• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature dependence of spin pumping in YIG/NiO(x)/W multilayer

    2022-12-28 09:55:30LijunNi倪麗君WenqiangWang王文強(qiáng)LichuanJin金立川JiandongYe葉建東HeheGong鞏賀賀XiangZhan戰(zhàn)翔ZhendongChen陳振東LonglongZhang張龍龍XingzeDai代興澤YaoLi黎遙RongZhang張榮YiYang楊燚HuaiwuZhang張懷武RonghuaLiu劉榮華LinaChen陳麗娜andYongbingXu徐永兵
    Chinese Physics B 2022年12期

    Lijun Ni(倪麗君) Wenqiang Wang(王文強(qiáng)) Lichuan Jin(金立川) Jiandong Ye(葉建東)Hehe Gong(鞏賀賀) Xiang Zhan(戰(zhàn)翔) Zhendong Chen(陳振東) Longlong Zhang(張龍龍)Xingze Dai(代興澤) Yao Li(黎遙) Rong Zhang(張榮) Yi Yang(楊燚) Huaiwu Zhang(張懷武)Ronghua Liu(劉榮華) Lina Chen(陳麗娜) and Yongbing Xu(徐永兵)

    1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials,School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    2State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China 3Jiangsu Provincial Key Laboratory for Nanotechnology,School of Physics,Nanjing University,Nanjing 210093,China

    4Jiangsu Key Laboratory of Opto-Electronic Technology,Center for Quantum Transport and Thermal Energy Science,School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China

    5School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    6York–Nanjing Joint Centre for Spintronics and NanoEngineering,Department of Electronic Engineering,University of York,York YO10 5DD,United Kingdom

    Keywords: spin pumping effect,spin transport,charge current Ic,linewidth ?H,temperature dependence

    With the development of spintronics, the generation and detection of spin current have become a topic of concern.Meanwhile, the controllable modulation of the spin transport of electrons is also central to fabricating robust spintronics devices.[1–5]Spin transport in ferromagnetic (FM) and nonmagnetic materials (NM) has been extensively studied. Pure spin current can be pumped from FMs into NMs by ferromagnetic resonance (FMR) spin pumping[6,7]or a thermal gradient.[8,9]Furthermore, the pure spin current can be converted into the charge currentIcby the ISHE due to bulk and interfacial spin–orbit coupling at the NM and FM/NM interface,[10]thereby realizing the electrical detection of pure spin current. So, the effective modulation of spin current injection and the spin transport plays an important role for the impact onIcin FM/NM heterostructures.

    Recently, spin current studies, especially spin transport,have been expanded into the antiferromagnetic (AF) materials, e.g., NiO, IrMn, and Fe2O3.[11–15]For instance, NiO is a well-known AF insulator with a bulk N′eel temperature ofTN=525 K.[16]And the characteristic frequency of AF NiO is up to 1 THz in magnetic resonance measurements,which is attractive for developing THz devices.[17]Surprisingly,the unexpected enhancement of spin transport via inserting thin AF NiO between an FM(such as YIG)and Pt was discovered in FMR spin pumping and spin Seebeck experiments.[9,12,18,19]The spin transport in the AFs is optimal at a temperature near the AF Ne′el temperatureTN, suggesting that the spin transport through the AF insulators is related to AF magnons and strong spin fluctuations nearTN.[7,9]In addition, Hammelet al.[20]found that the transport efficiency of spin currentJswas reduced at room temperature, when a Cu layer was inserted between YIG and Pt in FMR spin pumping experiment. While the insertion of a similar Cu interlayer between YIG and W improves the spin currentJsinjection into W.Therefore, it is interesting how spin transport is affected if the NiO interlayer is inserted between YIG and W.In fact,Chienet al. have reported that 1-nm thin NiO suppressed the spin current pumped into W from YIG in the Seebeck effect experiment only measured at room temperature.[9]Hence, it is necessary to systematically explore the effect of temperature on spin transport between YIG and W with different NiO interlayer thickness.However,very few studies have been reported on this topic so far.

    So, we systematically explore the effect of temperature on spin transport between YIG and W with different NiO interlayer thicknesses. We chose YIG/NiO (tNiO)/W (6 nm)(tNiO=0 nm, 1 nm, 2 nm, and 10 nm) stacked structure and focused on the FMR spin-pumping-induced charge currentIcover a wide temperature range (30–300 K). The transmitted spin current detected by ISHE in the W had a maximum near theTNof the AF NiO layers, consistent with the previous reports in the YIG/NiO/Pt system. On the contrary, we found that 1 nm thick NiO is enough to significantly suppress spin transport between YIG and W by varying NiO thickness, indicating that interfaces in YIG/NiO/W heterostructures play a vital role in the spin transmission except for magnetic fluctuation of the AF NiO spacer.

