• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept

    2022-12-28 09:55:30XiLeWei魏熙樂YuLinBai白玉林JiangWang王江SiYuanChang常思遠(yuǎn)andChenLiu劉晨
    Chinese Physics B 2022年12期
    關(guān)鍵詞:劉晨王江玉林

    Xi-Le Wei(魏熙樂), Yu-Lin Bai(白玉林), Jiang Wang(王江), Si-Yuan Chang(常思遠(yuǎn)), and Chen Liu(劉晨)

    School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China

    Keywords: deep brain stimulation, Parkinson’s disease, basal ganglia, closed-loop control, variable universe fuzzy

    1. Introduction

    Parkinson’s disease(PD)is a common neurodegenerative disease in people over 60 years of age.[1]The most obvious symptoms of PD patients are tremor,limb rigidity,hypokinesia,and gait abnormalities.[2]The most common therapy in the early stages of the disease is pharmacological treatment with levodopa(L-DOPA).[3,4]However,side effects such as muscle tremors and rigidity may appear after taking L-DOPA for 3–5 years.[5]In this stage, deep brain stimulation (DBS)[6–8]can effectively reduce symptoms in PD.[9–12]DBS is a neurosurgical procedure in which electrodes are implanted at specific locations in the brain and the implanted battery power provides a constant or interrupted current.[13,14]The electrodes deliver electrical stimulation to the target regions. As an established clinical therapy, DBS is not only an effective treatment for movement disorders of PD patients but also being applied to the treatment of Depression,Dystonia and Tourette syndrome.[14]

    Currently, the open-loop DBS is widely used in clinical. Stimulus parameters have a great influence on the stimulation effect but it will take a long time to find the appropriate parameters. The open-loop configuration fails to adapt to the changes in symptom severity and the other variations of brain. In addition, constant stimulation may lead to excessive stimulation, shorten the battery life, and reduce the stimulation efficiency.[15,16]Consequently, developing a new form of closed-loop or adaptive DBS is an effective method to address these limitations.[17]Compared to open-loop DBS,closed-loop DBS allows one to monitor the patient’s pathological status according to the neurophysiological signals,and to adjust stimulation based on the feedback.[1,16]Hamaniet al.used a closed-loop system to automatically adjust the stimulation parameters and thus reduced the side effects of the stimulation in patients with PD by 19%.[18]Littleet al.applied adaptive DBS according to an empirically determined threshold as feedback achieving motor improvement and the energy consumption has reduced by 50%.[19]

    The feedback information is one of the greatest challenges in the closed-loop DBS. A biomarker, closely related to the patient’s pathology, is needed to be found. Local field potential recordings show that DBS or the application of LDOPA suppresses beta band synchronized oscillations.[20–22]Many studies used the beta band (12–35 Hz) signals as the biomarker.[16,23–25]However, electrophysiological investigations have shown that the pathological oscillations in the 4–8 Hz are also associated with tremor symptoms.[26,27]Thus,the closed-loop DBS only using the beta band(12–35 Hz)signals as the biomarker is insufficient. It is reasonable to apply closed-loop DBS based on the original local field potential signals.

    Many control strategies have been applied to closed-loop DBS.[28,29]Pyragaset al.proposed a proportional-integralderivative (PID) control strategy by utilizing a configuration with an observed and stimulated subsystem to desynchronize the globally coupled oscillatory networks.[30]The biomarker is the mean field of the observed subsystem. Dunnet al.applied the PID control strategy to the closed-loop DBS system.[25]However,it takes a long time to deregulate the parameters of PID control,and parameters need to be re-adjusted as PD states changed. This means that a group of parameters cannot work well under different PD states, which may even cause distress for the patients.

    Currently, the adjustment of DBS parameters for PD patients needs to be performed by experienced physicians and can only act on the treatment of a single situation. It may take a long time and may also have side effects. Fuzzy concept control uses the same cognitive methods to make the controller adjust the parameters like an experienced doctor. It may automatically adjust the stimulation waveform according to various Parkinsonian states based on human thinking. In addition, our previous work has tested the fuzzy control and demonstrated that it plays a propound role in restoring the abnormal relay reliability of thalamocortical neuron.[31]Thus,to further facilitate a closed-loop DBS,a variable universe fuzzy control strategy to incorporate DBS is proposed in this work,which aims at enhancing the modulation efficiency of PD oscillations.

    The main remainder of the paper is organized as follows:Section 2 describes a computational network model of PD and the design of the controller.Section 3 shows the control effects and compares the performance of the variable universe fuzzy controller and the fuzzy controller. The conclusions are given in Section 4.

    2. Models and methods

    2.1. Models of cortico-basal ganglia-thalamic neural network

    A cortico-basal ganglia-thalamic neural network model is constructed,as shown in Fig.1.The basal ganglia mainly consists of three parts, i.e., subthalamic nucleus (STN), external globus pallidus(GPe)and internal globus pallidus(GPi). The cortex mainly consists of two parts, i.e., pyramidal neurons(PY) and interneurons (IN). In our model, each population containingN= 100 single-compartment Izhikevich neurons is connected by various excitatory and inhibitory synapses sparsely. Red arrows indicate excitatory projections,and blue arrows indicate inhibitory connections. Figure 1 shows the details of the synaptic connections of the population, where each STN neuron receives inhibitory projections from two randomly selected GPe neurons and excitatory projections from two randomly selected PY neurons.Each GPe neuron receives inhibitory inputs from two randomly selected GPe neurons and excitatory inputs from three STN neurons. The GPi neurons receive excitatory inputs from three randomly selected STN neurons and inhibitory input from a single GPe neuron. Each thalamic(TH)neuron receives inhibitory inputs from a single GPi neuron.The PY neurons receive not only excitatory inputs from five randomly selected TH neurons but also inhibitory input from an IN neuron.

