• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature dependence of spin pumping in YIG/NiO(x)/W multilayer

    2022-12-28 09:55:30LijunNi倪麗君WenqiangWang王文強(qiáng)LichuanJin金立川JiandongYe葉建東HeheGong鞏賀賀XiangZhan戰(zhàn)翔ZhendongChen陳振東LonglongZhang張龍龍XingzeDai代興澤YaoLi黎遙RongZhang張榮YiYang楊燚HuaiwuZhang張懷武RonghuaLiu劉榮華LinaChen陳麗娜andYongbingXu徐永兵
    Chinese Physics B 2022年12期

    Lijun Ni(倪麗君) Wenqiang Wang(王文強(qiáng)) Lichuan Jin(金立川) Jiandong Ye(葉建東)Hehe Gong(鞏賀賀) Xiang Zhan(戰(zhàn)翔) Zhendong Chen(陳振東) Longlong Zhang(張龍龍)Xingze Dai(代興澤) Yao Li(黎遙) Rong Zhang(張榮) Yi Yang(楊燚) Huaiwu Zhang(張懷武)Ronghua Liu(劉榮華) Lina Chen(陳麗娜) and Yongbing Xu(徐永兵)

    1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials,School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    2State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China 3Jiangsu Provincial Key Laboratory for Nanotechnology,School of Physics,Nanjing University,Nanjing 210093,China

    4Jiangsu Key Laboratory of Opto-Electronic Technology,Center for Quantum Transport and Thermal Energy Science,School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China

    5School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    6York–Nanjing Joint Centre for Spintronics and NanoEngineering,Department of Electronic Engineering,University of York,York YO10 5DD,United Kingdom

    Keywords: spin pumping effect,spin transport,charge current Ic,linewidth ?H,temperature dependence

    With the development of spintronics, the generation and detection of spin current have become a topic of concern.Meanwhile, the controllable modulation of the spin transport of electrons is also central to fabricating robust spintronics devices.[1–5]Spin transport in ferromagnetic (FM) and nonmagnetic materials (NM) has been extensively studied. Pure spin current can be pumped from FMs into NMs by ferromagnetic resonance (FMR) spin pumping[6,7]or a thermal gradient.[8,9]Furthermore, the pure spin current can be converted into the charge currentIcby the ISHE due to bulk and interfacial spin–orbit coupling at the NM and FM/NM interface,[10]thereby realizing the electrical detection of pure spin current. So, the effective modulation of spin current injection and the spin transport plays an important role for the impact onIcin FM/NM heterostructures.

    Recently, spin current studies, especially spin transport,have been expanded into the antiferromagnetic (AF) materials, e.g., NiO, IrMn, and Fe2O3.[11–15]For instance, NiO is a well-known AF insulator with a bulk N′eel temperature ofTN=525 K.[16]And the characteristic frequency of AF NiO is up to 1 THz in magnetic resonance measurements,which is attractive for developing THz devices.[17]Surprisingly,the unexpected enhancement of spin transport via inserting thin AF NiO between an FM(such as YIG)and Pt was discovered in FMR spin pumping and spin Seebeck experiments.[9,12,18,19]The spin transport in the AFs is optimal at a temperature near the AF Ne′el temperatureTN, suggesting that the spin transport through the AF insulators is related to AF magnons and strong spin fluctuations nearTN.[7,9]In addition, Hammelet al.[20]found that the transport efficiency of spin currentJswas reduced at room temperature, when a Cu layer was inserted between YIG and Pt in FMR spin pumping experiment. While the insertion of a similar Cu interlayer between YIG and W improves the spin currentJsinjection into W.Therefore, it is interesting how spin transport is affected if the NiO interlayer is inserted between YIG and W.In fact,Chienet al. have reported that 1-nm thin NiO suppressed the spin current pumped into W from YIG in the Seebeck effect experiment only measured at room temperature.[9]Hence, it is necessary to systematically explore the effect of temperature on spin transport between YIG and W with different NiO interlayer thickness.However,very few studies have been reported on this topic so far.

    So, we systematically explore the effect of temperature on spin transport between YIG and W with different NiO interlayer thicknesses. We chose YIG/NiO (tNiO)/W (6 nm)(tNiO=0 nm, 1 nm, 2 nm, and 10 nm) stacked structure and focused on the FMR spin-pumping-induced charge currentIcover a wide temperature range (30–300 K). The transmitted spin current detected by ISHE in the W had a maximum near theTNof the AF NiO layers, consistent with the previous reports in the YIG/NiO/Pt system. On the contrary, we found that 1 nm thick NiO is enough to significantly suppress spin transport between YIG and W by varying NiO thickness, indicating that interfaces in YIG/NiO/W heterostructures play a vital role in the spin transmission except for magnetic fluctuation of the AF NiO spacer.

