• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature dependence of spin pumping in YIG/NiO(x)/W multilayer

    2022-12-28 09:55:30LijunNi倪麗君WenqiangWang王文強(qiáng)LichuanJin金立川JiandongYe葉建東HeheGong鞏賀賀XiangZhan戰(zhàn)翔ZhendongChen陳振東LonglongZhang張龍龍XingzeDai代興澤YaoLi黎遙RongZhang張榮YiYang楊燚HuaiwuZhang張懷武RonghuaLiu劉榮華LinaChen陳麗娜andYongbingXu徐永兵
    Chinese Physics B 2022年12期

    Lijun Ni(倪麗君) Wenqiang Wang(王文強(qiáng)) Lichuan Jin(金立川) Jiandong Ye(葉建東)Hehe Gong(鞏賀賀) Xiang Zhan(戰(zhàn)翔) Zhendong Chen(陳振東) Longlong Zhang(張龍龍)Xingze Dai(代興澤) Yao Li(黎遙) Rong Zhang(張榮) Yi Yang(楊燚) Huaiwu Zhang(張懷武)Ronghua Liu(劉榮華) Lina Chen(陳麗娜) and Yongbing Xu(徐永兵)

    1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials,School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    2State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China 3Jiangsu Provincial Key Laboratory for Nanotechnology,School of Physics,Nanjing University,Nanjing 210093,China

    4Jiangsu Key Laboratory of Opto-Electronic Technology,Center for Quantum Transport and Thermal Energy Science,School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China

    5School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    6York–Nanjing Joint Centre for Spintronics and NanoEngineering,Department of Electronic Engineering,University of York,York YO10 5DD,United Kingdom

    Keywords: spin pumping effect,spin transport,charge current Ic,linewidth ?H,temperature dependence

    With the development of spintronics, the generation and detection of spin current have become a topic of concern.Meanwhile, the controllable modulation of the spin transport of electrons is also central to fabricating robust spintronics devices.[1–5]Spin transport in ferromagnetic (FM) and nonmagnetic materials (NM) has been extensively studied. Pure spin current can be pumped from FMs into NMs by ferromagnetic resonance (FMR) spin pumping[6,7]or a thermal gradient.[8,9]Furthermore, the pure spin current can be converted into the charge currentIcby the ISHE due to bulk and interfacial spin–orbit coupling at the NM and FM/NM interface,[10]thereby realizing the electrical detection of pure spin current. So, the effective modulation of spin current injection and the spin transport plays an important role for the impact onIcin FM/NM heterostructures.

    Recently, spin current studies, especially spin transport,have been expanded into the antiferromagnetic (AF) materials, e.g., NiO, IrMn, and Fe2O3.[11–15]For instance, NiO is a well-known AF insulator with a bulk N′eel temperature ofTN=525 K.[16]And the characteristic frequency of AF NiO is up to 1 THz in magnetic resonance measurements,which is attractive for developing THz devices.[17]Surprisingly,the unexpected enhancement of spin transport via inserting thin AF NiO between an FM(such as YIG)and Pt was discovered in FMR spin pumping and spin Seebeck experiments.[9,12,18,19]The spin transport in the AFs is optimal at a temperature near the AF Ne′el temperatureTN, suggesting that the spin transport through the AF insulators is related to AF magnons and strong spin fluctuations nearTN.[7,9]In addition, Hammelet al.[20]found that the transport efficiency of spin currentJswas reduced at room temperature, when a Cu layer was inserted between YIG and Pt in FMR spin pumping experiment. While the insertion of a similar Cu interlayer between YIG and W improves the spin currentJsinjection into W.Therefore, it is interesting how spin transport is affected if the NiO interlayer is inserted between YIG and W.In fact,Chienet al. have reported that 1-nm thin NiO suppressed the spin current pumped into W from YIG in the Seebeck effect experiment only measured at room temperature.[9]Hence, it is necessary to systematically explore the effect of temperature on spin transport between YIG and W with different NiO interlayer thickness.However,very few studies have been reported on this topic so far.

    So, we systematically explore the effect of temperature on spin transport between YIG and W with different NiO interlayer thicknesses. We chose YIG/NiO (tNiO)/W (6 nm)(tNiO=0 nm, 1 nm, 2 nm, and 10 nm) stacked structure and focused on the FMR spin-pumping-induced charge currentIcover a wide temperature range (30–300 K). The transmitted spin current detected by ISHE in the W had a maximum near theTNof the AF NiO layers, consistent with the previous reports in the YIG/NiO/Pt system. On the contrary, we found that 1 nm thick NiO is enough to significantly suppress spin transport between YIG and W by varying NiO thickness, indicating that interfaces in YIG/NiO/W heterostructures play a vital role in the spin transmission except for magnetic fluctuation of the AF NiO spacer.

