• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept

    2022-12-28 09:55:30XiLeWei魏熙樂YuLinBai白玉林JiangWang王江SiYuanChang常思遠(yuǎn)andChenLiu劉晨
    Chinese Physics B 2022年12期
    關(guān)鍵詞:劉晨王江玉林

    Xi-Le Wei(魏熙樂), Yu-Lin Bai(白玉林), Jiang Wang(王江), Si-Yuan Chang(常思遠(yuǎn)), and Chen Liu(劉晨)

    School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China

    Keywords: deep brain stimulation, Parkinson’s disease, basal ganglia, closed-loop control, variable universe fuzzy

    1. Introduction

    Parkinson’s disease(PD)is a common neurodegenerative disease in people over 60 years of age.[1]The most obvious symptoms of PD patients are tremor,limb rigidity,hypokinesia,and gait abnormalities.[2]The most common therapy in the early stages of the disease is pharmacological treatment with levodopa(L-DOPA).[3,4]However,side effects such as muscle tremors and rigidity may appear after taking L-DOPA for 3–5 years.[5]In this stage, deep brain stimulation (DBS)[6–8]can effectively reduce symptoms in PD.[9–12]DBS is a neurosurgical procedure in which electrodes are implanted at specific locations in the brain and the implanted battery power provides a constant or interrupted current.[13,14]The electrodes deliver electrical stimulation to the target regions. As an established clinical therapy, DBS is not only an effective treatment for movement disorders of PD patients but also being applied to the treatment of Depression,Dystonia and Tourette syndrome.[14]

    Currently, the open-loop DBS is widely used in clinical. Stimulus parameters have a great influence on the stimulation effect but it will take a long time to find the appropriate parameters. The open-loop configuration fails to adapt to the changes in symptom severity and the other variations of brain. In addition, constant stimulation may lead to excessive stimulation, shorten the battery life, and reduce the stimulation efficiency.[15,16]Consequently, developing a new form of closed-loop or adaptive DBS is an effective method to address these limitations.[17]Compared to open-loop DBS,closed-loop DBS allows one to monitor the patient’s pathological status according to the neurophysiological signals,and to adjust stimulation based on the feedback.[1,16]Hamaniet al.used a closed-loop system to automatically adjust the stimulation parameters and thus reduced the side effects of the stimulation in patients with PD by 19%.[18]Littleet al.applied adaptive DBS according to an empirically determined threshold as feedback achieving motor improvement and the energy consumption has reduced by 50%.[19]

    The feedback information is one of the greatest challenges in the closed-loop DBS. A biomarker, closely related to the patient’s pathology, is needed to be found. Local field potential recordings show that DBS or the application of LDOPA suppresses beta band synchronized oscillations.[20–22]Many studies used the beta band (12–35 Hz) signals as the biomarker.[16,23–25]However, electrophysiological investigations have shown that the pathological oscillations in the 4–8 Hz are also associated with tremor symptoms.[26,27]Thus,the closed-loop DBS only using the beta band(12–35 Hz)signals as the biomarker is insufficient. It is reasonable to apply closed-loop DBS based on the original local field potential signals.

    Many control strategies have been applied to closed-loop DBS.[28,29]Pyragaset al.proposed a proportional-integralderivative (PID) control strategy by utilizing a configuration with an observed and stimulated subsystem to desynchronize the globally coupled oscillatory networks.[30]The biomarker is the mean field of the observed subsystem. Dunnet al.applied the PID control strategy to the closed-loop DBS system.[25]However,it takes a long time to deregulate the parameters of PID control,and parameters need to be re-adjusted as PD states changed. This means that a group of parameters cannot work well under different PD states, which may even cause distress for the patients.

    Currently, the adjustment of DBS parameters for PD patients needs to be performed by experienced physicians and can only act on the treatment of a single situation. It may take a long time and may also have side effects. Fuzzy concept control uses the same cognitive methods to make the controller adjust the parameters like an experienced doctor. It may automatically adjust the stimulation waveform according to various Parkinsonian states based on human thinking. In addition, our previous work has tested the fuzzy control and demonstrated that it plays a propound role in restoring the abnormal relay reliability of thalamocortical neuron.[31]Thus,to further facilitate a closed-loop DBS,a variable universe fuzzy control strategy to incorporate DBS is proposed in this work,which aims at enhancing the modulation efficiency of PD oscillations.

    The main remainder of the paper is organized as follows:Section 2 describes a computational network model of PD and the design of the controller.Section 3 shows the control effects and compares the performance of the variable universe fuzzy controller and the fuzzy controller. The conclusions are given in Section 4.