    The 0.9-μm thick YIG films were grown on Gd3Ga5O12(GGG, (111)) substrates by liquid-phase epitaxy. The YIG samples were degreased via ultrasonic bathing in acetone and ethyl alcohol for 12 min and cleaned by deionized water, before being placed into the deposition chamber. Then,we used ultrahigh vacuum magnetron sputtering with a base pressure of 3×10?8Torr to fabricate the YIG(0.9μm)/NiO(tNiO)/W(6 nm) (tNiO= 0 nm, 1 nm, 2 nm, and 10 nm) samples at room temperature. The reactive (Ar+O2) pressure for NiO deposition was 4.5×10?3Torr. And the working Ar pressure was 5×10?3Torr for W deposition. Finally,all samples were patterned into a 4.0-mm long and 0.5-mm wide small rectangular bar by combining optical lithography and ion Ar+plasma etching. The FMR spin pumping measurements of YIG(0.9μm)/NiO(tNiO)/W(6 nm)(tNiO=0 nm,1 nm,2 nm,and 10 nm) samples were performed by using the coplanar waveguides (CPW) method over the temperature range from 300 K to 30 K, and the microwave frequency (f) and power(Prf) were set to be 9 GHz and 20 dBm, respectively. As illustrated in the schematic diagrams shown in Fig. 1(a), the external bias magnetic fieldHwas applied along thex-axis,and voltage measurements were performed along they-axis.At YIG resonance, the precessing YIG magnetization excites the AF moments at YIG/NiO interface. The AF magnons or fluctuations in NiO carry the angular momentum (a vertical spin currentJs) through the NiO thickness to the NiO/W interface,where the angular momentum is transferred across the NiO/W interface to the conduction electrons in the metal layer W along thez-axis with the spin polarization along thex-axis.Then,Jsin W can be converted to a charge currentIcvia ISHE.

    Fig.1. (a)Schematic of the spin pumping and ISHE measurement with in-plane field H,(b)the atomic force microscopy images of the 0.9-μm bare YIG over an area of 4μm×4μm,(c)XRD spectrum of a 400 nm-NiO film,(d)fitting of the experimental data of Ic and the antisymmetric component for YIG/W at 280 K.

    Atomic force microscopy (AFM) measurement shown in Fig. 1(b) reveals a root-mean-square (RMS) roughness of 0.58 nm for bare YIG, demonstrating the smooth surface of YIG film. High-resolution x-ray diffraction(XRD)scan of the 400-nm thick NiO film deposited on thec-plane sapphire substrates is presented in Fig.1(c). Only(111)and(222)peaks of NiO film are detected,indicating that the NiO films are of high quality with a preferred orientation along〈111〉. As plotted in Fig.1(d),we fit a typical charge currentIccurve of the YIG/W sample at 280 K by the expression as follows:[19]

    whereSis the symmetric part of the voltage amplitude,which corresponds mainly to the voltage coming from ISHE, andAis the antisymmetric part, which originates from spin rectification effect (SRE), respectively. TheWis half of the resonance linewidth ?H. TheHrrepresents the resonance field.The asymmetric signalISREis negligible, and the symmetric Lorentzian shape can mainly fit the experimentalIccurve.

    Fig.2. (a)The Ic vs. H ?Hr spectra derived from FMR spin pumping voltage measurements for the YIG/NiO(tNiO)/W(6 nm)samples with tNiO of 0 nm,1 nm, 2 nm, and 10 nm. The inset in (a) only shows the magnetic field dependence of the Ic for the sample with tNiO =10 nm.(b)At T =280 K and f =9 GHz,normalized charge current Ic/Ic0 as a function of the NiO thickness.

    Figure 2(a) shows that the charge currentIc(Ic0) vs.H ?Hr(Hris the resonance field of YIG)spectra for YIG/NiO(tNiO)/W (tNiO=0 nm, 1 nm, 2 nm, and 10 nm) samples atT=280 K,andf=9 GHz. TheIc0of the YIG/W sample at the FMR point is 0.136μA.When a 1-nm thick NiO interlayer is inserted between the YIG and W,we observe a decrease of theIcat the FMR point by one order of magnitude relative to the YIG/W bilayer. Contrary to the previously reported enhancement ofJsin YIG/NiO/Pt and Ta systems,[9]1-nm inserting layer NiO can dramatically suppress the spin current transmission in the YIG/NiO/W system. Besides, note that although theIcbecomes much smaller for the 10-nm thickness of NiO [the inset of Fig. 2(a)], an obviousIcsignal can still be well detected. Spin currentJssmoothly transmitting across the insulator NiO of 10-nm thick film implies that the insulating AF NiO spacer layer has a good spin transmission, consistent with the previous spin transports of NiO. To more intuitively present the variation trend ofIcgenerated at the FMR point with NiO thickness, we compare the relative magnitudes ofIcamong the samples with three different NiO thicknesses. As displayed in Fig. 2(b), theIcin YIG/NiO/W trilayers normalized toIc0in YIG/W bilayer shows a gradual decrease with increasing NiO thickness except for the dramatical drop ofIc/Ic0from 1 to 0.08 att=1 nm. The significant suppression of the spin current transmission in the studied YIG/NiO/W system,in contrast to previously reported enhancement in YIG/NiO (tNiO≈1–2 nm)/Pt and Ta systems,should be closely related to these interfacial effects (e.g., interfacial spin scattering, spin memory loss, and spin conductance)caused by inserting NiO layer rather than the bulk spin transport in the NiO layer.[9,20,21]