    The 0.9-μm thick YIG films were grown on Gd3Ga5O12(GGG, (111)) substrates by liquid-phase epitaxy. The YIG samples were degreased via ultrasonic bathing in acetone and ethyl alcohol for 12 min and cleaned by deionized water, before being placed into the deposition chamber. Then,we used ultrahigh vacuum magnetron sputtering with a base pressure of 3×10?8Torr to fabricate the YIG(0.9μm)/NiO(tNiO)/W(6 nm) (tNiO= 0 nm, 1 nm, 2 nm, and 10 nm) samples at room temperature. The reactive (Ar+O2) pressure for NiO deposition was 4.5×10?3Torr. And the working Ar pressure was 5×10?3Torr for W deposition. Finally,all samples were patterned into a 4.0-mm long and 0.5-mm wide small rectangular bar by combining optical lithography and ion Ar+plasma etching. The FMR spin pumping measurements of YIG(0.9μm)/NiO(tNiO)/W(6 nm)(tNiO=0 nm,1 nm,2 nm,and 10 nm) samples were performed by using the coplanar waveguides (CPW) method over the temperature range from 300 K to 30 K, and the microwave frequency (f) and power(Prf) were set to be 9 GHz and 20 dBm, respectively. As illustrated in the schematic diagrams shown in Fig. 1(a), the external bias magnetic fieldHwas applied along thex-axis,and voltage measurements were performed along they-axis.At YIG resonance, the precessing YIG magnetization excites the AF moments at YIG/NiO interface. The AF magnons or fluctuations in NiO carry the angular momentum (a vertical spin currentJs) through the NiO thickness to the NiO/W interface,where the angular momentum is transferred across the NiO/W interface to the conduction electrons in the metal layer W along thez-axis with the spin polarization along thex-axis.Then,Jsin W can be converted to a charge currentIcvia ISHE.

    Fig.1. (a)Schematic of the spin pumping and ISHE measurement with in-plane field H,(b)the atomic force microscopy images of the 0.9-μm bare YIG over an area of 4μm×4μm,(c)XRD spectrum of a 400 nm-NiO film,(d)fitting of the experimental data of Ic and the antisymmetric component for YIG/W at 280 K.

    Atomic force microscopy (AFM) measurement shown in Fig. 1(b) reveals a root-mean-square (RMS) roughness of 0.58 nm for bare YIG, demonstrating the smooth surface of YIG film. High-resolution x-ray diffraction(XRD)scan of the 400-nm thick NiO film deposited on thec-plane sapphire substrates is presented in Fig.1(c). Only(111)and(222)peaks of NiO film are detected,indicating that the NiO films are of high quality with a preferred orientation along〈111〉. As plotted in Fig.1(d),we fit a typical charge currentIccurve of the YIG/W sample at 280 K by the expression as follows:[19]

    whereSis the symmetric part of the voltage amplitude,which corresponds mainly to the voltage coming from ISHE, andAis the antisymmetric part, which originates from spin rectification effect (SRE), respectively. TheWis half of the resonance linewidth ?H. TheHrrepresents the resonance field.The asymmetric signalISREis negligible, and the symmetric Lorentzian shape can mainly fit the experimentalIccurve.

    Fig.2. (a)The Ic vs. H ?Hr spectra derived from FMR spin pumping voltage measurements for the YIG/NiO(tNiO)/W(6 nm)samples with tNiO of 0 nm,1 nm, 2 nm, and 10 nm. The inset in (a) only shows the magnetic field dependence of the Ic for the sample with tNiO =10 nm.(b)At T =280 K and f =9 GHz,normalized charge current Ic/Ic0 as a function of the NiO thickness.

    Figure 2(a) shows that the charge currentIc(Ic0) vs.H ?Hr(Hris the resonance field of YIG)spectra for YIG/NiO(tNiO)/W (tNiO=0 nm, 1 nm, 2 nm, and 10 nm) samples atT=280 K,andf=9 GHz. TheIc0of the YIG/W sample at the FMR point is 0.136μA.When a 1-nm thick NiO interlayer is inserted between the YIG and W,we observe a decrease of theIcat the FMR point by one order of magnitude relative to the YIG/W bilayer. Contrary to the previously reported enhancement ofJsin YIG/NiO/Pt and Ta systems,[9]1-nm inserting layer NiO can dramatically suppress the spin current transmission in the YIG/NiO/W system. Besides, note that although theIcbecomes much smaller for the 10-nm thickness of NiO [the inset of Fig. 2(a)], an obviousIcsignal can still be well detected. Spin currentJssmoothly transmitting across the insulator NiO of 10-nm thick film implies that the insulating AF NiO spacer layer has a good spin transmission, consistent with the previous spin transports of NiO. To more intuitively present the variation trend ofIcgenerated at the FMR point with NiO thickness, we compare the relative magnitudes ofIcamong the samples with three different NiO thicknesses. As displayed in Fig. 2(b), theIcin YIG/NiO/W trilayers normalized toIc0in YIG/W bilayer shows a gradual decrease with increasing NiO thickness except for the dramatical drop ofIc/Ic0from 1 to 0.08 att=1 nm. The significant suppression of the spin current transmission in the studied YIG/NiO/W system,in contrast to previously reported enhancement in YIG/NiO (tNiO≈1–2 nm)/Pt and Ta systems,should be closely related to these interfacial effects (e.g., interfacial spin scattering, spin memory loss, and spin conductance)caused by inserting NiO layer rather than the bulk spin transport in the NiO layer.[9,20,21]