    2. Models and methods

    2.1. Models of cortico-basal ganglia-thalamic neural network

    A cortico-basal ganglia-thalamic neural network model is constructed,as shown in Fig.1.The basal ganglia mainly consists of three parts, i.e., subthalamic nucleus (STN), external globus pallidus(GPe)and internal globus pallidus(GPi). The cortex mainly consists of two parts, i.e., pyramidal neurons(PY) and interneurons (IN). In our model, each population containingN= 100 single-compartment Izhikevich neurons is connected by various excitatory and inhibitory synapses sparsely. Red arrows indicate excitatory projections,and blue arrows indicate inhibitory connections. Figure 1 shows the details of the synaptic connections of the population, where each STN neuron receives inhibitory projections from two randomly selected GPe neurons and excitatory projections from two randomly selected PY neurons.Each GPe neuron receives inhibitory inputs from two randomly selected GPe neurons and excitatory inputs from three STN neurons. The GPi neurons receive excitatory inputs from three randomly selected STN neurons and inhibitory input from a single GPe neuron. Each thalamic(TH)neuron receives inhibitory inputs from a single GPi neuron.The PY neurons receive not only excitatory inputs from five randomly selected TH neurons but also inhibitory input from an IN neuron.

    Fig. 1. Detailed connection of basal ganglia-thalamo-cortical network model.

    A hybrid Izhikevich neuron model, computationally less expensive than a biophysical model and suitable to capture various firing activities, is used to simulate every single neuron. The model combines a set of spike functions and a discontinuous after-spike reset. The equations of the model are given in the following form:[32]

    where (M,i) represents theith neuron in theMnucleus withi=1, 2,..., 100 andM ∈{STN, GPe, GPi, TH, PY, IN};vis the membrane potential anduis a recovery variable that provides negative feedback tov. Moreover,vanduare reset according to Eq. (3) whenevervexceeds the threshold (i.e.,30 mV).

    Four dimensionless model parametersaM,bM,cM, anddMcan be combined to characterize the dynamics for each neuron in the nucleusM. The time scale ofucan be determined by parameteraMand the sensitivity ofuto the subthreshold fluctuations ofvcan be determined by parameterbM.More specifically,a largeraMleads to a faster recovery and a small value ofbMshows the coupling betweenvandu.

    wheregJ→Mdescribes the strength of the synaptic coupling intensity withJ,M ∈{STN,GPe,GPi,TH,PY,IN}. The values ofgJ→Mare different in normal and PD states based on the biological details. The parameterEJ→Iis the reversal potential withEJ=0 mV for excitatory synapses andEJ=?80 mV for inhibitory synapses,andτMis the synaptic delay. The synapse variablerJ,j, as a fraction of the postsynaptically bound neurotransmitter,obeys the following first-order kinetics:

    wheretsis the synaptic decay rate.

    The parameters of the Izhikevich model are changed in order to simulate more physiological and pathological phenomena. The detailed values of the parameters used in the simulations are listed in Table 1. All the simulations are carried out in MATLAB R2018b.

    In our previous study,[31]a variable universe fuzzy closed-loop method is designed to restore the relay ability of TH neurons automatically. It has been proved that the variable universe fuzzy control can avoid adjusting controller’s parameters repeatedly and improve the robustness of the controlled system. In order to adapt to the problem of decreased effectiveness of the controller due to PD progression,we apply this method to closed-loop DBS to control the basal ganglia network.

    Considering that STN is selected as the target nucleus for typical DBS, Eq. (1) for the STN nucleus is modified as follows:

    whereIDBSdescribes the stimulation current applied to the STN with the frequency in the range 130–180 Hz. In order to avoid tissue damage, the stimulation pulses adopt positive and negative charge balance form, which consists of a short-duration high-amplitude pulse and a long-duration lowamplitude pulses of opposite polarity. Thus, the total charge of the two-phase pulse is zero.[33]The details of the DBS are shown in Fig. 2. The short duration is 200 μs, while the long duration is twenty times longer than the short one. Accordingly,the amplitudes of the high-amplitude pulse are onetwentieth of the low-amplitude pulse.

    Table 1. Parameter values of the model.

    Fig.2. Scheme of the variable universe fuzzy control system based on cortico-basal ganglia-thalamic network.

    2.2. Fuzzy logic control strategy

    Figure 2 shows the block diagram of the control strategy,

    whereydrepresents the local field potential signal of the STN in the desired state andyis the feedback signal. The errorebetweenydandyconstitutes one major input of the fuzzy controller. Another input of the controllerec=de/dtcharacterizes the change rate ofe.

    The fuzzy control algorithm[34–36]is implemented when each DBS pulse comes. Thus, the feedback signalyis only calculated once averagely from the local field potential of the STN since the previous stimulation pulse arrives. The variable universe controller consists of a main fuzzy controller and an auxiliary fuzzy controller. The two fuzzy controllers work together. Fuzzy control strategy is an intelligent control algorithm which works like an expert proficient in this task.[37]Both fuzzy controllers use standard Mamdani inference method. Here,according to the functional characteristics of the auxiliary fuzzy controller,the auxiliary fuzzy controller is renamed as contraction–expansion factor fuzzy controller.It is responsible for the regulation of contraction–expansion factor to adjust the universe of the main controller. The universe shrinks as the error decreases and it also expands as the error increases. In this way,the precision of the controller improves greatly by using its outpututo modulate the amplitude of the DBS high-amplitude pulse. The details of the fuzzy controller are based on our previous work.[31]

    2.3. Evaluation index

    (i)Summation of band power(Ps).

    The sum of specific band power is an important index for evaluating model states. The powerPM(f)for each frequency is calculated in the following form:

    wherefsis the sampling frequency of the power spectrum,being set to 104Hz here;tnrepresents the current time in the simulation. Use the last 1 s of the simulation results to calculate the power spectrum.