    Fig. 1. Detailed connection of basal ganglia-thalamo-cortical network model.

    A hybrid Izhikevich neuron model, computationally less expensive than a biophysical model and suitable to capture various firing activities, is used to simulate every single neuron. The model combines a set of spike functions and a discontinuous after-spike reset. The equations of the model are given in the following form:[32]

    where (M,i) represents theith neuron in theMnucleus withi=1, 2,..., 100 andM ∈{STN, GPe, GPi, TH, PY, IN};vis the membrane potential anduis a recovery variable that provides negative feedback tov. Moreover,vanduare reset according to Eq. (3) whenevervexceeds the threshold (i.e.,30 mV).

    Four dimensionless model parametersaM,bM,cM, anddMcan be combined to characterize the dynamics for each neuron in the nucleusM. The time scale ofucan be determined by parameteraMand the sensitivity ofuto the subthreshold fluctuations ofvcan be determined by parameterbM.More specifically,a largeraMleads to a faster recovery and a small value ofbMshows the coupling betweenvandu.

    wheregJ→Mdescribes the strength of the synaptic coupling intensity withJ,M ∈{STN,GPe,GPi,TH,PY,IN}. The values ofgJ→Mare different in normal and PD states based on the biological details. The parameterEJ→Iis the reversal potential withEJ=0 mV for excitatory synapses andEJ=?80 mV for inhibitory synapses,andτMis the synaptic delay. The synapse variablerJ,j, as a fraction of the postsynaptically bound neurotransmitter,obeys the following first-order kinetics:

    wheretsis the synaptic decay rate.

    The parameters of the Izhikevich model are changed in order to simulate more physiological and pathological phenomena. The detailed values of the parameters used in the simulations are listed in Table 1. All the simulations are carried out in MATLAB R2018b.

    In our previous study,[31]a variable universe fuzzy closed-loop method is designed to restore the relay ability of TH neurons automatically. It has been proved that the variable universe fuzzy control can avoid adjusting controller’s parameters repeatedly and improve the robustness of the controlled system. In order to adapt to the problem of decreased effectiveness of the controller due to PD progression,we apply this method to closed-loop DBS to control the basal ganglia network.

    Considering that STN is selected as the target nucleus for typical DBS, Eq. (1) for the STN nucleus is modified as follows:

    whereIDBSdescribes the stimulation current applied to the STN with the frequency in the range 130–180 Hz. In order to avoid tissue damage, the stimulation pulses adopt positive and negative charge balance form, which consists of a short-duration high-amplitude pulse and a long-duration lowamplitude pulses of opposite polarity. Thus, the total charge of the two-phase pulse is zero.[33]The details of the DBS are shown in Fig. 2. The short duration is 200 μs, while the long duration is twenty times longer than the short one. Accordingly,the amplitudes of the high-amplitude pulse are onetwentieth of the low-amplitude pulse.

    Table 1. Parameter values of the model.

    Fig.2. Scheme of the variable universe fuzzy control system based on cortico-basal ganglia-thalamic network.

    2.2. Fuzzy logic control strategy

    Figure 2 shows the block diagram of the control strategy,

    whereydrepresents the local field potential signal of the STN in the desired state andyis the feedback signal. The errorebetweenydandyconstitutes one major input of the fuzzy controller. Another input of the controllerec=de/dtcharacterizes the change rate ofe.

    The fuzzy control algorithm[34–36]is implemented when each DBS pulse comes. Thus, the feedback signalyis only calculated once averagely from the local field potential of the STN since the previous stimulation pulse arrives. The variable universe controller consists of a main fuzzy controller and an auxiliary fuzzy controller. The two fuzzy controllers work together. Fuzzy control strategy is an intelligent control algorithm which works like an expert proficient in this task.[37]Both fuzzy controllers use standard Mamdani inference method. Here,according to the functional characteristics of the auxiliary fuzzy controller,the auxiliary fuzzy controller is renamed as contraction–expansion factor fuzzy controller.It is responsible for the regulation of contraction–expansion factor to adjust the universe of the main controller. The universe shrinks as the error decreases and it also expands as the error increases. In this way,the precision of the controller improves greatly by using its outpututo modulate the amplitude of the DBS high-amplitude pulse. The details of the fuzzy controller are based on our previous work.[31]

    2.3. Evaluation index

    (i)Summation of band power(Ps).

    The sum of specific band power is an important index for evaluating model states. The powerPM(f)for each frequency is calculated in the following form:

    wherefsis the sampling frequency of the power spectrum,being set to 104Hz here;tnrepresents the current time in the simulation. Use the last 1 s of the simulation results to calculate the power spectrum.