    Fig. 3. (a) At f =9 GHz, the magnetic field dependence of the Ic for the YIG/NiO(1 nm)/W sample with different temperatures,(b)the temperature dependences of the Ic for the YIG/NiO(tNiO)/W samples with tNiO from 0 to 10 nm. The peak value TM of YIG/NiO(tNiO)/W samples with tNiO=1 nm and 2 nm indicated by arrows.

    We further study the temperature effect on spin transport of those four YIG/NiO (tNiO)/W (tNiO=0 nm, 1 nm, 2 nm,and 10 nm)samples. As we all know,due to finite size effects,the intrinsic N′eel temperatureTN(tNiO) of the isolated thin NiO layer is reduced with decreasing NiO thickness.[22,23]The previous reports found theTNof 1–2 nm NiO film(TN(1 nm)≈170 K,TN(2 nm)≈260 K andTN(10 nm)>300 K).[9,24,25]And, 280 K (near the room temperature) mentioned above is higher than theTNof 1–2 nm NiO film. It is expected that spin pumping may be strongly affected aroundTNof the AF NiO for YIG/NiO/W system. Therefore,in the following,we perform FMR spin pumping measurements over a wide temperature range from 30 K to 300 K to explore temperaturedependent spin pumping signalsIc. Figure 3(a) shows the representative results ofHvs.Icspectra for the YIG/NiO(1 nm)/W sample with various temperatures of 80 K, 110 K,170 K,and 280 K,respectively. Instead of a monotonic trend,theIcseemingly exhibits a broad maximum at around 170 K[Fig.3(b)].Besides,Hrdecreases with decreasing temperature due to the increase of the YIG magnetization and the exchange coupling effect between YIG and NiO with decreasing temperature.

    Temperature dependences ofIcat the FMR point for all four YIG/NiO(tNiO)/W(tNiO=0 nm,1 nm,2 nm,and 10 nm)samples are extracted and summarized in Fig.3(b). As shown in Fig. 3(b), all YIG/NiO/W samples are strong temperaturedependent and sensitive to the NiO layer thickness. Temperature dependence of ISHE signalIcof YIG/NiO/W trilayers exhibits a maximum at a temperatureTM. TheTMis comparable to the reducedTN(tNiO)of NiO free film. The observedTMfortNiO=1 nm and 2 nm samples are at 190 K and 250 K,respectively. And theTMincreases monotonically with the NiO thickness, consistent with the previously reported magnetic properties of NiO thin films.We note that the studied 10-nm NiO sample exhibits monotonical increases up to our highest accessible temperature of 300 K,suggesting a peak above RT. This is consistent with the 10-nm thick NiO film with a highTNabove RT. These similar temperature-dependent behaviors with an enhancement ofIcnearTNhave been observed in YIG/NiO/Pt.[9]And Our FMR spin pumping experiments are carried out with the radio-frequency. So,these phenomena demonstrate that in antiferromagnetic insulators,the spins are transported dominantly by incoherent thermal magnons rather than coherent THz AFM dynamics.[7,9,26–28]In addition, our experimental results in Fig.3(b)show thatIcis strongly suppressed towards lower temperatures. From Figs.2(a)and 3(b),although 1–2 nm NiO is a paramagnetic insulator at high temperatures aboveTN,there are still obvious ISHE signalIc. The reason is that thermal magnons continuously evolve into thermal spin fluctuations, which would transportJsat high temperatures aboveTN.[7,9]We want to emphasize that, in the whole range of experimental temperatures, inserting the thin NiO layer(even 1-nm thick)always suppresses the spin transport from YIG to W layer in YIG/NiO/W trilayer systems,as the same with the above discussed for the results obtained at RT (280 K). It is unlike the YIG/NiO (1–2 nm)/Pt system reported previously, where the enhancement of injected spin current occurs. As for YIG/W bilayer, the overall decreasing trend ofIcis primarily ascribed to the increase of the magnetic dampingαYIG/Wwith decreasing temperature. And the spin relaxation attributed to rare-earth ions induces a reduction in spin pumping efficiency. The previously reported the moderate dependence ofMsof YIG, spin Hall angleθSHand the spin diffusion lengthλSDof W on temperature are not dominant factors for the decreasing behavior ofIcwith temperature decreasing.[29–32]

