• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-sensitive phototransistor based on vertical HfSe2/MoS2 heterostructure with broad-spectral response

    2022-12-28 09:55:28WenDeng鄧文LiShengWang汪禮勝JiaNingLiu劉嘉寧TaoXiang相韜andFengXiangChen陳鳳翔
    Chinese Physics B 2022年12期
    關(guān)鍵詞:鳳翔

    Wen Deng(鄧文), Li-Sheng Wang(汪禮勝), Jia-Ning Liu(劉嘉寧),Tao Xiang(相韜), and Feng-Xiang Chen(陳鳳翔)

    Department of Physics Science and Technology,School of Science,Wuhan University of Technology,Wuhan 430070,China

    Keywords: HfSe2/MoS2 heterostructure,phototransistor,high-sensitive,broad-spectral response

    1. Introduction

    In recent years,the two-dimensional(2D)transition metal dichalcogenides(TMDs)have attracted extensive attention in optoelectronic devices due to their unique structures and excellent photoelectric properties.[1–4]Among TMDs,the MoS2has been extensively employed in phototransistors,and many researches have shown that the MoS2phototransistors have good photodetection performance in the visible region.[3,5]However,the high dark current,slow photoresponse and high power of the MoS2phototransistors limit their further development. So, in order to improve these problems, researchers have made a lot of efforts, such as inserting a perovskite absorption layer,[6]Au nanoparticles or nanoarrays to enhance light absorption,[7–9]decorating different quantum dots (e.g., PbS,[10]MoS2,[11,12]HgTe,[13]) to gain high photoelectric detectivity,and constructing homojunctions and different types of heterostructures (e.g., WSe2/WSe2,[14]PtS2/WSe2,[15]WSe2/Bi2Se3,[16]Cu9S5/PtS2/WSe2,[17]) to improve photoresponse and achieve ultralow power or selfdriven detection,etc.[18–21]

    Among the methods of boosting the properties of photodetector, fabricating the van der Waals (vdW) heterostructures based on the vertical stacking of two 2D materials is a convenient and feasible approach, which can combine the advantages of the two materials, and produce some unusual properties and phenomena.[22]A series of MoS2-based vertical vdW heterostructure photodetectors,such as SnSe2/MoS2,[19]MoTe2/MoS2,[23]MoO3/MoS2,[24]GaSe/MoS2,[25]and PdSe2/MoS2,[20]have exhibited excellent photodetection performance. Recently,as another member of the 2D TMDs family, HfSe2has also demonstrated excellent electronic and photoelectronic properties due to its high carrier mobility and suitable bandgap.[21,26]Furthermore,it has a good band alignment with the MoS2,which will be beneficial for broadening spectral response range and improving the photoresponse sensitivity. However,HfSe2/MoS2heterostructure has not been well fabricated and studied for photodetector,and its photoelectric properties still remain unknown.

    In this paper, we fabricate a back-gated phototransistor based on the vertical HfSe2/MoS2heterostructure. The results indicate that the phototransistor exhibits gate tunable photoresponse and excellent photoelectric performances in a broadband ranging from near-ultraviolet (NUV) to near-infrared(NIR). Especially under zero bias, the device displays remarkable responsivity of 10.2 A/W, and ultralow dark current of 1.22 fA.Therefore,the HfSe2/MoS2heterostructure is an effective configuration for achieving high performance 2D MoS2-based phototransistors.

    2. Experimental details

    Figure 1(a) shows a structure schematic diagram of the HfSe2/MoS2vdW heterostructure phototransistor. The device is mainly composed of multilayers MoS2and HfSe2, SiO2dielectric layer, p+-Si substrate (back-gate electrode), and Cr/Au source and drain electrodes. Figure 1(b) displays the diagram of the preparation processes of the HfSe2/MoS2vdW heterostructure phototransistor.Firstly,the micromechanically exfoliated multilayer MoS2and HfSe2were transferred to heavily-doped p-type silicon substrate with 300 nm thermallygrown SiO2in sequence, then the UV mask lithography process was applied to pattern the source and drain regions. Subsequently,stacked Cr/Au(10 nm/50 nm)was deposited by using thermal evaporation,followed by a traditional lift-off process.Lastly,all the fabricated devices were annealed at 200?C for 30 min in an Ar ambient to reduce the contact resistance.

    The surface morphology and thickness of the HfSe2/MoS2vdW heterostructure were measured by using DI Nanoscope IV atomic force microscope (AFM). The channel size and surface morphology of the heterostructure were also characterized by a metallographic optical microscope. The Raman spectra were obtained from a LabRAM HR spectrometer with a 532 nm laser. The electrical characteristics and photoresponse of the heterostructure were measured with a Keithley 4200-SCS and a CME-OPS1000 tunable monochromatic light source for the illumination in atmospheric environment and electrically-shielded condition at room temperature.

    Fig.1. (a)Schematic view of the HfSe2/MoS2 phototransistor. (b)Diagram of the preparation processes of the HfSe2/MoS2 phototransistor.

    3. Results and discussion

    Figure 2(a)presents the optical image of the HfSe2/MoS2heterostructure. The smooth surface of the transferred 2D materials and the well surface morphology of the stacked heterojunction can be observed. The channel length (L) and width(W)of the phototransistors are measured at 5.9μm and 1.9 μm, respectively. Figure 2(b) shows the AFM image of the HfSe2/MoS2heterostructure. The flat and level of the surface morphology are more clearly observed. The inset shows the thicknesses of multilayer MoS2and HfSe2, which are estimated to be 18 nm(about 30 layers)and 32.6 nm(about 54 layers),respectively.

