• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Nature of Long Period Radio Pulsar GPM J1839-10: Death Line and Pulse Width

    2024-01-16 12:17:24Tong
    Research in Astronomy and Astrophysics 2023年12期

    H.Tong

    School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China; tonghao@gzhu.edu.cn

    Received 2023 July 27; revised 2023 October 2; accepted 2023 October 11; published 2023 November 15

    Abstract Recently another long period radio pulsar GPM J1839?10 has been reported, similar to GLEAM-X J162759.5?523504.3.Previously,the energy budget and rotational evolution of long period radio pulsars had been considered.This time,the death line and pulse width for neutron star and white dwarf pulsars are investigated.The pulse width is included as the second criterion for neutron star and white dwarf pulsars.It is found that:(1)PSR J0250+5854 and PSR J0901?4046 etc.should be normal radio pulsars.They have narrow pulse width and they lie near the radio emission death line.(2)The two long period radio pulsars GLEAM-X J162759.5?523504.3 and GPM J1839?10 are unlikely to be normal radio pulsars.Their possible pulse width is relatively large.They lie far below the fiducial death line on the P P˙- diagram.(3)GLEAM-X J162759.5?523504.3 and GPM J1839?10 may be magnetars or white dwarf radio pulsars.At present, there are many parameters and uncertainties in both of these possibilities.

    Key words: stars: magnetars – (stars:) pulsars: general – (stars:) pulsars: individual (GPM J1839?10)

    1.Introduction

    Pulsars are rotating magnetized neutron stars(Lyne&Graham-Smith 2012).Their rotation period can range from milliseconds to several seconds(Young et al.1999).The period of magnetars can be as large as 12 s (Olausen & Kaspi 2014).Recently, there are new discoveries toward the long period end of pulsars.PSR J0250+5854 is the slowest radio pulsar at that time,with a period of 23.5 s(Tan et al.2018).Later more radio pulsars with periods larger than 10 s are discovered (Han et al.2021).The rotational evolution of these long period radio pulsars may evolve physics in the magnetosphere or magnetic field decay(Kou et al.2019).The central compact object inside supernova remnant RCW 103 showed magnetar activities and was confirmed to be a magnetar with a period of about 6.6 hr(D’Ai et al.2016;Rea et al.2016).Its rotational evolution may require a magnetar spin-down by a fallback disk (Tong et al.2016).However, the magnetar inside RCW 103 is radio-quiet.It is not sure why it is radio-quiet, e.g.,beaming or no radio emission at all.

    The long period radio pulsar (dubbed as LPRP) is pushed forward by the discovery of GLEAM-X J162759.5?523504.3(GLEAM-X J1627 for short, Hurley-Walker et al.2022).GLEAM-X J1627 has a period of 1091 s (about 18 minutes)and it is a transient in radio.The existence of LPRPs is further strengthened by PSR J0901?4046 with a period of 76 s(Caleb et al.2022).However,it is not certain whether these LPRPs are neutron stars or white dwarfs.For such slow rotators,it is more natural that they are white dwarfs (Katz 2022; Loeb &Maoz 2022).At the same time,similar to the case of RCW 103 magnetar, these LPRPs may also be magnetar+fallback disk systems (Ronchi et al.2022; Tong 2023).At present, their nature remains unclear (Rea et al.2022).

    A source similar to GLEAM-X J1627 has been recently reported, GPM J1839?10 (Hurley-Walker et al.2023).GPM J1839?10 has a pulsation period of 1318 s(about 21 minutes).Compared with GLEAM-X J1627, GPM J1839?10 has (1) a more stringent period derivative upper limitP˙ <3.6×10-13s s-1(Hurley-Walker et al.2023),which can place more constraint on the pulsar death line.(2) Its radio emission has lasted for more than 30 yr.This can enable later more monitoring.

    For the energy budge and rotational evolution of GPM J1839?10, similar calculations can be applied to it as that for GLEAM-X J1627 (Katz 2022; Loeb & Maoz 2022; Ronchi et al.2022; Tong 2023).Since their periods are similar(21 minutes verse 18 minutes), the same conclusion may also be applied to GPM J1839?10,i.e.,magnetar+fallback disks or white dwarf pulsars.We will not repeat the calculations here.This time, we focus on (1) the death line for neutron star and white dwarf pulsars,(2)pulse width of LPRPs.From these two aspects, we want to discuss the nature of GPM J1839?10,which is the most recent example of LPRPs.

