• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Study of the Physical Properties and Energy Sources of Five Luminous Type Ibc Supernovae

    2024-01-16 12:10:34SongYaoBai白松瑤TaoWang王濤ShanQinWang王善欽WenPeiGan甘文沛LiuYiWang王瀏毅andEnWeiLiang梁恩維
    Research in Astronomy and Astrophysics 2023年12期
    關鍵詞:王濤

    Song-Yao Bai (白松瑤), Tao Wang (王濤), Shan-Qin Wang (王善欽), Wen-Pei Gan (甘文沛), Liu-Yi Wang (王瀏毅), and En-Wei Liang (梁恩維)

    1 Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China shanqinwang@gxu.edu.cn 2 Nanjing Institute of Astronomical Optics & Technology, Nanjing 210042, China Received 2023 June 12; revised 2023 August 7; accepted 2023 August 30; published 2023 October 25

    Abstract In this paper, we study five luminous supernovae (LSNe) Ibc (SN 2009ca, ASASSN-15mj, SN 2019omd,SN 2002ued, and SN 2021bmf) whose peak absolute magnitudes Mpeak are ≈?19.5 to ?21 mag by fitting their multi-band light curves(LCs)with different energy source models.We find that SN 2009ca might be powered by the 56Ni model since the required 56Ni mass (0.56 M⊙)is comparable to those of energetic SNe Ic,while the rest four SNe cannot be accounted for the 56Ni model since their derived 56Ni masses are ?1 M⊙or the ratios of the 56Ni mass to the ejecta mass are larger than 0.2.This indicates that some LSNe might be powered by 56Ni decay,while most of them need additional energy sources.We then use the magnetar plus 56Ni model and the fallback plus 56Ni model to fit the LCs of the four LSNe that cannot be explained by the 56Ni model, finding that the two models can account for the four SNe, and the derived parameters are comparable to those of LSNe or superluminous SNe in the literature,if they were(mainly)powered by magnetars or fallback.We suggest that the magnetar plus 56Ni model is more reasonable than the fallback plus 56Ni model, since the validity of the fallback plus 56Ni model depends on the value of accretion efficiency(η)and favors a large η value,and the magnetar plus 56Ni model yields smaller χ2/dof values.It should be pointed out that, however, the fallback plus 56Ni model is still a promising model that can account for the four SNe in our sample as well as other LSNe.

    Key words: Stars – (stars:) supernovae: general – stars: magnetars

    1.Introduction

    Core-collapse supernovae (CCSNe) result from the explosions of massive stars with zero-age main-sequence mass(MZAMS?8.0 M⊙) (Woosley et al.2002; Janka et al.2007).It is believed that the progenitors losing most or all hydrogen envelopes can produce stripped-envelope SNe (SESNe) which can be divided into type IIb SNe,type Ib SNe,and type Ic SNe(see Filippenko 1997; Gal-Yam 2017 for reviews), for which the progenitors lost most hydrogen envelopes, all hydrogen envelopes, and most helium envelopes, respectively.

    Most types Ib and Ic(type Ibc)SNe are dimmer than type Ia SNe whose peak absolute magnitudes Mpeakare ~?19.5 mag.Over the past two decades, however, a few hundred superluminous type Ibc SNe (SLSNe Ibc) with Mpeak??21 mag were confirmed and comprehensively studied (see Gal-Yam 2012 and Gal-Yam 2019 for reviews).Additionally, a few dozen luminous type Ibc SNe (LSNe Ibc) whose Mpeakare between ~?19.5 and ~?21 mag are also been studied.3

    Unlike normal type Ibc which is believed to be (mainly)powered by the cascade decay of56Ni synthesized by the explosions (Colgate & McKee 1969; Colgate et al.1980;Arnett 1982), the energy sources of LSNe Ibc and SLSNe Ibc are still elusive.

    Previous studies for SLSNe Ibc indicate that almost all SLSNe cannot be explained by the56Ni model (including the pair-instability SNe model which need a few M⊙of56Ni).To account for the light curves (LCs) of SLSNe which cannot be explained by the56Ni model, three models which are the magnetar model (Maeda et al.2007; Kasen & Bildsten 2010;Woosley 2010;Inserra et al.2013;Wang et al.2015a),the SN ejecta-circumstellar medium (CSM) interaction (CSI) model(Chevalier 1982; Chevalier & Fransson 1994; Chatzopoulos et al.2012, 2013), and the fallback accretion model (hereafter the fallback model;Dexter&Kasen 2013;Moriya et al.2018a,2018b; Anderson et al.2018; Li et al.2020) have been proposed.

    The case for LSNe Ibc is more complicated.Wang et al.(2015b) suggest that the magnetar plus56Ni model is a promising model to account for LSNe Ic since the56Ni masses needed by the56Ni model are larger than the reasonable values,while the contribution of a moderate amount of56Ni cannot be neglected.Wang et al.(2015b) use the magnetar plus56Ni model to fit the bolometric LCs of three LSNe Ic-BL(SN 2010ay, SN 2006nx, and SN 14475), and find that the model can explain their LCs and the derived parameters for magnetar were P0~7–15 ms and B ~(4–7)×1014G.Gomez et al.(2021) investigated SN 2019stc and found that the first and second peaks in this SN could be powered by the magnetar plus56Ni decay and the ejecta-CSM interaction, respectively.Gomez et al.(2022) used the magnetar plus56Ni model to fit the multi-band LCs of 40 LSNe with r band Mpeakbetween?19mag and ?20 mag, finding that the parameters of magnetars were P0~1–23 ms and B ~(0.1–13)×1014G.