    Figure 2(c) displays the energy band alignment diagram of the HfSe2/MoS2heterostructure. The bottom of the conduction band, the top of the valence band and the electron work function of HfSe2(MoS2) are approximately?5.2 eV(?4.2 eV),?6.3 eV (?5.4 eV) and?5.5 eV (?4.6 eV),respectively,[27–29]respectively. After HfSe2is in contact with MoS2, a staggered (type II) band alignment is formed. The offsets of the conduction band and the valence band are about 1.0 eV and 0.9 eV,respectively. The Raman spectra of multilayer HfSe2and MoS2as well as the HfSe2/MoS2overlapped region are shown in Fig. 2(d), which are taken at room temperature by using a 532 nm laser. The MoS2has two Ramanactive peaks located at 407 cm?1(A1g) and 382 cm?1(E12g).The interpeak separation or frequency difference between A1gand E12gis 25 cm?1. Compared to the frequency difference of 16 cm?1for single-layer MoS2,[30]our micromechanical stripping MoS2flake should be multilayer MoS2, which is in agreement with the thickness measured by AFM. The HfSe2shows a Raman-active peak located at 198 cm?1(A1g), and lacks Egpeak at 146 cm?1, which indicates that the HfSe2flake is multilayer.[31]All characteristic peaks of both MoS2and HfSe2are observed in the stacked region, implying good formation of a vdW heterojunction.

    Fig.2. (a)Optical image,and(b)AFM image of the HfSe2/MoS2 heterostructure(inset: thicknesses of multilayer MoS2 and HfSe2 measured by AFM).(c)Energy band alignment diagram of the HfSe2/MoS2 heterostructure.(d)Raman spectra of HfSe2,MoS2,and their stacked region.

    Fig.3. (a)Transfer characteristics of the HfSe2/MoS2 phototransistor under dark at Vds=0.5 V,1 V,2 V.The inset is shown on a linear scale.(b) Output characteristics under dark at Vg =0 V and ±3 V. The inset is shown on a semi-logarithmic scale. (c) Transfer characteristic at Vds=0.5 V under dark and different wavelengths with 0.78 mW/cm2. (d)Output characteristics at Vg=0 V and±3 V under dark and 400 nm illumination with 0.78 mW/cm2. The inset shows the output characteristics with the Vds from ?25 mV to 25 mV.

    Figure 3(a)shows the transfer characteristics of the phototransistor under selected bias (Vds) of 0.5 V, 1 V, and 2 V,and the inset is shown on a linear scale. The threshold voltage(Vth)is extracted as?3.1 V from theIds–Vgcurve of the phototransistor atVds=0.5 V by the linear extrapolation method,which is marked in the inset of Fig.3(a). It can be seen from the structure of the device(see Fig.1(a))that the HfSe2/MoS2heterojunction is connected in series with HfSe2and MoS2,so the transfer characteristics of the device are also co-modulated by HfSe2and MoS2nanoflakes. When the back-gate voltage(Vg)is less than theVth(?3.1 V),the channel will be fully depleted and clamped off,resulting in the ultralow drain–source current (Ids). When theVgincreases from?3 V to 10 V, the channel gradually turns on and theIdsincreases sharply, indicating that the device has strong gating control effect. The output characteristics of the device for theVgof?3 V, 0 V and 3 V are shown in Fig. 3(b), and the inset is shown on a semi-logarithmic scale. An obvious gate-modulated rectifying behavior can be observed at theVgof?3 V and 0 V.The rectification factor is about 41 atVg=?3 V and|Vds|=2 V,and decreases to about 13 as theVgdecreases from 3 V to zero.However, forVg=3 V, the device does not display the rectification characteristic due to a large reverse current caused by the conduction of the channel at negative reverse bias.

    Figure 3(c) shows the transfer characteristics of the device under dark and different wavelengths illumination with 0.78 mW/cm2atVds=0.5 V.The significant enhancement of the photocurrent can be observed for the NUV and visible light illumination. It has been reported that both multilayer MoS2and multilayer HfSe2have relatively strong light absorption from NUV to visible region,[3,32–34]which induces an increase of photogenerated carriers in the HfSe2/MoS2heterojunction,resulting in a significant enhancement of the photocurrent.Under the illumination of NIR,there is a slight increase in the photocurrent, which is related to the weak absorption tail of the indirect band gap semiconductors MoS2and HfSe2.[3,35,36]Figure 3(d)displays the output characteristics under dark and 400 nm illumination with 0.78 mW/cm2. In semi-logarithmic coordinate, it can be clearly observed that the HfSe2/MoS2heterostructure has strong photoresponse and ultralow dark current. Under zero bias, forVg=3 V, the dark current is about 3.09 fA and the photocurrent reaches 1.6 nA;while forVg=0 V, the dark current is as low as 1.8 fA and the photocurrent is as high as 0.9 nA;forVg=?3 V,the dark current is further reduced to 1.22 fA,and the light-dark current on/off ratio exceeds 105,indicating that the prepared heterostructure not only has an ultralow dark current, but also exhibits gate tunability for light-dark current. The output characteristics of the device with bias voltage from?25 mV to 25 mV are shown in the inset of Fig. 3(d). Under 400 nm illumination with 0.78 mW/cm2, the photovoltaic characeristics of the device can be observed. The short-circuit current(Isc)and opencircuit voltage (Voc) are 0.9 nA and 15 mV atVg=0 V, respectively, implying that the vertically-stacked HfSe2/MoS2heterostructure can also be applied to self-powered photodetection for the illumination of 400 nm. However, for other wavelengths of light,the photovoltaic effect of the phototransistor is very weak,especially for the illumination of 800 nm and 900 nm,and no photovoltaic effect is observed.