    Fig. 3. (a) At f =9 GHz, the magnetic field dependence of the Ic for the YIG/NiO(1 nm)/W sample with different temperatures,(b)the temperature dependences of the Ic for the YIG/NiO(tNiO)/W samples with tNiO from 0 to 10 nm. The peak value TM of YIG/NiO(tNiO)/W samples with tNiO=1 nm and 2 nm indicated by arrows.

    We further study the temperature effect on spin transport of those four YIG/NiO (tNiO)/W (tNiO=0 nm, 1 nm, 2 nm,and 10 nm)samples. As we all know,due to finite size effects,the intrinsic N′eel temperatureTN(tNiO) of the isolated thin NiO layer is reduced with decreasing NiO thickness.[22,23]The previous reports found theTNof 1–2 nm NiO film(TN(1 nm)≈170 K,TN(2 nm)≈260 K andTN(10 nm)>300 K).[9,24,25]And, 280 K (near the room temperature) mentioned above is higher than theTNof 1–2 nm NiO film. It is expected that spin pumping may be strongly affected aroundTNof the AF NiO for YIG/NiO/W system. Therefore,in the following,we perform FMR spin pumping measurements over a wide temperature range from 30 K to 300 K to explore temperaturedependent spin pumping signalsIc. Figure 3(a) shows the representative results ofHvs.Icspectra for the YIG/NiO(1 nm)/W sample with various temperatures of 80 K, 110 K,170 K,and 280 K,respectively. Instead of a monotonic trend,theIcseemingly exhibits a broad maximum at around 170 K[Fig.3(b)].Besides,Hrdecreases with decreasing temperature due to the increase of the YIG magnetization and the exchange coupling effect between YIG and NiO with decreasing temperature.

    Temperature dependences ofIcat the FMR point for all four YIG/NiO(tNiO)/W(tNiO=0 nm,1 nm,2 nm,and 10 nm)samples are extracted and summarized in Fig.3(b). As shown in Fig. 3(b), all YIG/NiO/W samples are strong temperaturedependent and sensitive to the NiO layer thickness. Temperature dependence of ISHE signalIcof YIG/NiO/W trilayers exhibits a maximum at a temperatureTM. TheTMis comparable to the reducedTN(tNiO)of NiO free film. The observedTMfortNiO=1 nm and 2 nm samples are at 190 K and 250 K,respectively. And theTMincreases monotonically with the NiO thickness, consistent with the previously reported magnetic properties of NiO thin films.We note that the studied 10-nm NiO sample exhibits monotonical increases up to our highest accessible temperature of 300 K,suggesting a peak above RT. This is consistent with the 10-nm thick NiO film with a highTNabove RT. These similar temperature-dependent behaviors with an enhancement ofIcnearTNhave been observed in YIG/NiO/Pt.[9]And Our FMR spin pumping experiments are carried out with the radio-frequency. So,these phenomena demonstrate that in antiferromagnetic insulators,the spins are transported dominantly by incoherent thermal magnons rather than coherent THz AFM dynamics.[7,9,26–28]In addition, our experimental results in Fig.3(b)show thatIcis strongly suppressed towards lower temperatures. From Figs.2(a)and 3(b),although 1–2 nm NiO is a paramagnetic insulator at high temperatures aboveTN,there are still obvious ISHE signalIc. The reason is that thermal magnons continuously evolve into thermal spin fluctuations, which would transportJsat high temperatures aboveTN.[7,9]We want to emphasize that, in the whole range of experimental temperatures, inserting the thin NiO layer(even 1-nm thick)always suppresses the spin transport from YIG to W layer in YIG/NiO/W trilayer systems,as the same with the above discussed for the results obtained at RT (280 K). It is unlike the YIG/NiO (1–2 nm)/Pt system reported previously, where the enhancement of injected spin current occurs. As for YIG/W bilayer, the overall decreasing trend ofIcis primarily ascribed to the increase of the magnetic dampingαYIG/Wwith decreasing temperature. And the spin relaxation attributed to rare-earth ions induces a reduction in spin pumping efficiency. The previously reported the moderate dependence ofMsof YIG, spin Hall angleθSHand the spin diffusion lengthλSDof W on temperature are not dominant factors for the decreasing behavior ofIcwith temperature decreasing.[29–32]