    In this paper,we collect the multi-band data of five LSNe Ibc with Mpeak≈?19.5 to ?21mag, and constrain their physical properties by using the56Ni model, the magnetar plus56Ni model,as well as the fallback plus56Ni model to fit their multiband LCs.In Section 2, we model the multi-band LCs of the five LSNe using these three models.In Section 3, we discuss our results and draw some conclusions in Section 4.Throughout the paper, we assume Ωm=0.315, ΩΛ=0.685,and H0=67.3 km s?1Mpc?1(Planck Collaboration et al.2014).The values of the Milky Way reddening (EB?V) of all events are from Schlafly & Finkbeiner (2011).

    2.Modeling the Multi-band Light Curves of Five LSNe

    We collect about 50 LSNe Ibc with Mpeak≈?19.5 to?21mag from the Open Supernova Catalog (Guillochon et al.2017)4https://sne.spaceand the public catalog of transients from the Zwicky Transient Facility(ZTF)Bright Transient Survey(BTS)(Perley et al.2020).5https://sites.astro.caltech.edu/ztf/bts/bts.phpWe then exclude the LSNe which had been fitted by the literature (e.g., Wang et al.2015b; Gomez et al.2021,2022), and obtain the rest five LSNe, which are SN 2009ca,ASASSN-15mj, SN 2019omd, SN 2021bmf, and SN 2022ued.Among the five LSNe, ASASSN-15mj, SN 2019omd, and SN 2022ued are SNe Ib,while SN 2009ca and SN 2021bmf are broad-lined SNe Ic (SNe Ic-BL).The information of the five LSNe is listed in Table 1.

    2.1.Modeling the Multi-band LCs of Five LSNe Using the 56Ni Model

    We first use the56Ni model to fit the multi-band light curves(LCs) of the five SNe in our sample.The details of the56Ni model can be found in Wang et al.(2023) and references therein.Throughout this paper, κ is set to be 0.07 cm2g?1.Definitions,units,and prior ranges of the free parameters of the56Ni model are listed in Table 2.We use the Markov Chain Monte Carlo (MCMC) method to derive the medians and 1σ confidence regions of the parameters through the emcee Python package (Foreman-Mackey et al.2013).

    The fits for the five SNe using the56Ni model are shown in Figure 1.The parameters and the corresponding corner plots are presented in Table 3 and Figures A1–A5.

    The derived values of Mej, MNi, vph, and EKare ~(0.7–8.0) M⊙, ~(0.7–5.0) M⊙, ~(1.0–2.5)×109cm s?1, and~(1.0–25.0)×1051erg,respectively; the mean values of these parameters are ~5.45 M⊙, ~2.79 M⊙, ~1.73×109cm s?1,and ~10.0×1051erg, respectively.The ratios of MNito Mej(f) of the five SNe are ~0.22–0.99.

    By comparing our derived parameters to those in the literature, we find that the values of derived MNiand f of the56Ni model are consistent with those derived from other LSNe using the56Ni model,which are ~(1.0–2.0)M⊙and 0.31–0.62(Wang et al.2015b) or ≈3.2 M⊙and ~0.31 (Gomez et al.2021).

    As pointed out by Khatami & Kasen (2019) and Arnett(1982), Afsariardchi et al.(2021)?s model might overestimate the56Ni masses of SNe.More reasonable56Ni masses can be derived by using the equation (Khatami & Kasen 2019)

    the mean values of β for Type Ib and Type Ic-BL SNe are 0.66 and 0.56,respectively(Afsariardchi et al.2021);the rise time tpand the peak luminosity Lpare given by the bolometric LC reproduced by the best-fitting parameters of multi-band LCs fits.Using the equation, the56Ni masses of the five SNe are 0.56 M⊙, 0.44 M⊙, 0.99 M⊙, 2.26 M⊙, and 2.28 M⊙,respectively.The values of f are ~0.10 (SN 2009ca), ~0.56(ASASSN-15mj),~0.12(SN 2019omd),~0.36(SN 2021bmf),and ~0.36 (SN 2022ued), respectively.

    Table 2Definitions, Units, and Prior Ranges of the Parameters of the 56Ni modela

    Table 3Medians, 1σ Bounds, and Best-fitting Values (in Parentheses) of the Parameters of the 56Ni Model

    Figure 1.The best fits(the solid curves)of the multi-band LCs of SN 2009ca(the top-left panel),ASASSN-15mj(the top-right panel),SN 2019omd(the middle-left panel), SN 2021bmf (the middle-right panel), and SN 2022ued (the bottom panel) using the 56Ni model.The shaded regions indicate 1σ bounds of the parameters.Circles represent observed data, triangles represent upper limits.

    Table 4Definitions, Units, and Prior Ranges of the Parameters of the Magnetar Plus 56Ni, and the Fallback Plus 56Ni Modelsa

    Umeda&Nomoto(2008)suggest that the upper limit of the value of f of CCSNe is 0.2.Therefore, ASASSN-15mj,SN 2021bmf, and SN 2022ued cannot be explained by the56Ni model.Although f of SN 2009ca and SN 2019omd is smaller than 0.2, the derived56Ni mass of SN 2019omd is 0.99 M⊙, which is about twice those of some very energetic SNe Ic(e.g.,SN 1998bw,SN 2003dh).Hence,we suggest that the56Ni mass of SN 2019omd is also unreasonable.Finally,the possibility that SN 2009ca was powered by56Ni decay cannot be excluded, since its56Ni mass derived (0.56 M⊙) is comparable to those of SN 1998bw, SN 2003dh, and other energetic SNe Ic.

    2.2.Modeling theMulti-bandLCsofFourLSNe Using t he MagnetarPlus56Ni ModelandtheFallbackPlus 56Ni Model

    Here,we use the magnetar plus56Ni model and the fallback plus56Ni model to fit the multi-band LCs of ASASSN-15mj,SN 2019omd,SN 2021bmf,and SN 2022ued.The details of the two models can be found in Wang & Gan (2022) and Wang et al.(2023)and references therein;definitions,units,and prior ranges of the free parameters of the two models are listed in Table 4.

