• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature dependence of spin pumping in YIG/NiO(x)/W multilayer

    2022-12-28 09:55:30LijunNi倪麗君WenqiangWang王文強(qiáng)LichuanJin金立川JiandongYe葉建東HeheGong鞏賀賀XiangZhan戰(zhàn)翔ZhendongChen陳振東LonglongZhang張龍龍XingzeDai代興澤YaoLi黎遙RongZhang張榮YiYang楊燚HuaiwuZhang張懷武RonghuaLiu劉榮華LinaChen陳麗娜andYongbingXu徐永兵
    Chinese Physics B 2022年12期

    Lijun Ni(倪麗君) Wenqiang Wang(王文強(qiáng)) Lichuan Jin(金立川) Jiandong Ye(葉建東)Hehe Gong(鞏賀賀) Xiang Zhan(戰(zhàn)翔) Zhendong Chen(陳振東) Longlong Zhang(張龍龍)Xingze Dai(代興澤) Yao Li(黎遙) Rong Zhang(張榮) Yi Yang(楊燚) Huaiwu Zhang(張懷武)Ronghua Liu(劉榮華) Lina Chen(陳麗娜) and Yongbing Xu(徐永兵)

    1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials,School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    2State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China 3Jiangsu Provincial Key Laboratory for Nanotechnology,School of Physics,Nanjing University,Nanjing 210093,China

    4Jiangsu Key Laboratory of Opto-Electronic Technology,Center for Quantum Transport and Thermal Energy Science,School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China

    5School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    6York–Nanjing Joint Centre for Spintronics and NanoEngineering,Department of Electronic Engineering,University of York,York YO10 5DD,United Kingdom

    Keywords: spin pumping effect,spin transport,charge current Ic,linewidth ?H,temperature dependence

    With the development of spintronics, the generation and detection of spin current have become a topic of concern.Meanwhile, the controllable modulation of the spin transport of electrons is also central to fabricating robust spintronics devices.[1–5]Spin transport in ferromagnetic (FM) and nonmagnetic materials (NM) has been extensively studied. Pure spin current can be pumped from FMs into NMs by ferromagnetic resonance (FMR) spin pumping[6,7]or a thermal gradient.[8,9]Furthermore, the pure spin current can be converted into the charge currentIcby the ISHE due to bulk and interfacial spin–orbit coupling at the NM and FM/NM interface,[10]thereby realizing the electrical detection of pure spin current. So, the effective modulation of spin current injection and the spin transport plays an important role for the impact onIcin FM/NM heterostructures.

    Recently, spin current studies, especially spin transport,have been expanded into the antiferromagnetic (AF) materials, e.g., NiO, IrMn, and Fe2O3.[11–15]For instance, NiO is a well-known AF insulator with a bulk N′eel temperature ofTN=525 K.[16]And the characteristic frequency of AF NiO is up to 1 THz in magnetic resonance measurements,which is attractive for developing THz devices.[17]Surprisingly,the unexpected enhancement of spin transport via inserting thin AF NiO between an FM(such as YIG)and Pt was discovered in FMR spin pumping and spin Seebeck experiments.[9,12,18,19]The spin transport in the AFs is optimal at a temperature near the AF Ne′el temperatureTN, suggesting that the spin transport through the AF insulators is related to AF magnons and strong spin fluctuations nearTN.[7,9]In addition, Hammelet al.[20]found that the transport efficiency of spin currentJswas reduced at room temperature, when a Cu layer was inserted between YIG and Pt in FMR spin pumping experiment. While the insertion of a similar Cu interlayer between YIG and W improves the spin currentJsinjection into W.Therefore, it is interesting how spin transport is affected if the NiO interlayer is inserted between YIG and W.In fact,Chienet al. have reported that 1-nm thin NiO suppressed the spin current pumped into W from YIG in the Seebeck effect experiment only measured at room temperature.[9]Hence, it is necessary to systematically explore the effect of temperature on spin transport between YIG and W with different NiO interlayer thickness.However,very few studies have been reported on this topic so far.

    So, we systematically explore the effect of temperature on spin transport between YIG and W with different NiO interlayer thicknesses. We chose YIG/NiO (tNiO)/W (6 nm)(tNiO=0 nm, 1 nm, 2 nm, and 10 nm) stacked structure and focused on the FMR spin-pumping-induced charge currentIcover a wide temperature range (30–300 K). The transmitted spin current detected by ISHE in the W had a maximum near theTNof the AF NiO layers, consistent with the previous reports in the YIG/NiO/Pt system. On the contrary, we found that 1 nm thick NiO is enough to significantly suppress spin transport between YIG and W by varying NiO thickness, indicating that interfaces in YIG/NiO/W heterostructures play a vital role in the spin transmission except for magnetic fluctuation of the AF NiO spacer.