    PbetaandPthetaare used to indicate the strength of the beta band oscillations and theta band oscillations. The corresponding calculation methods are described in the following way:

    (ii)Control effectiveness index(CI).

    CIis used to measure the effectiveness of closed-loop DBS. All the investigations are based on closed-loop control of the network. Therefore,CIis defined to measure the effectiveness of control. The calculation method is expressed by the following formula:

    wherePS1is the summation of the band power under closedloop control of the controller.For the PD1 state,PS1represents the sum of energies of 4–8 Hz,whereas,for the PD2 state,PS1represents the sum of energies of 12–35 Hz.PS2refers to the summation of corresponding band power before the control,i.e. in PD states. The value ofCIrepresents the percentage of the summation band power after control compared to that before control.

    (iii)Energy consumption index(EI).

    The energy consumption of the controller is measured by the following formula:

    whereIDBSis referred to the injected current of the neurons,andNis the total number of neurons that receives injected current in the simulation.

    3. Results

    3.1. Model verification

    In our study, the intrinsic and coupling parameters are changed to simulate normal and PD states.

    Figure 3 is the spike raster of the neural network depicting the firing of all neurons in each nucleus at different times and the overall behavior of the nucleus can also be obviously noticed. Each row corresponds to a unique nucleus and each point corresponds to one spike of a neuron. It can be noticed that more synchronous activities occur in each nucleus under the PD state.

    To further verify the models and investigate the influence of neuronal parameters in the STN nuclei on oscillation frequency, we investigate the oscillation peaks of local field potentials of individual nuclei in the network by varying the values ofaSTNanddSTN. the panels in the upper row of Fig.4 illustrate the peak frequency and peak power of the spectrum of the STN,GPe and GPi as the values ofaSTNanddSTNchange.It shows that the model can produce PD states with an oscillatory main frequency of STN between 5.5 and 27.5 Hz. Simultaneously,the panels in the lower row of Fig.4 depict the power of the corresponding oscillatory peaks, which reflects the strength of the oscillations. The intensity of the oscillations with a higher frequency than 22 Hz becomes weaker in STN and GPe.

    Two representative PD states, labeled as PD1 and PD2,are selected to characterize the abnormal oscillation in PD.For PD1 state,aSTNis 0.01 anddSTNis 10. For PD2 state,aSTNis 0.03 anddSTNis 8. The cardinal oscillation frequencies of the STN are 7 Hz in the theta band and 18 Hz in the beta band,respectively. Figure 5 shows the firing rates which are calculated during the first 3 s. It can be shown that the firing rate of STN in the normal state is higher than that of theta oscillation in the PD1 state,but is lower than that of beta oscillation in the PD2 state. Compared with the normal state, the pathological firing rates decrease in the GPe,TC,PY,and IN,but increase in the GPi. This simulation result is consistent with the previous studies that were developed in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treated primates and PD patients.[38–40]

    Fig.3. Spatiotemporal firing raster in normal state: (a)GPe, (c)GPi, (e)PY,(g)STN,(i)IN,and(k)TC.Spatiotemporal firing raster in PD state: (b)GPe,(d)GPi,(f)PY,(h)STN,(j)IN,and(l)TC.

    Fig.4. The dependence of the frequency and power of the spectral peak on the values of aSTN and dSTN in the model. Peak frequency of power spectrum in STN(a),GPe(b),and GPi(c)change with aSTN and dSTN. The power of the peak frequency change in STN(d),GPe(e),and GPi(f)with aSTN and dSTN.

    Fig.5. Firing rates of different nuclei.

    Figure 6 shows the power spectrum of the local field potentials of the STN nuclei in normal,PD1 and PD2 states,respectively. It can be seen that the power spectrum of the PD1 state shows a peak at 7 Hz and the peak in the beta frequency band occurs in the PD2 state,which reveals pathologically enhanced oscillatory activities compared to the normal state.

    Fig.6. Meanfield of STN nuclei in normal(a),PD1(c),and PD2(e)states. Power spectrum of the mean-field in normal(b),PD1(d),and PD2(f)states. Pink area is the theta band and green area is the beta band.

    3.2. Comparison of the performance of fuzzy logic closedloop control and variable universe fuzzy logic closedloop control

    In order to examine the robustness of the variable universe fuzzy controller and the fuzzy controller,the parameters of both controllers are unchanged while the pathological oscillation frequency peaks are changed. A set of parameters of the two controllers are chosen to suppress beta oscillations. In the design of the fuzzy controller,the universes of the two inputs (i.e. error and the change rate of error) are both set to be [?3, 3] without loss of generality. By multiplying factors labeled byKeandKec, the initial values of both inputs can be located within the universes. Considering that the range of erroreis about[?3.5,3.5]and the change rateecranges from[?3.3,3.3]from several pre-experiments,Kefor the ordinary fuzzy logical control strategy is set to 0.8 andKecis set to 0.9,correspondingly. Though in the variable universe fuzzy control strategy, all the settings of the controller are consistence with the ordinary one and the universes of main and auxiliary controller are both[?3,3].