    The fits of the two models for the four SNe are shown in Figure 2.The parameters and the corresponding corner plots are presented in Table 5 and Figures A6–A13.We find that the LCs of four SNe can be well fitted by the two models.The χ2/dof values of the best fits of ASASSN-15mj, SN 2019omd,SN 2021bmf, and SN 2022ued using the magnetar plus56Ni model (the fallback plus56Ni model) are respectively 0.82(1.10),0.55(0.58),0.93(1.00),and 1.90(2.01),indicating that the magnetar plus56Ni model is better than the fallback plus56Ni model for the four LSNe.

    Figure 2.The best fits(the solid curves)of the multi-band LCs of ASASSN-15mj,SN 2019omd,SN 2021bmf,and SN 2022ued using the magnetar plus 56Ni model(the left panels)and the fallback plus56Ni model(the right panels).The dotted lines are the LCs powered by the56Ni,and the dashed lines are the LCs powered by the magnetar(the left panels)or the fallback(the right panels),respectively.The shaded regions indicate 1σ bounds of the parameters.Circles represent observed data,triangles represent upper limits.

    Table 5Medians, 1σ Bounds, and Best-fitting Values (in Parentheses) of the Parameters of the Magnetar Plus 56Ni Model and the Fallback Plus 56Ni Model

    Based on the derived Mejand vph,we can calculate the values of EKof the SNe.For the magnetar plus56Ni model (the fallback plus56Ni model),EKof ASASSN-15mj,SN 2019omd,SN 2021bmf, and SN 2022ued are 2.84×1050erg (2.25×1050erg), 2.38×1051erg (2.53×1050erg), 3.35×1052erg(4.76×1052erg), and 1.07×1050erg (6.78×1049erg),respectively.Using Equation (1), the56Ni masses of ASASSN-15mj, SN 2019omd, SN 2021bmf, and SN 2022ued derived by the magnetar plus56Ni model(the fallback plus56Ni model) are 0.01 M⊙(0.01 M⊙), 0.11 M⊙(0.07 M⊙), 0.21 M⊙(0.01 M⊙), and 0.02 M⊙(0.03 M⊙), respectively.

    For the magnetar plus56Ni model,the derived values of Mej,MNi, P0, B, vph, and EKare ~(0.1–10) M⊙, ~(0.01–0.5) M⊙,~(2–9) ms, ~(1–15)×1014G, ~(0.7–2.4)×109cm s?1, and~(0.10–35.0)×1051erg, respectively; the mean values of these parameters are ~3.81 M⊙, ~0.18 M⊙, ~5.66 ms,~6.18×1014G, ~1.44×109cm s?1, and 9.07×1051erg,respectively.

    For the fallback plus56Ni model, the derived values of Mej,MNi,L1,ttr,fb,vph,and EKare ~(0.1–12)M⊙,~(0.01–0.1)M⊙,~(0.2–8)×1054erg s?1, ~(7–35) days, ~(0.7–2.6)×109cm s?1, and ~(0.10–48.0)×1051erg, respectively; the mean values of these parameters are ~3.32 M⊙, ~0.05 M⊙,~4.49×1054erg s?1, ~17.65 days, ~1.46×109cm s?1,and ~1.20×1052erg, respectively.

    The derived MNiof the magnetar plus56Ni model and the fallback plus56Ni model are respectively ~0.01–0.21 M⊙and~0.01–0.07 M⊙, which are consistent with those of normal SNe Ic.Moreover,other parameters of the two models are also in reasonable ranges and comparable to those derived in the literature (e.g., Wang et al.2015b; Gomez et al.2022).Therefore, we suggest both the magnetar plus56Ni model and the fallback plus56Ni model are reasonable.

    3.Discussion

    3.1.The Masses of the Ejecta of ASASSN-15mj and SN 2022ued

    The ejecta masses for ASASSN-15mj and SN 2022ued are 0.16 M⊙and 0.28 M⊙(the magnetar plus56Ni model), and 0.11 M⊙and 0.23 M⊙(the fallback plus56Ni model),respectively.These values are significantly lower than the range of ejecta masses of SLSNe and normal Ib/c SNe in the literature which are 1–40 M⊙(Blanchard et al.2020) and 1–10 M⊙(Prentice et al.2019), respectively.

    The small derived ejecta masses of the two SNe might be due to the absence of pre-peak data which results in poor constraints for the rise time and therefore the ejecta masses.Otherwise,the two SNe are ultra-stripped LSN like iPTF16asu(Whitesides et al.2017; Wang & Gan 2022).

    3.2.Comparison with Previous Studies

    Assuming that ASASSN-15mj, SN 2019omd, SN 2021bmf,and SN 2022ued are powered mainly by magnetars,we plot the distribution of P0and B(see Table 5)of the magnetars assumed to power the LCs of the four LSNe that we study and those of the magnetars associated with the LSNe studied by Gomez et al.(2022) and the SLSNe studied by Nicholl et al.(2017),see Figure 3.It can be found that the parameter space of the putative magnetars powering the LCs of the four SNe that we study overlaps both that of the LSNe studied by Gomez et al.(2022) and the SLSNe studied by Nicholl et al.(2017).Moreover, the derived upper limit of P0(~11 ms) of our sample is smaller than that (~23 ms) of Gomez et al.(2022),while the derived lower limit of P0(~3 ms) of our sample is larger than that (~1 ms) of Nicholl et al.(2017).This is because the peak absolute magnitudes of our sample are in?19.5 to ?20.5 mag, while the peak absolute magnitudes of Gomez et al.(2022) and Nicholl et al.(2017) extend to ?19 and

    Assuming that ASASSN-15mj, SN 2019omd, SN 2021bmf,and SN 2022ued are powered mainly by fallback, we plot the distribution of L1andttr(see Table 5) of the four LSNe and those of SLSNe studied by Moriya et al.(2018a),see Figure 4.It can be found that the parameters of the four SNe we study are located in the lower right of the parameter space (largerttrand lower L1) while the parameters of SLSNe studied by Moriya et al.(2018a) are located mainly in the upper left of the parameter space (smallerttrand higher L1).It should be noted that,however,there is a small overlap between our sample and the sample of Moriya et al.(2018a).