    The 0.9-μm thick YIG films were grown on Gd3Ga5O12(GGG, (111)) substrates by liquid-phase epitaxy. The YIG samples were degreased via ultrasonic bathing in acetone and ethyl alcohol for 12 min and cleaned by deionized water, before being placed into the deposition chamber. Then,we used ultrahigh vacuum magnetron sputtering with a base pressure of 3×10?8Torr to fabricate the YIG(0.9μm)/NiO(tNiO)/W(6 nm) (tNiO= 0 nm, 1 nm, 2 nm, and 10 nm) samples at room temperature. The reactive (Ar+O2) pressure for NiO deposition was 4.5×10?3Torr. And the working Ar pressure was 5×10?3Torr for W deposition. Finally,all samples were patterned into a 4.0-mm long and 0.5-mm wide small rectangular bar by combining optical lithography and ion Ar+plasma etching. The FMR spin pumping measurements of YIG(0.9μm)/NiO(tNiO)/W(6 nm)(tNiO=0 nm,1 nm,2 nm,and 10 nm) samples were performed by using the coplanar waveguides (CPW) method over the temperature range from 300 K to 30 K, and the microwave frequency (f) and power(Prf) were set to be 9 GHz and 20 dBm, respectively. As illustrated in the schematic diagrams shown in Fig. 1(a), the external bias magnetic fieldHwas applied along thex-axis,and voltage measurements were performed along they-axis.At YIG resonance, the precessing YIG magnetization excites the AF moments at YIG/NiO interface. The AF magnons or fluctuations in NiO carry the angular momentum (a vertical spin currentJs) through the NiO thickness to the NiO/W interface,where the angular momentum is transferred across the NiO/W interface to the conduction electrons in the metal layer W along thez-axis with the spin polarization along thex-axis.Then,Jsin W can be converted to a charge currentIcvia ISHE.

    Fig.1. (a)Schematic of the spin pumping and ISHE measurement with in-plane field H,(b)the atomic force microscopy images of the 0.9-μm bare YIG over an area of 4μm×4μm,(c)XRD spectrum of a 400 nm-NiO film,(d)fitting of the experimental data of Ic and the antisymmetric component for YIG/W at 280 K.

    Atomic force microscopy (AFM) measurement shown in Fig. 1(b) reveals a root-mean-square (RMS) roughness of 0.58 nm for bare YIG, demonstrating the smooth surface of YIG film. High-resolution x-ray diffraction(XRD)scan of the 400-nm thick NiO film deposited on thec-plane sapphire substrates is presented in Fig.1(c). Only(111)and(222)peaks of NiO film are detected,indicating that the NiO films are of high quality with a preferred orientation along〈111〉. As plotted in Fig.1(d),we fit a typical charge currentIccurve of the YIG/W sample at 280 K by the expression as follows:[19]

    whereSis the symmetric part of the voltage amplitude,which corresponds mainly to the voltage coming from ISHE, andAis the antisymmetric part, which originates from spin rectification effect (SRE), respectively. TheWis half of the resonance linewidth ?H. TheHrrepresents the resonance field.The asymmetric signalISREis negligible, and the symmetric Lorentzian shape can mainly fit the experimentalIccurve.

    Fig.2. (a)The Ic vs. H ?Hr spectra derived from FMR spin pumping voltage measurements for the YIG/NiO(tNiO)/W(6 nm)samples with tNiO of 0 nm,1 nm, 2 nm, and 10 nm. The inset in (a) only shows the magnetic field dependence of the Ic for the sample with tNiO =10 nm.(b)At T =280 K and f =9 GHz,normalized charge current Ic/Ic0 as a function of the NiO thickness.

    Figure 2(a) shows that the charge currentIc(Ic0) vs.H ?Hr(Hris the resonance field of YIG)spectra for YIG/NiO(tNiO)/W (tNiO=0 nm, 1 nm, 2 nm, and 10 nm) samples atT=280 K,andf=9 GHz. TheIc0of the YIG/W sample at the FMR point is 0.136μA.When a 1-nm thick NiO interlayer is inserted between the YIG and W,we observe a decrease of theIcat the FMR point by one order of magnitude relative to the YIG/W bilayer. Contrary to the previously reported enhancement ofJsin YIG/NiO/Pt and Ta systems,[9]1-nm inserting layer NiO can dramatically suppress the spin current transmission in the YIG/NiO/W system. Besides, note that although theIcbecomes much smaller for the 10-nm thickness of NiO [the inset of Fig. 2(a)], an obviousIcsignal can still be well detected. Spin currentJssmoothly transmitting across the insulator NiO of 10-nm thick film implies that the insulating AF NiO spacer layer has a good spin transmission, consistent with the previous spin transports of NiO. To more intuitively present the variation trend ofIcgenerated at the FMR point with NiO thickness, we compare the relative magnitudes ofIcamong the samples with three different NiO thicknesses. As displayed in Fig. 2(b), theIcin YIG/NiO/W trilayers normalized toIc0in YIG/W bilayer shows a gradual decrease with increasing NiO thickness except for the dramatical drop ofIc/Ic0from 1 to 0.08 att=1 nm. The significant suppression of the spin current transmission in the studied YIG/NiO/W system,in contrast to previously reported enhancement in YIG/NiO (tNiO≈1–2 nm)/Pt and Ta systems,should be closely related to these interfacial effects (e.g., interfacial spin scattering, spin memory loss, and spin conductance)caused by inserting NiO layer rather than the bulk spin transport in the NiO layer.[9,20,21]