    The spin pumping experiments can further get the linewidth ?Hof the magnetization dynamics for the studied multilayers. Figure 4 displays the experimental ?Has a function of temperature for the YIG/NiO (tNiO)/W samples withtNiO=0 nm, 1 nm and 10 nm atf=9 GHz. We found that the ?Hof the YIG/W has a slight decrease from 280 K down to approximately 120 K,and then dramatically increases with decreasing temperature. In general, the linewidth ?H(full width at half maximum) can be described by the following equation:[30,34]

    where ?Hinhis the inhomogeneous broadening,and independent of the resonance frequencyf. The temperature dependence of the linewidth ?Hcan indirectly reflect temperaturedependent magnetic dampingα. In general, the ?Hinharises from magnetic inhomogeneities owing to local variations of the magnetization and anisotropy constants, and their strong temperature dependences will lead to the increase of ?Hinh,particularly at low temperature.[32,35,36]In addition,the strong temperature-dependent damping from rare-earth ion of YIG causes a significant increase of the linewidth ?Hin previous reports.[32,33]The enhancement of ?Hdue to inhomogeneity is supposed to be small compared with that of rareearth ions. As for the YIG/NiO (tNiO)/W (tNiO=1 nm, and 10 nm) samples, our results in Fig. 4 show that the ?Hstays almost invariant from about room temperature to the temperature(125 K for 1 nm and 225 K for 10 nm)at which the signalIcdisappears,indicating that the YIG/NiO exchange coupling induced-extra damping is small during temperature range of 300–125 K.[18,19]

    Fig.4. Temperature dependences of the ?H for the YIG/NiO(tNiO)/W samples with tNiO=0 nm(red and pink circles),1 nm(blue triangle),and 10 nm(green diamond)at f =9 GHz.

    In summary, we have investigated the variation of ISHE signalIcYIG (0.9 μm)/NiO (tNiO)/W (6 nm) (tNiO=0 nm,1 nm, 2 nm, 10 nm) in a broad temperature range 300–30 K by utilizing the FMR spin pumping method. The value ofIcfor YIG/NiO/W samples exhibits a broad maximum at the temperatureTMnear the N′eel temperature of NiO, suggesting that spin magnons of the insulating AF NiO dominate its spin transport. TheIcexhibits a obvious decrease over the entire experimental temperature range when the NiO layer is inserted between YIG and W.And the significant suppression of the spin current transmission in the YIG/NiO(tNiO=1 nm,2 nm)/W system is in sharp contrast to the enhancement in YIG/NiO (tNiO≈1–2 nm)/Pt and Ta systems, suggesting the interfacial effects of NiO/W (e.g., interfacial spin scattering,spin memory loss,and spin conductance)dominate spin transport rather than the bulk NiO layer with a low spin loss. Our results reveal that the amplification or inhibition of spin transport in various magnetic heterostructures closely depends on the specific interface-related materials.

    Acknowledgements

    We acknowledge support from the National Natural Science Foundation of China (Grant Nos. 11774160, 61427812,61805116, 12004171, 61774081, and 62171096), the Natural Science Foundation of Jiangsu Province of China(Grant No. BK20192006), the National Key Scientific Instrument and Equipment Development Project of China(Grant No. 51827802), the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20180056 and BK20200307), the Applied Basic Research Programs of the Science and Technology Commission Foundation of Jiangsu Province,China(Grant No.BK20200309),the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, the Scientific Foundation of Nanjing University of Posts and Telecommunications(NUPTSF)(Grant No.NY220164),and the State Key R&D Project of Guangdong, China(Grant No.2020B010174002).