    3.3.The Accretion Masses and the Validity of the Fallback Plus 56Ni Model

    For the fallback plus56Ni model, the accretion mass Macccan be written as (Moriya et al.2018a)

    here,η is the efficiency of converting accretion to input energy which can be from ~0.001 (Dexter & Kasen 2013) to ~0.1(e.g., McKinney 2005; Kumar et al.2008; Gilkis et al.2016).Using the equation, the accretion masses of the four LSNe are 0.0005–0.0547 M⊙, 0.0043–0.4345 M⊙, 0.0043–0.4378 M⊙,0.0084–0.8472 M⊙, respectively.The accretion masses are significantly smaller than the derived56Ni masses if η is set to be the upper limit (0.1).In contrast, the accretion masses are larger than the derived56Ni masses if η is set to be the lower limit (0.001).Therefore, the validity of the fallback plus56Ni model depends on the value of η and favors a large η value.

    4.Conclusions

    In this paper, we study five LSNe with Mpeak≈?19.5 to?21mag by fitting their multi-band LCs with different energy source models.We find that the56Ni model cannot account for the LCs of four SNe (ASASSN-15mj, SN 2019omd,SN 2002ued, and SN 2021bmf) in our sample, since f of the three SNe(ASASSN-15mj,SN 2002ued,and SN 2021bmf)are larger than the upper limit(0.2)of f value of CCSNe,while the derived56Ni mass of SN 2019omd is 0.99 M⊙, which is about twice those of some very energetic SNe Ic.For comparison,the derived56Ni mass (0.56 M⊙) of SN 2009ca is comparable to those of energetic SNe Ic, indicating that it might be powered by the56Ni cascade decay.This indicates that some LSNe might be powered by56Ni cascade decay,though most of them need additional energy sources.

    We use the magnetar plus56Ni model and the fallback plus56Ni model to fit the LCs of the four LSNe that cannot be explained by the56Ni model, finding that the two models can account for the four SNe.The χ2/dof values of the best fits of the two models suggest that the magnetar plus56Ni model is better than the fallback plus56Ni model for the four LSNe.

    For the magnetar plus56Ni model, Mej, MNi, P0, B, vph, and EKare ~(0.2–10)M⊙,<0.3 M⊙,~(2–9)ms,~(1–15)×1014G,~(0.7–2.4)×109cm s?1, and ~(0.10–35.0)×1051erg, respectively.These values are comparable to the typical values of the magnetars supposed to power the LCs of LSNe(see,e.g.,Wang et al.2015b; Gomez et al.2022) and some SLSNe (see, e.g.,Nicholl et al.2017).For the fallback plus56Ni model,Mej,MNi,L1,ttr,fb, vph, and EKare ~(0.1–12) M⊙, ~(0.01–0.1) M⊙,~(0.2–8)×1054erg s?1, ~(7–35) day, ~(0.7–2.6)×109cm s?1, and ~(0.10–48.0)×1051erg, respectively.

    It should be noted that, however, the derived Mejof ASASSN-15mj and SN 2022ued are respectively 0.16 M⊙(0.11 M⊙) and 0.28 M⊙(0.23 M⊙) for the magnetar plus56Ni model(the fallback plus56Ni model),which are comparable to those of ultra-stripped SNe.This might be due to the absence of pre-peak data which prevents us from better constraining the rise time and therefore the ejecta masses; or the two SNe are ultra-stripped LSN like iPTF16asu.

    Finally, we find that the distribution of P0and B of the putative magnetars powering the LCs of the four SNe overlaps those of the magnetars of LSNe and SLSNe in the literature, if they are (mainly) powered by magnetars.Similarly, the distribution of L1andttrof the fallback powering the LCs of the four SNe overlaps those of the fallback of SLSNe in the literature, if they are (mainly) powered by fallback.

    We suggest that the magnetar plus56Ni model is more reasonable than the fallback plus56Ni model,since the validity of the fallback plus56Ni model depends on the value of η and favors a large η value,and the magnetar plus56Ni model yields smaller χ2/dof values.It should be pointed out that, however,the fallback plus56Ni model is still a promising model that can account for the four SNe in our sample as well as other LSNe.

    Acknowledgments

    We thank the anonymous referee for the helpful comments and suggestions that have allowed us to improve this manuscript.Song-Yao Bai thanks Deng-Wang Shi (石登旺),and Qiu-Ping Huang(黃秋萍)for their helpful discussion.This work is supported by the National Natural Science Foundation of China (grant Nos.11963001, 12133003, 11833003,11973020 (C0035736), and U1938201).

    Appendix

    Figures A1–A5 are the corner plots of the56Ni model of SN 2009ca, ASASSN-15mj, SN 2019omd, SN 2021bmf, and SN 2022ued, respectively.Figures A6–A9 are the corner plots of the magnetar plus56Ni model of ASASSN-15mj,SN 2019omd, SN 2021bmf, and SN 2022ued, respectively.Figures A10–A13 are the corner plots of the fallback plus56Ni model of ASASSN-15mj,SN 2019omd,SN 2021bmf,and SN 2022ued, respectively.

    Figure A2.The corner plot of the 56Ni model for the multi-band LCs of ASASSN-15mj.The solid vertical lines represent the best-fitting parameters,while the dashed vertical lines represent the medians and the 1σ bounds of the parameters.

    Figure A6.The corner plot of the magnetar plus 56Ni model for the multi-band LCs of ASASSN-15mj.The solid vertical lines represent the best-fitting parameters,while the dashed vertical lines represent the medians and the 1σ bounds of the parameters.