    2.Model Calculations

    2.1.Death Line for Neutron Star and White Dwarf Pulsars

    The death line for radio emission of normal pulsars and magnetars has been discussed in Section 2.5 in Tong (2023).The potential drop at a specific angle across the polar cap is simply a classical electrodynamics exercise.For normal radio pulsars with a dipole magnetic field,the maximum acceleration potential across the polar cap is(Ruderman&Sutherland 1975;Zhou et al.2017):

    where Bpis the surface magnetic field at the pole region(which is two times the equatorial value,Lyne&Graham-Smith 2012),R is the stellar radius,Ω is the star’s angular velocity.When the maximum acceleration potential equals 1012V, it is defined as the radio emission death line.Below the death line, the star is not expected to have radio emissions.The value of 1012V is only a fiducial value.A rough estimation of the physics evolved is that (Ruderman & Sutherland 1975): an electron accelerated in such a potential attains a Lorentz factor about γ ~106.This electron may emit curvature photons of energy

    These curvature photons may be converted to electron-position pairs in strong magnetic fields.If the electron Lorentz factor (i.e.,acceleration potential)is lower,the curvature photons may have energy less than 1 MeV.The subsequent pair production process cannot continue.This may result in a cease of the radio emission (i.e., radio emission death line).

    For a magnetar+fallback disk system, the magnetosphere may be modified by (1) the fallback disk if the disk is still active, (2) the magnetar’s twisted magnetic fields.If the death line is modified by the fallback disk, the corotation radius will replace the light cylinder radius as the maximum radial extent of the field lines.The corresponding maximum acceleration potential and death line are presented in Equation(10)in Tong(2023):

    where Rlc=Pc/(2π) is the neutron star’s light cylinder radius,is the corotation radius.If the death line is modified by the twist of the field lines, a twisted field line will result in a larger polar cap and a larger potential drop.The maximum acceleration potential and death line for a twisted magnetic field are presented in Equation (12) in Tong(2023):

    where n is a parameter characterizing the twist of field lines.n=1 corresponds to the dipole case (for n=1, the equation returns to the dipole case Equation (1)).0

    For white dwarf pulsars, it is possible that they have similar magnetospheric precess to that of neutron star pulsars(Zhang & Gil 2005; Katz 2022).However, there are several changes in the definition of death line (Equation (1)) for white dwarf pulsars.

    1.For a typical neutron star, the radius is usually set to be 10 km.For a typical white dwarf (Figure 5.17 in Camenzind 2007), it has a radius of one percent the solar radius 0.01 R⊙(the corresponding white dwarf mass is about 0.8 M⊙).

    2.The torque of a rotating magnetized object can be approximated as magnetic dipole braking (Xu &Qiao 2001).The star’s magnetic field can be obtained from the period and period-derivative measurement,which is a crude estimate of the star’s true magnetic field.Assuming a perpendicular rotator, the magnetic field is

    where B is the equatorial magnetic field at the surface(it is two times smaller than the polar magnetic field), I is the star’s moment of inertia.For typical neutron stars, with I ≈1045g cm2, R ≈106cm, it is the commonly cited formula for radio pulsars:

    For white dwarfs, assuming a typical mass of 0.8 M⊙a(bǔ)nd radius of 0.01 R⊙, the white dwarf’s moment of inertia is about 3×1050g cm2.Therefore, the characteristic magnetic field for a white dwarf pulsar is:

    This formula will be employed when drawing the death line on thediagram.

    3.From Equation (2), a minimum Lorentz factor (i.e.,acceleration potential) is required to generate curvature photons with energy higher than 1 MeV.In the case of white dwarfs, the stellar radius is larger.The curvature radius of the magnetic field line is also larger,which is the order of(r is the emission height,Xu&Qiao 2001).Therefore,a higher acceleration potential may be required,e.g., as high as 1013V in Equation (1).The exact value depends on the detailed modeling of the white dwarf’s magnetosphere (as in the case of neutron star pulsars).

    The death line for normal radio pulsars, magnetars and magnetar+fallback disk systems is shown in Figure 1,along with GPM J1839?10 and other LPRPs.Figure 1 is updated from Figure 2 in Tong(2023).The death line for white dwarf pulsars is so different from that of the neutron star case that it is shown separately in Figure 2.φmax= 1012V and φmax= 1013Vare shown respectively.The characteristic magnetic field for white dwarf pulsars is also shown,for B=108G and B=109G.Most of the presently observed pulsating white dwarfs have magnetic fields smaller than 109G(Zhang&Gil 2005;Marsh et al.2016;Katz 2022; Pelisoli et al.2023).

    Figure 1.Definition of death line and distribution of long period radio pulsars(red circles)on the P–P˙diagram.The fiducial pulsar death line, the death line for a twisted magnetic field (n=0.8), and the death line modified by the fallback disk are also shown.Updated from Figure 2 in Tong (2023).