    PbetaandPthetaare used to indicate the strength of the beta band oscillations and theta band oscillations. The corresponding calculation methods are described in the following way:

    (ii)Control effectiveness index(CI).

    CIis used to measure the effectiveness of closed-loop DBS. All the investigations are based on closed-loop control of the network. Therefore,CIis defined to measure the effectiveness of control. The calculation method is expressed by the following formula:

    wherePS1is the summation of the band power under closedloop control of the controller.For the PD1 state,PS1represents the sum of energies of 4–8 Hz,whereas,for the PD2 state,PS1represents the sum of energies of 12–35 Hz.PS2refers to the summation of corresponding band power before the control,i.e. in PD states. The value ofCIrepresents the percentage of the summation band power after control compared to that before control.

    (iii)Energy consumption index(EI).

    The energy consumption of the controller is measured by the following formula:

    whereIDBSis referred to the injected current of the neurons,andNis the total number of neurons that receives injected current in the simulation.

    3. Results

    3.1. Model verification

    In our study, the intrinsic and coupling parameters are changed to simulate normal and PD states.

    Figure 3 is the spike raster of the neural network depicting the firing of all neurons in each nucleus at different times and the overall behavior of the nucleus can also be obviously noticed. Each row corresponds to a unique nucleus and each point corresponds to one spike of a neuron. It can be noticed that more synchronous activities occur in each nucleus under the PD state.

    To further verify the models and investigate the influence of neuronal parameters in the STN nuclei on oscillation frequency, we investigate the oscillation peaks of local field potentials of individual nuclei in the network by varying the values ofaSTNanddSTN. the panels in the upper row of Fig.4 illustrate the peak frequency and peak power of the spectrum of the STN,GPe and GPi as the values ofaSTNanddSTNchange.It shows that the model can produce PD states with an oscillatory main frequency of STN between 5.5 and 27.5 Hz. Simultaneously,the panels in the lower row of Fig.4 depict the power of the corresponding oscillatory peaks, which reflects the strength of the oscillations. The intensity of the oscillations with a higher frequency than 22 Hz becomes weaker in STN and GPe.

    Two representative PD states, labeled as PD1 and PD2,are selected to characterize the abnormal oscillation in PD.For PD1 state,aSTNis 0.01 anddSTNis 10. For PD2 state,aSTNis 0.03 anddSTNis 8. The cardinal oscillation frequencies of the STN are 7 Hz in the theta band and 18 Hz in the beta band,respectively. Figure 5 shows the firing rates which are calculated during the first 3 s. It can be shown that the firing rate of STN in the normal state is higher than that of theta oscillation in the PD1 state,but is lower than that of beta oscillation in the PD2 state. Compared with the normal state, the pathological firing rates decrease in the GPe,TC,PY,and IN,but increase in the GPi. This simulation result is consistent with the previous studies that were developed in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treated primates and PD patients.[38–40]

    Fig.3. Spatiotemporal firing raster in normal state: (a)GPe, (c)GPi, (e)PY,(g)STN,(i)IN,and(k)TC.Spatiotemporal firing raster in PD state: (b)GPe,(d)GPi,(f)PY,(h)STN,(j)IN,and(l)TC.

    Fig.4. The dependence of the frequency and power of the spectral peak on the values of aSTN and dSTN in the model. Peak frequency of power spectrum in STN(a),GPe(b),and GPi(c)change with aSTN and dSTN. The power of the peak frequency change in STN(d),GPe(e),and GPi(f)with aSTN and dSTN.

    Fig.5. Firing rates of different nuclei.

    Figure 6 shows the power spectrum of the local field potentials of the STN nuclei in normal,PD1 and PD2 states,respectively. It can be seen that the power spectrum of the PD1 state shows a peak at 7 Hz and the peak in the beta frequency band occurs in the PD2 state,which reveals pathologically enhanced oscillatory activities compared to the normal state.

    Fig.6. Meanfield of STN nuclei in normal(a),PD1(c),and PD2(e)states. Power spectrum of the mean-field in normal(b),PD1(d),and PD2(f)states. Pink area is the theta band and green area is the beta band.

    3.2. Comparison of the performance of fuzzy logic closedloop control and variable universe fuzzy logic closedloop control

    In order to examine the robustness of the variable universe fuzzy controller and the fuzzy controller,the parameters of both controllers are unchanged while the pathological oscillation frequency peaks are changed. A set of parameters of the two controllers are chosen to suppress beta oscillations. In the design of the fuzzy controller,the universes of the two inputs (i.e. error and the change rate of error) are both set to be [?3, 3] without loss of generality. By multiplying factors labeled byKeandKec, the initial values of both inputs can be located within the universes. Considering that the range of erroreis about[?3.5,3.5]and the change rateecranges from[?3.3,3.3]from several pre-experiments,Kefor the ordinary fuzzy logical control strategy is set to 0.8 andKecis set to 0.9,correspondingly. Though in the variable universe fuzzy control strategy, all the settings of the controller are consistence with the ordinary one and the universes of main and auxiliary controller are both[?3,3].