    As shown in Fig. 7, the two types of fuzzy logic controllers can effectively relieve the PD1 and PD2 states. It is worth noting that the control parameters are unchanged for the two different PD states. Figures 7(a)and 7(b)show the power summation at the frequencies of 3–8 Hz and 12–35 Hz. It can be determined whether the fuzzy controller and variable universe fuzzy controller can effectively reduce the oscillation reflected by a significant reduction of peak power. Moreover,we notice that the power of the spectral peak under the variable universe fuzzy controller is lower than that of the fuzzy controller.

    Figure 8 shows the injected currents waveform of fuzzy controller and variable universe fuzzy controller,respectively.The stimulation current is injected into the objective network att=3 s.

    Fig. 7. Power spectrum of the local field potential of STN nucleus in PD1(a)and PD2(b)states.

    Fig.8. Injected current waveform: (a)PD1 state under fuzzy control,(b)PD2 state under fuzzy control,(c)PD1 state under variable universe fuzzy control,and(d)PD2 state under variable universe fuzzy control.

    Fig.9. Time-frequency diagrams of STN neurons in the model in the normal state(a),PD1 state(b),and PD2 state(c). The closed-loop DBS is added at 3 s in(b)and(c).

    Figure 9 shows the time-frequency diagrams of STN neurons of variable universe fuzzy controller in the simulation.Figure 9(a)depicts the time-frequency diagram of the normal state of the nucleus in 8 s. Figures 9(b)and 9(c)depict the differences in time-frequency diagrams before(i.e. the first 3 s)and after(i.e.3–8 s)DBS for PD1 and PD2 states.In Fig.9(b),when DBS is not applied for the first 3 s, there is an obvious 7 Hz oscillation. A significant decrease in 7 Hz oscillations is seen in the STN nucleus when the 130 Hz DBS is applied att=3 s. However, in Fig. 9(c), the STN neurons exhibit the 18 Hz oscillation in the first 3 s. The DBS is started att=3 s,after which the oscillation in the beta band soon disappears.

    Quantitative evaluation is further conducted by inducing some indexes. Figure 10 presents the control effectiveness index (CI), and the summation of band power (Ps) is calculated in Fig.11. Figure 12 shows the energy consumption(EI)used to generate stimulus current waveforms of the two controllers. Both fuzzy controllers can achieve effective control over various PD states,as shown in Fig.10. In Fig.11,3–8 Hz band power under the fuzzy controller is about 10 times than that of variable universe fuzzy controller in the case of PD1.The fuzzy controller reduces 3–8 Hz band power to 25 percent while the variable universe fuzzy controller reduces 3–8 Hz band power to 2.5 percent of the PD1 state. In the case of PD2,the beta band power of LFP in STN under the fuzzy controller is 3 times higher than that under the variable universe fuzzy controller. Moreover, the energy consumption of variable universe fuzzy controller is 67% and 78% of the fuzzy controller in the cases of PD1 and PD2, respectively. It can be demonstrated that the variable universe fuzzy controller exhibits a superior performance than the ordinary fuzzy with the limitation of the unchanged controller parameters. The variable universe fuzzy controller can further reduce the abnormal oscillation in the basal ganglia network by costing less energy.

    Fig.10. Control effectiveness index(CI).

    Fig.11. Summation of band power(PS).

    Fig.12. Energy consumption index under different conditions(EI).

    4. Conclusions

    This paper proposes a computational network of the basal ganglia-thalamo-cortical using the hybrid Izhikevich neuron model in order to reproduce the dynamical characteristics of the Parkinsonian state. The difference in the frequency of pathological oscillation corresponds to the different clinical manifestations. This work generates the beta and theta oscillations through the adjustment of the model. Based on the computational neural network,two types of fuzzy control strategies are adopted to suppress the abnormal oscillation in the basal ganglia-thalamo-cortical network.Simulation results show that DBS with variable universe fuzzy control strategy can effectively control different oscillations without changing the controller parameters. The control effectiveness of variable universe fuzzy controller exhibits better performance than that of ordinary fuzzy control strategy with a stronger ability to suppress the abnormal oscillation and a lower stimulation energy expenditure.

    However,there is a limitation that this work simulates the computational model in the computer,without considering the hardware extra cost for the complex algorithm. Thus,we can further deploy the controller to the hardware, which will also be a very challenging,meaningful job.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62173241 and 62171312) and the Natural Science Foundation of Tianjin, China (Grant Nos. 20JCQNJC01160 and 19JCZDJC36500). The authors also gratefully acknowledge the financial support provided by Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control (Lanzhou Jiaotong University), Ministry of Education,China(Grant No. KFKT2020-01).