    The 0.9-μm thick YIG films were grown on Gd3Ga5O12(GGG, (111)) substrates by liquid-phase epitaxy. The YIG samples were degreased via ultrasonic bathing in acetone and ethyl alcohol for 12 min and cleaned by deionized water, before being placed into the deposition chamber. Then,we used ultrahigh vacuum magnetron sputtering with a base pressure of 3×10?8Torr to fabricate the YIG(0.9μm)/NiO(tNiO)/W(6 nm) (tNiO= 0 nm, 1 nm, 2 nm, and 10 nm) samples at room temperature. The reactive (Ar+O2) pressure for NiO deposition was 4.5×10?3Torr. And the working Ar pressure was 5×10?3Torr for W deposition. Finally,all samples were patterned into a 4.0-mm long and 0.5-mm wide small rectangular bar by combining optical lithography and ion Ar+plasma etching. The FMR spin pumping measurements of YIG(0.9μm)/NiO(tNiO)/W(6 nm)(tNiO=0 nm,1 nm,2 nm,and 10 nm) samples were performed by using the coplanar waveguides (CPW) method over the temperature range from 300 K to 30 K, and the microwave frequency (f) and power(Prf) were set to be 9 GHz and 20 dBm, respectively. As illustrated in the schematic diagrams shown in Fig. 1(a), the external bias magnetic fieldHwas applied along thex-axis,and voltage measurements were performed along they-axis.At YIG resonance, the precessing YIG magnetization excites the AF moments at YIG/NiO interface. The AF magnons or fluctuations in NiO carry the angular momentum (a vertical spin currentJs) through the NiO thickness to the NiO/W interface,where the angular momentum is transferred across the NiO/W interface to the conduction electrons in the metal layer W along thez-axis with the spin polarization along thex-axis.Then,Jsin W can be converted to a charge currentIcvia ISHE.

    Fig.1. (a)Schematic of the spin pumping and ISHE measurement with in-plane field H,(b)the atomic force microscopy images of the 0.9-μm bare YIG over an area of 4μm×4μm,(c)XRD spectrum of a 400 nm-NiO film,(d)fitting of the experimental data of Ic and the antisymmetric component for YIG/W at 280 K.

    Atomic force microscopy (AFM) measurement shown in Fig. 1(b) reveals a root-mean-square (RMS) roughness of 0.58 nm for bare YIG, demonstrating the smooth surface of YIG film. High-resolution x-ray diffraction(XRD)scan of the 400-nm thick NiO film deposited on thec-plane sapphire substrates is presented in Fig.1(c). Only(111)and(222)peaks of NiO film are detected,indicating that the NiO films are of high quality with a preferred orientation along〈111〉. As plotted in Fig.1(d),we fit a typical charge currentIccurve of the YIG/W sample at 280 K by the expression as follows:[19]

    whereSis the symmetric part of the voltage amplitude,which corresponds mainly to the voltage coming from ISHE, andAis the antisymmetric part, which originates from spin rectification effect (SRE), respectively. TheWis half of the resonance linewidth ?H. TheHrrepresents the resonance field.The asymmetric signalISREis negligible, and the symmetric Lorentzian shape can mainly fit the experimentalIccurve.

    Fig.2. (a)The Ic vs. H ?Hr spectra derived from FMR spin pumping voltage measurements for the YIG/NiO(tNiO)/W(6 nm)samples with tNiO of 0 nm,1 nm, 2 nm, and 10 nm. The inset in (a) only shows the magnetic field dependence of the Ic for the sample with tNiO =10 nm.(b)At T =280 K and f =9 GHz,normalized charge current Ic/Ic0 as a function of the NiO thickness.

    Figure 2(a) shows that the charge currentIc(Ic0) vs.H ?Hr(Hris the resonance field of YIG)spectra for YIG/NiO(tNiO)/W (tNiO=0 nm, 1 nm, 2 nm, and 10 nm) samples atT=280 K,andf=9 GHz. TheIc0of the YIG/W sample at the FMR point is 0.136μA.When a 1-nm thick NiO interlayer is inserted between the YIG and W,we observe a decrease of theIcat the FMR point by one order of magnitude relative to the YIG/W bilayer. Contrary to the previously reported enhancement ofJsin YIG/NiO/Pt and Ta systems,[9]1-nm inserting layer NiO can dramatically suppress the spin current transmission in the YIG/NiO/W system. Besides, note that although theIcbecomes much smaller for the 10-nm thickness of NiO [the inset of Fig. 2(a)], an obviousIcsignal can still be well detected. Spin currentJssmoothly transmitting across the insulator NiO of 10-nm thick film implies that the insulating AF NiO spacer layer has a good spin transmission, consistent with the previous spin transports of NiO. To more intuitively present the variation trend ofIcgenerated at the FMR point with NiO thickness, we compare the relative magnitudes ofIcamong the samples with three different NiO thicknesses. As displayed in Fig. 2(b), theIcin YIG/NiO/W trilayers normalized toIc0in YIG/W bilayer shows a gradual decrease with increasing NiO thickness except for the dramatical drop ofIc/Ic0from 1 to 0.08 att=1 nm. The significant suppression of the spin current transmission in the studied YIG/NiO/W system,in contrast to previously reported enhancement in YIG/NiO (tNiO≈1–2 nm)/Pt and Ta systems,should be closely related to these interfacial effects (e.g., interfacial spin scattering, spin memory loss, and spin conductance)caused by inserting NiO layer rather than the bulk spin transport in the NiO layer.[9,20,21]