    As shown in Fig. 7, the two types of fuzzy logic controllers can effectively relieve the PD1 and PD2 states. It is worth noting that the control parameters are unchanged for the two different PD states. Figures 7(a)and 7(b)show the power summation at the frequencies of 3–8 Hz and 12–35 Hz. It can be determined whether the fuzzy controller and variable universe fuzzy controller can effectively reduce the oscillation reflected by a significant reduction of peak power. Moreover,we notice that the power of the spectral peak under the variable universe fuzzy controller is lower than that of the fuzzy controller.

    Figure 8 shows the injected currents waveform of fuzzy controller and variable universe fuzzy controller,respectively.The stimulation current is injected into the objective network att=3 s.

    Fig. 7. Power spectrum of the local field potential of STN nucleus in PD1(a)and PD2(b)states.

    Fig.8. Injected current waveform: (a)PD1 state under fuzzy control,(b)PD2 state under fuzzy control,(c)PD1 state under variable universe fuzzy control,and(d)PD2 state under variable universe fuzzy control.

    Fig.9. Time-frequency diagrams of STN neurons in the model in the normal state(a),PD1 state(b),and PD2 state(c). The closed-loop DBS is added at 3 s in(b)and(c).

    Figure 9 shows the time-frequency diagrams of STN neurons of variable universe fuzzy controller in the simulation.Figure 9(a)depicts the time-frequency diagram of the normal state of the nucleus in 8 s. Figures 9(b)and 9(c)depict the differences in time-frequency diagrams before(i.e. the first 3 s)and after(i.e.3–8 s)DBS for PD1 and PD2 states.In Fig.9(b),when DBS is not applied for the first 3 s, there is an obvious 7 Hz oscillation. A significant decrease in 7 Hz oscillations is seen in the STN nucleus when the 130 Hz DBS is applied att=3 s. However, in Fig. 9(c), the STN neurons exhibit the 18 Hz oscillation in the first 3 s. The DBS is started att=3 s,after which the oscillation in the beta band soon disappears.

    Quantitative evaluation is further conducted by inducing some indexes. Figure 10 presents the control effectiveness index (CI), and the summation of band power (Ps) is calculated in Fig.11. Figure 12 shows the energy consumption(EI)used to generate stimulus current waveforms of the two controllers. Both fuzzy controllers can achieve effective control over various PD states,as shown in Fig.10. In Fig.11,3–8 Hz band power under the fuzzy controller is about 10 times than that of variable universe fuzzy controller in the case of PD1.The fuzzy controller reduces 3–8 Hz band power to 25 percent while the variable universe fuzzy controller reduces 3–8 Hz band power to 2.5 percent of the PD1 state. In the case of PD2,the beta band power of LFP in STN under the fuzzy controller is 3 times higher than that under the variable universe fuzzy controller. Moreover, the energy consumption of variable universe fuzzy controller is 67% and 78% of the fuzzy controller in the cases of PD1 and PD2, respectively. It can be demonstrated that the variable universe fuzzy controller exhibits a superior performance than the ordinary fuzzy with the limitation of the unchanged controller parameters. The variable universe fuzzy controller can further reduce the abnormal oscillation in the basal ganglia network by costing less energy.

    Fig.10. Control effectiveness index(CI).

    Fig.11. Summation of band power(PS).

    Fig.12. Energy consumption index under different conditions(EI).

    4. Conclusions

    This paper proposes a computational network of the basal ganglia-thalamo-cortical using the hybrid Izhikevich neuron model in order to reproduce the dynamical characteristics of the Parkinsonian state. The difference in the frequency of pathological oscillation corresponds to the different clinical manifestations. This work generates the beta and theta oscillations through the adjustment of the model. Based on the computational neural network,two types of fuzzy control strategies are adopted to suppress the abnormal oscillation in the basal ganglia-thalamo-cortical network.Simulation results show that DBS with variable universe fuzzy control strategy can effectively control different oscillations without changing the controller parameters. The control effectiveness of variable universe fuzzy controller exhibits better performance than that of ordinary fuzzy control strategy with a stronger ability to suppress the abnormal oscillation and a lower stimulation energy expenditure.

    However,there is a limitation that this work simulates the computational model in the computer,without considering the hardware extra cost for the complex algorithm. Thus,we can further deploy the controller to the hardware, which will also be a very challenging,meaningful job.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62173241 and 62171312) and the Natural Science Foundation of Tianjin, China (Grant Nos. 20JCQNJC01160 and 19JCZDJC36500). The authors also gratefully acknowledge the financial support provided by Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control (Lanzhou Jiaotong University), Ministry of Education,China(Grant No. KFKT2020-01).