    猜你喜歡
    劉晨王江玉林
    王玉林作品
    面向反應(yīng)堆設(shè)計(jì)的高性能計(jì)算中心建設(shè)及應(yīng)用
    Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme?
    邱玉林藝術(shù)作品欣賞
    Orientation and alignment during materials processing under high magnetic fields?
    劉晨:我將借助語(yǔ)言實(shí)現(xiàn)自我價(jià)值
    Unit 6 Travelling around Asia Listening and speaking
    王江作品
    趙玉林藏石欣賞
    寶藏(2017年10期)2018-01-03 01:53:27
    來日并不方長(zhǎng)
    愛你(2017年15期)2017-05-17 01:40:07
    18禁动态无遮挡网站| 色吧在线观看| 91精品伊人久久大香线蕉| 男人舔奶头视频| 国产一区二区三区av在线| 国产 一区精品| 3wmmmm亚洲av在线观看| 亚洲精品国产成人久久av| 久久久久九九精品影院| 蜜桃久久精品国产亚洲av| 国产成人午夜福利电影在线观看| 男女边摸边吃奶| 精品午夜福利在线看| av卡一久久| 国产精品伦人一区二区| 岛国毛片在线播放| 亚洲欧洲国产日韩| 国产精品久久久久久av不卡| 亚洲av在线观看美女高潮| 伦精品一区二区三区| 婷婷色麻豆天堂久久| 麻豆国产97在线/欧美| 春色校园在线视频观看| av在线老鸭窝| 午夜福利在线观看免费完整高清在| 国产精品久久久久久精品电影| 午夜福利视频精品| 精品人妻一区二区三区麻豆| 国产午夜福利久久久久久| 亚洲av男天堂| 最近手机中文字幕大全| 成人综合一区亚洲| 精品人妻偷拍中文字幕| 激情 狠狠 欧美| 狂野欧美白嫩少妇大欣赏| 欧美潮喷喷水| 男的添女的下面高潮视频| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日韩精品成人综合77777| 精品一区在线观看国产| 亚洲精品成人av观看孕妇| 成人美女网站在线观看视频| 成年女人看的毛片在线观看| 有码 亚洲区| 久久久色成人| 国产高清三级在线| 国产女主播在线喷水免费视频网站| 亚洲精品色激情综合| 日韩免费高清中文字幕av| 高清在线视频一区二区三区| 免费av不卡在线播放| 成人国产麻豆网| 欧美zozozo另类| 如何舔出高潮| 国产精品一区二区在线观看99| 成人国产麻豆网| av卡一久久| av线在线观看网站| 三级男女做爰猛烈吃奶摸视频| 国产伦精品一区二区三区视频9| 久久97久久精品| 国产乱来视频区| 日日摸夜夜添夜夜添av毛片| 精品国产乱码久久久久久小说| 嫩草影院新地址| 91精品国产九色| 一个人看视频在线观看www免费| 一区二区三区精品91| 在线观看国产h片| 亚洲欧美日韩另类电影网站 | 一个人看视频在线观看www免费| 亚洲精品日韩av片在线观看| videossex国产| 97在线人人人人妻| 国产熟女欧美一区二区| 男女边吃奶边做爰视频| 99热全是精品| 少妇高潮的动态图| 亚州av有码| 在现免费观看毛片| 国产精品人妻久久久久久| 久久99精品国语久久久| 欧美zozozo另类| 亚洲精品乱码久久久v下载方式| 成年版毛片免费区| 一级片'在线观看视频| 久久久久精品性色| 中文资源天堂在线| 日韩制服骚丝袜av| 下体分泌物呈黄色| 国产探花极品一区二区| 免费av毛片视频| 亚洲va在线va天堂va国产| 男女那种视频在线观看| 亚洲精品视频女| 久久影院123| 国产视频内射| 免费av不卡在线播放| 我的女老师完整版在线观看| 欧美xxxx性猛交bbbb| 乱码一卡2卡4卡精品| 欧美激情国产日韩精品一区| 日韩伦理黄色片| 亚洲高清免费不卡视频| 成年女人在线观看亚洲视频 | 麻豆乱淫一区二区| 五月开心婷婷网| 亚洲国产精品专区欧美| 简卡轻食公司| 久久鲁丝午夜福利片| 亚洲天堂av无毛| 免费观看无遮挡的男女| 成人综合一区亚洲| 日本午夜av视频| 在线观看免费高清a一片| 极品少妇高潮喷水抽搐| 国产乱人视频| 亚洲aⅴ乱码一区二区在线播放| 高清毛片免费看| 国产av码专区亚洲av| 精品午夜福利在线看| 少妇 在线观看| 亚洲在久久综合| 久久精品国产自在天天线| 午夜福利视频精品| 日韩欧美一区视频在线观看 | 在线看a的网站| 久久久久久久午夜电影| 国产久久久一区二区三区| 国产av码专区亚洲av| 