    To further clarify the operation mechanism of the phototransistors based on the vertically-stacked HfSe2/MoS2heterostructure, simplified energy band diagrams are shown in Fig.4. As shown in Fig.4(a), in the absence of applied voltage and illumination, when the Cr/Au electrode is in contact with MoS2, a Schottky contact will be formed between them because the work function of the electrode is higher than that of the MoS2(4.6 eV).[29]On the other hand,the HfSe2has a high work function of 5.5 eV,[27,28]so the electrode will form a perfect ohmic contact with the HfSe2. Moreover, near the HfSe2/MoS2heterojunction contact interface, there is a stable built-in electric field pointing from MoS2to HfSe2. As shown in Fig. 4(b), under illumination, the built-in electric field can drive the photogenerated electrons and holes to drift in the opposite directions, forming a photogenerated current from MoS2to HfSe2and resulting in the generation of photogenerated electric field from HfSe2to MoS2. The direction of the photogenerated electric field is opposite to that of the built-in electric field,which is similar to adding a forward bias to the heterojunction, so the intensity of the built-in electric field is reduced. As a result,the current caused by carrier diffusion is greater than the drift current, thus generating a net forward current.

    Figures 4(c)–4(e)show the schematic diagrams of simplified energy band under a forward bias and different back-gate voltages without illumination. ForVg=0 V,when a forward bias is applied, the built-in potential near the interface of the heterojunction will drop. As a result,only a small number of electrons with relatively high energy will move from MoS2to HfSe2to form a low dark current, as shown in Fig. 4(c).On the contrary,when a reverse bias is applied,the enhanced built-in potential barrier can effectively suppress the reverse current of the phototransistor, resulting in nonlinear rectification characteristic(see Fig.3(b)). If a positive back-gate voltage is applied, the quasi-Fermi level approaches closer to the conduction band, forming a lower Schottky barrier near the source end of the channel (see Fig. 4(d)) as compared to the state atVg=0 V (see Fig. 4(c)),[30]which contributes to the generation of a relatively high dark current (see the inset in Fig. 3(b)). Conversely, if a negative back-gate voltage is applied, the quasi-Fermi level is far away from the conduction band, resulting in a higher Schottky barrier near the source end of the channel (see Fig. 4(e)),[37]which further reduces the dark current (see the inset in Fig. 3(b)). Under illumination,the valence band electrons are excited to the conduction band,thus generating electron-hole pairs in MoS2, the depletion layer and HfSe2, as shown in Fig. 4(f). When a forward bias voltage is applied,the triangular barrier in the heterostructure will be lowered and narrowed,resulting in a large number of electrons to tunnel through the barrier.[16]Furthermore,the surface states of the electrode/MoS2interface can capture photogenerated carriers,which leads to the reduction of the Schottky barrier height.[38,39]Thus,the photogenerated charges can effectively move to the external circuit to generate a high photocurrent.

    Fig.4. Simplified schematic energy band diagrams of the HfSe2/MoS2 phototransistor(a)under open circuit without illumination,(b)under short circuit and illumination,(c)under Vg=0 V and Vds>0 V without illumination,(d)under Vg>0 V and Vds>0 V without illumination,(e)under Vg<0 V and Vds>0 V without illumination,(f)under Vg<0 V,Vds>0 V and illumination.

    Fig. 5. (a) Dependence of photocurrent on power density under 400 nm illumination at Vg =0 V and bias voltages of 0 V, 0.5 V, and 1 V,respectively. The dependence is fitted using Iph ∝Pα. (b)Responsivity(R),and(c)specific detectivity(D?)under different wavelengths with 0.78 mW/cm2 at Vg=0 V and bias voltages of 0 V and 0.5 V,respectively. (d)Dependence of R and D?on the back-gate voltage under 800 nm illumination with 0.78 mW/cm2 at Vds=0.5 V.

    To study the relationship between photocurrent and illumination power, we measured the photocurrent of the phototransistor under 400 nm illumination with different power densities atVg=0 V and bias voltages of 0 V, 0.5 V, and 1 V,respectively,as shown in Fig.5(a). The experimental data can be fitted by the power law ofIph∝Pα, whereαis an exponent andPis the light power density.αis a key parameter to reveal the photocurrent generation mechanism, which can distinguish the photoconductive and photogating effects.[40,41]The fitted values ofαare 0.78, 0.72 and 0.65 atVds=0 V,0.5 V,and 1 V,respectively. For the HfSe2/MoS2heterostructure phototransistor, photoinduced carrier excitation mainly involves photoconductive effect, photovoltaic effect and photogating effect, but its photovoltaic effect is relatively weak(Isc/Voc=0.9 nA/15 mV).Based on the transfer characteristic curves in Fig.3(a),whenVg(0 V)>Vth(–3.1 V),the channel is at on state. Therefore,the value ofα<1 indicates that the photogating effect dominates the optical response.