    Fig. 3. (a) At f =9 GHz, the magnetic field dependence of the Ic for the YIG/NiO(1 nm)/W sample with different temperatures,(b)the temperature dependences of the Ic for the YIG/NiO(tNiO)/W samples with tNiO from 0 to 10 nm. The peak value TM of YIG/NiO(tNiO)/W samples with tNiO=1 nm and 2 nm indicated by arrows.

    We further study the temperature effect on spin transport of those four YIG/NiO (tNiO)/W (tNiO=0 nm, 1 nm, 2 nm,and 10 nm)samples. As we all know,due to finite size effects,the intrinsic N′eel temperatureTN(tNiO) of the isolated thin NiO layer is reduced with decreasing NiO thickness.[22,23]The previous reports found theTNof 1–2 nm NiO film(TN(1 nm)≈170 K,TN(2 nm)≈260 K andTN(10 nm)>300 K).[9,24,25]And, 280 K (near the room temperature) mentioned above is higher than theTNof 1–2 nm NiO film. It is expected that spin pumping may be strongly affected aroundTNof the AF NiO for YIG/NiO/W system. Therefore,in the following,we perform FMR spin pumping measurements over a wide temperature range from 30 K to 300 K to explore temperaturedependent spin pumping signalsIc. Figure 3(a) shows the representative results ofHvs.Icspectra for the YIG/NiO(1 nm)/W sample with various temperatures of 80 K, 110 K,170 K,and 280 K,respectively. Instead of a monotonic trend,theIcseemingly exhibits a broad maximum at around 170 K[Fig.3(b)].Besides,Hrdecreases with decreasing temperature due to the increase of the YIG magnetization and the exchange coupling effect between YIG and NiO with decreasing temperature.

    Temperature dependences ofIcat the FMR point for all four YIG/NiO(tNiO)/W(tNiO=0 nm,1 nm,2 nm,and 10 nm)samples are extracted and summarized in Fig.3(b). As shown in Fig. 3(b), all YIG/NiO/W samples are strong temperaturedependent and sensitive to the NiO layer thickness. Temperature dependence of ISHE signalIcof YIG/NiO/W trilayers exhibits a maximum at a temperatureTM. TheTMis comparable to the reducedTN(tNiO)of NiO free film. The observedTMfortNiO=1 nm and 2 nm samples are at 190 K and 250 K,respectively. And theTMincreases monotonically with the NiO thickness, consistent with the previously reported magnetic properties of NiO thin films.We note that the studied 10-nm NiO sample exhibits monotonical increases up to our highest accessible temperature of 300 K,suggesting a peak above RT. This is consistent with the 10-nm thick NiO film with a highTNabove RT. These similar temperature-dependent behaviors with an enhancement ofIcnearTNhave been observed in YIG/NiO/Pt.[9]And Our FMR spin pumping experiments are carried out with the radio-frequency. So,these phenomena demonstrate that in antiferromagnetic insulators,the spins are transported dominantly by incoherent thermal magnons rather than coherent THz AFM dynamics.[7,9,26–28]In addition, our experimental results in Fig.3(b)show thatIcis strongly suppressed towards lower temperatures. From Figs.2(a)and 3(b),although 1–2 nm NiO is a paramagnetic insulator at high temperatures aboveTN,there are still obvious ISHE signalIc. The reason is that thermal magnons continuously evolve into thermal spin fluctuations, which would transportJsat high temperatures aboveTN.[7,9]We want to emphasize that, in the whole range of experimental temperatures, inserting the thin NiO layer(even 1-nm thick)always suppresses the spin transport from YIG to W layer in YIG/NiO/W trilayer systems,as the same with the above discussed for the results obtained at RT (280 K). It is unlike the YIG/NiO (1–2 nm)/Pt system reported previously, where the enhancement of injected spin current occurs. As for YIG/W bilayer, the overall decreasing trend ofIcis primarily ascribed to the increase of the magnetic dampingαYIG/Wwith decreasing temperature. And the spin relaxation attributed to rare-earth ions induces a reduction in spin pumping efficiency. The previously reported the moderate dependence ofMsof YIG, spin Hall angleθSHand the spin diffusion lengthλSDof W on temperature are not dominant factors for the decreasing behavior ofIcwith temperature decreasing.[29–32]