    Fig. 3. (a) At f =9 GHz, the magnetic field dependence of the Ic for the YIG/NiO(1 nm)/W sample with different temperatures,(b)the temperature dependences of the Ic for the YIG/NiO(tNiO)/W samples with tNiO from 0 to 10 nm. The peak value TM of YIG/NiO(tNiO)/W samples with tNiO=1 nm and 2 nm indicated by arrows.

    We further study the temperature effect on spin transport of those four YIG/NiO (tNiO)/W (tNiO=0 nm, 1 nm, 2 nm,and 10 nm)samples. As we all know,due to finite size effects,the intrinsic N′eel temperatureTN(tNiO) of the isolated thin NiO layer is reduced with decreasing NiO thickness.[22,23]The previous reports found theTNof 1–2 nm NiO film(TN(1 nm)≈170 K,TN(2 nm)≈260 K andTN(10 nm)>300 K).[9,24,25]And, 280 K (near the room temperature) mentioned above is higher than theTNof 1–2 nm NiO film. It is expected that spin pumping may be strongly affected aroundTNof the AF NiO for YIG/NiO/W system. Therefore,in the following,we perform FMR spin pumping measurements over a wide temperature range from 30 K to 300 K to explore temperaturedependent spin pumping signalsIc. Figure 3(a) shows the representative results ofHvs.Icspectra for the YIG/NiO(1 nm)/W sample with various temperatures of 80 K, 110 K,170 K,and 280 K,respectively. Instead of a monotonic trend,theIcseemingly exhibits a broad maximum at around 170 K[Fig.3(b)].Besides,Hrdecreases with decreasing temperature due to the increase of the YIG magnetization and the exchange coupling effect between YIG and NiO with decreasing temperature.

    Temperature dependences ofIcat the FMR point for all four YIG/NiO(tNiO)/W(tNiO=0 nm,1 nm,2 nm,and 10 nm)samples are extracted and summarized in Fig.3(b). As shown in Fig. 3(b), all YIG/NiO/W samples are strong temperaturedependent and sensitive to the NiO layer thickness. Temperature dependence of ISHE signalIcof YIG/NiO/W trilayers exhibits a maximum at a temperatureTM. TheTMis comparable to the reducedTN(tNiO)of NiO free film. The observedTMfortNiO=1 nm and 2 nm samples are at 190 K and 250 K,respectively. And theTMincreases monotonically with the NiO thickness, consistent with the previously reported magnetic properties of NiO thin films.We note that the studied 10-nm NiO sample exhibits monotonical increases up to our highest accessible temperature of 300 K,suggesting a peak above RT. This is consistent with the 10-nm thick NiO film with a highTNabove RT. These similar temperature-dependent behaviors with an enhancement ofIcnearTNhave been observed in YIG/NiO/Pt.[9]And Our FMR spin pumping experiments are carried out with the radio-frequency. So,these phenomena demonstrate that in antiferromagnetic insulators,the spins are transported dominantly by incoherent thermal magnons rather than coherent THz AFM dynamics.[7,9,26–28]In addition, our experimental results in Fig.3(b)show thatIcis strongly suppressed towards lower temperatures. From Figs.2(a)and 3(b),although 1–2 nm NiO is a paramagnetic insulator at high temperatures aboveTN,there are still obvious ISHE signalIc. The reason is that thermal magnons continuously evolve into thermal spin fluctuations, which would transportJsat high temperatures aboveTN.[7,9]We want to emphasize that, in the whole range of experimental temperatures, inserting the thin NiO layer(even 1-nm thick)always suppresses the spin transport from YIG to W layer in YIG/NiO/W trilayer systems,as the same with the above discussed for the results obtained at RT (280 K). It is unlike the YIG/NiO (1–2 nm)/Pt system reported previously, where the enhancement of injected spin current occurs. As for YIG/W bilayer, the overall decreasing trend ofIcis primarily ascribed to the increase of the magnetic dampingαYIG/Wwith decreasing temperature. And the spin relaxation attributed to rare-earth ions induces a reduction in spin pumping efficiency. The previously reported the moderate dependence ofMsof YIG, spin Hall angleθSHand the spin diffusion lengthλSDof W on temperature are not dominant factors for the decreasing behavior ofIcwith temperature decreasing.[29–32]