    The responsivity (R) and specific detectivity (D?) are critical parameters to evaluate the performance of a phototransistor. TheRindicates the photoelectric conversion efficiency of a phototransistor for light, which can be defined asR=Iph/(P·S), whereIphis the generated photocurrent,Pis the incident power density,andSis the effective photosensitive area of the phototransistor. TheD?shows the spectral detection rate of a phototransistor in unit surface area and unit bandwidth. The higherD?means the better sensitivity of the detector. It can be defined byD?=R·S1/2/(2e·Idark)1/2, whereeis the elementary charge andIdarkis the dark current.[25,42]Figures 5(b)and 5(c)show the calculatedRandD?of the phototransistor in the spectral range from 350 nm to 900 nm, respectively. AtVds=0.5 V andVg=0 V,theR(D?)improves from 38.7 A/W(3.79×1013cm·Hz1/2·W?1)to a maximum of 1.42×103A/W (1.39×1015cm·Hz1/2·W?1) with the illumination wavelength from 350 nm to 400 nm, and then reduces to 30.8 mA/W(3.02×1010cm·Hz1/2·W?1)for 900 nm. The change trend is basically consistent with the spectral response of multilayer HfSe2and MoS2.[3,25]In the absence of applied voltage, the tendency of theR(D?)with wavelength is in accordance with that when the bias voltage of 0.5 V is applied,but theR(D?)decreases by more than an order of magnitude as compared to the calculated value atVds=0.5 V for the illumination of the same wavelength. For example,theR(D?)is 10.2 A/W(1.43×1014cm·Hz1/2·W?1)for the 400 nm illumination in the self-powered mode. Furthermore,for the illumination of 800 nm and 900 nm,theRdecreases to 0.71 mA/W and 0.15 mA/W, respectively, which is due to the weak photoelectron conversion of HfSe2and MoS2for the NIR. Although the HfSe2/MoS2heterostructure has relatively low responsivity in the NIR region,D?of the device can still achieve 9.94×109cm·Hz1/2·W?1and 2.08×109cm·Hz1/2·W?1with no external voltage.

    Figure 5(d) illustrates the dependence ofRandD?on the back-gate voltage under illumination of 800 nm with 0.78 mW/cm2atVds=0.5 V.TheRincreases gradually with the increase of the back-gate voltage from?4 V to 5 V,which is consistent with the increasing trend of photocurrent with the back-gate voltage (see Fig. 3(c)). From Fig. 5(d), it can also be seen that theD?gradually tends to a saturation with the increase of the back-gate voltage. It is attributed to the rapid increase of dark current and the saturation of photogenerated current with the increase of the back-gate voltage(see Fig. 3(c)). The above results show that the HfSe2/MoS2heterostructure has an efficient gate tunability for theRandD?,which is especially helpful in improving the sensitivity of the NIR detection for the phototransistor operating in ultralow power consumption.

    Fig.6. (a)Time-dependent photocurrent response of the phototransistor under switched-on/off illumination of 400 nm with 0.78 mW/cm2 at Vg =0 V and selected bias of 0.1 V, 0.5 V, and 1 V. (b) Time-dependent photocurrent response of the phototransistor under switched-on/off illumination of 400 nm for different power densities at Vg=0 V and Vds=0 V.(c)and(d)Rising and falling edges of one-cycle photoresponse under 400 nm illumination with 0.78 mW/cm2 at Vg=0 V and selected bias of 0.5 V and 0 V,respectively.

    The transient photoresponse is also a crucial performance parameter for phototransistors. Figure 6(a) illustrates timedependent photoresponse under switched-on/off illumination of 400 nm with 0.78 mW/cm2atVg=0 V and bias of 0.1 V,0.5 V, and 1 V, respectively. A nearly identical response can be observed under periodically turning on and off light at each bias, demonstrating that the device has good stability and repeatability. Figure 6(b)exhibits obvious time-dependent photoresponse under switched-on/off illumination of 400 nm for different power densities without bias and the back-gate voltages.From Figs.6(a)and 6(b),it can also be seen that the generated photocurrent increases with increasing bias voltage and incident power density. Figures 6(c)and 6(d)show one entire on/off cycle of time-dependent photoresponse under 400 nm illumination with 0.78 mW/cm2atVg=0 V and selected bias of 0.5 V and 0 V,respectively. According to the time when theIdsincreases from 20% to 80% of the peakIdsand decreases from 80% to 20%, the corresponding response/recovery time of the phototransistor is 6.5 s/9 s (Fig. 6(c)) and 3.5 s/4 s(Fig. 6(d)), respectively. It shows that the time-dependent photoresponse of the phototransistor is relatively slow, but it is acceptable. The comparatively slow photoresponse may be mainly caused by the trapping effect and persistent photoconductivity effect.[43,44]When the phototransistor is illuminated, the photogenerated holes are captured in the traps located in thick HfSe2and MoS2,as well as at the interface of the two materials and maintained for a rather long time,which results in a long lifetime of the excited electrons in the conducting channel. Compared with zero bias,more electrons are attracted from the source into MoS2when a forward bias is applied,and the channel current eventually takes longer to increase to saturation.However,when the illumination is absent,a large number of induced electrons cannot quickly recombine with the trapped holes. Therefore,the response/recovery time atVds=0.5 V is greater than that atVds=0 V.A similar result has also been observed in photovoltaic photodetectors based on MoTe2/MoS2vertical heterojunctions.[23]

    To demonstrate the performance improvement achieved by the HfSe2/MoS2heterojunction compared to the stateof-the-art 2D material counterparts, we summarize the key figures-of-merit, including responsivity, specific detectivity,and response/recovery time, as listed in Table 1. It is obvious that the devices we fabricated exhibit considerable good responsivity and specific detectivity.

    Table 1. Comparisons of the performance of phototectors based on related materials.