    The spin pumping experiments can further get the linewidth ?Hof the magnetization dynamics for the studied multilayers. Figure 4 displays the experimental ?Has a function of temperature for the YIG/NiO (tNiO)/W samples withtNiO=0 nm, 1 nm and 10 nm atf=9 GHz. We found that the ?Hof the YIG/W has a slight decrease from 280 K down to approximately 120 K,and then dramatically increases with decreasing temperature. In general, the linewidth ?H(full width at half maximum) can be described by the following equation:[30,34]

    where ?Hinhis the inhomogeneous broadening,and independent of the resonance frequencyf. The temperature dependence of the linewidth ?Hcan indirectly reflect temperaturedependent magnetic dampingα. In general, the ?Hinharises from magnetic inhomogeneities owing to local variations of the magnetization and anisotropy constants, and their strong temperature dependences will lead to the increase of ?Hinh,particularly at low temperature.[32,35,36]In addition,the strong temperature-dependent damping from rare-earth ion of YIG causes a significant increase of the linewidth ?Hin previous reports.[32,33]The enhancement of ?Hdue to inhomogeneity is supposed to be small compared with that of rareearth ions. As for the YIG/NiO (tNiO)/W (tNiO=1 nm, and 10 nm) samples, our results in Fig. 4 show that the ?Hstays almost invariant from about room temperature to the temperature(125 K for 1 nm and 225 K for 10 nm)at which the signalIcdisappears,indicating that the YIG/NiO exchange coupling induced-extra damping is small during temperature range of 300–125 K.[18,19]

    Fig.4. Temperature dependences of the ?H for the YIG/NiO(tNiO)/W samples with tNiO=0 nm(red and pink circles),1 nm(blue triangle),and 10 nm(green diamond)at f =9 GHz.

    In summary, we have investigated the variation of ISHE signalIcYIG (0.9 μm)/NiO (tNiO)/W (6 nm) (tNiO=0 nm,1 nm, 2 nm, 10 nm) in a broad temperature range 300–30 K by utilizing the FMR spin pumping method. The value ofIcfor YIG/NiO/W samples exhibits a broad maximum at the temperatureTMnear the N′eel temperature of NiO, suggesting that spin magnons of the insulating AF NiO dominate its spin transport. TheIcexhibits a obvious decrease over the entire experimental temperature range when the NiO layer is inserted between YIG and W.And the significant suppression of the spin current transmission in the YIG/NiO(tNiO=1 nm,2 nm)/W system is in sharp contrast to the enhancement in YIG/NiO (tNiO≈1–2 nm)/Pt and Ta systems, suggesting the interfacial effects of NiO/W (e.g., interfacial spin scattering,spin memory loss,and spin conductance)dominate spin transport rather than the bulk NiO layer with a low spin loss. Our results reveal that the amplification or inhibition of spin transport in various magnetic heterostructures closely depends on the specific interface-related materials.

    Acknowledgements

    We acknowledge support from the National Natural Science Foundation of China (Grant Nos. 11774160, 61427812,61805116, 12004171, 61774081, and 62171096), the Natural Science Foundation of Jiangsu Province of China(Grant No. BK20192006), the National Key Scientific Instrument and Equipment Development Project of China(Grant No. 51827802), the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20180056 and BK20200307), the Applied Basic Research Programs of the Science and Technology Commission Foundation of Jiangsu Province,China(Grant No.BK20200309),the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, the Scientific Foundation of Nanjing University of Posts and Telecommunications(NUPTSF)(Grant No.NY220164),and the State Key R&D Project of Guangdong, China(Grant No.2020B010174002).