    Figure A8.The corner plot of the magnetar plus 56Ni model for the multi-band LCs of SN 2021bmf.The solid vertical lines represent the best-fitting parameters,while the dashed vertical lines represent the medians and the 1σ bounds of the parameters.

    Figure A9.The corner plot of the magnetar plus 56Ni model for the multi-band LCs of SN 2022ued.The solid vertical lines represent the best-fitting parameters,while the dashed vertical lines represent the medians and the 1σ bounds of the parameters.

    Figure A10.The corner plot of the fallback plus 56Ni model for the multi-band LCs of ASASSN-15mj.The solid vertical lines represent the best-fitting parameters,while the dashed vertical lines represent the medians and the 1σ bounds of the parameters.

    Figure A11.The corner plot of the fallback plus 56Ni model for the multi-band LCs of SN 2019omd.The solid vertical lines represent the best-fitting parameters,while the dashed vertical lines represent the medians and the 1σ bounds of the parameters.

    Figure A12.The corner plot of the fallback plus 56Ni model for the multi-band LCs of SN 2021bmf.The solid vertical lines represent the best-fitting parameters,while the dashed vertical lines represent the medians and the 1σ bounds of the parameters.

    Figure A13.The corner plot of the fallback plus 56Ni model for the multi-band LCs of SN 2022ued.The solid vertical lines represent the best-fitting parameters,while the dashed vertical lines represent the medians and the 1σ bounds of the parameters.