    4. Conclusions

    We successfully fabricate the HfSe2/MoS2heterostructure phototransistor based on the back-gate structure by the micromechanical exfoliation method. The device exhibits excellent photoelectric performance in a wide broadband ranging from NUV to NIR with/without external bias voltage and has an efficient gate tunability for light-dark current with on/off ratio above 105. At a bias of 0.5 V, it exhibits a high responsivity of 1.42×103A/W and high specific detectivity of 1.39×1015cm·Hz1/2·W?1under 400 nm illumination of 0.78 mW/cm2. Moreover,the phototransistor can operate under zero bias with ultralow dark current of 1.22 fA,remarkable responsivity of 10.2 A/W,relatively high specific detectivity of 1.43×1014cm·Hz1/2·W?1, and acceptable response/recovery time of 3.5 s/4 s. These results should be attributed to the fact that the HfSe2/MoS2heterostructure not only improves the broadband photoresponse of the phototransistor but also greatly enhances its sensitivity. Therefore, the HfSe2/MoS2heterostructure phototransistor has potential applications in the fields of wide-spectrum response,self-driven photoelectric devices,and high sensitivity detection.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 51702245) and the Fundamental Research Funds for the Central Universities (Grant No.WUT2021III065JC).

    猜你喜歡
    鳳翔
    鄉(xiāng)村主力“回流”——鳳翔區(qū)農(nóng)民“棄城返鄉(xiāng)”現(xiàn)象觀察
    Optically-controlled resistive switching effects of CdS nanowire memtransistor?
    宋金時(shí)期陜西鳳翔府榷場(chǎng)位置略考
    廣東省清遠(yuǎn)市清城區(qū)鳳翔小學(xué)
    定西市安定區(qū)鳳翔幼兒園
    甘肅教育(2020年12期)2020-04-13 06:24:16
    鳳翔探索“提醒制”
    讓“摔不爛”的鳳翔泥塑成為帶動(dòng)發(fā)展的“金子”——記鳳翔泥塑國(guó)家級(jí)代表性傳承人胡新明
    村“兩委”換屆“十嚴(yán)禁”
    鳳翔 十項(xiàng)措施釋放改革紅利
    淺析鳳翔泥塑對(duì)現(xiàn)代家居產(chǎn)品設(shè)計(jì)的啟示
    久久久国产欧美日韩av| 日本欧美国产在线视频| 国产1区2区3区精品| 久久 成人 亚洲| 人人澡人人妻人| 国精品久久久久久国模美| 日韩免费高清中文字幕av| 亚洲国产最新在线播放| 久久久久精品性色| 最近的中文字幕免费完整| 777久久人妻少妇嫩草av网站| 亚洲欧美日韩另类电影网站| 欧美成人午夜免费资源| 麻豆精品久久久久久蜜桃| www.自偷自拍.com| 国产亚洲精品第一综合不卡| 丝袜喷水一区| 人体艺术视频欧美日本| 七月丁香在线播放| 久久国内精品自在自线图片| 日本欧美视频一区| 国产免费福利视频在线观看| 国产精品免费大片| 国产 精品1| 美女中出高潮动态图| 免费观看在线日韩| 2018国产大陆天天弄谢| 男人爽女人下面视频在线观看| 乱人伦中国视频| 精品酒店卫生间| 国产极品天堂在线| 久久综合国产亚洲精品| 丝袜在线中文字幕| 女人久久www免费人成看片| 丝袜人妻中文字幕| 日韩一本色道免费dvd| 亚洲精品国产av蜜桃| 日本欧美国产在线视频| 色播在线永久视频| 五月天丁香电影| 另类精品久久| 伊人久久国产一区二区| 久久这里有精品视频免费| 国产成人一区二区在线| 午夜福利在线免费观看网站| 亚洲一码二码三码区别大吗| freevideosex欧美| 