    The spin pumping experiments can further get the linewidth ?Hof the magnetization dynamics for the studied multilayers. Figure 4 displays the experimental ?Has a function of temperature for the YIG/NiO (tNiO)/W samples withtNiO=0 nm, 1 nm and 10 nm atf=9 GHz. We found that the ?Hof the YIG/W has a slight decrease from 280 K down to approximately 120 K,and then dramatically increases with decreasing temperature. In general, the linewidth ?H(full width at half maximum) can be described by the following equation:[30,34]

    where ?Hinhis the inhomogeneous broadening,and independent of the resonance frequencyf. The temperature dependence of the linewidth ?Hcan indirectly reflect temperaturedependent magnetic dampingα. In general, the ?Hinharises from magnetic inhomogeneities owing to local variations of the magnetization and anisotropy constants, and their strong temperature dependences will lead to the increase of ?Hinh,particularly at low temperature.[32,35,36]In addition,the strong temperature-dependent damping from rare-earth ion of YIG causes a significant increase of the linewidth ?Hin previous reports.[32,33]The enhancement of ?Hdue to inhomogeneity is supposed to be small compared with that of rareearth ions. As for the YIG/NiO (tNiO)/W (tNiO=1 nm, and 10 nm) samples, our results in Fig. 4 show that the ?Hstays almost invariant from about room temperature to the temperature(125 K for 1 nm and 225 K for 10 nm)at which the signalIcdisappears,indicating that the YIG/NiO exchange coupling induced-extra damping is small during temperature range of 300–125 K.[18,19]

    Fig.4. Temperature dependences of the ?H for the YIG/NiO(tNiO)/W samples with tNiO=0 nm(red and pink circles),1 nm(blue triangle),and 10 nm(green diamond)at f =9 GHz.

    In summary, we have investigated the variation of ISHE signalIcYIG (0.9 μm)/NiO (tNiO)/W (6 nm) (tNiO=0 nm,1 nm, 2 nm, 10 nm) in a broad temperature range 300–30 K by utilizing the FMR spin pumping method. The value ofIcfor YIG/NiO/W samples exhibits a broad maximum at the temperatureTMnear the N′eel temperature of NiO, suggesting that spin magnons of the insulating AF NiO dominate its spin transport. TheIcexhibits a obvious decrease over the entire experimental temperature range when the NiO layer is inserted between YIG and W.And the significant suppression of the spin current transmission in the YIG/NiO(tNiO=1 nm,2 nm)/W system is in sharp contrast to the enhancement in YIG/NiO (tNiO≈1–2 nm)/Pt and Ta systems, suggesting the interfacial effects of NiO/W (e.g., interfacial spin scattering,spin memory loss,and spin conductance)dominate spin transport rather than the bulk NiO layer with a low spin loss. Our results reveal that the amplification or inhibition of spin transport in various magnetic heterostructures closely depends on the specific interface-related materials.

    Acknowledgements

    We acknowledge support from the National Natural Science Foundation of China (Grant Nos. 11774160, 61427812,61805116, 12004171, 61774081, and 62171096), the Natural Science Foundation of Jiangsu Province of China(Grant No. BK20192006), the National Key Scientific Instrument and Equipment Development Project of China(Grant No. 51827802), the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20180056 and BK20200307), the Applied Basic Research Programs of the Science and Technology Commission Foundation of Jiangsu Province,China(Grant No.BK20200309),the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, the Scientific Foundation of Nanjing University of Posts and Telecommunications(NUPTSF)(Grant No.NY220164),and the State Key R&D Project of Guangdong, China(Grant No.2020B010174002).