    欧美黄色淫秽网站| 久久久久国产一级毛片高清牌| 亚洲欧洲精品一区二区精品久久久| 亚洲va日本ⅴa欧美va伊人久久| 三级国产精品欧美在线观看 | 两个人免费观看高清视频| 亚洲国产欧美人成| av福利片在线| 精品国产乱子伦一区二区三区| 手机成人av网站| 国产亚洲精品第一综合不卡| 亚洲人成77777在线视频| 国产熟女午夜一区二区三区| 天堂影院成人在线观看| 中文亚洲av片在线观看爽| 亚洲乱码一区二区免费版| 琪琪午夜伦伦电影理论片6080| 桃红色精品国产亚洲av| 久久人妻av系列| 国产精品一区二区三区四区免费观看 | 久久久久久久久免费视频了| 国产一级毛片七仙女欲春2| 日本 av在线| 舔av片在线| 真人一进一出gif抽搐免费| 色尼玛亚洲综合影院| 亚洲最大成人中文| 国产在线观看jvid| 免费人成视频x8x8入口观看| 可以免费在线观看a视频的电影网站| 日日爽夜夜爽网站| 日韩精品青青久久久久久| 久久久水蜜桃国产精品网| 久久九九热精品免费| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲av高清不卡| 久久这里只有精品中国| 亚洲国产精品成人综合色| 后天国语完整版免费观看| 亚洲成人久久爱视频| 首页视频小说图片口味搜索| 少妇的丰满在线观看| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品av在线| 婷婷亚洲欧美| 黑人欧美特级aaaaaa片| 亚洲欧美精品综合久久99| 亚洲欧美日韩高清专用| 免费观看人在逋| 成在线人永久免费视频| 日本免费a在线| 日韩大码丰满熟妇| 欧美色视频一区免费| 国产区一区二久久| 精品久久久久久成人av| 精品国产乱子伦一区二区三区| 欧美日韩国产亚洲二区| 一级黄色大片毛片| 三级国产精品欧美在线观看 | 美女黄网站色视频| 亚洲精品国产精品久久久不卡| 久久午夜亚洲精品久久| 日日夜夜操网爽| 每晚都被弄得嗷嗷叫到高潮| 亚洲av日韩精品久久久久久密| 亚洲人成电影免费在线| 亚洲国产日韩欧美精品在线观看 | 三级国产精品欧美在线观看 | 18禁黄网站禁片午夜丰满| 国产激情欧美一区二区| 免费在线观看影片大全网站| 亚洲人成77777在线视频| 国产视频内射| 又黄又爽又免费观看的视频| 亚洲激情在线av| 免费看十八禁软件| 国产精品野战在线观看| 人人妻人人澡欧美一区二区| 亚洲aⅴ乱码一区二区在线播放 | 中文字幕熟女人妻在线| 最新在线观看一区二区三区| 精品福利观看| 草草在线视频免费看| 久久亚洲真实| 50天的宝宝边吃奶边哭怎么回事| 97碰自拍视频| 国产成人精品久久二区二区91| 人妻久久中文字幕网| 成人国产综合亚洲| av在线播放免费不卡| 日本 av在线| 亚洲乱码一区二区免费版| 亚洲aⅴ乱码一区二区在线播放 | 手机成人av网站| 99re在线观看精品视频| 一二三四社区在线视频社区8| av视频在线观看入口| 1024手机看黄色片| 国产av一区在线观看免费| 国产亚洲精品综合一区在线观看 | 99热只有精品国产| 九九热线精品视视频播放| 欧美zozozo另类| 91国产中文字幕| 国产97色在线日韩免费| 正在播放国产对白刺激| 亚洲中文日韩欧美视频| av福利片在线观看| 成人国产一区最新在线观看| 久久精品国产亚洲av香蕉五月| 久久精品影院6| 日日干狠狠操夜夜爽| 午夜福利视频1000在线观看| 成年女人毛片免费观看观看9| 99热这里只有是精品50| 激情在线观看视频在线高清| 午夜福利高清视频| 久久久国产精品麻豆| 亚洲成a人片在线一区二区| 欧美乱色亚洲激情| 男女下面进入的视频免费午夜| 亚洲精华国产精华精| 观看免费一级毛片| 精品人妻1区二区| 国产伦人伦偷精品视频| 精品久久久久久久久久久久久| 日韩中文字幕欧美一区二区| 国产一区二区三区在线臀色熟女| 最新在线观看一区二区三区| 黄色成人免费大全| 亚洲av美国av| 可以免费在线观看a视频的电影网站| 午夜激情av网站| 18禁国产床啪视频网站| 免费在线观看亚洲国产| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费观看网址| 精品熟女少妇八av免费久了| 欧美精品啪啪一区二区三区| 国产欧美日韩精品亚洲av| 日本撒尿小便嘘嘘汇集6| 不卡av一区二区三区| 男女做爰动态图高潮gif福利片| 高清毛片免费观看视频网站| 欧美日本视频| 91麻豆精品激情在线观看国产| 欧美乱妇无乱码| 9191精品国产免费久久| 黄片小视频在线播放| 国产麻豆成人av免费视频| 