美女国产视频在线观看| av天堂久久9| 好男人视频免费观看在线| 亚洲av综合色区一区| 免费在线观看完整版高清| 日产精品乱码卡一卡2卡三| 男女高潮啪啪啪动态图| 婷婷色av中文字幕| 色94色欧美一区二区| 久久精品久久久久久噜噜老黄| 国产一区二区 视频在线| 少妇 在线观看| 成人午夜精彩视频在线观看| 成人手机av| 久久热在线av| 18禁观看日本| 香蕉丝袜av| 色吧在线观看| 不卡av一区二区三区| av在线老鸭窝| 日本免费在线观看一区| 午夜久久久在线观看| 亚洲国产精品成人久久小说| 成年动漫av网址| 中文天堂在线官网| 国产高清国产精品国产三级| 如何舔出高潮| 精品国产露脸久久av麻豆| 伦理电影免费视频| 一级黄片播放器| kizo精华| 看非洲黑人一级黄片| 久久国产亚洲av麻豆专区| 久久久久久人人人人人| 国产有黄有色有爽视频| 国产精品欧美亚洲77777| 水蜜桃什么品种好| 精品人妻熟女毛片av久久网站| 日本色播在线视频| 亚洲精品av麻豆狂野| 女人被躁到高潮嗷嗷叫费观| 亚洲中文av在线| 久久这里只有精品19| 精品国产国语对白av| 女人高潮潮喷娇喘18禁视频| 天天操日日干夜夜撸| 一边亲一边摸免费视频| 国产 精品1| a级片在线免费高清观看视频| 男女下面插进去视频免费观看| 精品午夜福利在线看| 色婷婷久久久亚洲欧美| 久久亚洲国产成人精品v| 日本av免费视频播放| 看免费av毛片| 精品亚洲成a人片在线观看| 丝袜美腿诱惑在线| √禁漫天堂资源中文www| 最近2019中文字幕mv第一页| a级片在线免费高清观看视频| 成人手机av| 国精品久久久久久国模美| 久久人人97超碰香蕉20202| 亚洲国产日韩一区二区| 亚洲精品日韩在线中文字幕| 999久久久国产精品视频| 国产精品香港三级国产av潘金莲 | 啦啦啦视频在线资源免费观看| 国产极品天堂在线| 免费高清在线观看视频在线观看| 观看av在线不卡| 亚洲精品,欧美精品| 一级片'在线观看视频| 久久99热这里只频精品6学生| 一二三四在线观看免费中文在| 自线自在国产av| 亚洲第一青青草原| 美女大奶头黄色视频| 男女啪啪激烈高潮av片| 考比视频在线观看| 精品酒店卫生间| 汤姆久久久久久久影院中文字幕| 欧美精品一区二区免费开放| 一级毛片 在线播放| 日日爽夜夜爽网站| 久久久久久免费高清国产稀缺| 国产深夜福利视频在线观看| 亚洲精品久久成人aⅴ小说| 亚洲成色77777| 亚洲精品,欧美精品| 国产一区亚洲一区在线观看| 久久ye,这里只有精品| av女优亚洲男人天堂| 国产xxxxx性猛交| 精品国产乱码久久久久久男人| 国产成人精品久久二区二区91 | 波多野结衣av一区二区av| 高清不卡的av网站| 亚洲欧洲日产国产| 在现免费观看毛片| 久久久a久久爽久久v久久| 日韩熟女老妇一区二区性免费视频| av网站免费在线观看视频| 亚洲av男天堂| 久久精品久久精品一区二区三区| 综合色丁香网| 亚洲欧美中文字幕日韩二区| 国产爽快片一区二区三区| 国产精品不卡视频一区二区| 人成视频在线观看免费观看| 亚洲av.av天堂| 亚洲 欧美一区二区三区| 亚洲精品成人av观看孕妇| 国产成人精品一,二区| 欧美最新免费一区二区三区| 欧美日韩一级在线毛片| 天堂8中文在线网| 久久人人爽人人片av| 国产淫语在线视频| 欧美激情高清一区二区三区 | 亚洲av欧美aⅴ国产| 最近最新中文字幕免费大全7| 午夜免费鲁丝| 国产日韩欧美视频二区| 成年动漫av网址| 中文欧美无线码| 国产成人免费无遮挡视频| 巨乳人妻的诱惑在线观看| 免费人妻精品一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 少妇的逼水好多| av免费观看日本| 日韩免费高清中文字幕av| 国产又色又爽无遮挡免| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美一区二区三区国产| 伦理电影大哥的女人| 啦啦啦在线观看免费高清www| 亚洲欧美精品综合一区二区三区 | 日韩三级伦理在线观看| 中文字幕人妻熟女乱码| 欧美国产精品va在线观看不卡| 人妻 亚洲 视频| 91aial.com中文字幕在线观看| 色视频在线一区二区三区| 日韩制服丝袜自拍偷拍| a级毛片在线看网站| 国精品久久久久久国模美| tube8黄色片| 男女免费视频国产| 久久99热这里只频精品6学生| videos熟女内射| 男女边摸边吃奶| 大片免费播放器 马上看| 精品国产一区二区三区四区第35| 国产黄频视频在线观看| www日本在线高清视频| 亚洲,欧美精品.