    av超薄肉色丝袜交足视频| 免费一级毛片在线播放高清视频| 国产在线观看jvid| 在线观看免费视频日本深夜| 国产精品野战在线观看| 一本精品99久久精品77| 免费在线观看成人毛片| 国产精品一及| 一区二区三区高清视频在线| 欧美乱色亚洲激情| 欧美国产日韩亚洲一区| 97超级碰碰碰精品色视频在线观看| 九九热线精品视视频播放| 欧美不卡视频在线免费观看 | 亚洲精品一区av在线观看| 99热6这里只有精品| 日日爽夜夜爽网站| 最新在线观看一区二区三区| 一本一本综合久久| 亚洲七黄色美女视频| 日韩欧美三级三区| 精品国产美女av久久久久小说| 精品人妻1区二区| 午夜福利高清视频| 久久婷婷成人综合色麻豆| 精品国产亚洲在线| 激情在线观看视频在线高清| 欧美日韩精品网址| 国产精品国产高清国产av| 国产亚洲精品综合一区在线观看 | 一a级毛片在线观看| 成人国产一区最新在线观看| 此物有八面人人有两片| 久久精品91蜜桃| av福利片在线观看| 国产午夜精品论理片| 男男h啪啪无遮挡| 亚洲av片天天在线观看| 黄色a级毛片大全视频| 久久国产精品人妻蜜桃| 老司机午夜福利在线观看视频| 午夜激情福利司机影院| 精品无人区乱码1区二区| 免费在线观看成人毛片| 两人在一起打扑克的视频| 欧美日韩福利视频一区二区| 国产精华一区二区三区| 1024视频免费在线观看| or卡值多少钱| 叶爱在线成人免费视频播放| 老汉色av国产亚洲站长工具| 中文字幕人成人乱码亚洲影| 亚洲成人中文字幕在线播放| 国产精品香港三级国产av潘金莲| 午夜影院日韩av| 亚洲乱码一区二区免费版| av中文乱码字幕在线| 亚洲精品在线美女| 精品不卡国产一区二区三区| 精品福利观看| 成人国产综合亚洲| 国语自产精品视频在线第100页| 国产成人精品久久二区二区免费| 精品久久久久久久人妻蜜臀av| 在线播放国产精品三级| 99热这里只有精品一区 | 久久久精品欧美日韩精品| 国产亚洲欧美在线一区二区| 国产精品一及| 久久精品国产清高在天天线| 欧美黄色片欧美黄色片| 日韩 欧美 亚洲 中文字幕| 久久人人精品亚洲av| 午夜福利欧美成人| 精品国产美女av久久久久小说| 在线视频色国产色| 国产精品香港三级国产av潘金莲| 免费av毛片视频| 久久精品影院6| 无限看片的www在线观看| 精品第一国产精品| 黄色a级毛片大全视频| 亚洲av中文字字幕乱码综合| 99久久99久久久精品蜜桃| 在线十欧美十亚洲十日本专区| 一级毛片女人18水好多| 岛国在线观看网站| 亚洲国产精品合色在线| 亚洲av五月六月丁香网| 女同久久另类99精品国产91| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品sss在线观看| 搡老岳熟女国产| 免费高清视频大片| 精品久久久久久久毛片微露脸| 国产精品九九99| 91成年电影在线观看| a级毛片a级免费在线| 少妇裸体淫交视频免费看高清 | 亚洲av熟女| 搡老岳熟女国产| 久久精品国产清高在天天线| 亚洲精品国产精品久久久不卡| 性色av乱码一区二区三区2| 亚洲性夜色夜夜综合| 日本免费a在线| 99国产综合亚洲精品| 欧美在线一区亚洲| 天天添夜夜摸| 国产高清有码在线观看视频 | 亚洲国产中文字幕在线视频| 欧美中文综合在线视频| 日本一本二区三区精品| 成人一区二区视频在线观看| 国产伦在线观看视频一区| 国产成+人综合+亚洲专区| 欧美不卡视频在线免费观看 | 国模一区二区三区四区视频 | 国产亚洲精品久久久久5区| 精品久久久久久久末码| 精品熟女少妇八av免费久了| 久久久久久亚洲精品国产蜜桃av| 久久人妻av系列| 黑人操中国人逼视频| 丁香六月欧美| 搞女人的毛片| 精品不卡国产一区二区三区| 日韩精品青青久久久久久| 亚洲成人中文字幕在线播放| 长腿黑丝高跟| 老鸭窝网址在线观看| 一本一本综合久久| 亚洲色图 男人天堂 中文字幕| 欧美成狂野欧美在线观看| 中亚洲国语对白在线视频| av超薄肉色丝袜交足视频| 非洲黑人性xxxx精品又粗又长| 高潮久久久久久久久久久不卡| 午夜老司机福利片| 日本在线视频免费播放| 成人精品一区二区免费| 激情在线观看视频在线高清| 欧美又色又爽又黄视频| 99久久精品热视频| 美女高潮喷水抽搐中文字幕| 亚洲精品国产精品久久久不卡| 国产高清有码在线观看视频 | 日日夜夜操网爽| 亚洲自偷自拍图片 自拍| 动漫黄色视频在线观看| 亚洲自拍偷在线| 亚洲精品国产精品久久久不卡| 亚洲av第一区精品v没综合| 欧美成人一区二区免费高清观看 | 嫁个100分男人电影在线观看| 午夜老司机福利片| 亚洲av电影不卡..