在线视频| 午夜免费成人在线视频| 一进一出抽搐动态| 午夜视频精品福利| 香蕉国产在线看| 黑人巨大精品欧美一区二区mp4| 母亲3免费完整高清在线观看| 色老头精品视频在线观看| 一夜夜www| 欧美性长视频在线观看| 18禁美女被吸乳视频| 美女国产高潮福利片在线看| 久久精品国产亚洲av高清一级| 黑人操中国人逼视频| 极品教师在线免费播放| 韩国av一区二区三区四区| 午夜福利免费观看在线| 日日夜夜操网爽| 亚洲中文av在线| 真人做人爱边吃奶动态| a级毛片a级免费在线| 久久青草综合色| 欧美黄色片欧美黄色片| 观看免费一级毛片| 国产精品免费一区二区三区在线| 欧美大码av| 精品乱码久久久久久99久播| 国产成人av激情在线播放| 国产精品一区二区三区四区久久 | 国产精品一区二区精品视频观看| 欧美zozozo另类| 757午夜福利合集在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产伦在线观看视频一区| 国产亚洲精品久久久久5区| 亚洲最大成人中文| 免费人成视频x8x8入口观看| av免费在线观看网站| 18美女黄网站色大片免费观看| 精品不卡国产一区二区三区| 黄片大片在线免费观看| 999久久久精品免费观看国产| 一区二区三区精品91| 老司机靠b影院| 欧美日韩一级在线毛片| 精品电影一区二区在线| 无人区码免费观看不卡| 国产三级在线视频| 中出人妻视频一区二区| 成人三级黄色视频| 精品久久久久久成人av| 久久精品国产亚洲av香蕉五月| 高清在线国产一区| 欧美黄色片欧美黄色片| 啦啦啦观看免费观看视频高清| 国产亚洲欧美在线一区二区| 亚洲中文日韩欧美视频| 极品教师在线免费播放| 超碰成人久久| 99久久无色码亚洲精品果冻| 女同久久另类99精品国产91| 制服诱惑二区| 日韩精品青青久久久久久| 国产97色在线日韩免费| 天天躁狠狠躁夜夜躁狠狠躁| 色综合欧美亚洲国产小说| 久久婷婷人人爽人人干人人爱| 一本精品99久久精品77| 亚洲国产欧洲综合997久久, | 亚洲精品美女久久久久99蜜臀| 日日爽夜夜爽网站| 国产精品精品国产色婷婷| 日韩国内少妇激情av| 欧美黑人巨大hd| 精品国产超薄肉色丝袜足j| 在线观看免费午夜福利视频| 欧美日本亚洲视频在线播放| 欧美另类亚洲清纯唯美| 亚洲成人国产一区在线观看| 亚洲精品av麻豆狂野| 欧美日韩亚洲综合一区二区三区_|