| 亚洲欧洲国产日韩| 麻豆乱淫一区二区| 黄频高清免费视频| 高清不卡的av网站| 国产伦理片在线播放av一区| 精品久久久久久电影网| 国产精品久久久久久精品古装| 香蕉丝袜av| 国产一区二区 视频在线| 女人高潮潮喷娇喘18禁视频| 亚洲精品自拍成人| av国产久精品久网站免费入址| 一级爰片在线观看| 26uuu在线亚洲综合色| 美女国产高潮福利片在线看| 波野结衣二区三区在线| 日韩成人av中文字幕在线观看| 久久久国产欧美日韩av| 日韩伦理黄色片| a 毛片基地| 成人免费观看视频高清| 久久综合国产亚洲精品| 欧美变态另类bdsm刘玥| 自拍欧美九色日韩亚洲蝌蚪91| 久热久热在线精品观看| 18在线观看网站| 咕卡用的链子| 看免费成人av毛片| 成人18禁高潮啪啪吃奶动态图| 成年av动漫网址| 午夜日本视频在线| 欧美国产精品va在线观看不卡| 国产在线视频一区二区| 久久影院123| 丁香六月天网| 中文字幕人妻熟女乱码| 性色av一级| 日韩熟女老妇一区二区性免费视频| 国产精品欧美亚洲77777| 亚洲伊人色综图| 免费高清在线观看视频在线观看| 亚洲国产色片| 免费女性裸体啪啪无遮挡网站| 色视频在线一区二区三区| 亚洲国产看品久久| 中国三级夫妇交换| 久久精品国产鲁丝片午夜精品| 亚洲一区二区三区欧美精品| 老司机亚洲免费影院| 欧美人与善性xxx| 亚洲综合色网址| 妹子高潮喷水视频| 午夜日本视频在线| 欧美日韩精品网址| 男女免费视频国产| 我要看黄色一级片免费的| 国产精品二区激情视频| 亚洲欧洲日产国产| 亚洲国产看品久久| av又黄又爽大尺度在线免费看| 在线亚洲精品国产二区图片欧美| 两性夫妻黄色片| 亚洲欧美中文字幕日韩二区| 国产成人精品久久久久久| 在线观看免费高清a一片| 国产精品不卡视频一区二区| 2018国产大陆天天弄谢| 一级爰片在线观看| 中国三级夫妇交换| 熟妇人妻不卡中文字幕| 日本午夜av视频| 欧美精品亚洲一区二区| 精品国产露脸久久av麻豆| 精品少妇久久久久久888优播| 久久狼人影院| 自拍欧美九色日韩亚洲蝌蚪91| 韩国精品一区二区三区| 99热国产这里只有精品6| 韩国av在线不卡| 老司机影院毛片| 国产亚洲欧美精品永久| videos熟女内射| 在线观看免费日韩欧美大片| 欧美 亚洲 国产 日韩一| 国产欧美亚洲国产| 9色porny在线观看| 亚洲第一青青草原| 熟女少妇亚洲综合色aaa.| 极品少妇高潮喷水抽搐| 男人操女人黄网站| 免费看av在线观看网站| 麻豆av在线久日| 春色校园在线视频观看| 香蕉丝袜av| 毛片一级片免费看久久久久| av有码第一页| 一二三四中文在线观看免费高清| 黄片小视频在线播放| 国产亚洲欧美精品永久| 精品一区二区三卡| 亚洲一级一片aⅴ在线观看| 九九爱精品视频在线观看| 在线观看免费日韩欧美大片| 在线免费观看不下载黄p国产| 国产有黄有色有爽视频| av电影中文网址| 久久久久久久久久久免费av| 午夜福利视频精品| 成人亚洲精品一区在线观看| 在线观看美女被高潮喷水网站| 久久这里有精品视频免费| 久久久久视频综合| 一级爰片在线观看| 在线观看三级黄色| 精品亚洲成国产av| 日日撸夜夜添| 老女人水多毛片| 久久精品久久久久久噜噜老黄| 亚洲精品在线美女| 中文欧美无线码| 欧美成人午夜精品| 久久99一区二区三区| 亚洲欧美一区二区三区久久| videosex国产| 嫩草影院入口| www.av在线官网国产| 我的亚洲天堂| a级片在线免费高清观看视频| 色哟哟·www| 欧美97在线视频| 18禁裸乳无遮挡动漫免费视频| 老熟女久久久| 精品一区二区免费观看| 久久精品国产亚洲av天美| 日本色播在线视频| 丝袜在线中文字幕| 26uuu在线亚洲综合色| 久久久久久免费高清国产稀缺| a级毛片在线看网站| 亚洲一区中文字幕在线| 成人毛片a级毛片在线播放| 我要看黄色一级片免费的| 叶爱在线成人免费视频播放| 人妻人人澡人人爽人人| 亚洲第一区二区三区不卡| 国语对白做爰xxxⅹ性视频网站| 1024香蕉在线观看| 欧美少妇被猛烈插入视频| 日韩视频在线欧美| 亚洲内射少妇av| 少妇精品久久久久久久| 国产成人精品婷婷| 亚洲三级黄色毛片| 亚洲成国产人片在线观看| 成年av动漫网址| 日韩伦理黄色片| 久久久久久人人人人人| 成人国产麻豆网| 国产亚洲av片在线观看秒播厂| 26uuu在线亚洲综合色| 香蕉精品网在线| 香蕉国产在线看| 天堂俺去俺来也www色官网| 日产精品乱码卡一卡2卡三| 精品少妇一区二区三区视频日本电影 | 久久午夜综合久久蜜桃| 蜜桃在线观看..| 国产亚洲最大av| 人妻 亚洲 视频| 欧美国产精品一级二级三级| 18禁国产床啪视频网站| 日韩成人av中文字幕在线观看| 国产精品国产av在线观看| 一级毛片电影观看| 欧美激情 高清一区二区三区| 久久ye,这里只有精品| 国产又色又爽无遮挡免| 国产精品女同一区二区软件| 欧美人与善性xxx| 日韩成人av中文字幕在线观看| 国产成人一区二区在线| 国精品久久久久久国模美| 大香蕉久久网| 午夜日韩欧美国产| 午夜福利在线免费观看网站| 欧美人与性动交α欧美软件| 男女免费视频国产| 一级a爱视频在线免费观看| 久久久久久久久久久久大奶| 久久精品夜色国产| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美视频二区| 免费观看a级毛片全部| 国产一级毛片在线| 久久精品久久久久久噜噜老黄| 999久久久国产精品视频| 亚洲美女视频黄频| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品国产亚洲| 久久精品aⅴ一区二区三区四区 | 涩涩av久久男人的天堂| 午夜激情久久久久久久| 久久精品aⅴ一区二区三区四区 | 巨乳人妻的诱惑在线观看| 一级片'在线观看视频| 久久久精品免费免费高清| 一级毛片电影观看| 精品少妇黑人巨大在线播放| 精品少妇内射三级| 国产av码专区亚洲av| 性色avwww在线观看| 亚洲欧美精品自产自拍| 久久精品夜色国产| 亚洲天堂av无毛| 久热久热在线精品观看| 精品一区二区免费观看| 日韩视频在线欧美| 