在线观看| 日日夜夜操网爽| 精品少妇一区二区三区视频日本电影| 国产在线观看jvid| 久久精品影院6| 人成视频在线观看免费观看| 在线观看免费午夜福利视频| 黑人欧美特级aaaaaa片| 久久草成人影院| 一级毛片高清免费大全| 欧美绝顶高潮抽搐喷水| 欧美三级亚洲精品| 777久久人妻少妇嫩草av网站| 黄色 视频免费看| 深夜精品福利| 日韩欧美免费精品| 视频区欧美日本亚洲| 成年人黄色毛片网站| 精品第一国产精品| 欧美成人午夜精品| 日韩 欧美 亚洲 中文字幕| 91麻豆精品激情在线观看国产| 久久久久久大精品| 欧美3d第一页| xxxwww97欧美| 日本三级黄在线观看| 真人做人爱边吃奶动态| 特级一级黄色大片| 国产高清视频在线播放一区| 少妇人妻一区二区三区视频| 亚洲av电影在线进入| 十八禁人妻一区二区| 精品日产1卡2卡| 久久久久精品国产欧美久久久| 手机成人av网站| 国产亚洲精品久久久久久毛片| 精品国产超薄肉色丝袜足j| 少妇人妻一区二区三区视频| 亚洲中文av在线| 亚洲七黄色美女视频| 精品无人区乱码1区二区| 国产探花在线观看一区二区| 好看av亚洲va欧美ⅴa在| 老司机靠b影院| 男女床上黄色一级片免费看| av视频在线观看入口| 欧美3d第一页| 久久人妻av系列| 久久性视频一级片| 久久国产精品人妻蜜桃| 国产精品乱码一区二三区的特点| 国产精品久久久av美女十八| av有码第一页| 桃色一区二区三区在线观看| 久久久久精品国产欧美久久久| 国产亚洲精品久久久久久毛片| 五月伊人婷婷丁香| 哪里可以看免费的av片| 久久久久性生活片| 757午夜福利合集在线观看| 亚洲国产看品久久| 日本 欧美在线| 少妇的丰满在线观看| 亚洲色图av天堂| 91麻豆精品激情在线观看国产| 一本久久中文字幕| 日日夜夜操网爽| 一本大道久久a久久精品| 日本熟妇午夜| 九色成人免费人妻av| 日日干狠狠操夜夜爽| 亚洲色图 男人天堂 中文字幕| 亚洲精品国产一区二区精华液| 日韩国内少妇激情av| 亚洲精品一区av在线观看| 亚洲熟妇熟女久久| 国产熟女午夜一区二区三区| 国产aⅴ精品一区二区三区波| 99国产精品99久久久久| 日韩欧美国产一区二区入口| 露出奶头的视频| 国产69精品久久久久777片 | 99久久无色码亚洲精品果冻| 欧美极品一区二区三区四区| 激情在线观看视频在线高清| 日韩欧美一区二区三区在线观看| 亚洲九九香蕉| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美大码av| 国产99白浆流出| 五月玫瑰六月丁香| 女警被强在线播放| 啦啦啦观看免费观看视频高清| 一级黄色大片毛片| 午夜a级毛片| 午夜免费激情av| 午夜成年电影在线免费观看| 午夜日韩欧美国产| 身体一侧抽搐| 90打野战视频偷拍视频| 真人一进一出gif抽搐免费| 啦啦啦观看免费观看视频高清| 久久久久久人人人人人| 亚洲18禁久久av| 欧美日韩一级在线毛片| 国产av一区在线观看免费| 欧美 亚洲 国产 日韩一| 天天躁狠狠躁夜夜躁狠狠躁| 黄色视频,在线免费观看| 成人国语在线视频| 欧美 亚洲 国产 日韩一| 中文字幕人成人乱码亚洲影| 国产高清有码在线观看视频 | 国产探花在线观看一区二区| 天天躁夜夜躁狠狠躁躁| 床上黄色一级片| 欧美成狂野欧美在线观看| 啦啦啦观看免费观看视频高清| 12—13女人毛片做爰片一| 国产一区二区激情短视频| tocl精华| 看免费av毛片| 精品一区二区三区视频在线观看免费| 国产高清视频在线观看网站| 欧美色视频一区免费| 精品一区二区三区av网在线观看| 亚洲精品一卡2卡三卡4卡5卡| 欧美又色又爽又黄视频| 欧美在线一区亚洲| 高清在线国产一区| 亚洲专区国产一区二区| 黄片小视频在线播放| 麻豆国产av国片精品| 免费在线观看日本一区| 欧美日韩黄片免| 九色成人免费人妻av| 日本一区二区免费在线视频| 成人精品一区二区免费| 日韩精品青青久久久久久| 欧美日韩亚洲综合一区二区三区_| 性欧美人与动物交配| 欧美精品啪啪一区二区三区| 亚洲成人中文字幕在线播放| 久久精品国产亚洲av高清一级| 欧洲精品卡2卡3卡4卡5卡区| av福利片在线观看| 少妇被粗大的猛进出69影院| 女生性感内裤真人,穿戴方法视频| 热99re8久久精品国产| 国产激情欧美一区二区| 久久欧美精品欧美久久欧美| 国产精品日韩av在线免费观看| 亚洲一区高清亚洲精品| 国语自产精品视频在线第100页| 丰满人妻一区二区三区视频av | 91九色精品人成在线观看| 国产真人三级小视频在线观看| 久久久久久大精品| 人妻久久中文字幕网| 国产精品国产高清国产av| 免费电影在线观看免费观看| 黄色片一级片一级黄色片| 国内精品一区二区在线观看| 99热只有精品国产| 精品无人区乱码1区二区| 岛国在线观看网站| 国产欧美日韩精品亚洲av| 亚洲av电影不卡..