九色成人免费人妻av| 99热全是精品| 久久鲁丝午夜福利片| 少妇人妻久久综合中文| 亚洲欧美日韩另类电影网站 | 欧美区成人在线视频| 国产亚洲91精品色在线| 热re99久久精品国产66热6| 国产精品一区二区三区四区免费观看| 久久人人爽人人爽人人片va| 日韩一区二区三区影片| 最近中文字幕2019免费版| 啦啦啦在线观看免费高清www| 国产成人aa在线观看| 91狼人影院| 成人国产麻豆网| 毛片女人毛片| 国产在线男女| 国产精品久久久久久精品电影| 在线 av 中文字幕| 人妻一区二区av| 日韩制服骚丝袜av| 少妇熟女欧美另类| 你懂的网址亚洲精品在线观看| 国产黄a三级三级三级人| 99热这里只有是精品在线观看| 五月开心婷婷网| 日韩三级伦理在线观看| 成人二区视频| 日本免费在线观看一区| 美女国产视频在线观看| 久久6这里有精品| 国产黄片视频在线免费观看| 日韩大片免费观看网站| 91久久精品国产一区二区成人| 嘟嘟电影网在线观看| 午夜免费观看性视频| 成人毛片a级毛片在线播放| 日韩三级伦理在线观看| 最近手机中文字幕大全| 久久精品国产亚洲网站| 国产精品麻豆人妻色哟哟久久| 国产精品99久久久久久久久| 亚洲,欧美,日韩| 国产成人freesex在线| 午夜福利高清视频| xxx大片免费视频| 在线观看美女被高潮喷水网站| 成人毛片60女人毛片免费| 3wmmmm亚洲av在线观看| 男女国产视频网站| 久久人人爽人人爽人人片va| 精品久久久久久久久av| 三级国产精品片| 国产成人一区二区在线| 亚洲自拍偷在线| 欧美一区二区亚洲| 日韩一区二区三区影片| kizo精华| 日韩av在线免费看完整版不卡| 大片电影免费在线观看免费| 亚洲av免费高清在线观看| 中文在线观看免费www的网站| 亚洲成色77777| 国产精品秋霞免费鲁丝片| 男男h啪啪无遮挡| 国产精品蜜桃在线观看| 亚洲性久久影院| av在线观看视频网站免费| 国产精品爽爽va在线观看网站| 久久精品夜色国产| 人妻 亚洲 视频| 男女啪啪激烈高潮av片| 99久久中文字幕三级久久日本| 大码成人一级视频| 日本欧美国产在线视频| 女的被弄到高潮叫床怎么办| 欧美一级a爱片免费观看看| 亚洲成人av在线免费| www.色视频.com| 综合色丁香网| 亚洲人与动物交配视频| 日韩欧美一区视频在线观看 | 国产成人a∨麻豆精品| 国产v大片淫在线免费观看| 赤兔流量卡办理| 国产免费一级a男人的天堂| 久久久国产一区二区| 乱系列少妇在线播放| 国产精品不卡视频一区二区| 国内揄拍国产精品人妻在线| 能在线免费看毛片的网站| 中文字幕人妻熟人妻熟丝袜美| 亚洲av中文av极速乱| 好男人视频免费观看在线| 久久这里有精品视频免费| 又大又黄又爽视频免费| 韩国高清视频一区二区三区| 夜夜爽夜夜爽视频| 午夜激情久久久久久久| 一区二区三区免费毛片| 中文字幕制服av| 欧美+日韩+精品| av在线观看视频网站免费| av一本久久久久| 婷婷色综合www| 国产大屁股一区二区在线视频| 少妇高潮的动态图| 又大又黄又爽视频免费| 欧美zozozo另类| 婷婷色av中文字幕| 久久精品国产亚洲av涩爱| av在线观看视频网站免费| 国产精品爽爽va在线观看网站| 三级国产精品片| 亚洲无线观看免费| 日韩欧美精品v在线| 国产av国产精品国产| av线在线观看网站| 欧美日韩一区二区视频在线观看视频在线 | 久久精品人妻少妇| 日韩亚洲欧美综合| 国产av码专区亚洲av| 色视频在线一区二区三区| 欧美一级a爱片免费观看看| 26uuu在线亚洲综合色| 最近的中文字幕免费完整| 99视频精品全部免费 在线| 欧美性感艳星| 18+在线观看网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品aⅴ在线观看| 女人十人毛片免费观看3o分钟| 午夜免费观看性视频| 七月丁香在线播放| 直男gayav资源| 黄片无遮挡物在线观看| 久久精品夜色国产| 欧美精品人与动牲交sv欧美| 禁无遮挡网站| 国产老妇女一区| 嫩草影院新地址| 少妇的逼水好多| 久久久久久伊人网av| 蜜桃亚洲精品一区二区三区| 一区二区三区精品91| 在线 av 中文字幕| 欧美xxⅹ黑人| 免费观看的影片在线观看| 国产毛片a区久久久久| 丰满乱子伦码专区| 欧美潮喷喷水| 色吧在线观看| 高清在线视频一区二区三区| 国产精品秋霞免费鲁丝片| 啦啦啦啦在线视频资源| 汤姆久久久久久久影院中文字幕| 黄色视频在线播放观看不卡| 国内精品美女久久久久久| 我要看日韩黄色一级片| 热99国产精品久久久久久7| 一边亲一边摸免费视频| 春色校园在线视频观看| 