久久久精品94久久精品| 99国产精品免费福利视频| 最近中文字幕高清免费大全6| 欧美日本中文国产一区发布| 美女福利国产在线| 日本免费在线观看一区| 最近2019中文字幕mv第一页| 亚洲色图 男人天堂 中文字幕| 999精品在线视频| 精品国产乱码久久久久久小说| 日韩制服丝袜自拍偷拍| 日韩三级伦理在线观看| 久久毛片免费看一区二区三区| 亚洲av电影在线观看一区二区三区| 亚洲久久久国产精品| 久久97久久精品| 亚洲成人av在线免费| 夜夜骑夜夜射夜夜干| 人成视频在线观看免费观看| 久久精品夜色国产| 观看av在线不卡| 伊人久久国产一区二区| 亚洲精品国产一区二区精华液| 午夜免费男女啪啪视频观看| 91在线精品国自产拍蜜月| 成人亚洲精品一区在线观看| 国产精品嫩草影院av在线观看| 国产成人精品久久二区二区91 | 久久久精品区二区三区| 少妇人妻 视频| videos熟女内射| 免费久久久久久久精品成人欧美视频| 国产又色又爽无遮挡免| 精品少妇久久久久久888优播| 国产精品.久久久| 一本久久精品| 男女边摸边吃奶| 丝袜在线中文字幕| 中国三级夫妇交换| 免费看不卡的av| av在线播放精品| 精品国产露脸久久av麻豆| 欧美日韩av久久| 香蕉国产在线看| 国产在线一区二区三区精| 亚洲综合色网址| 久久亚洲国产成人精品v| 中文字幕av电影在线播放| 少妇被粗大猛烈的视频| 狠狠精品人妻久久久久久综合| 久久这里只有精品19| 日韩视频在线欧美| 在线观看美女被高潮喷水网站| av有码第一页| 久久久久网色| 国产精品无大码| 国产深夜福利视频在线观看| 啦啦啦在线观看免费高清www| 亚洲欧美成人精品一区二区| 久久韩国三级中文字幕| 黄频高清免费视频| 一区二区三区激情视频| 日本wwww免费看| 国产精品香港三级国产av潘金莲 | 国产成人91sexporn| 日本欧美视频一区| 天堂8中文在线网| 色网站视频免费| 欧美精品亚洲一区二区| 欧美日韩一级在线毛片| 国产色婷婷99| 久久久久久久精品精品| 肉色欧美久久久久久久蜜桃| 青春草国产在线视频| 久久久精品国产亚洲av高清涩受| 男女无遮挡免费网站观看| 国产一区二区 视频在线| 亚洲人成77777在线视频| 老司机影院成人| 青草久久国产| 久久久a久久爽久久v久久| 国产视频首页在线观看| 99久国产av精品国产电影| 制服丝袜香蕉在线| 婷婷色av中文字幕| 久久久久视频综合| 亚洲,欧美,日韩| 人妻人人澡人人爽人人| 亚洲人成电影观看| 久久精品国产亚洲av天美| 免费久久久久久久精品成人欧美视频| 欧美+日韩+精品| av电影中文网址| 国产精品国产三级专区第一集| 自线自在国产av| 日本猛色少妇xxxxx猛交久久| 午夜福利,免费看| 性色avwww在线观看| 国产黄色免费在线视频| 亚洲av在线观看美女高潮| 多毛熟女@视频| 女人久久www免费人成看片| av女优亚洲男人天堂| 观看av在线不卡| 国产免费又黄又爽又色| 两个人看的免费小视频| 亚洲人成77777在线视频| 少妇人妻精品综合一区二区| 日韩制服骚丝袜av| 午夜福利一区二区在线看| 日日爽夜夜爽网站| av网站免费在线观看视频| 黄色 视频免费看| 七月丁香在线播放| av视频免费观看在线观看| 亚洲色图综合在线观看| 日本免费在线观看一区| 另类精品久久| 免费不卡的大黄色大毛片视频在线观看| 一区福利在线观看| 日本av手机在线免费观看| 久久精品国产亚洲av高清一级| 成人二区视频| 少妇的丰满在线观看| 人妻 亚洲 视频| 大片免费播放器 马上看| 老鸭窝网址在线观看| 中文字幕亚洲精品专区| 多毛熟女@视频| 久久女婷五月综合色啪小说| 99热全是精品| 99热网站在线观看| 久久av网站| 一本久久精品| 欧美日韩视频精品一区| 在线观看一区二区三区激情| 免费观看性生交大片5| 交换朋友夫妻互换小说| 欧美成人午夜免费资源| 成人影院久久| av.在线天堂| 免费看av在线观看网站| 国产成人精品婷婷| 日韩熟女老妇一区二区性免费视频| 国产精品99久久99久久久不卡 | 高清不卡的av网站| 精品国产乱码久久久久久男人| 在现免费观看毛片| 男女免费视频国产| av.在线天堂| 春色校园在线视频观看| 人成视频在线观看免费观看| 亚洲精品第二区| 一级,二级,三级黄色视频| 亚洲精品成人av观看孕妇| 欧美亚洲 丝袜 人妻 在线| 妹子高潮喷水视频| 成人手机av| 国产乱来视频区| 久久久亚洲精品成人影院| 国产日韩欧美视频二区| av在线观看视频网站免费| 另类精品久久| 亚洲欧美成人综合另类久久久| 18禁动态无遮挡网站| 女人精品久久久久毛片| 欧美97在线视频| 丰满迷人的少妇在线观看| www.av在线官网国产| 国语对白做爰xxxⅹ性视频网站| av.在线天堂| 777久久人妻少妇嫩草av网站| 只有这里有精品99| 成年av动漫网址| 日韩中文字幕视频在线看片| 成年动漫av网址| 黄片播放在线免费| 五月开心婷婷网| 欧美日韩国产mv在线观看视频| 国产成人精品久久久久久| 一级黄片播放器| 国产极品粉嫩免费观看在线| 波多野结衣av一区二区av| 伦理电影免费视频| 看免费成人av毛片| 亚洲欧美清纯卡通| 日韩av在线免费看完整版不卡| 国产精品一二三区在线看| 精品国产乱码久久久久久小说| 精品亚洲成a人片在线观看| 91久久精品国产一区二区三区| 国产av码专区亚洲av| 欧美日韩亚洲高清精品|