    猜你喜歡
    王濤
    綿師學人
    ——王濤
    Review of a direct epitaxial approach to achieving micro-LEDs
    “雞兔同籠”問題解法探析及思考
    Nonlinear excitation of a geodesic acoustic mode by reversed shear Alfvén eignemodes
    Transition to chaos in lid–driven square cavity flow?
    王濤油畫作品
    大眾文藝(2020年23期)2021-01-04 08:48:40
    王濤 李佳星作品
    大眾文藝(2020年22期)2020-12-13 11:37:16
    Effect of Pore Distribution on Melting Behavior of Paraffin in Fractal Metal Foam?
    ONE-DIMENSIONAL VISCOUS RADIATIVE GAS WITH TEMPERATURE DEPENDENT VISCOSITY?
    王濤作品
    藝術家(2018年12期)2018-03-18 07:46:04
    啦啦啦啦在线视频资源| 女人爽到高潮嗷嗷叫在线视频| 大码成人一级视频| 久久国产亚洲av麻豆专区| 黄色视频在线播放观看不卡| 日本欧美视频一区| 久久人妻熟女aⅴ| 69精品国产乱码久久久| 成人18禁高潮啪啪吃奶动态图| 国产精品熟女久久久久浪| 国产爽快片一区二区三区| 国产一卡二卡三卡精品| 1024视频免费在线观看| 一级片'在线观看视频| 亚洲欧美一区二区三区久久| 极品少妇高潮喷水抽搐| 色网站视频免费| 美女主播在线视频| 精品一区二区三区av网在线观看 | 99久久精品国产亚洲精品| 欧美久久黑人一区二区| 久热爱精品视频在线9| 两性夫妻黄色片| 欧美国产精品一级二级三级| 久久人人爽人人片av| 日韩 欧美 亚洲 中文字幕| 99精国产麻豆久久婷婷| 欧美日韩一级在线毛片| 高清不卡的av网站| 男人舔女人的私密视频| 精品少妇黑人巨大在线播放| 免费观看a级毛片全部| 久久影院123| 97人妻天天添夜夜摸| av在线老鸭窝| 香蕉丝袜av| 人人妻人人澡人人看| 亚洲欧美日韩高清在线视频 | 亚洲自偷自拍图片 自拍| 自线自在国产av| 国产在线视频一区二区| 国产精品成人在线| 国产人伦9x9x在线观看| 黄网站色视频无遮挡免费观看| 精品一品国产午夜福利视频| 国产av精品麻豆| 视频区图区小说| 久久久久久久久免费视频了| 激情视频va一区二区三区| 青春草视频在线免费观看| 亚洲成色77777| 青草久久国产| 久久99热这里只频精品6学生| 日韩中文字幕欧美一区二区 | 久久 成人 亚洲| 热re99久久精品国产66热6| 国产不卡av网站在线观看| 电影成人av| 中文字幕色久视频| 欧美精品啪啪一区二区三区 | 1024香蕉在线观看| 大香蕉久久成人网| 色视频在线一区二区三区| 久久久久国产精品人妻一区二区| 成人午夜精彩视频在线观看| 男的添女的下面高潮视频| 色综合欧美亚洲国产小说| 又黄又粗又硬又大视频| 涩涩av久久男人的天堂| 国产成人精品久久二区二区91| 成人国产av品久久久| e午夜精品久久久久久久| 黄色毛片三级朝国网站| 久久久久久人人人人人| 女性生殖器流出的白浆| 老司机午夜十八禁免费视频| 久久久久网色| 国产精品国产av在线观看| 久久久久久久久久久久大奶| 欧美大码av| 亚洲专区国产一区二区| 免费在线观看完整版高清| 国产精品成人在线| 丝袜美足系列| 嫩草影视91久久| 午夜福利免费观看在线| 少妇人妻久久综合中文| 免费日韩欧美在线观看| 考比视频在线观看| 亚洲人成电影观看| 啦啦啦中文免费视频观看日本| 丝袜在线中文字幕| 色94色欧美一区二区| 视频区图区小说| 久久 成人 亚洲| 成年av动漫网址| 成人免费观看视频高清| 亚洲成国产人片在线观看| 咕卡用的链子| 亚洲精品久久成人aⅴ小说| 人成视频在线观看免费观看| 免费久久久久久久精品成人欧美视频| 天堂俺去俺来也www色官网| 国产精品国产av在线观看| 国产成人影院久久av| 国产高清国产精品国产三级| 久久久久久人人人人人| 亚洲欧美一区二区三区黑人| 国产精品免费大片| 啦啦啦啦在线视频资源| 色网站视频免费| 可以免费在线观看a视频的电影网站| 亚洲欧美清纯卡通| 欧美黑人精品巨大| 国产精品一国产av| 国产免费一区二区三区四区乱码| 午夜影院在线不卡| 男的添女的下面高潮视频| 国产片内射在线| 久久精品久久久久久久性| 欧美黑人欧美精品刺激| 日韩伦理黄色片| 丝袜美足系列| 精品视频人人做人人爽| 亚洲黑人精品在线| av一本久久久久| 国产精品国产三级国产专区5o| 国产伦理片在线播放av一区| 极品人妻少妇av视频| 一级毛片我不卡| 欧美精品高潮呻吟av久久| 性色av乱码一区二区三区2| xxx大片免费视频| 男人爽女人下面视频在线观看| 男女无遮挡免费网站观看| 男的添女的下面高潮视频| 中文字幕最新亚洲高清| www.自偷自拍.com| 51午夜福利影视在线观看| 美女扒开内裤让男人捅视频| 亚洲精品成人av观看孕妇| 国产91精品成人一区二区三区 | 电影成人av| 国产日韩一区二区三区精品不卡| 国产深夜福利视频在线观看| 亚洲av日韩在线播放| www.