    The spin pumping experiments can further get the linewidth ?Hof the magnetization dynamics for the studied multilayers. Figure 4 displays the experimental ?Has a function of temperature for the YIG/NiO (tNiO)/W samples withtNiO=0 nm, 1 nm and 10 nm atf=9 GHz. We found that the ?Hof the YIG/W has a slight decrease from 280 K down to approximately 120 K,and then dramatically increases with decreasing temperature. In general, the linewidth ?H(full width at half maximum) can be described by the following equation:[30,34]

    where ?Hinhis the inhomogeneous broadening,and independent of the resonance frequencyf. The temperature dependence of the linewidth ?Hcan indirectly reflect temperaturedependent magnetic dampingα. In general, the ?Hinharises from magnetic inhomogeneities owing to local variations of the magnetization and anisotropy constants, and their strong temperature dependences will lead to the increase of ?Hinh,particularly at low temperature.[32,35,36]In addition,the strong temperature-dependent damping from rare-earth ion of YIG causes a significant increase of the linewidth ?Hin previous reports.[32,33]The enhancement of ?Hdue to inhomogeneity is supposed to be small compared with that of rareearth ions. As for the YIG/NiO (tNiO)/W (tNiO=1 nm, and 10 nm) samples, our results in Fig. 4 show that the ?Hstays almost invariant from about room temperature to the temperature(125 K for 1 nm and 225 K for 10 nm)at which the signalIcdisappears,indicating that the YIG/NiO exchange coupling induced-extra damping is small during temperature range of 300–125 K.[18,19]

    Fig.4. Temperature dependences of the ?H for the YIG/NiO(tNiO)/W samples with tNiO=0 nm(red and pink circles),1 nm(blue triangle),and 10 nm(green diamond)at f =9 GHz.

    In summary, we have investigated the variation of ISHE signalIcYIG (0.9 μm)/NiO (tNiO)/W (6 nm) (tNiO=0 nm,1 nm, 2 nm, 10 nm) in a broad temperature range 300–30 K by utilizing the FMR spin pumping method. The value ofIcfor YIG/NiO/W samples exhibits a broad maximum at the temperatureTMnear the N′eel temperature of NiO, suggesting that spin magnons of the insulating AF NiO dominate its spin transport. TheIcexhibits a obvious decrease over the entire experimental temperature range when the NiO layer is inserted between YIG and W.And the significant suppression of the spin current transmission in the YIG/NiO(tNiO=1 nm,2 nm)/W system is in sharp contrast to the enhancement in YIG/NiO (tNiO≈1–2 nm)/Pt and Ta systems, suggesting the interfacial effects of NiO/W (e.g., interfacial spin scattering,spin memory loss,and spin conductance)dominate spin transport rather than the bulk NiO layer with a low spin loss. Our results reveal that the amplification or inhibition of spin transport in various magnetic heterostructures closely depends on the specific interface-related materials.

    Acknowledgements

    We acknowledge support from the National Natural Science Foundation of China (Grant Nos. 11774160, 61427812,61805116, 12004171, 61774081, and 62171096), the Natural Science Foundation of Jiangsu Province of China(Grant No. BK20192006), the National Key Scientific Instrument and Equipment Development Project of China(Grant No. 51827802), the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20180056 and BK20200307), the Applied Basic Research Programs of the Science and Technology Commission Foundation of Jiangsu Province,China(Grant No.BK20200309),the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, the Scientific Foundation of Nanjing University of Posts and Telecommunications(NUPTSF)(Grant No.NY220164),and the State Key R&D Project of Guangdong, China(Grant No.2020B010174002).