    日韩av在线免费看完整版不卡| 久久婷婷青草| 欧美日韩视频高清一区二区三区二| 成人国产av品久久久| 大香蕉久久成人网| 久热这里只有精品99| 免费黄网站久久成人精品| 免费黄网站久久成人精品| 亚洲图色成人| 久久精品久久久久久久性| 色视频在线一区二区三区| av免费观看日本| 亚洲怡红院男人天堂| av福利片在线| 91精品国产国语对白视频| 久久久久久久精品精品| 久久人人爽人人片av| 久久精品夜色国产| 国产亚洲精品第一综合不卡 | 人成视频在线观看免费观看| 国产精品人妻久久久影院| 久久 成人 亚洲| a级毛色黄片| 在线观看一区二区三区激情| 精品国产露脸久久av麻豆| 亚洲一区二区三区欧美精品| 久久午夜综合久久蜜桃| a 毛片基地| 一级爰片在线观看| 插逼视频在线观看| 精品一区二区免费观看| 性色avwww在线观看| 国产精品久久久久久精品古装| 欧美一级a爱片免费观看看| 美女脱内裤让男人舔精品视频| 美女主播在线视频| 国产高清有码在线观看视频| 99热6这里只有精品| 99久久精品一区二区三区| 永久网站在线| 午夜久久久在线观看| 日本欧美国产在线视频| 男人添女人高潮全过程视频| 日韩人妻高清精品专区| 国产高清国产精品国产三级| 久久精品久久久久久久性| 亚洲精品一二三| 一级,二级,三级黄色视频| 2018国产大陆天天弄谢| 性色avwww在线观看| 亚洲高清免费不卡视频| 80岁老熟妇乱子伦牲交| 天天影视国产精品| 亚洲人成网站在线播| 久久久久久久大尺度免费视频| 我的老师免费观看完整版| 久久久久久久久久久丰满| 亚洲图色成人| 久久婷婷青草| 久久热精品热| 一级a做视频免费观看| 高清欧美精品videossex| 免费看av在线观看网站| 黄色配什么色好看| 人人妻人人澡人人看| 在线观看美女被高潮喷水网站| 亚洲欧美日韩另类电影网站| 亚洲精华国产精华液的使用体验| 亚洲天堂av无毛| 亚洲,一卡二卡三卡| 嫩草影院入口| 中文乱码字字幕精品一区二区三区| 内地一区二区视频在线| 日韩电影二区| 满18在线观看网站| 多毛熟女@视频| 国产老妇伦熟女老妇高清| 国产亚洲av片在线观看秒播厂| 国产伦理片在线播放av一区| 如日韩欧美国产精品一区二区三区 | 国产成人精品久久久久久| 日韩中字成人| 一区二区三区免费毛片| av在线老鸭窝| 我的老师免费观看完整版| 国产一区亚洲一区在线观看| a级毛片黄视频| tube8黄色片| .国产精品久久| 精品国产乱码久久久久久小说| 国产黄片视频在线免费观看| 亚洲美女搞黄在线观看| 国产有黄有色有爽视频| 亚洲av福利一区| 亚洲综合精品二区| 成人综合一区亚洲| 午夜日本视频在线| 国产综合精华液| 麻豆精品久久久久久蜜桃| 国产色婷婷99| 亚洲精品亚洲一区二区| 多毛熟女@视频| 欧美xxxx性猛交bbbb| 欧美一级a爱片免费观看看| 欧美xxⅹ黑人| 午夜激情久久久久久久| 亚洲五月色婷婷综合| 秋霞伦理黄片| 免费人妻精品一区二区三区视频| 国精品久久久久久国模美| 香蕉精品网在线| 不卡视频在线观看欧美| 视频区图区小说| 男男h啪啪无遮挡| 三上悠亚av全集在线观看| 亚洲在久久综合| 成人手机av| 大片电影免费在线观看免费| 国产精品三级大全| 亚洲精品乱码久久久v下载方式| 在线 av 中文字幕| 日本欧美国产在线视频| 一区二区三区免费毛片| 欧美 亚洲 国产 日韩一| 国产精品嫩草影院av在线观看| 性色av一级| 午夜免费男女啪啪视频观看| 久久99精品国语久久久| 啦啦啦视频在线资源免费观看| 蜜桃久久精品国产亚洲av| 欧美最新免费一区二区三区| 日韩中文字幕视频在线看片| 97精品久久久久久久久久精品| av视频免费观看在线观看| 日韩一本色道免费dvd| 欧美国产精品一级二级三级| 91精品国产九色| 成人免费观看视频高清| 日韩大片免费观看网站| 韩国av在线不卡| 久久久久久久久久成人| 亚洲怡红院男人天堂| av电影中文网址| 男人添女人高潮全过程视频| 大香蕉久久成人网| 在线观看免费高清a一片| 亚洲不卡免费看| 全区人妻精品视频| 丰满乱子伦码专区| 另类精品久久| 精品酒店卫生间| 久久久久久伊人网av| 日韩免费高清中文字幕av| 大又大粗又爽又黄少妇毛片口| 国产永久视频网站| 日本爱情动作片www.