    猜你喜歡
    劉晨王江玉林
    王玉林作品
    面向反應(yīng)堆設(shè)計(jì)的高性能計(jì)算中心建設(shè)及應(yīng)用
    Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme?
    邱玉林藝術(shù)作品欣賞
    Orientation and alignment during materials processing under high magnetic fields?
    劉晨:我將借助語(yǔ)言實(shí)現(xiàn)自我價(jià)值
    Unit 6 Travelling around Asia Listening and speaking
    王江作品
    趙玉林藏石欣賞
    寶藏(2017年10期)2018-01-03 01:53:27
    來日并不方長(zhǎng)
    愛你(2017年15期)2017-05-17 01:40:07
    免费观看精品视频网站| 午夜福利高清视频| 色综合亚洲欧美另类图片| 俄罗斯特黄特色一大片| 国产熟女午夜一区二区三区| 怎么达到女性高潮| 精品不卡国产一区二区三区| 丰满的人妻完整版| 大型av网站在线播放| 久99久视频精品免费| 9色porny在线观看| 精品国产亚洲在线| 午夜福利一区二区在线看| 精品免费久久久久久久清纯| 国产亚洲欧美98| 黄色毛片三级朝国网站| 国产精品综合久久久久久久免费 | 黄色片一级片一级黄色片| 最近最新中文字幕大全电影3 | 女同久久另类99精品国产91| 亚洲激情在线av| 国产精华一区二区三区| 99久久综合精品五月天人人| 精品久久久精品久久久| 在线视频色国产色| av视频在线观看入口| 桃色一区二区三区在线观看| 中文字幕高清在线视频| 国产男靠女视频免费网站| 国产精品日韩av在线免费观看 | 久久人人精品亚洲av| 亚洲av日韩精品久久久久久密| 如日韩欧美国产精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 亚洲一区中文字幕在线| 国产av一区二区精品久久| 高清黄色对白视频在线免费看| e午夜精品久久久久久久| 中文字幕av电影在线播放| 手机成人av网站| 久久人人精品亚洲av| 久久中文字幕人妻熟女| 欧美一级毛片孕妇| 亚洲色图av天堂| 国产真人三级小视频在线观看| 免费观看人在逋| aaaaa片日本免费| 99国产精品99久久久久| 无遮挡黄片免费观看| 亚洲av电影在线进入| 日韩有码中文字幕| 欧美乱码精品一区二区三区| 久久国产精品男人的天堂亚洲| 国产精品98久久久久久宅男小说| 国产一区在线观看成人免费| 电影成人av| 国产亚洲欧美精品永久| 在线十欧美十亚洲十日本专区| 村上凉子中文字幕在线| 日韩欧美免费精品| 极品人妻少妇av视频| 中文字幕高清在线视频| 午夜影院日韩av| 亚洲狠狠婷婷综合久久图片| 成年女人毛片免费观看观看9| 国产伦一二天堂av在线观看| 国产av在哪里看| 亚洲av电影在线进入| 欧美色欧美亚洲另类二区 | 免费搜索国产男女视频| 国产精品久久电影中文字幕| 午夜两性在线视频| 中文字幕人妻丝袜一区二区| 一级,二级,三级黄色视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲色图av天堂| 午夜福利一区二区在线看| 在线观看午夜福利视频| 国产精品电影一区二区三区| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 操出白浆在线播放| 老司机深夜福利视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久视频播放| av天堂久久9| 精品一区二区三区视频在线观看免费| 精品乱码久久久久久99久播| 后天国语完整版免费观看| 我的亚洲天堂| 日韩免费av在线播放| 露出奶头的视频| 免费在线观看亚洲国产| 亚洲va日本ⅴa欧美va伊人久久| 搡老岳熟女国产| 两个人视频免费观看高清| 久久草成人影院| 老熟妇乱子伦视频在线观看| 99在线人妻在线中文字幕| 一进一出抽搐动态| 天天一区二区日本电影三级 | 亚洲在线自拍视频| 每晚都被弄得嗷嗷叫到高潮| 国产av精品麻豆| 成人国语在线视频| 亚洲五月色婷婷综合| 18禁国产床啪视频网站| 午夜老司机福利片| 91九色精品人成在线观看| 久久人人精品亚洲av| 高清黄色对白视频在线免费看| 色尼玛亚洲综合影院| 成人国产综合亚洲| 久久婷婷人人爽人人干人人爱 | 黑人巨大精品欧美一区二区蜜桃| 亚洲七黄色美女视频| 亚洲男人的天堂狠狠| 在线观看66精品国产| 久久中文看片网| 一级作爱视频免费观看| 一本大道久久a久久精品| 