    国产高清有码在线观看视频| 成人欧美大片| 国产毛片a区久久久久| 久久精品人妻少妇| 国产国拍精品亚洲av在线观看| 99久久无色码亚洲精品果冻| 国产v大片淫在线免费观看| 美女被艹到高潮喷水动态| 亚洲无线观看免费| 欧美精品啪啪一区二区三区| 伦理电影大哥的女人| 国产精品国产高清国产av| 国产精品亚洲一级av第二区| 亚洲中文字幕一区二区三区有码在线看| 久久国产乱子免费精品| 少妇裸体淫交视频免费看高清| 三级毛片av免费| 日韩大尺度精品在线看网址| 在线a可以看的网站| 最好的美女福利视频网| 观看美女的网站| 中文字幕精品亚洲无线码一区| 欧美一级a爱片免费观看看| 国产老妇女一区| 男人舔女人下体高潮全视频| 啪啪无遮挡十八禁网站| 国内精品久久久久久久电影| 熟妇人妻久久中文字幕3abv| 久久精品人妻少妇| 淫秽高清视频在线观看| 美女高潮的动态| 国产亚洲精品av在线| 男人舔奶头视频| 国产三级黄色录像| 桃色一区二区三区在线观看| 成人精品一区二区免费| 最好的美女福利视频网| 日本a在线网址| 国产精品伦人一区二区| 伦理电影大哥的女人| 少妇丰满av| 制服丝袜大香蕉在线| 99riav亚洲国产免费| 久久久国产成人免费| 亚洲人成伊人成综合网2020| 老司机福利观看| 尤物成人国产欧美一区二区三区| 国产久久久一区二区三区| 精品日产1卡2卡| 欧美另类亚洲清纯唯美| 高清在线国产一区| 男女那种视频在线观看| 99热这里只有是精品50| 国产激情偷乱视频一区二区| 91九色精品人成在线观看| 搞女人的毛片| 欧美最新免费一区二区三区 | 熟女电影av网| 亚洲精品在线观看二区| 香蕉av资源在线| 色综合站精品国产| 非洲黑人性xxxx精品又粗又长| 色综合婷婷激情| 男人舔奶头视频| 国产精品自产拍在线观看55亚洲| 桃色一区二区三区在线观看| 亚洲av二区三区四区| 亚洲片人在线观看| 久久久久九九精品影院| 99热这里只有是精品50| av天堂在线播放| 亚洲av电影在线进入| 99热6这里只有精品| 中文字幕av在线有码专区| 亚洲精品在线观看二区| 一个人免费在线观看电影| 久久久国产成人精品二区| 国产免费男女视频| 精品一区二区免费观看| 99在线视频只有这里精品首页| 观看免费一级毛片| 国产高潮美女av| 成年女人永久免费观看视频| 久久久久性生活片| 亚洲av五月六月丁香网| 精品午夜福利在线看| 真人一进一出gif抽搐免费| 成人一区二区视频在线观看| 国产三级在线视频| 69av精品久久久久久| 中文字幕免费在线视频6| 亚洲色图av天堂| 亚洲综合色惰| 国产成人aa在线观看| 在线播放无遮挡| 精品久久久久久,| 69av精品久久久久久| 亚洲第一电影网av| 又粗又爽又猛毛片免费看| 淫秽高清视频在线观看| 久久精品国产亚洲av天美| 在线观看免费视频日本深夜| 亚洲精品粉嫩美女一区| 国产v大片淫在线免费观看| 国产乱人伦免费视频| 久久久久久久久大av| 亚洲成av人片免费观看| 在线观看舔阴道视频| 精品久久久久久久久亚洲 | 欧美高清性xxxxhd video| 国产老妇女一区| 国产高清视频在线观看网站| 能在线免费观看的黄片| 日韩精品中文字幕看吧| 少妇的逼好多水| 在线看三级毛片| 少妇熟女aⅴ在线视频| 久久99热这里只有精品18| www.www免费av| 亚洲三级黄色毛片| 五月伊人婷婷丁香| 最近在线观看免费完整版| 精品久久久久久久人妻蜜臀av| 久久久久亚洲av毛片大全| 国产黄色小视频在线观看| 免费黄网站久久成人精品 | 亚洲成人久久爱视频| 在线国产一区二区在线| 男人舔女人下体高潮全视频| 可以在线观看的亚洲视频| 91九色精品人成在线观看| 一a级毛片在线观看| 国产成人影院久久av| 日韩大尺度精品在线看网址| www日本黄色视频网| www.www免费av| 国产精品野战在线观看| 久久精品国产亚洲av香蕉五月| 欧美成狂野欧美在线观看| 国产av麻豆久久久久久久| 国产男靠女视频免费网站| 欧美成人性av电影在线观看| 午夜精品一区二区三区免费看| 97碰自拍视频| 欧美成人一区二区免费高清观看| 看免费av毛片| 波多野结衣巨乳人妻| 亚洲精品日韩av片在线观看| 真人一进一出gif抽搐免费| 国产亚洲精品av在线| 国内揄拍国产精品人妻在线| 嫁个100分男人电影在线观看| 在线播放国产精品三级| 99国产极品粉嫩在线观看| 欧美在线一区亚洲| a级一级毛片免费在线观看| 午夜福利18| 在线观看午夜福利视频| 成人精品一区二区免费| 