欧美 亚洲 国产 日韩一| 国产主播在线观看一区二区| 后天国语完整版免费观看| 搡老熟女国产l中国老女人| 中文字幕人成人乱码亚洲影| 午夜精品在线福利| 两性午夜刺激爽爽歪歪视频在线观看 | 久99久视频精品免费| 欧美乱码精品一区二区三区| 国产私拍福利视频在线观看| 亚洲成a人片在线一区二区| 777久久人妻少妇嫩草av网站| 精品人妻1区二区| 少妇被粗大的猛进出69影院| 久久 成人 亚洲| 国产激情久久老熟女| xxxwww97欧美| 性欧美人与动物交配| 精品一区二区三区av网在线观看| 91在线观看av| 每晚都被弄得嗷嗷叫到高潮| 免费av毛片视频| 精品国产乱码久久久久久男人| 毛片女人毛片| 国产精品永久免费网站| 无限看片的www在线观看| 伊人久久大香线蕉亚洲五| 精品国产美女av久久久久小说| 在线观看美女被高潮喷水网站 | 舔av片在线| 夜夜夜夜夜久久久久| 欧洲精品卡2卡3卡4卡5卡区| www.自偷自拍.com| 久久亚洲真实| 久久精品亚洲精品国产色婷小说| 国产精品一区二区三区四区久久| 国产成人一区二区三区免费视频网站| 老司机在亚洲福利影院| 99国产综合亚洲精品| 国产久久久一区二区三区| 老司机靠b影院| 免费观看人在逋| 正在播放国产对白刺激| 最好的美女福利视频网| 久久香蕉激情| 在线观看免费视频日本深夜| 少妇裸体淫交视频免费看高清 | 久久人人精品亚洲av| 久久精品91无色码中文字幕| 亚洲自偷自拍图片 自拍| 国产精品,欧美在线| 午夜激情福利司机影院| 亚洲午夜精品一区,二区,三区| 亚洲熟妇熟女久久| 国产成人欧美在线观看| 精品国产超薄肉色丝袜足j| 国产精品av久久久久免费| 在线播放国产精品三级| 午夜影院日韩av| 99riav亚洲国产免费| 久久 成人 亚洲| 日韩 欧美 亚洲 中文字幕| av福利片在线| 欧美绝顶高潮抽搐喷水| 哪里可以看免费的av片| 色尼玛亚洲综合影院| 亚洲精品在线观看二区| 青草久久国产| 在线十欧美十亚洲十日本专区| 男女床上黄色一级片免费看| 色综合欧美亚洲国产小说| 亚洲精品中文字幕在线视频| 1024视频免费在线观看| 岛国在线观看网站| 精品久久久久久久毛片微露脸| 午夜成年电影在线免费观看| 色在线成人网| 久久这里只有精品19| 午夜两性在线视频| 国产成人精品无人区| 国产真人三级小视频在线观看| 男女视频在线观看网站免费 | or卡值多少钱| 人妻丰满熟妇av一区二区三区| 成人三级黄色视频| 日本撒尿小便嘘嘘汇集6| 一区二区三区激情视频| а√天堂www在线а√下载| 人妻丰满熟妇av一区二区三区| 国产一区在线观看成人免费| 亚洲一卡2卡3卡4卡5卡精品中文| 精品不卡国产一区二区三区| 欧美成人性av电影在线观看| 午夜日韩欧美国产| 亚洲av成人av| 一本精品99久久精品77| 婷婷六月久久综合丁香| 99久久精品国产亚洲精品| 亚洲熟女毛片儿| 18禁美女被吸乳视频| 免费在线观看日本一区| 国产欧美日韩一区二区三| av片东京热男人的天堂| 久久久久久人人人人人| 国产精华一区二区三区| 黄色成人免费大全| 欧美在线一区亚洲| 亚洲va日本ⅴa欧美va伊人久久| 国产三级黄色录像| 精品国内亚洲2022精品成人| 国产欧美日韩一区二区三| 女人被狂操c到高潮| 一进一出抽搐gif免费好疼| 国模一区二区三区四区视频 | 一级a爱片免费观看的视频| 久久久国产成人免费| 精品福利观看| 欧美在线一区亚洲| 国产精品乱码一区二三区的特点| 嫩草影院精品99| 久久久久久久久免费视频了| 18禁国产床啪视频网站| 国产片内射在线| 巨乳人妻的诱惑在线观看| 亚洲人与动物交配视频| 人妻夜夜爽99麻豆av| 老鸭窝网址在线观看| 欧美日本视频| 久久久精品欧美日韩精品| 日本一本二区三区精品| 国产精品久久久久久精品电影| 久久久久久亚洲精品国产蜜桃av| 日韩欧美 国产精品| 精品久久久久久久末码| 婷婷亚洲欧美| 欧美zozozo另类| 韩国av一区二区三区四区| 变态另类丝袜制服| 两个人看的免费小视频| 久久天堂一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 亚洲乱码一区二区免费版| 国产精品美女特级片免费视频播放器 | 久久香蕉精品热| 亚洲欧美一区二区三区黑人| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色丝袜av网址大全| 美女免费视频网站| 欧美丝袜亚洲另类 | 国产一区二区激情短视频| 男女那种视频在线观看| 亚洲激情在线av| 亚洲精品国产一区二区精华液| 婷婷精品国产亚洲av在线| 