啦啦啦免费观看视频1| 亚洲黑人精品在线| 欧美最黄视频在线播放免费| 日韩欧美国产一区二区入口| 母亲3免费完整高清在线观看| 中文字幕最新亚洲高清| 亚洲少妇的诱惑av| 免费人成视频x8x8入口观看| 人妻丰满熟妇av一区二区三区| 97碰自拍视频| 亚洲黑人精品在线| 麻豆一二三区av精品| 国产av在哪里看| 高清黄色对白视频在线免费看| 国产高清videossex| 999久久久精品免费观看国产| 啦啦啦 在线观看视频| 精品无人区乱码1区二区| 国产精品乱码一区二三区的特点 | 真人做人爱边吃奶动态| 日韩欧美一区视频在线观看| 一区在线观看完整版| 一级毛片高清免费大全| 亚洲精品久久成人aⅴ小说| www.www免费av| 中文字幕久久专区| 精品国产一区二区三区四区第35| 在线观看日韩欧美| 曰老女人黄片| 亚洲精品国产精品久久久不卡| 美女 人体艺术 gogo| 色婷婷久久久亚洲欧美| 日本精品一区二区三区蜜桃| 精品一区二区三区四区五区乱码| 侵犯人妻中文字幕一二三四区| 天堂动漫精品| 成熟少妇高潮喷水视频| 亚洲国产欧美日韩在线播放| 亚洲人成77777在线视频| 成熟少妇高潮喷水视频| 99久久久亚洲精品蜜臀av| 精品国产乱码久久久久久男人| 亚洲国产中文字幕在线视频| 少妇粗大呻吟视频| 日韩av在线大香蕉| 久久人人爽av亚洲精品天堂| 无遮挡黄片免费观看| 在线观看午夜福利视频| 成人永久免费在线观看视频| 十八禁网站免费在线| 性少妇av在线| 色哟哟哟哟哟哟| 日韩视频一区二区在线观看| 制服人妻中文乱码| 村上凉子中文字幕在线| 国产熟女午夜一区二区三区| 九色亚洲精品在线播放| 亚洲熟妇熟女久久| 免费久久久久久久精品成人欧美视频| 12—13女人毛片做爰片一| 久久中文字幕人妻熟女| 天堂影院成人在线观看| 久久久久亚洲av毛片大全| 一夜夜www| 国产人伦9x9x在线观看| 久久人人精品亚洲av| 在线观看午夜福利视频| 亚洲专区字幕在线| 十八禁网站免费在线| 性欧美人与动物交配| 在线观看66精品国产| 亚洲中文av在线| 午夜福利成人在线免费观看| 一进一出抽搐gif免费好疼| 欧美成人性av电影在线观看| 中文字幕av电影在线播放| 欧美在线黄色| 人人妻人人澡人人看| 欧美成人午夜精品| av在线天堂中文字幕| 在线播放国产精品三级| 欧美日本亚洲视频在线播放| 69精品国产乱码久久久| 国语自产精品视频在线第100页| 长腿黑丝高跟| 日韩欧美国产在线观看| 色在线成人网| 欧美人与性动交α欧美精品济南到| 欧美国产精品va在线观看不卡| 亚洲第一青青草原| 欧美成人免费av一区二区三区| 老汉色∧v一级毛片| а√天堂www在线а√下载| 九色国产91popny在线| 色在线成人网| 无人区码免费观看不卡| 亚洲五月色婷婷综合| videosex国产| 久久热在线av| av在线播放免费不卡| 久久久国产成人免费| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品一区二区免费欧美| 日本 av在线| 99精品久久久久人妻精品| 9热在线视频观看99| 亚洲精品美女久久av网站| 色av中文字幕| 成人国产一区最新在线观看| 久久久久九九精品影院| www日本在线高清视频| 亚洲成av片中文字幕在线观看| 99久久综合精品五月天人人| 精品人妻1区二区| 久久久久国内视频| 少妇熟女aⅴ在线视频| 久久久水蜜桃国产精品网| 大码成人一级视频| 亚洲少妇的诱惑av| 女警被强在线播放| 亚洲精品中文字幕在线视频| 一级片免费观看大全| 成人精品一区二区免费| 午夜福利,免费看| 成人国语在线视频| 午夜福利高清视频| 这个男人来自地球电影免费观看| 日韩精品中文字幕看吧| 成人亚洲精品一区在线观看| 一级毛片女人18水好多| 日韩精品免费视频一区二区三区| 欧美中文日本在线观看视频| 亚洲精品在线观看二区| 后天国语完整版免费观看| 9热在线视频观看99| 露出奶头的视频| 国产精品一区二区免费欧美| 在线永久观看黄色视频| 色综合欧美亚洲国产小说| 国产成人欧美| 一本久久中文字幕| 欧美日韩精品网址| 国产成人精品久久二区二区91| 一级毛片精品| 国产一区二区三区综合在线观看| 久久人人爽av亚洲精品天堂| 欧美老熟妇乱子伦牲交| 国产激情久久老熟女| 韩国精品一区二区三区| 欧美色视频一区免费| 亚洲av五月六月丁香网| 搡老妇女老女人老熟妇| 国产精品亚洲美女久久久| 变态另类丝袜制服| 人妻丰满熟妇av一区二区三区| 一区二区日韩欧美中文字幕| 久久草成人影院| 自线自在国产av| 国产亚洲av嫩草精品影院| www日本在线高清视频| 久久久久久大精品| 脱女人内裤的视频| 国产欧美日韩精品亚洲av| 午夜久久久在线观看| 亚洲伊人色综图| 欧美乱妇无乱码| 岛国在线观看网站| 两个人视频免费观看高清| 色播在线永久视频| 一二三四社区在线视频社区8| www.