国产91精品成人一区二区三区| 能在线免费观看的黄片| 伊人久久精品亚洲午夜| 国产精品久久久久久精品电影| 国产亚洲精品久久久com| 真人做人爱边吃奶动态| 久久婷婷人人爽人人干人人爱| 久久午夜亚洲精品久久| 日韩国内少妇激情av| 丰满的人妻完整版| 欧美色欧美亚洲另类二区| 99久久九九国产精品国产免费| 深夜精品福利| 精品无人区乱码1区二区| 白带黄色成豆腐渣| a级毛片a级免费在线| 极品教师在线视频| 国产精品久久久久久久电影| 欧美日韩乱码在线| 精品一区二区三区av网在线观看| 成人三级黄色视频| 欧美乱妇无乱码| 国产伦一二天堂av在线观看| 一级a爱片免费观看的视频| 90打野战视频偷拍视频| 桃红色精品国产亚洲av| 女人被狂操c到高潮| 国产又黄又爽又无遮挡在线| 久久久久免费精品人妻一区二区| 久久欧美精品欧美久久欧美| 亚洲最大成人手机在线| 99在线人妻在线中文字幕| 亚洲成人久久爱视频| 亚洲最大成人中文| 色哟哟·www| 成熟少妇高潮喷水视频| 国产精品一区二区性色av| 亚洲av一区综合| 精品人妻一区二区三区麻豆 | 老司机福利观看| 身体一侧抽搐| 中国美女看黄片| 在线国产一区二区在线| 亚洲国产欧洲综合997久久,| 欧美国产日韩亚洲一区| 亚洲国产精品999在线| 亚洲五月婷婷丁香| 伊人久久精品亚洲午夜| 亚洲最大成人av| 高清在线国产一区| www日本黄色视频网| 亚洲国产色片| 熟女电影av网| 老鸭窝网址在线观看| 国产激情偷乱视频一区二区| 亚州av有码| 国产单亲对白刺激| 人人妻,人人澡人人爽秒播| 欧美成人一区二区免费高清观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av美国av| 国产精品久久电影中文字幕| 婷婷精品国产亚洲av在线| 俺也久久电影网| 国产免费男女视频| 亚洲最大成人av| 老女人水多毛片| 亚洲精品日韩av片在线观看| 精品无人区乱码1区二区| 久久香蕉精品热| 日本免费a在线| 欧美一级a爱片免费观看看| 日韩中字成人| 最新在线观看一区二区三区| 在线观看av片永久免费下载| 男人的好看免费观看在线视频| 中文资源天堂在线| 国产一区二区激情短视频| 国产成人啪精品午夜网站| 神马国产精品三级电影在线观看| 99在线视频只有这里精品首页| 精品福利观看| 岛国在线免费视频观看| 欧美+日韩+精品| 亚洲国产欧洲综合997久久,| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 禁无遮挡网站| 网址你懂的国产日韩在线| 欧美黄色片欧美黄色片| 51国产日韩欧美| netflix在线观看网站| 午夜福利18| 国产精品久久久久久人妻精品电影| 窝窝影院91人妻| 日本 av在线| 桃色一区二区三区在线观看| 国产三级中文精品| 精品熟女少妇八av免费久了| 国内精品美女久久久久久| 女人十人毛片免费观看3o分钟| 亚洲中文日韩欧美视频| 国产一区二区在线av高清观看| 日本三级黄在线观看| 人人妻人人澡欧美一区二区| 中文字幕精品亚洲无线码一区| 日本黄色视频三级网站网址| 性色avwww在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产三级黄色录像| 成年免费大片在线观看| 色哟哟哟哟哟哟| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品av在线| 久久人人爽人人爽人人片va | 久久国产乱子伦精品免费另类| 午夜精品久久久久久毛片777| 变态另类成人亚洲欧美熟女| 久久亚洲真实| 国产成+人综合+亚洲专区| 国产欧美日韩精品亚洲av| 内地一区二区视频在线| 久久精品久久久久久噜噜老黄 | 久久精品国产亚洲av涩爱 | 在线观看66精品国产| 俄罗斯特黄特色一大片| 真人做人爱边吃奶动态| 男女床上黄色一级片免费看| 中文在线观看免费www的网站| 亚洲欧美日韩无卡精品| 能在线免费观看的黄片| 日本黄大片高清| 亚洲五月天丁香| 日本熟妇午夜| 搡老妇女老女人老熟妇| 搞女人的毛片| 男女之事视频高清在线观看| 欧美绝顶高潮抽搐喷水| 国产精品爽爽va在线观看网站| 一本精品99久久精品77| 国产精品综合久久久久久久免费| 制服丝袜大香蕉在线| 尤物成人国产欧美一区二区三区| 亚洲电影在线观看av| 欧美日韩中文字幕国产精品一区二区三区| 极品教师在线视频| 99视频精品全部免费 在线| 国产黄a三级三级三级人| 午夜激情福利司机影院| 