亚洲色图 男人天堂 中文字幕| 国产精品98久久久久久宅男小说| 国产精品 国内视频| 国产伦一二天堂av在线观看| 欧美一区二区国产精品久久精品 | 1024香蕉在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产真人三级小视频在线观看| 夜夜夜夜夜久久久久| 日韩精品青青久久久久久| 久久久国产成人免费| 亚洲国产高清在线一区二区三| a级毛片在线看网站| 欧美精品啪啪一区二区三区| 大型av网站在线播放| 熟妇人妻久久中文字幕3abv| 天堂动漫精品| 午夜精品久久久久久毛片777| 久久精品国产综合久久久| 18禁国产床啪视频网站| 18禁黄网站禁片午夜丰满| 老司机深夜福利视频在线观看| 午夜福利在线在线| 黄片小视频在线播放| 久久性视频一级片| 欧美乱码精品一区二区三区| 久久这里只有精品中国| av福利片在线| 精品高清国产在线一区| 日韩精品青青久久久久久| 亚洲国产欧美一区二区综合| 好看av亚洲va欧美ⅴa在| 欧美一区二区国产精品久久精品 | 国产精品av视频在线免费观看| 人妻久久中文字幕网| 成人三级黄色视频| 成人亚洲精品av一区二区| 久久人人精品亚洲av| xxxwww97欧美| 亚洲国产精品sss在线观看| 免费在线观看成人毛片| 欧美日本亚洲视频在线播放| 国产成人欧美在线观看| 美女午夜性视频免费| 欧美3d第一页| 天天躁狠狠躁夜夜躁狠狠躁| 少妇的丰满在线观看| 精品久久久久久,| 老司机午夜十八禁免费视频| 亚洲真实伦在线观看| 三级毛片av免费| 91字幕亚洲| 黄色片一级片一级黄色片| 免费在线观看影片大全网站| 免费在线观看黄色视频的| 一进一出抽搐gif免费好疼| 欧美人与性动交α欧美精品济南到| 日韩中文字幕欧美一区二区| 一边摸一边抽搐一进一小说| 亚洲人成网站在线播放欧美日韩| 欧美乱妇无乱码| 在线观看www视频免费| a在线观看视频网站| 熟女电影av网| 成年人黄色毛片网站| 国产精品久久久久久久电影 | 欧美在线一区亚洲| 在线观看66精品国产| 一个人观看的视频www高清免费观看 | 99久久99久久久精品蜜桃| 精品久久久久久久毛片微露脸| 国产亚洲精品综合一区在线观看 | 久久国产精品影院| 国产亚洲av嫩草精品影院| 亚洲精品在线美女| 麻豆国产av国片精品| 亚洲精品中文字幕在线视频| 一进一出抽搐动态| 国产精品久久久久久亚洲av鲁大| xxxwww97欧美| 日韩 欧美 亚洲 中文字幕| 99热这里只有精品一区 | 女生性感内裤真人,穿戴方法视频| 亚洲精品av麻豆狂野| 丰满的人妻完整版| 午夜精品久久久久久毛片777| 91av网站免费观看| 法律面前人人平等表现在哪些方面| 999精品在线视频| 99久久精品国产亚洲精品| 久久精品人妻少妇| 两人在一起打扑克的视频| 亚洲真实伦在线观看| 欧美3d第一页| avwww免费| 国产精品久久电影中文字幕| 国产欧美日韩一区二区三| 欧美久久黑人一区二区| 亚洲精品美女久久av网站| 国产99久久九九免费精品| 亚洲熟妇熟女久久| 91九色精品人成在线观看| 一个人免费在线观看电影 | 欧美成人午夜精品| 在线观看日韩欧美| 久久久久亚洲av毛片大全| 国产97色在线日韩免费| 久久亚洲精品不卡| 最近最新中文字幕大全电影3| 免费在线观看完整版高清| 91老司机精品| 久久久久久久午夜电影| 日韩国内少妇激情av| 大型av网站在线播放| 变态另类成人亚洲欧美熟女| 最近在线观看免费完整版| 好男人电影高清在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品sss在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品,欧美在线| 国产探花在线观看一区二区| 国产精品爽爽va在线观看网站| 国产成+人综合+亚洲专区| 一夜夜www| 国产精品国产高清国产av| av超薄肉色丝袜交足视频| 国产精品一区二区精品视频观看| 国产高清有码在线观看视频 | 精品免费久久久久久久清纯| 免费无遮挡裸体视频| 国模一区二区三区四区视频 | 女生性感内裤真人,穿戴方法视频| 99久久99久久久精品蜜桃| 日本免费a在线| 国产乱人伦免费视频| av超薄肉色丝袜交足视频| 久久香蕉精品热| 麻豆成人午夜福利视频| 精品久久久久久,| 亚洲国产精品久久男人天堂| 国产欧美日韩精品亚洲av| 午夜日韩欧美国产| 欧美在线一区亚洲| 亚洲中文字幕一区二区三区有码在线看 | 国产日本99.