精华液| 午夜两性在线视频| 九草在线视频观看| 久久久久国产一级毛片高清牌| 亚洲午夜精品一区,二区,三区| 久久久精品免费免费高清| 国产精品亚洲av一区麻豆| 老司机在亚洲福利影院| 欧美激情极品国产一区二区三区| 国产男人的电影天堂91| 亚洲精品国产区一区二| 欧美日韩亚洲综合一区二区三区_| 少妇的丰满在线观看| 手机成人av网站| 午夜福利一区二区在线看| 婷婷色麻豆天堂久久| 人人澡人人妻人| 国产一级毛片在线| 亚洲九九香蕉| 亚洲精品国产色婷婷电影| 韩国高清视频一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产精品免费大片| 国产爽快片一区二区三区| 黄频高清免费视频| 国产人伦9x9x在线观看| 99久久人妻综合| 免费观看av网站的网址| 国产精品三级大全| 老汉色∧v一级毛片| 国产亚洲欧美在线一区二区| 大码成人一级视频| 999精品在线视频| 国产亚洲欧美在线一区二区| √禁漫天堂资源中文www| 亚洲专区国产一区二区| 赤兔流量卡办理| av网站免费在线观看视频| 可以免费在线观看a视频的电影网站| 脱女人内裤的视频| 巨乳人妻的诱惑在线观看| 国产精品 国内视频| 国产精品一区二区免费欧美 | 国产成人精品在线电影| 丰满人妻熟妇乱又伦精品不卡| 婷婷色av中文字幕| 亚洲av日韩在线播放| 91老司机精品| 巨乳人妻的诱惑在线观看| 18在线观看网站| 日日摸夜夜添夜夜爱| av在线app专区| 国产成人精品无人区| av一本久久久久| 国产高清视频在线播放一区 | 国产一区二区在线观看av| 欧美性长视频在线观看| 十八禁网站网址无遮挡| 国产成人一区二区三区免费视频网站 | 天天躁夜夜躁狠狠躁躁| 老鸭窝网址在线观看| 高潮久久久久久久久久久不卡| 伊人久久大香线蕉亚洲五| 亚洲国产精品一区二区三区在线| 看免费av毛片| 巨乳人妻的诱惑在线观看| 十八禁人妻一区二区| 国精品久久久久久国模美| 国产成人系列免费观看| 制服诱惑二区| 美女国产高潮福利片在线看| 99re6热这里在线精品视频| 日本vs欧美在线观看视频| 97精品久久久久久久久久精品| 亚洲久久久国产精品| 亚洲国产av新网站| 麻豆乱淫一区二区| 久久中文字幕一级| 久久综合国产亚洲精品| 亚洲欧美色中文字幕在线| 丝袜人妻中文字幕| 国产1区2区3区精品| 亚洲国产毛片av蜜桃av| 69精品国产乱码久久久| 午夜激情av网站| 黄色视频不卡| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品在线美女| 国产免费福利视频在线观看| 9色porny在线观看| 欧美97在线视频| 一区在线观看完整版| 国产老妇伦熟女老妇高清| 国产成人一区二区在线| 最新在线观看一区二区三区 | 国产免费福利视频在线观看| 少妇猛男粗大的猛烈进出视频| 精品国产一区二区三区四区第35| bbb黄色大片| 国产精品久久久久久精品电影小说| 深夜精品福利| 99热网站在线观看| 欧美乱码精品一区二区三区| 999久久久国产精品视频| 亚洲国产毛片av蜜桃av| 亚洲av电影在线进入| 久9热在线精品视频| 久久99热这里只频精品6学生| 一级黄片播放器| 免费在线观看完整版高清| 免费观看av网站的网址| 精品一区二区三区四区五区乱码 | 国产精品久久久久久精品古装| h视频一区二区三区| 精品免费久久久久久久清纯 | 亚洲av电影在线观看一区二区三区| 一级a爱视频在线免费观看| 国产一区有黄有色的免费视频| 欧美日韩综合久久久久久| 又大又黄又爽视频免费| 高潮久久久久久久久久久不卡| 国产亚洲一区二区精品| 午夜福利乱码中文字幕| 男女下面插进去视频免费观看| 狂野欧美激情性xxxx| 亚洲欧美清纯卡通| 国产日韩欧美在线精品| 亚洲七黄色美女视频| 久久 成人 亚洲| 国产伦理片在线播放av一区| 熟女少妇亚洲综合色aaa.| 午夜精品国产一区二区电影| 免费看十八禁软件| a 毛片基地| 丝袜美腿诱惑在线| 免费一级毛片在线播放高清视频 | 久久久国产欧美日韩av| 一区二区av电影网| 一级a爱视频在线免费观看| 99精国产麻豆久久婷婷| 亚洲中文日韩欧美视频| 一二三四社区在线视频社区8| 亚洲国产中文字幕在线视频| 国产精品麻豆人妻色哟哟久久| 欧美日韩视频精品一区| 亚洲精品成人av观看孕妇| av国产精品久久久久影院| 国产xxxxx性猛交| 亚洲av成人精品一二三区| 97精品久久久久久久久久精品| 51午夜福利影视在线观看| 91精品伊人久久大香线蕉| 欧美老熟妇乱子伦牲交| 午夜久久久在线观看| 亚洲少妇的诱惑av| 国产欧美日韩综合在线一区二区| 亚洲国产欧美日韩在线播放| 日本av免费视频播放| 欧美日韩精品网址| 亚洲欧美一区二区三区黑人| 天天躁日日躁夜夜躁夜夜| 久久久久精品人妻al黑| 久久ye,这里只有精品| 波多野结衣av一区二区av| 精品熟女少妇八av免费久了| 黄色 视频免费看| 母亲3免费完整高清在线观看| 亚洲精品国产av成人精品| 久久久久精品人妻al黑| 我的亚洲天堂| 国产一卡二卡三卡精品| 国产成人欧美在线观看 | 一级片'在线观看视频| 午夜免费成人在线视频| 人人妻人人澡人人看| 热re99久久精品国产66热6| 亚洲黑人精品在线| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品美女久久久久99蜜臀 | 中文字幕人妻丝袜一区二区| 夫妻午夜视频| 日韩精品免费视频一区二区三区| 日本vs欧美在线观看视频| 婷婷成人精品国产| 国产黄频视频在线观看| 国产精品免费视频内射| 狠狠婷婷综合久久久久久88av| 亚洲 欧美一区二区三区| 久久久精品免费免费高清| 婷婷丁香在线五月| 精品人妻1区二区| 日本午夜av视频| 99热全是精品| 日韩人妻精品一区2区三区| 天天躁日日躁夜夜躁夜夜| 欧美黑人欧美精品刺激| xxx大片免费视频| 亚洲成人免费电影在线观看 | 首页视频小说图片口味搜索 | 19禁男女啪啪无遮挡网站| 成年人黄色毛片网站| 丁香六月欧美| 国产日韩欧美亚洲二区| a级毛片在线看网站| 黄色毛片三级朝国网站| 人妻 亚洲 视频| 婷婷色综合大香蕉| 欧美人与性动交α欧美软件| 尾随美女入室| 日韩一卡2卡3卡4卡2021年| 欧美精品啪啪一区二区三区 | 亚洲精品中文字幕在线视频| 日本黄色日本黄色录像| 国产麻豆69| 欧美精品啪啪一区二区三区 | 19禁男女啪啪无遮挡网站| 久久热在线av| 久久亚洲国产成人精品v| 日韩av免费高清视频| 精品亚洲成a人片在线观看| 日本一区二区免费在线视频| 999精品在线视频| 欧美日韩成人在线一区二区| 在线观看www视频免费| 老鸭窝网址在线观看| www日本在线高清视频| 大陆偷拍与自拍| 好男人视频免费观看在线| 国产在线免费精品| 日日夜夜操网爽| 欧美日本中文国产一区发布| 欧美日韩视频高清一区二区三区二| 少妇被粗大的猛进出69影院| 丰满人妻熟妇乱又伦精品不卡| 精品一品国产午夜福利视频| 欧美中文综合在线视频| 一区福利在线观看| 熟女少妇亚洲综合色aaa.| 国产在线观看jvid| 国产精品亚洲av一区麻豆| 久久久国产欧美日韩av| 国产97色在线日韩免费| 极品少妇高潮喷水抽搐| 亚洲免费av在线视频| 乱人伦中国视频| 操出白浆在线播放| av线在线观看网站| 七月丁香在线播放| 丝瓜视频免费看黄片| 观看av在线不卡| 中文字幕亚洲精品专区| 日韩伦理黄色片| 成年av动漫网址| 午夜老司机福利片| www.