在线观看| 亚洲人成网站在线播| 人体艺术视频欧美日本| 国产亚洲最大av| 99热这里只有是精品在线观看| 免费看光身美女| 国产国语露脸激情在线看| 成人无遮挡网站| 亚洲少妇的诱惑av| 91午夜精品亚洲一区二区三区| 国产日韩一区二区三区精品不卡 | 精品人妻熟女毛片av久久网站| 日本色播在线视频| 国产精品一区二区在线不卡| 中国国产av一级| 国产成人精品福利久久| 熟女电影av网| 亚洲av日韩在线播放| 观看av在线不卡| 亚洲精品国产色婷婷电影| 亚洲精品久久午夜乱码| 一级二级三级毛片免费看| 午夜老司机福利剧场| 国产永久视频网站| 亚洲怡红院男人天堂| 中文字幕最新亚洲高清| 国产精品欧美亚洲77777| 精品久久国产蜜桃| 18禁在线播放成人免费| 激情五月婷婷亚洲| 丰满迷人的少妇在线观看| 亚洲,一卡二卡三卡| 国产精品久久久久久av不卡| 麻豆精品久久久久久蜜桃| 十八禁网站网址无遮挡| 亚洲av.av天堂| 国产老妇伦熟女老妇高清| 亚洲人成网站在线观看播放| 热re99久久精品国产66热6| 十八禁高潮呻吟视频| 九九在线视频观看精品| 国产亚洲最大av| 18禁观看日本| 免费高清在线观看日韩| 久久ye,这里只有精品| 国产精品久久久久久精品古装| 日韩熟女老妇一区二区性免费视频| 亚洲精品乱久久久久久| 香蕉精品网在线| 熟女电影av网| 久久久久久久精品精品| 国产日韩欧美亚洲二区| 婷婷色麻豆天堂久久| 色视频在线一区二区三区| 国产深夜福利视频在线观看| 成人毛片a级毛片在线播放| 欧美少妇被猛烈插入视频| 国产精品蜜桃在线观看| 国产免费福利视频在线观看| 亚洲色图综合在线观看| 亚洲av成人精品一区久久| 亚洲激情五月婷婷啪啪| 精品少妇久久久久久888优播| 欧美成人午夜免费资源| 亚洲精品乱码久久久久久按摩| 一区二区三区四区激情视频| 午夜福利视频在线观看免费| 视频在线观看一区二区三区| 能在线免费看毛片的网站| 午夜免费观看性视频| 久久精品久久久久久噜噜老黄| 99久久精品国产国产毛片| 午夜免费男女啪啪视频观看| 中国三级夫妇交换| 91精品国产九色| 高清午夜精品一区二区三区| 97在线视频观看| 欧美亚洲日本最大视频资源| 久久久国产精品麻豆| 一级a做视频免费观看| 中文字幕亚洲精品专区| 精品人妻偷拍中文字幕| 王馨瑶露胸无遮挡在线观看| 亚洲精华国产精华液的使用体验| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美中文字幕日韩二区| 午夜免费观看性视频| 久久久久久久久久久免费av| 亚洲欧美清纯卡通| 精品久久久精品久久久| 51国产日韩欧美| 久久久国产欧美日韩av| 久久久久国产网址| 亚洲av国产av综合av卡| 国产男女内射视频| 午夜老司机福利剧场| 婷婷色综合www| 欧美日韩av久久| 国语对白做爰xxxⅹ性视频网站| 国产免费一区二区三区四区乱码| 在线观看美女被高潮喷水网站| 欧美国产精品一级二级三级| 激情五月婷婷亚洲| 在线观看国产h片| 久久午夜综合久久蜜桃| 中文精品一卡2卡3卡4更新| www.色视频.com| 精品一区二区免费观看| 国产国拍精品亚洲av在线观看| 精品国产一区二区久久| 欧美日韩精品成人综合77777| 成人国产av品久久久| 在现免费观看毛片| 亚洲精品456在线播放app| 久久久久久人妻| 日韩电影二区| 大陆偷拍与自拍| 亚洲天堂av无毛| 久久久精品94久久精品| 欧美 亚洲 国产 日韩一| 欧美成人精品欧美一级黄| 久久毛片免费看一区二区三区| 久久鲁丝午夜福利片| 国产精品国产三级国产av玫瑰| 99热6这里只有精品| 成人亚洲精品一区在线观看| a级毛片免费高清观看在线播放| 国产精品蜜桃在线观看| 久久久午夜欧美精品| 91久久精品国产一区二区成人| av专区在线播放| 又大又黄又爽视频免费| 欧美精品亚洲一区二区| .