在线观看| 一区二区三区激情视频| 国产一区二区激情短视频| 欧美中文综合在线视频| 午夜激情av网站| 国产一区二区在线av高清观看| 久99久视频精品免费| 老司机深夜福利视频在线观看| 国内揄拍国产精品人妻在线| 亚洲成av人片免费观看| 亚洲欧美日韩高清在线视频| 日韩精品中文字幕看吧| 午夜a级毛片| 日韩有码中文字幕| 国产伦一二天堂av在线观看| 男人舔女人下体高潮全视频| 久久中文字幕一级| 欧美日韩亚洲国产一区二区在线观看| 999精品在线视频| 18禁美女被吸乳视频| 天堂影院成人在线观看| 日韩免费av在线播放| 大型av网站在线播放| 欧美久久黑人一区二区| 村上凉子中文字幕在线| 99国产综合亚洲精品| 熟女少妇亚洲综合色aaa.| 国产亚洲av高清不卡| 国产午夜精品久久久久久| 两人在一起打扑克的视频| 久久精品亚洲精品国产色婷小说| av天堂在线播放| 狠狠狠狠99中文字幕| 丰满人妻熟妇乱又伦精品不卡| 一级黄色大片毛片| 亚洲精品国产精品久久久不卡| 国产精品亚洲av一区麻豆| 国语自产精品视频在线第100页| 久久久久久久久久黄片| 国产成人一区二区三区免费视频网站| 超碰成人久久| 一区福利在线观看| 成人av在线播放网站| 亚洲最大成人中文| 国产精品一区二区三区四区久久| 欧美色欧美亚洲另类二区| 国产精品亚洲一级av第二区| 亚洲无线在线观看| 成人18禁在线播放| 一区二区三区激情视频| 91成年电影在线观看| 天堂影院成人在线观看| av中文乱码字幕在线| 精品久久久久久久末码| 波多野结衣巨乳人妻| 在线观看一区二区三区| 精品一区二区三区四区五区乱码| 亚洲专区字幕在线| 亚洲成人国产一区在线观看| 国产97色在线日韩免费| 亚洲熟女毛片儿| 19禁男女啪啪无遮挡网站| 亚洲av电影不卡..在线观看| 少妇粗大呻吟视频| 亚洲精品美女久久久久99蜜臀| 午夜福利视频1000在线观看| 看黄色毛片网站| 一区福利在线观看| 香蕉国产在线看| 老熟妇乱子伦视频在线观看| 床上黄色一级片| 又爽又黄无遮挡网站| 小说图片视频综合网站| 十八禁网站免费在线| 欧美3d第一页| 999久久久精品免费观看国产| 天堂√8在线中文| 午夜激情福利司机影院| 三级男女做爰猛烈吃奶摸视频| 久久中文看片网| 久久久精品国产亚洲av高清涩受| 免费无遮挡裸体视频| 国产一区二区三区在线臀色熟女| 老司机午夜福利在线观看视频| 国产精品久久久久久久电影 | 欧美日本视频| 国产免费av片在线观看野外av| 午夜精品久久久久久毛片777| 色老头精品视频在线观看| www.999成人在线观看| 精品欧美一区二区三区在线| 日本免费一区二区三区高清不卡| 叶爱在线成人免费视频播放| 欧美国产日韩亚洲一区| 午夜福利18| 真人一进一出gif抽搐免费| 又黄又粗又硬又大视频| 国产精品日韩av在线免费观看| 欧美大码av| 村上凉子中文字幕在线| 一本一本综合久久| 黄色成人免费大全| 国产精品精品国产色婷婷| 国内精品久久久久精免费| 亚洲国产精品999在线| 国产成人aa在线观看| av免费在线观看网站| 黄频高清免费视频| 一区二区三区国产精品乱码| 在线永久观看黄色视频| 老司机午夜福利在线观看视频| 老熟妇仑乱视频hdxx| 桃红色精品国产亚洲av| 亚洲av五月六月丁香网| av视频在线观看入口| 亚洲午夜理论影院| 亚洲18禁久久av| 又爽又黄无遮挡网站| www日本黄色视频网| 日韩欧美免费精品| 两个人看的免费小视频| 日韩欧美 国产精品| av超薄肉色丝袜交足视频| 91在线观看av| 欧美性猛交黑人性爽| 日本一本二区三区精品| 亚洲国产看品久久| 非洲黑人性xxxx精品又粗又长| 12—13女人毛片做爰片一| 丝袜人妻中文字幕| 91九色精品人成在线观看| 久久香蕉国产精品| 久久热在线av| 男女做爰动态图高潮gif福利片| 精品久久蜜臀av无| 免费看a级黄色片| 