熟女人妻精品国产| 国产又爽黄色视频| 日本vs欧美在线观看视频| 少妇粗大呻吟视频| 别揉我奶头~嗯~啊~动态视频| 国产精品免费视频内射| av超薄肉色丝袜交足视频| 香蕉久久夜色| 日韩视频一区二区在线观看| 亚洲av片天天在线观看| 美女高潮到喷水免费观看| 亚洲天堂国产精品一区在线| 亚洲视频免费观看视频| 久久伊人香网站| 啦啦啦免费观看视频1| 97超级碰碰碰精品色视频在线观看| 一进一出抽搐gif免费好疼| 亚洲五月婷婷丁香| 在线观看免费视频日本深夜| 这个男人来自地球电影免费观看| 一级黄色大片毛片| 又大又爽又粗| 侵犯人妻中文字幕一二三四区| 亚洲一码二码三码区别大吗| 久久久久国产精品人妻aⅴ院| 淫秽高清视频在线观看| 9191精品国产免费久久| 美女高潮到喷水免费观看| 淫妇啪啪啪对白视频| 久久天堂一区二区三区四区| av天堂久久9| 日韩欧美一区视频在线观看| 国产精品 欧美亚洲| 日韩成人在线观看一区二区三区| 亚洲成国产人片在线观看| 国产av在哪里看| 人人妻人人澡人人看| 成人av一区二区三区在线看| 在线观看免费午夜福利视频| 午夜视频精品福利| 国产极品粉嫩免费观看在线| 久久久久久人人人人人| 日本一区二区免费在线视频| 午夜福利高清视频| 三级毛片av免费| 悠悠久久av| 亚洲人成电影观看| 国产精品亚洲一级av第二区| 男人的好看免费观看在线视频 | 色婷婷久久久亚洲欧美| 久久久久久久精品吃奶| 亚洲国产精品合色在线| 国产精品久久久久久人妻精品电影| 两性午夜刺激爽爽歪歪视频在线观看 | 久久欧美精品欧美久久欧美| 日本vs欧美在线观看视频| 97碰自拍视频| 无人区码免费观看不卡| av天堂在线播放| 免费在线观看黄色视频的| 身体一侧抽搐| 桃红色精品国产亚洲av| 欧美日韩黄片免| 桃红色精品国产亚洲av| 亚洲一区二区三区色噜噜| 久久九九热精品免费| 精品国产超薄肉色丝袜足j| 视频在线观看一区二区三区| 侵犯人妻中文字幕一二三四区| av超薄肉色丝袜交足视频| 精品福利观看| 麻豆av在线久日| 一级黄色大片毛片| 久久性视频一级片| 欧美中文日本在线观看视频| 亚洲成av人片免费观看| 国产精品一区二区精品视频观看| 精品免费久久久久久久清纯| 欧美绝顶高潮抽搐喷水| 搡老妇女老女人老熟妇| 一边摸一边抽搐一进一出视频| 91av网站免费观看| 欧美日韩瑟瑟在线播放| 亚洲黑人精品在线| 亚洲五月色婷婷综合| 午夜福利在线观看吧| 曰老女人黄片| 99riav亚洲国产免费| 一区二区三区激情视频| 如日韩欧美国产精品一区二区三区| 国产一区二区三区视频了| 国产熟女午夜一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 首页视频小说图片口味搜索| 波多野结衣av一区二区av| 国产成人欧美在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲精品国产一区二区精华液| 日韩 欧美 亚洲 中文字幕| 亚洲成国产人片在线观看| 搡老岳熟女国产| 一卡2卡三卡四卡精品乱码亚洲| 亚洲片人在线观看| 亚洲情色 制服丝袜| 欧美黄色片欧美黄色片| 免费一级毛片在线播放高清视频 | 亚洲 欧美一区二区三区| 长腿黑丝高跟| netflix在线观看网站| 日韩视频一区二区在线观看| 色婷婷久久久亚洲欧美| 在线观看午夜福利视频| 亚洲国产欧美日韩在线播放| 日韩一卡2卡3卡4卡2021年| 午夜免费成人在线视频| 色综合欧美亚洲国产小说| 久久精品aⅴ一区二区三区四区| 亚洲精品国产色婷婷电影| 亚洲av美国av| 亚洲精品av麻豆狂野| 90打野战视频偷拍视频| 国产精品乱码一区二三区的特点 | 免费在线观看完整版高清| 级片在线观看| 国产91精品成人一区二区三区| 久久人人爽av亚洲精品天堂| 色综合站精品国产| 一本综合久久免费| 国产精品久久久久久人妻精品电影| 九色亚洲精品在线播放| tocl精华| 亚洲少妇的诱惑av| 午夜久久久在线观看| 午夜免费观看网址| 日日摸夜夜添夜夜添小说| 久久久久久大精品| 欧美日韩瑟瑟在线播放| 高清毛片免费观看视频网站| 天天躁夜夜躁狠狠躁躁| 欧美丝袜亚洲另类 | 精品国产乱子伦一区二区三区| 老汉色av国产亚洲站长工具| 看黄色毛片网站| 黄频高清免费视频| 在线观看免费视频日本深夜| 久99久视频精品免费| 女人高潮潮喷娇喘18禁视频| 午夜久久久在线观看| 黄片小视频在线播放| 窝窝影院91人妻| 国产av精品麻豆| 久久久久国产精品人妻aⅴ院| 欧美成人一区二区免费高清观看 | 精品一区二区三区av网在线观看| 午夜福利,免费看| 一级毛片女人18水好多| 黑丝袜美女国产一区| 欧美国产精品va在线观看不卡| 色精品久久人妻99蜜桃| 