自偷自拍.com| 久久久久久亚洲精品国产蜜桃av| www.自偷自拍.com| 亚洲国产av影院在线观看| 亚洲专区中文字幕在线| 日本一区二区免费在线视频| 丝瓜视频免费看黄片| 人人妻人人澡人人看| 成年av动漫网址| 国产极品粉嫩免费观看在线| 晚上一个人看的免费电影| 久9热在线精品视频| 国产精品免费视频内射| 中文欧美无线码| 日韩一区二区三区影片| 亚洲色图 男人天堂 中文字幕| 国产成人欧美| 亚洲国产av新网站| 国产一区有黄有色的免费视频| 久久久久国产一级毛片高清牌| 美女午夜性视频免费| 久久久国产一区二区| 搡老岳熟女国产| 国产成人91sexporn| av线在线观看网站| 亚洲欧美成人综合另类久久久| 蜜桃国产av成人99| 99热国产这里只有精品6| 悠悠久久av| 波多野结衣一区麻豆| 晚上一个人看的免费电影| 视频区图区小说| 亚洲av成人不卡在线观看播放网 | 欧美日韩视频高清一区二区三区二| 欧美精品高潮呻吟av久久| 日本一区二区免费在线视频| 人人妻,人人澡人人爽秒播 | 美女福利国产在线| 国产精品一区二区在线观看99| 国产成人精品久久二区二区免费| 国产男女超爽视频在线观看| 国产精品久久久久成人av| 日本a在线网址| 亚洲国产精品成人久久小说| 日韩大码丰满熟妇| 午夜视频精品福利| 国产成人免费观看mmmm| 美女中出高潮动态图| av一本久久久久| 欧美黑人欧美精品刺激| 国产97色在线日韩免费| 免费黄频网站在线观看国产| 免费久久久久久久精品成人欧美视频| 国产午夜精品一二区理论片| 久久久久久久精品精品| 免费高清在线观看日韩| 中文乱码字字幕精品一区二区三区| 国产精品久久久久久人妻精品电影 | 亚洲 国产 在线| 亚洲欧洲国产日韩| 波多野结衣av一区二区av| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品一二三| 青春草亚洲视频在线观看| 欧美黑人欧美精品刺激| 亚洲国产欧美网| 狠狠婷婷综合久久久久久88av| www日本在线高清视频| 中国美女看黄片| 国产日韩欧美视频二区| 国产一区二区三区av在线| 久久久久久人人人人人| e午夜精品久久久久久久| 美女中出高潮动态图| 国产精品一区二区免费欧美 | 在线观看免费日韩欧美大片| 成年av动漫网址| 操美女的视频在线观看| 在线观看一区二区三区激情| www.熟女人妻精品国产| 老汉色av国产亚洲站长工具| 丝袜美足系列| 精品免费久久久久久久清纯 | 婷婷色综合大香蕉| 日本91视频免费播放| 大片电影免费在线观看免费| 久久久欧美国产精品| 50天的宝宝边吃奶边哭怎么回事| 亚洲成色77777| 夜夜骑夜夜射夜夜干| 亚洲黑人精品在线| 欧美日韩黄片免| 精品国产一区二区久久| tube8黄色片| 一级片'在线观看视频| 免费看不卡的av| 久久国产精品人妻蜜桃| 女性生殖器流出的白浆| 午夜91福利影院| 亚洲av欧美aⅴ国产| 建设人人有责人人尽责人人享有的| 午夜av观看不卡| 精品人妻一区二区三区麻豆| 中文字幕最新亚洲高清| 国产男女超爽视频在线观看| 久久久久国产精品人妻一区二区| 国产成人一区二区三区免费视频网站 | 最近最新中文字幕大全免费视频 | 十分钟在线观看高清视频www| 国产精品久久久人人做人人爽| 国产免费视频播放在线视频| 大型av网站在线播放| 国产成人欧美| 色综合欧美亚洲国产小说| 欧美人与善性xxx| 亚洲欧美清纯卡通| 久久性视频一级片| 国产日韩欧美亚洲二区| 国产高清国产精品国产三级| 大陆偷拍与自拍| 99热全是精品| 桃花免费在线播放| 亚洲国产精品999| 丰满少妇做爰视频| 嫁个100分男人电影在线观看 | 国产亚洲午夜精品一区二区久久| 国产精品九九99| 亚洲欧美中文字幕日韩二区| 国产极品粉嫩免费观看在线| 久热这里只有精品99| 真人做人爱边吃奶动态| 一级,二级,三级黄色视频| 亚洲精品国产av蜜桃| 免费久久久久久久精品成人欧美视频| 国产三级黄色录像| 曰老女人黄片| 欧美日韩福利视频一区二区| 久久狼人影院| 国产免费视频播放在线视频| 久久久亚洲精品成人影院| 午夜精品国产一区二区电影| 多毛熟女@视频| 黄色一级大片看看| 亚洲欧美一区二区三区国产| 亚洲国产av影院在线观看| 国产又色又爽无遮挡免| 好男人视频免费观看在线| 亚洲一区二区三区欧美精品| 新久久久久国产一级毛片| 亚洲国产精品一区三区| 中文字幕人妻丝袜制服| 亚洲精品国产区一区二| 一级片'在线观看视频| 大香蕉久久网| 一级黄色大片毛片| 一级毛片 在线播放| 人人妻人人爽人人添夜夜欢视频| 婷婷色综合www| 国产精品国产三级专区第一集| av天堂在线播放| 亚洲国产欧美在线一区| 精品久久久久久久毛片微露脸 | 成人亚洲欧美一区二区av| 97人妻天天添夜夜摸| 黄色片一级片一级黄色片| 亚洲国产欧美日韩在线播放| 亚洲综合色网址| 性高湖久久久久久久久免费观看| 亚洲av片天天在线观看| 久久99精品国语久久久| 亚洲第一av免费看| 国产男人的电影天堂91| 亚洲国产精品999| 69精品国产乱码久久久| netflix在线观看网站| 国产精品av久久久久免费| 一本大道久久a久久精品| 中国美女看黄片| 免费黄频网站在线观看国产| 久久99热这里只频精品6学生| 波野结衣二区三区在线| 丰满饥渴人妻一区二区三| 色综合欧美亚洲国产小说| 1024香蕉在线观看| av不卡在线播放| 久久精品久久久久久噜噜老黄| 国产深夜福利视频在线观看| 亚洲国产精品一区三区| 亚洲成av片中文字幕在线观看| 中文乱码字字幕精品一区二区三区| 精品熟女少妇八av免费久了| 国产日韩欧美在线精品| 91精品国产国语对白视频| 亚洲黑人精品在线| 日本五十路高清| 9色porny在线观看| 99国产精品一区二区蜜桃av | 日本wwww免费看| 亚洲成人国产一区在线观看 | 日本av免费视频播放| avwww免费| 欧美乱码精品一区二区三区| 成人黄色视频免费在线看| 国产淫语在线视频| 99九九在线精品视频| 男人操女人黄网站| av欧美777| netflix在线观看网站| 男人操女人黄网站| 国产精品久久久人人做人人爽| 国产成人av激情在线播放| 国产精品久久久久久人妻精品电影 | 日本欧美视频一区| 久久久久精品国产欧美久久久 | 宅男免费午夜|