老师上课跳d突然被开到最大视频| 男女边摸边吃奶| 少妇猛男粗大的猛烈进出视频 | 欧美日韩综合久久久久久| 国产亚洲91精品色在线| 韩国高清视频一区二区三区| 中文资源天堂在线| 黄片无遮挡物在线观看| 久久午夜福利片| 亚洲av成人精品一区久久| 91久久精品电影网| 中国国产av一级| 香蕉精品网在线| 欧美高清成人免费视频www| 22中文网久久字幕| 国产精品人妻久久久影院| 男插女下体视频免费在线播放| 国产综合懂色| 日韩欧美 国产精品| 国产精品爽爽va在线观看网站| 韩国高清视频一区二区三区| 欧美激情久久久久久爽电影| 亚洲欧洲国产日韩| 一区二区三区乱码不卡18| 最近最新中文字幕大全电影3| 日本-黄色视频高清免费观看| 91久久精品国产一区二区三区| 美女高潮的动态| 国产精品一区二区三区四区免费观看| 国产精品久久久久久精品电影| 男人爽女人下面视频在线观看| 九草在线视频观看| 久久97久久精品| 99re6热这里在线精品视频| 久久久精品欧美日韩精品| 秋霞伦理黄片| 欧美少妇被猛烈插入视频| 男人添女人高潮全过程视频| 大片电影免费在线观看免费| 欧美97在线视频| 亚洲精品乱久久久久久| 国产成人a区在线观看| 免费av毛片视频| 亚洲精品乱码久久久v下载方式| 婷婷色综合大香蕉| 成人亚洲精品av一区二区| 亚洲天堂av无毛| 欧美3d第一页| 亚洲成人中文字幕在线播放| 女的被弄到高潮叫床怎么办| 日韩精品有码人妻一区| 亚洲美女搞黄在线观看| 视频区图区小说| 亚洲精品国产av蜜桃| 少妇人妻一区二区三区视频| 久久久久久久大尺度免费视频| 久久99蜜桃精品久久| 久久久久性生活片| 日产精品乱码卡一卡2卡三| 免费黄色在线免费观看| 婷婷色麻豆天堂久久| 国产美女午夜福利| 婷婷色麻豆天堂久久| 最近2019中文字幕mv第一页| 亚洲av中文av极速乱| 在线免费观看不下载黄p国产| 中文字幕av成人在线电影| 黄色视频在线播放观看不卡| 婷婷色麻豆天堂久久| 亚洲精品成人av观看孕妇| 日韩av在线免费看完整版不卡| 水蜜桃什么品种好| 日韩av在线免费看完整版不卡| 水蜜桃什么品种好| 日产精品乱码卡一卡2卡三| 久久精品国产亚洲网站| 日韩欧美精品v在线| 免费看av在线观看网站| 美女主播在线视频| 欧美成人精品欧美一级黄| 久久国产乱子免费精品| 亚洲精品国产av蜜桃| 在线观看一区二区三区| 久久精品国产鲁丝片午夜精品| 日韩不卡一区二区三区视频在线| 日日啪夜夜爽| 免费不卡的大黄色大毛片视频在线观看| 国产 一区 欧美 日韩| 丰满人妻一区二区三区视频av| 国产亚洲av片在线观看秒播厂| 中国三级夫妇交换| 精品视频人人做人人爽| 日韩强制内射视频| 各种免费的搞黄视频| 日韩伦理黄色片| 男男h啪啪无遮挡| 亚洲丝袜综合中文字幕| 日韩伦理黄色片| 国产美女午夜福利| 精品国产露脸久久av麻豆| 少妇裸体淫交视频免费看高清| 成人综合一区亚洲| 亚洲国产av新网站| 色视频www国产| 三级国产精品欧美在线观看| 久久6这里有精品| 另类亚洲欧美激情| 各种免费的搞黄视频| 极品教师在线视频| 日韩人妻高清精品专区| 亚洲国产精品成人综合色| 99久久精品一区二区三区| 少妇人妻久久综合中文| 午夜激情福利司机影院| 欧美高清成人免费视频www| 精品国产三级普通话版| 人妻少妇偷人精品九色| 熟女av电影| 啦啦啦在线观看免费高清www| av在线app专区| 亚洲成人精品中文字幕电影| 中文字幕亚洲精品专区| 国产一区二区三区av在线| 国产美女午夜福利| 免费看光身美女| 亚洲电影在线观看av| av在线播放精品| tube8黄色片| 只有这里有精品99| 狂野欧美激情性xxxx在线观看| 丝袜美腿在线中文| 亚洲在久久综合| 日本av手机在线免费观看| 中文资源天堂在线| 亚洲国产欧美在线一区| 午夜激情福利司机影院| 国产老妇女一区| 国产高清有码在线观看视频| 国产色婷婷99| 26uuu在线亚洲综合色| 麻豆乱淫一区二区| 日韩欧美 国产精品| 欧美日韩国产mv在线观看视频 | 天堂网av新在线| 国产伦精品一区二区三区视频9| 啦啦啦啦在线视频资源| 日韩人妻高清精品专区| 午夜福利视频1000在线观看| 五月开心婷婷网| 少妇裸体淫交视频免费看高清| 日韩欧美一区视频在线观看 | 99久久九九国产精品国产免费| 欧美性感艳星| 国产成人午夜福利电影在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 免费黄网站久久成人精品| av免费在线看不卡| 99久久精品一区二区三区| 久久人人爽av亚洲精品天堂 | 少妇人妻 视频| 老女人水多毛片| 国产国拍精品亚洲av在线观看| 