99久久久亚洲精品蜜臀av| 亚洲欧美激情综合另类| 日韩 欧美 亚洲 中文字幕| 级片在线观看| 久久久久久久午夜电影| www日本在线高清视频| 欧美成人一区二区免费高清观看 | 精品久久蜜臀av无| 亚洲成人国产一区在线观看| 中文字幕高清在线视频| 欧美在线一区亚洲| 久久婷婷成人综合色麻豆| 日本vs欧美在线观看视频| av在线播放免费不卡| 久久国产精品人妻蜜桃| 久久久精品欧美日韩精品| 久久久久国产精品人妻aⅴ院| 久久久久九九精品影院| 此物有八面人人有两片| 婷婷丁香在线五月| 中文字幕人妻丝袜一区二区| 亚洲一区二区三区不卡视频| 国产精品 国内视频| 久久婷婷成人综合色麻豆| 操美女的视频在线观看| 国产主播在线观看一区二区| 99精品在免费线老司机午夜| 51午夜福利影视在线观看| 久久香蕉精品热| 国产成人av教育| 丁香欧美五月| 久久影院123| 国产一区二区激情短视频| 搡老熟女国产l中国老女人| 日本 欧美在线| 色哟哟哟哟哟哟| 欧美黄色淫秽网站| 黄片小视频在线播放| 色播在线永久视频| 亚洲精华国产精华精| 国产高清视频在线播放一区| 精品欧美一区二区三区在线| 国产精品二区激情视频| 国产熟女xx| 亚洲国产欧美一区二区综合| 亚洲成人久久性| 少妇的丰满在线观看| 国产精品免费一区二区三区在线| 精品国产国语对白av| cao死你这个sao货| 久久久久久人人人人人| 欧美日韩亚洲国产一区二区在线观看| 久久精品影院6| 两性午夜刺激爽爽歪歪视频在线观看 | 国产高清激情床上av| 精品一区二区三区av网在线观看| 制服丝袜大香蕉在线| 侵犯人妻中文字幕一二三四区| 国产麻豆成人av免费视频| 一a级毛片在线观看| 看免费av毛片| 性色av乱码一区二区三区2| 一区二区三区激情视频| 欧美黄色淫秽网站| 免费在线观看完整版高清| 在线观看舔阴道视频| 亚洲精品久久国产高清桃花| 午夜免费成人在线视频| 中文字幕最新亚洲高清| 俄罗斯特黄特色一大片| 夜夜看夜夜爽夜夜摸| 很黄的视频免费| 久久亚洲精品不卡| 热re99久久国产66热| 一级片免费观看大全| 天天躁夜夜躁狠狠躁躁| 日本三级黄在线观看| 成人免费观看视频高清| 国产精品1区2区在线观看.| 国产国语露脸激情在线看| 中文字幕人成人乱码亚洲影| 国产精品电影一区二区三区| 日韩av在线大香蕉| 亚洲 国产 在线| 色尼玛亚洲综合影院| 淫秽高清视频在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲人成伊人成综合网2020| 1024香蕉在线观看| 国产成+人综合+亚洲专区| a在线观看视频网站| 欧美日本亚洲视频在线播放| 国产精品一区二区免费欧美| 久久人妻熟女aⅴ| 亚洲国产高清在线一区二区三 | 九色国产91popny在线| 国内毛片毛片毛片毛片毛片| 夜夜看夜夜爽夜夜摸| 国产成人影院久久av| 大型黄色视频在线免费观看| 国产精品永久免费网站| 91成年电影在线观看| 麻豆成人av在线观看| 非洲黑人性xxxx精品又粗又长| 日韩欧美一区视频在线观看| 亚洲av成人一区二区三| 久久精品成人免费网站| 亚洲av成人不卡在线观看播放网| 国产亚洲欧美精品永久| 国产一区二区三区综合在线观看| 欧美不卡视频在线免费观看 | 久久午夜亚洲精品久久| 美女午夜性视频免费| 啦啦啦观看免费观看视频高清 | 99久久久亚洲精品蜜臀av| 欧美另类亚洲清纯唯美| 久久精品人人爽人人爽视色| 久热爱精品视频在线9| 免费不卡黄色视频| 亚洲,欧美精品.| 一本大道久久a久久精品| 真人一进一出gif抽搐免费| 美女大奶头视频| 高潮久久久久久久久久久不卡| 99国产精品一区二区蜜桃av| 欧美+亚洲+日韩+国产| 亚洲天堂国产精品一区在线| 午夜亚洲福利在线播放| 欧美亚洲日本最大视频资源| 欧美中文综合在线视频| 黑丝袜美女国产一区| 精品一区二区三区视频在线观看免费| 色综合欧美亚洲国产小说| 久久久久久久午夜电影| 午夜两性在线视频| 91麻豆av在线| 亚洲无线在线观看| 在线观看www视频免费| 国产亚洲欧美精品永久| 91成年电影在线观看| 亚洲 欧美 日韩 在线 免费| 亚洲第一欧美日韩一区二区三区| 国产午夜精品久久久久久| 又紧又爽又黄一区二区| 国产97色在线日韩免费| 在线天堂中文资源库| 久久国产精品影院| 少妇的丰满在线观看| 美女高潮到喷水免费观看| 国产亚洲精品久久久久久毛片| 大码成人一级视频| videosex国产| 精品一区二区三区视频在线观看免费| 熟女少妇亚洲综合色aaa.| 日韩视频一区二区在线观看| 999精品在线视频| 日本在线视频免费播放| 免费观看人在逋| 亚洲全国av大片| 日韩欧美国产在线观看| 日日干狠狠操夜夜爽| 亚洲全国av大片| 9色porny在线观看| 一个人观看的视频www高清免费观看 | 视频区欧美日本亚洲|