成人国产综合亚洲| 床上黄色一级片| 中文字幕免费在线视频6| 国产免费一级a男人的天堂| 乱人视频在线观看| 国产av一区在线观看免费| 好男人电影高清在线观看| 欧美性猛交╳xxx乱大交人| 欧美高清性xxxxhd video| 我的老师免费观看完整版| 国产一区二区三区在线臀色熟女| 欧美中文日本在线观看视频| 午夜两性在线视频| 亚洲最大成人av| 老女人水多毛片| 亚洲av成人不卡在线观看播放网| 一区二区三区四区激情视频 | 午夜免费男女啪啪视频观看 | 99热这里只有是精品50| 日韩中文字幕欧美一区二区| 长腿黑丝高跟| 精品日产1卡2卡| 亚洲电影在线观看av| 亚洲狠狠婷婷综合久久图片| 国产精品永久免费网站| 国产高潮美女av| 我要搜黄色片| 蜜桃亚洲精品一区二区三区| 看十八女毛片水多多多| 天堂动漫精品| 亚洲精品456在线播放app | 欧美+亚洲+日韩+国产| 免费观看人在逋| 国产在视频线在精品| 中文字幕av成人在线电影| 亚洲国产精品成人综合色| 国产精品一区二区免费欧美| 97碰自拍视频| 99久久无色码亚洲精品果冻| 欧美一级a爱片免费观看看| 深夜a级毛片| 日韩亚洲欧美综合| 久久久久国产精品人妻aⅴ院| 嫩草影院精品99| 亚洲欧美日韩高清在线视频| 日韩中字成人| 亚洲成人久久爱视频| 久久久久国产精品人妻aⅴ院| 久久久久久久久久黄片| aaaaa片日本免费| 亚洲专区国产一区二区| 精品久久国产蜜桃| 国产精品伦人一区二区| 国产一级毛片七仙女欲春2| 观看美女的网站| 亚洲三级黄色毛片| eeuss影院久久| 国产亚洲精品久久久com| netflix在线观看网站| 99久久精品热视频| 可以在线观看的亚洲视频| 亚洲av五月六月丁香网| 成年女人永久免费观看视频| 如何舔出高潮| 精品一区二区三区人妻视频| 日日干狠狠操夜夜爽| 成人一区二区视频在线观看| 3wmmmm亚洲av在线观看| 国产淫片久久久久久久久 | 久久这里只有精品中国| 欧美xxxx性猛交bbbb| 午夜两性在线视频| 男女之事视频高清在线观看| 99精品在免费线老司机午夜| 国产三级黄色录像| 日日摸夜夜添夜夜添av毛片 | 老司机午夜福利在线观看视频| 午夜影院日韩av| 久久精品国产99精品国产亚洲性色| 丁香欧美五月| 国产精品永久免费网站| 久久中文看片网| 精品一区二区三区av网在线观看| 99热只有精品国产| 99热这里只有精品一区| 国产野战对白在线观看| 1024手机看黄色片| 白带黄色成豆腐渣| 亚洲最大成人av| 国产色爽女视频免费观看| 精华霜和精华液先用哪个| 成人鲁丝片一二三区免费| 国产高清视频在线播放一区| 午夜福利视频1000在线观看| 欧美激情久久久久久爽电影| 琪琪午夜伦伦电影理论片6080| 国产 一区 欧美 日韩| 成人三级黄色视频| 国产精品久久电影中文字幕| 久久久久亚洲av毛片大全| 最后的刺客免费高清国语| 国产探花极品一区二区| 嫩草影院入口| 欧美日韩黄片免| 可以在线观看的亚洲视频| 久久久久亚洲av毛片大全| 性欧美人与动物交配| eeuss影院久久| 国内久久婷婷六月综合欲色啪| 高清日韩中文字幕在线| 可以在线观看毛片的网站| or卡值多少钱| 亚洲国产精品合色在线| 性色avwww在线观看| 色哟哟哟哟哟哟| 51国产日韩欧美| 日本与韩国留学比较| 天堂av国产一区二区熟女人妻| 90打野战视频偷拍视频| 亚洲,欧美,日韩| а√天堂www在线а√下载| 国语自产精品视频在线第100页| 十八禁人妻一区二区| 日韩精品中文字幕看吧| 观看美女的网站| 国产激情偷乱视频一区二区| www日本黄色视频网| 欧美成人性av电影在线观看| 成人一区二区视频在线观看| 一a级毛片在线观看| 午夜精品在线福利| 一个人看视频在线观看www免费| 美女高潮喷水抽搐中文字幕| 蜜桃亚洲精品一区二区三区| 国产免费一级a男人的天堂| 亚洲五月天丁香| 日韩国内少妇激情av| 嫩草影院精品99| 国产精品电影一区二区三区| 久久久久久久久久黄片| 国产在视频线在精品| 一区福利在线观看| 夜夜夜夜夜久久久久| 欧美又色又爽又黄视频| 能在线免费观看的黄片| 成年女人看的毛片在线观看| 成人无遮挡网站| 国产白丝娇喘喷水9色精品| 免费观看人在逋| 9191精品国产免费久久| 国产三级黄色录像| 人妻丰满熟妇av一区二区三区| 97超视频在线观看视频| 一本精品99久久精品77| 男女做爰动态图高潮gif福利片| 国产69精品久久久久777片| 国产熟女xx| 亚洲无线在线观看| 