国产在线男女| 69av精品久久久久久| 一级毛片黄色毛片免费观看视频| 最近的中文字幕免费完整| 久久国产乱子免费精品| 老女人水多毛片| 久久久久久久午夜电影| www.av在线官网国产| 97热精品久久久久久| av在线蜜桃| 人妻系列 视频| 欧美日韩精品成人综合77777| av在线app专区| 国产一区亚洲一区在线观看| 男女那种视频在线观看| 精品国产三级普通话版| 欧美极品一区二区三区四区| 欧美日韩精品成人综合77777| 成人亚洲精品av一区二区| 少妇人妻一区二区三区视频| 国产日韩欧美亚洲二区| 久久精品综合一区二区三区| 免费大片黄手机在线观看| 能在线免费看毛片的网站| av网站免费在线观看视频| 国产美女午夜福利| 中文天堂在线官网| 高清av免费在线| 少妇猛男粗大的猛烈进出视频 | 久久久久精品久久久久真实原创| 欧美3d第一页| 日本色播在线视频| 亚洲精品成人av观看孕妇| 1000部很黄的大片| 国产精品熟女久久久久浪| 亚洲欧美一区二区三区黑人 | 亚洲图色成人| 日日撸夜夜添| 久久久久久久久久久丰满| 久久久久精品久久久久真实原创| 欧美日韩亚洲高清精品| 精华霜和精华液先用哪个| 一级av片app| 亚洲成人精品中文字幕电影| 国产视频内射| 国产精品国产三级专区第一集| 在线免费观看不下载黄p国产| 国产永久视频网站| 水蜜桃什么品种好| 久久热精品热| 97精品久久久久久久久久精品| 中文字幕av成人在线电影| 乱系列少妇在线播放| 交换朋友夫妻互换小说| 国产精品久久久久久精品电影小说 | 精品久久久久久久人妻蜜臀av| 久久久久久国产a免费观看| 成人午夜精彩视频在线观看| 国产国拍精品亚洲av在线观看| 日韩电影二区| 黄色怎么调成土黄色| 肉色欧美久久久久久久蜜桃 | 亚洲伊人久久精品综合| 看黄色毛片网站| av卡一久久| 中文字幕av成人在线电影| 亚洲人成网站在线播| 大片电影免费在线观看免费| 久久久久国产网址| 国产淫片久久久久久久久| 亚洲成人精品中文字幕电影| 亚洲人成网站高清观看| 在线观看美女被高潮喷水网站| 肉色欧美久久久久久久蜜桃 | 亚洲av男天堂| 亚洲人成网站在线观看播放| 18禁在线无遮挡免费观看视频| 成人毛片a级毛片在线播放| 男人狂女人下面高潮的视频| 亚洲国产欧美在线一区| 亚洲国产日韩一区二区| 国产精品久久久久久精品电影小说 | 国内揄拍国产精品人妻在线| 久热这里只有精品99| 国产成人a∨麻豆精品| 天天躁夜夜躁狠狠久久av| 国产爽快片一区二区三区| 国产精品三级大全| 噜噜噜噜噜久久久久久91| 自拍欧美九色日韩亚洲蝌蚪91 | 中文字幕亚洲精品专区| 国产精品成人在线| 美女视频免费永久观看网站| 国产av码专区亚洲av| 亚洲va在线va天堂va国产| 高清午夜精品一区二区三区| 国产精品熟女久久久久浪| 人人妻人人澡人人爽人人夜夜| 午夜福利视频精品| 国产精品一区二区在线观看99| 好男人视频免费观看在线| 波野结衣二区三区在线| 精品久久久精品久久久| 亚洲欧美精品自产自拍| 国产人妻一区二区三区在| 久久精品人妻少妇| 99热这里只有是精品在线观看| 欧美日韩视频精品一区| 人妻系列 视频| 三级国产精品欧美在线观看| 亚洲综合精品二区| 麻豆久久精品国产亚洲av| 精品久久久精品久久久| 成人高潮视频无遮挡免费网站| 最近中文字幕高清免费大全6| 黄色日韩在线| 99久久精品国产国产毛片| 久久久久久九九精品二区国产| 三级国产精品片| 精品国产乱码久久久久久小说| 精品人妻一区二区三区麻豆| 中文精品一卡2卡3卡4更新| 国产成人午夜福利电影在线观看| 久久久久久久精品精品| 99精国产麻豆久久婷婷| 亚洲国产色片| 2021天堂中文幕一二区在线观| 蜜桃久久精品国产亚洲av| 丰满人妻一区二区三区视频av| 成人一区二区视频在线观看| 狂野欧美激情性xxxx在线观看| 小蜜桃在线观看免费完整版高清| 成人毛片a级毛片在线播放| 国产精品一二三区在线看| 国产免费福利视频在线观看| 久久久色成人| 国产精品无大码| 老女人水多毛片| 国产高清国产精品国产三级 | 老师上课跳d突然被开到最大视频| av专区在线播放| 91精品一卡2卡3卡4卡| 女的被弄到高潮叫床怎么办| 日韩大片免费观看网站| kizo精华| 在线观看免费高清a一片| 三级国产精品欧美在线观看| 三级国产精品片| 日韩精品有码人妻一区| 国产 一区 欧美 日韩| 亚洲av免费在线观看| 波多野结衣巨乳人妻| 欧美激情在线99| 身体一侧抽搐| 嘟嘟电影网在线观看| 久久久久久伊人网av| 99久久精品一区二区三区| 欧美日韩视频高清一区二区三区二| 女人久久www免费人成看片| 久久久色成人|