    2.2.Pulse Width

    GPM J1839?10 has a period of 1318 s.The single pulse varies in a pulse window 400 s (Hurley-Walker et al.2023).Similar things also happen in normal radio pulsars and radio emitting magnetars (Levin et al.2012; Yan et al.2015; Huang et al.2021).At present, the integrated pulse profile of GMP J1839?10 is not available.From previous experiences in pulsars and magnetars,the pulse window may be an estimate of the integrated pulse width.Then the pulse width of GPM J1839?10 is PW ≈400/1318=30%of the pulse phase(in this case,the pulse width may also be called the duty cycle, Tan et al.2018).If this is the pulse width of GPM J1839?10,it can also constrain the nature of the source.

    For normal radio pulsars,the colatitude of the last open field line at emission height r is:

    The emission beam radius is 3/2 times the angle θopen(Equation (17.9) in Lyne & Graham-Smith 2012):

    Figure 2.Definition of death line and contour of constant magnetic field for white dwarf pulsars.Two death lines are shown, with φm ax = 1013V (upper one) and φm ax = 1012V (lower one) respectively.Two contours of constant magnetic field are shown, with B=109 G and B=108 G respectively.The limiting Keplerian period for a typical white dwarf pulsar is also shown.

    The emission height of normal radio pulsars is always less than 100 times the neutron star radius (Johnston et al.2023).Therefore, the emission height in Equation (9) can be set as 100R, where R is the stellar radius.The observed pulse width depends also on the inclination angle α(angle between rotation axis and line of sight), and impact angle β (closest approach between the magnetic axis and the line of sight).The impact angle may always be a small quantity,in this case,the observed pulse width is related to the emission beam radius as(Equation(15.2) in Lyne & Graham-Smith 2012):

    In terms of pulse phase, the observed pulse width is:

    A small inclination angle α can result in a large pulse width.

    For a magnetar+fallback disk system, the calculation is similar to the calculations for death line.If the magnetosphere is regulated by the fallback disk, the corotation radius replaces the role of light cylinder radius in Equation(11).For a twisted magnetic field, the colatitude of the last open field line will be larger (Equation (11) in Tong 2023).The pulse width in units of pulse phase is:

    Figure 3.Theoretical pulse width as a function of period.The pulse width is in units of pulse phase.From bottom to top are: normal radio pulsars (black),magnetars with twisted magnetic field (dashed blue, for n=0.5), magnetar+fallback disk systems(solid blue),and white dwarf pulsars(green).Since the inclination angle is unknown, the plotted pulse width is actually PW ×sin α.For a small α, the actual pulse width can be larger.

    For n=1, the above equation returns to the dipole case(Equation (11)).For a white dwarf pulsar, the expression for the pulse width is the same as Equation (11), except that the stellar radius should be the white dwarf radius.

    The theoretical pulse width for normal pulsars, magnetar+fallback disk systems, and white dwarf pulsars is shown in Figure 3.Magnetars and white dwarf pulsars have wider pulse width compared with that of normal radio pulsars.This is especially true for LPRPs.

    2.3.On the Nature of GPM J1839-10

    From the death line on theP P˙- diagram, the LPRP GPM J1839?10 cannot be normal radio pulsars.A twisted magnetic field or the presence of a fallback disk can help to lower the position of the death line on theP P˙- diagram.The quantitative result depends on the parameters involved, e.g.,the twist parameter n.Figure 1 shows the death line for a twisted magnetic field with n=0.8.For a more twisted magnetic field (i.e., n=0.5), the position of the death line is lower on theP P˙- diagram.However, the typical untwisting timescale may be smaller, which may have difficulties in explaining why GPM J1839?10 can have radio emissions lasting more than 30 yr.A magnetar+fallback disk system may be consistent with the position of GPM J1839?10 on thediagram.However, the generation of radio emission in the presence of an active fallback disk is uncertain, although there are such possibilities (see Section 2.5 in Tong 2023 for discussions).

    The death line for white dwarf pulsars is also consistent with the position of GPM J1839?10 on theP P˙- diagram.However, there may be three constraints for white dwarf pulsars: (1) The maximum acceleration potential for white dwarf pulsars may be higher,e.g.,as high as 1013V.(2)White dwarf pulsars generally have magnetic field lower than 109G(Zhang&Gil 2005;Marsh et al.2016;Katz 2022;Pelisoli et al.2023).(3) For a white dwarf with mass 0.8M⊙a(bǔ)nd radius 0.01R⊙, the limiting Keplerian period is:

    These three constraints will limit the existence of white dwarf pulsars to a small triangle on thediagram, see Figure 2.Such a triangle of parameter space may explain why there are so few white dwarf radio pulsars (LPRPs are the only candidates).