亚洲av中文字字幕乱码综合| 波多野结衣高清作品| 又爽又黄a免费视频| 3wmmmm亚洲av在线观看| 欧美黄色淫秽网站| av天堂在线播放| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久大av| 日日摸夜夜添夜夜添小说| 一个人免费在线观看电影| 在线观看免费视频日本深夜| 热99re8久久精品国产| 3wmmmm亚洲av在线观看| 夜夜躁狠狠躁天天躁| 嫩草影院精品99| 网址你懂的国产日韩在线| 亚洲欧美日韩高清专用| 国产三级中文精品| 三级毛片av免费| 人人妻,人人澡人人爽秒播| 老司机午夜十八禁免费视频| 日本免费一区二区三区高清不卡| 国产精品嫩草影院av在线观看 | 亚洲欧美日韩高清在线视频| 亚洲综合色惰| 久久精品国产亚洲av天美| 少妇丰满av| 亚洲av电影不卡..在线观看| 国产三级在线视频| 桃色一区二区三区在线观看| 亚洲真实伦在线观看| 国产成人aa在线观看| 老熟妇仑乱视频hdxx| 一级作爱视频免费观看| 国产高清视频在线播放一区| 精品一区二区三区视频在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产色片| 91久久精品电影网| 国产美女午夜福利| 日韩欧美 国产精品| 亚洲人与动物交配视频| 国内少妇人妻偷人精品xxx网站| 日韩 亚洲 欧美在线| 波多野结衣高清无吗| 美女 人体艺术 gogo| 亚洲 国产 在线| 欧美成人免费av一区二区三区| 五月玫瑰六月丁香| 两性午夜刺激爽爽歪歪视频在线观看| 十八禁人妻一区二区| 人人妻,人人澡人人爽秒播| 国产精品永久免费网站| a级毛片a级免费在线| 亚洲精品一卡2卡三卡4卡5卡| av女优亚洲男人天堂| 婷婷色综合大香蕉| 国产色婷婷99| 成人午夜高清在线视频| 欧美一区二区精品小视频在线| 午夜福利成人在线免费观看| 一二三四社区在线视频社区8| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品嫩草影院av在线观看 | 美女高潮喷水抽搐中文字幕| 特级一级黄色大片| 日韩亚洲欧美综合| 少妇被粗大猛烈的视频| 国产精品野战在线观看| 亚洲精品影视一区二区三区av| 亚洲 国产 在线| 国内久久婷婷六月综合欲色啪| 成年女人永久免费观看视频| 黄色日韩在线| 国产日本99.免费观看| 国产91精品成人一区二区三区| 在线观看舔阴道视频| 男人的好看免费观看在线视频| 亚洲美女黄片视频| 夜夜躁狠狠躁天天躁| 91在线精品国自产拍蜜月| 12—13女人毛片做爰片一| 国产精品久久久久久久久免 | 国产aⅴ精品一区二区三区波| 美女xxoo啪啪120秒动态图 | 久久99热6这里只有精品| 亚洲综合色惰| 国产伦在线观看视频一区| 欧美乱妇无乱码| 欧美在线黄色| 麻豆一二三区av精品| 中国美女看黄片| 最好的美女福利视频网| 久久久精品大字幕| 69av精品久久久久久| 亚洲 国产 在线| 国产在视频线在精品| 一级毛片久久久久久久久女| 精品一区二区三区人妻视频| 亚洲人成网站在线播| 成人特级av手机在线观看| 女同久久另类99精品国产91| 99热这里只有是精品在线观看 | 国产精品99久久久久久久久| 午夜福利视频1000在线观看| 精品久久久久久久久亚洲 | 日本五十路高清| 又黄又爽又刺激的免费视频.| 嫩草影院新地址| 成人毛片a级毛片在线播放| 日本三级黄在线观看| 国产精品精品国产色婷婷| 午夜两性在线视频| 婷婷丁香在线五月| 亚洲无线在线观看| 亚洲国产高清在线一区二区三| 91麻豆av在线| 国产三级黄色录像| 国产精品亚洲一级av第二区| 亚洲精品456在线播放app | 精品无人区乱码1区二区| 精品乱码久久久久久99久播| 天天一区二区日本电影三级| 国产成人av教育| 在线免费观看的www视频| 亚洲欧美日韩东京热| 国产麻豆成人av免费视频| 美女黄网站色视频| 人妻制服诱惑在线中文字幕| 在线免费观看不下载黄p国产 | 国产淫片久久久久久久久 | 成人亚洲精品av一区二区| 露出奶头的视频| 在线天堂最新版资源| 色综合欧美亚洲国产小说| 露出奶头的视频| 身体一侧抽搐| 国产精品永久免费网站| 一个人免费在线观看电影| 日韩人妻高清精品专区| 国产大屁股一区二区在线视频| 我要看日韩黄色一级片| 亚洲经典国产精华液单 | 亚洲第一区二区三区不卡| av女优亚洲男人天堂| 97碰自拍视频| 欧美黄色淫秽网站| 亚洲美女视频黄频| 亚洲在线自拍视频| 制服丝袜大香蕉在线|