国产精品久久| 成人影院久久| av在线app专区| 亚洲精品,欧美精品| 性色avwww在线观看| 另类亚洲欧美激情| 菩萨蛮人人尽说江南好唐韦庄| 老司机影院成人| 亚洲久久久国产精品| 亚洲综合色惰| 91精品国产九色| 亚洲av日韩在线播放| 久久午夜综合久久蜜桃| 午夜福利视频在线观看免费| 美女主播在线视频| 97精品久久久久久久久久精品| 日韩熟女老妇一区二区性免费视频| 午夜激情久久久久久久| 午夜精品国产一区二区电影| 久久久亚洲精品成人影院| 黄色毛片三级朝国网站| 国产精品国产av在线观看| 最黄视频免费看| 日本欧美国产在线视频| 国产成人精品福利久久| 男女国产视频网站| 久久久久网色| 国精品久久久久久国模美| 18禁动态无遮挡网站| 少妇高潮的动态图| 成人国产av品久久久| 美女内射精品一级片tv| 国产一区有黄有色的免费视频| 久久久久久久久久人人人人人人| 七月丁香在线播放| 国内精品宾馆在线| 国产午夜精品一二区理论片| 精品国产乱码久久久久久小说| 亚洲高清免费不卡视频| 新久久久久国产一级毛片| 久久人妻熟女aⅴ| 少妇的逼好多水| 国产乱来视频区| 亚洲久久久国产精品| 久久精品国产自在天天线| 91精品国产国语对白视频| av线在线观看网站| 狠狠婷婷综合久久久久久88av| 精品午夜福利在线看| 亚洲国产色片| 国产精品99久久久久久久久| 亚洲怡红院男人天堂| 一区二区三区乱码不卡18| 久久久久久久亚洲中文字幕| 亚洲精品视频女| 久久午夜综合久久蜜桃| 九九爱精品视频在线观看| 99视频精品全部免费 在线| av又黄又爽大尺度在线免费看| 曰老女人黄片| 大话2 男鬼变身卡| 一本一本综合久久| 大陆偷拍与自拍| 亚洲精品久久午夜乱码| 国产精品国产av在线观看| 亚洲国产欧美在线一区| 精品亚洲成a人片在线观看| 久久精品久久久久久噜噜老黄| 亚洲精品中文字幕在线视频| 国产精品人妻久久久久久| 九九久久精品国产亚洲av麻豆| 婷婷色av中文字幕| 久久99精品国语久久久| 国产视频内射| 午夜av观看不卡| 久久久久国产精品人妻一区二区| 精品少妇黑人巨大在线播放| 少妇丰满av| 午夜免费鲁丝| 狂野欧美激情性bbbbbb| 国产毛片在线视频| 日韩中字成人| 亚洲成人手机| 久久久国产欧美日韩av| 国产成人精品福利久久| av播播在线观看一区| av卡一久久| 男人添女人高潮全过程视频| 婷婷色麻豆天堂久久| 色视频在线一区二区三区| 18禁动态无遮挡网站| 免费大片黄手机在线观看| 一级a做视频免费观看| 在线观看www视频免费| 国产精品一区二区三区四区免费观看| 女人精品久久久久毛片| a级毛片黄视频| 蜜桃在线观看..| 亚洲熟女精品中文字幕| 99久久精品国产国产毛片| 国产精品人妻久久久久久| 有码 亚洲区| 亚洲三级黄色毛片| 又粗又硬又长又爽又黄的视频| 乱码一卡2卡4卡精品| 最新中文字幕久久久久| 妹子高潮喷水视频| 欧美日韩成人在线一区二区| 少妇人妻精品综合一区二区| 天天操日日干夜夜撸| 国内精品宾馆在线| 免费观看在线日韩| 国产亚洲精品久久久com| 久久久久久久久久人人人人人人| 国精品久久久久久国模美| 高清视频免费观看一区二区| 久久久久人妻精品一区果冻| 国产精品人妻久久久久久| 伦理电影免费视频| kizo精华| 精品少妇久久久久久888优播| 麻豆成人av视频| 久久综合国产亚洲精品| 亚洲久久久国产精品| 国产成人av激情在线播放 | 日韩三级伦理在线观看| 免费黄频网站在线观看国产| 亚洲av福利一区| 久久婷婷青草| 中文字幕最新亚洲高清| 久久亚洲国产成人精品v| 国产日韩一区二区三区精品不卡 | 五月玫瑰六月丁香| 久久精品熟女亚洲av麻豆精品| 一边亲一边摸免费视频| 久久这里有精品视频免费| 国产男女内射视频| 免费看不卡的av| 在线观看国产h片| 熟女av电影| 国产综合精华液| 99国产精品免费福利视频| 视频中文字幕在线观看| 亚洲中文av在线| 精品少妇内射三级| 肉色欧美久久久久久久蜜桃| 欧美精品亚洲一区二区| 一区二区三区精品91| 97精品久久久久久久久久精品| 母亲3免费完整高清在线观看 | 大片电影免费在线观看免费| 午夜影院在线不卡| 九色成人免费人妻av| 夜夜爽夜夜爽视频| 国产亚洲午夜精品一区二区久久| 日韩欧美一区视频在线观看| 九色成人免费人妻av| 中文字幕久久专区| 日韩av免费高清视频| 久久国产精品男人的天堂亚洲 | 一本大道久久a久久精品| 亚洲欧美精品自产自拍| a 毛片基地| 高清黄色对白视频在线免费看| 美女国产高潮福利片在线看| 久久久久久久久久久久大奶| 精品人妻熟女av久视频| 国产精品一区二区三区四区免费观看| 国产亚洲午夜精品一区二区久久| av在线app专区| 国产国语露脸激情在线看| 中文字幕亚洲精品专区| 一区二区av电影网| 老女人水多毛片| 99热网站在线观看| 免费少妇av软件| 国产成人精品婷婷| 亚洲精品久久成人aⅴ小说 | 