99热6这里只有精品| 精品电影一区二区在线| 在线观看午夜福利视频| 白带黄色成豆腐渣| 亚洲国产精品成人综合色| 国产熟女xx| 国产av不卡久久| 国产精品一区二区免费欧美| 深夜精品福利| 观看免费一级毛片| 国产欧美日韩一区二区三| 天堂影院成人在线观看| 国产av一区二区精品久久| 欧美中文日本在线观看视频| 变态另类成人亚洲欧美熟女| 极品教师在线免费播放| 可以在线观看毛片的网站| 深夜精品福利| 国产高清videossex| 黄色女人牲交| 少妇的丰满在线观看| 国产三级中文精品| 无人区码免费观看不卡| 又粗又爽又猛毛片免费看| 麻豆国产av国片精品| 夜夜看夜夜爽夜夜摸| 日韩高清综合在线| 国产精品亚洲一级av第二区| 国产精品久久视频播放| 午夜激情av网站| av超薄肉色丝袜交足视频| 曰老女人黄片| 母亲3免费完整高清在线观看| 在线十欧美十亚洲十日本专区| 哪里可以看免费的av片| 国产精品永久免费网站| 草草在线视频免费看| 欧美3d第一页| 亚洲美女黄片视频| 久久久精品国产亚洲av高清涩受| 欧美一区二区精品小视频在线| 欧美人与性动交α欧美精品济南到| 成人特级黄色片久久久久久久| 亚洲七黄色美女视频| 天天一区二区日本电影三级| 搡老妇女老女人老熟妇| 日本熟妇午夜| 一个人免费在线观看的高清视频| 色综合欧美亚洲国产小说| 久久精品aⅴ一区二区三区四区| 一进一出抽搐动态| 日韩免费av在线播放| 三级毛片av免费| 国产精品影院久久| 在线看三级毛片| 国产三级中文精品| 午夜老司机福利片| 久久久久久九九精品二区国产 | 亚洲欧美精品综合一区二区三区| 国产精品日韩av在线免费观看| 国产av麻豆久久久久久久| 床上黄色一级片| 国产1区2区3区精品| av有码第一页| 窝窝影院91人妻| 国产高清视频在线观看网站| 精品一区二区三区av网在线观看| 黄片小视频在线播放| 日本一本二区三区精品| 深夜精品福利| 怎么达到女性高潮| 欧美日韩中文字幕国产精品一区二区三区| 欧美最黄视频在线播放免费| 久久久久久国产a免费观看| 99国产精品99久久久久| 精品久久久久久久毛片微露脸| 9191精品国产免费久久| av在线天堂中文字幕| 国产精品亚洲美女久久久| 91av网站免费观看| 亚洲一区二区三区不卡视频| 亚洲精品色激情综合| 久久 成人 亚洲| 国产一区二区在线av高清观看| 丁香六月欧美| 亚洲激情在线av| 欧美一级a爱片免费观看看 | 久久伊人香网站| 国产精品久久久人人做人人爽| 久久人妻av系列| 99在线人妻在线中文字幕| 一级毛片高清免费大全| 听说在线观看完整版免费高清| 中文字幕av在线有码专区| 亚洲狠狠婷婷综合久久图片| netflix在线观看网站| 国产精品爽爽va在线观看网站| 欧美最黄视频在线播放免费| 亚洲人成77777在线视频| 亚洲中文日韩欧美视频| 日本a在线网址| 国产亚洲精品av在线| 久久久久久久精品吃奶| 又紧又爽又黄一区二区| 嫁个100分男人电影在线观看| 身体一侧抽搐| 三级毛片av免费| 欧美av亚洲av综合av国产av| 成人三级做爰电影| 一a级毛片在线观看| 在线播放国产精品三级| 国产精品免费一区二区三区在线| 91老司机精品| 亚洲精品国产精品久久久不卡| 一级毛片高清免费大全| 国产欧美日韩一区二区三| 欧美一级a爱片免费观看看 | 成人亚洲精品av一区二区| 国产一区二区在线观看日韩 | 妹子高潮喷水视频| 18禁黄网站禁片午夜丰满| 免费看a级黄色片| 色av中文字幕| 美女黄网站色视频| 脱女人内裤的视频| 九九热线精品视视频播放| 一本大道久久a久久精品| 99在线人妻在线中文字幕| 久久久久久久久中文| 久久人妻福利社区极品人妻图片| 高潮久久久久久久久久久不卡| 久久精品综合一区二区三区| 中文资源天堂在线| 人成视频在线观看免费观看| 国产精品永久免费网站| 国产91精品成人一区二区三区| 国产精品 欧美亚洲| 亚洲成人国产一区在线观看| 亚洲欧美日韩高清在线视频| 久久久久久久午夜电影| 欧美高清成人免费视频www| a级毛片a级免费在线| 亚洲欧美日韩东京热| 这个男人来自地球电影免费观看| 国产精品久久久久久久电影 | 亚洲全国av大片| 国产精品亚洲av一区麻豆| 欧美黑人精品巨大| 人妻丰满熟妇av一区二区三区| 天天添夜夜摸| 亚洲午夜精品一区,二区,三区| 午夜福利在线观看吧| 一区二区三区高清视频在线| 女人被狂操c到高潮| 婷婷六月久久综合丁香| 91老司机精品|