免费观看| 美女免费视频网站| 精品第一国产精品| 国产精品爽爽va在线观看网站| 日本熟妇午夜| 男人的好看免费观看在线视频 | 可以免费在线观看a视频的电影网站| 久久亚洲精品不卡| 中文字幕久久专区| 欧美日韩乱码在线| 在线观看66精品国产| 1024手机看黄色片| 亚洲欧美日韩无卡精品| 亚洲第一电影网av| av有码第一页| 亚洲一区中文字幕在线| tocl精华| 在线视频色国产色| 两个人看的免费小视频| 最近视频中文字幕2019在线8| 超碰成人久久| 18禁裸乳无遮挡免费网站照片| 麻豆久久精品国产亚洲av| 午夜激情福利司机影院| 午夜福利欧美成人| 亚洲欧美日韩高清在线视频| 香蕉丝袜av| 在线观看66精品国产| 别揉我奶头~嗯~啊~动态视频| 亚洲精品在线观看二区| svipshipincom国产片| 日本精品一区二区三区蜜桃| 亚洲一区二区三区不卡视频| 日本 欧美在线| 少妇粗大呻吟视频| 91麻豆av在线| 亚洲精品美女久久久久99蜜臀| 欧美乱码精品一区二区三区| 18美女黄网站色大片免费观看| 国产精品综合久久久久久久免费| 欧美中文日本在线观看视频| 在线免费观看的www视频| 亚洲av片天天在线观看| 国产成人精品无人区| 精品一区二区三区视频在线观看免费| 亚洲人成伊人成综合网2020| 久久99热这里只有精品18| 国产av麻豆久久久久久久| а√天堂www在线а√下载| 亚洲国产高清在线一区二区三| 亚洲人成伊人成综合网2020| 国产av一区二区精品久久| 日韩大尺度精品在线看网址| 18禁美女被吸乳视频| 欧美三级亚洲精品| 国产精品亚洲av一区麻豆| 18禁国产床啪视频网站| 韩国av一区二区三区四区| 麻豆av在线久日| 91字幕亚洲| 国产成人啪精品午夜网站| 19禁男女啪啪无遮挡网站| 757午夜福利合集在线观看| 国产av又大| 午夜影院日韩av| 制服人妻中文乱码| 亚洲九九香蕉| 亚洲 欧美 日韩 在线 免费| 日本撒尿小便嘘嘘汇集6| 丰满的人妻完整版| 91在线观看av| 桃红色精品国产亚洲av| 村上凉子中文字幕在线| 国产aⅴ精品一区二区三区波| 视频区欧美日本亚洲| 国产乱人伦免费视频| 一进一出抽搐动态| 黄色女人牲交| 男男h啪啪无遮挡| а√天堂www在线а√下载| 手机成人av网站| 亚洲美女视频黄频| 国产蜜桃级精品一区二区三区| 一进一出抽搐动态| 人妻夜夜爽99麻豆av| 成人av在线播放网站| 少妇粗大呻吟视频| 日韩高清综合在线| 亚洲专区国产一区二区| 日韩大码丰满熟妇| 熟女电影av网| 亚洲色图 男人天堂 中文字幕| 每晚都被弄得嗷嗷叫到高潮| 日本一区二区免费在线视频| 亚洲精品在线观看二区| 国产亚洲欧美98| 五月伊人婷婷丁香| √禁漫天堂资源中文www| 久久精品夜夜夜夜夜久久蜜豆 | 国产激情偷乱视频一区二区| 亚洲狠狠婷婷综合久久图片| 亚洲专区字幕在线| 亚洲一码二码三码区别大吗| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费激情av| 黄色 视频免费看| 亚洲人成电影免费在线| 午夜福利在线在线| 精品久久蜜臀av无| 久久精品夜夜夜夜夜久久蜜豆 | 日本黄大片高清| 国产单亲对白刺激| 天堂动漫精品| 成年版毛片免费区| 免费在线观看成人毛片| 国产私拍福利视频在线观看| 熟妇人妻久久中文字幕3abv| 一级作爱视频免费观看| 一区福利在线观看| 亚洲午夜理论影院| 久久九九热精品免费| 中文字幕人成人乱码亚洲影| 窝窝影院91人妻| 精品久久久久久久末码| 国产野战对白在线观看| 制服人妻中文乱码| 一夜夜www| 亚洲专区中文字幕在线| 国产人伦9x9x在线观看| 丝袜美腿诱惑在线| 少妇粗大呻吟视频| 伦理电影免费视频| 俄罗斯特黄特色一大片| 亚洲精品在线美女| 国产单亲对白刺激| 久久久久久国产a免费观看| 黄色成人免费大全| 久久久国产成人精品二区| 床上黄色一级片| 日本成人三级电影网站| 亚洲免费av在线视频| АⅤ资源中文在线天堂| 亚洲av五月六月丁香网| 国产视频内射| 哪里可以看免费的av片| 一级黄色大片毛片| 91国产中文字幕| 美女午夜性视频免费| 色综合婷婷激情| 成年人黄色毛片网站| 一区福利在线观看| 搡老熟女国产l中国老女人| 国产熟女午夜一区二区三区| 少妇被粗大的猛进出69影院| 欧美绝顶高潮抽搐喷水| 国产麻豆成人av免费视频| 99热只有精品国产| 亚洲自偷自拍图片 自拍| 日本一区二区免费在线视频| 丰满人妻一区二区三区视频av | 精品久久久久久成人av| 极品教师在线免费播放| 99久久久亚洲精品蜜臀av| 亚洲天堂国产精品一区在线| av视频在线观看入口| 女人高潮潮喷娇喘18禁视频|