一本大道久久a久久精品| 高清黄色对白视频在线免费看| 亚洲av不卡在线观看| 22中文网久久字幕| 99热这里只有是精品在线观看| 大香蕉久久成人网| 亚洲美女搞黄在线观看| 亚洲一级一片aⅴ在线观看| 精品一品国产午夜福利视频| 在线观看美女被高潮喷水网站| 人妻制服诱惑在线中文字幕| 亚洲国产最新在线播放| 高清黄色对白视频在线免费看| 亚洲欧美一区二区三区国产| 一区在线观看完整版| 国产爽快片一区二区三区| 精品一区二区免费观看| 黄色欧美视频在线观看| 狂野欧美激情性xxxx在线观看| 国产精品99久久久久久久久| 精品少妇内射三级| 午夜福利在线观看免费完整高清在| 狂野欧美白嫩少妇大欣赏| 亚洲精品日韩av片在线观看| 国产乱人偷精品视频| 色吧在线观看| 精品人妻在线不人妻| 99九九线精品视频在线观看视频| 日韩,欧美,国产一区二区三区| 大片免费播放器 马上看| 99视频精品全部免费 在线| 中文乱码字字幕精品一区二区三区| 亚洲精品乱码久久久久久按摩| 热re99久久精品国产66热6| 最新中文字幕久久久久| 国产精品麻豆人妻色哟哟久久| 欧美精品国产亚洲| 国产又色又爽无遮挡免| 亚洲,一卡二卡三卡| 免费观看av网站的网址| 秋霞在线观看毛片| 少妇丰满av| 丝袜喷水一区| 91久久精品国产一区二区三区| 精品少妇黑人巨大在线播放| 午夜福利影视在线免费观看| 久久免费观看电影| 高清毛片免费看| 日韩av免费高清视频| 99国产精品免费福利视频| 日韩免费高清中文字幕av| 91午夜精品亚洲一区二区三区| 如何舔出高潮| 又粗又硬又长又爽又黄的视频| 国产毛片在线视频| 性色avwww在线观看| 2022亚洲国产成人精品| 国产在线一区二区三区精| 少妇的逼好多水| 免费大片黄手机在线观看| 大香蕉97超碰在线| 成人手机av| 精品亚洲成a人片在线观看| 国产高清国产精品国产三级| 日韩熟女老妇一区二区性免费视频| 老司机亚洲免费影院| 亚洲天堂av无毛| 又黄又爽又刺激的免费视频.| 91久久精品国产一区二区三区| 国产成人精品在线电影| 亚洲欧美一区二区三区国产| 又大又黄又爽视频免费| 精品一品国产午夜福利视频| 日日爽夜夜爽网站| 亚洲精品aⅴ在线观看| 免费看av在线观看网站| 色吧在线观看| 国产成人精品一,二区| 国产男人的电影天堂91| 中文字幕久久专区| 免费久久久久久久精品成人欧美视频 | 日本av免费视频播放| 日韩一区二区三区影片| 这个男人来自地球电影免费观看 | 久热这里只有精品99| 夫妻午夜视频| 考比视频在线观看| 丰满乱子伦码专区| 蜜桃在线观看..| 黑人欧美特级aaaaaa片| 人人妻人人爽人人添夜夜欢视频| 欧美日韩视频高清一区二区三区二| 久久久久久久久久成人| 久久精品久久精品一区二区三区| 久久鲁丝午夜福利片| 卡戴珊不雅视频在线播放| 免费高清在线观看日韩| 国语对白做爰xxxⅹ性视频网站| 亚洲精品久久久久久婷婷小说| 伊人久久国产一区二区| 午夜久久久在线观看| 99re6热这里在线精品视频| 99久国产av精品国产电影| 在线观看免费日韩欧美大片 | 一级毛片电影观看| 成人亚洲精品一区在线观看| 最近的中文字幕免费完整| 免费播放大片免费观看视频在线观看| 久久这里有精品视频免费| 国产免费视频播放在线视频| 免费观看av网站的网址| 欧美亚洲日本最大视频资源| 国产精品免费大片| videosex国产| 亚洲五月色婷婷综合| 久久久久久久久大av| 蜜桃在线观看..| 人妻人人澡人人爽人人| 免费人妻精品一区二区三区视频| 丝袜喷水一区| 久久99热这里只频精品6学生| 我的老师免费观看完整版| 国产精品久久久久久久久免| 九色成人免费人妻av| 性高湖久久久久久久久免费观看| 最近的中文字幕免费完整| 精品一区二区免费观看| 中国美白少妇内射xxxbb| 美女cb高潮喷水在线观看| 亚洲精品日韩av片在线观看| 精品久久久噜噜| av卡一久久| 蜜臀久久99精品久久宅男| 国产亚洲精品第一综合不卡 | 特大巨黑吊av在线直播| 亚洲欧洲日产国产| 国产av码专区亚洲av| 欧美 日韩 精品 国产| 夫妻午夜视频| 亚洲成色77777| 超碰97精品在线观看| 久久久国产一区二区| 少妇高潮的动态图| 青春草国产在线视频| av又黄又爽大尺度在线免费看| www.av在线官网国产| 最近的中文字幕免费完整| 黑人高潮一二区| av有码第一页|