    The pulse with of GPM J1839?10 is unknown at present.If its pulse window represents its pulse width, then it will have a pulse width of 30%.From the theoretical pulse width, normal radio pulsars may have difficulties in explaining the pulse width of GPM J1839?10.The solution in the normal radio pulsar case is that they should have an extremely large emission height.For a twisted magnetic field or magnetar+fallback disk system, the pulse width is larger, typically several percent.A small inclination angle or a slightly higher emission height may explain the possible observed pulse width of GPM J1839?10.White dwarf pulsars can naturally have larger pulse width.

    By combining the death line and pulse width requirement,it is unlikely that GPM J1839?10 is a normal radio pulsar.It is possible that GPM J1839?10 is a magnetar (including a magnetar+fallback disk system) or a white dwarf pulsar.For these two possibilities, there are many parameters at present.This conclusion is consistent with previous calculations for GLEAM-X J1627, based on energy budget and rotational evolution(Katz 2022;Loeb&Maoz 2022;Ronchi et al.2022;Tong 2023).Population synthesis of neutron star and white dwarf pulsars also get similar conclusions (Rea et al.2023).

    3.Discussion

    Comparison with other LPRPs.All three LPRPs PSR J2144-3933(Young et al.1999),PSR J0250+5854(Tan et al.2018),and PSR J0901?4046 (Caleb et al.2022) have a very narrow pulse width, typically less than 1%.Assuming a maximum emission height of 100R (Johnston et al.2023), the theoretical upper limit on pulse width is (Equation (11)):

    Therefore,PSR J0250+5854(with a period of 23.5 s)and PSR J0901?4046 (with a period of 76 s) etc.are consistent with a normal radio pulsar origin,from the pulse width point of view.However, both of GLEAM-X J1627 and GPM J1839?10(Hurley-Walker et al.2022, 2023) showed possible signatures of a large pulse width.Therefore, we propose that the pulse width of LPRPs may be taken as the second criterion in identifying their nature, in addition to their relative position to the death line on theP P˙- diagram.If a future LPRP has a narrow pulse width consistent with that of normal radio pulsars,it may be viewed as an extreme radio pulsar.All we have to do is to consider the corresponding magnetospheric physics involved, e.g., the definition of the death line, etc.If an LPRP has a large pulse width, then we must consider the possibility of magnetars or white dwarf pulsars.

    Comparison with other radio emitting magnetars.Radio emitting magnetars generally have a large pulse width compared with normal radio pulsars (Levin et al.2012; Yan et al.2015; Huang et al.2021).Especially, the single pulse width of magnetars are generally very narrow.They may vary randomly in the pulse window, therefore resulting in a wide integrated pulse width(Levin et al.2012;Yan et al.2015).We think this may also be the case of GPM J1839?10: narrow single pulse and a wide pulse window.From the pulse width point of view, the two LPRPs GLEAM-X J1627 and GPM J1839?10 are similar to radio-emitting magnetars.

    Maximum period of LPRPs.From Figures 1 and 2(or Figure 1 in Rea et al.2022),the existence of maximum magnetic field in combination with the death line implies there is a maximum period for radio-emitting neutron stars and white dwarfs.For neutron stars, the maximum magnetic field may be about 1016G.The definition of death line is rather uncertain (which will result in a death valley).However, the possible maximum period for radio emission may be around 104s or so.In this respect,the magnetar inside RCW 103(with a period of 6.6 hr)is not expected to have radio emissions.For white dwarfs,assuming of a maximum magnetic field of 109G,the expected maximum period may be about several thousand seconds.Future LPRPs with longer periods may help to unveil their nature, i.e., neutron stars or white dwarfs.

    Comparison with previous works.Observationally, GPM J1839?10 is similar to that of GLEAM-X J1627 (Hurley-Walker et al.2023).It confirms the existence of LPRPs as subpopulation of radio pulsars, which may deserve more future searches.Theoretically,the modeling for GPM J1839?10 may seem similar to that of GLEAM-X J1627.Compared with previous theoretical works (Ronchi et al.2022; especially Tong 2023), the present work has two outstanding: (1) The death line is extended to the case of magnetar’s twisted magnetic field and magnetar+fallback disk system in previous works.Here, the pulsar death line is extended to the white dwarf pulsar case, considering possible physics involved during the definition of the death line.(2) The pulse width is newly included in this work.We propose that it may be taken as the second criterion concerning the nature of LPRPs, in addition to that of timing parameters (e.g., period, periodderivative, death line, etc).By combining the rotational evolution, energy budget, death line, and pulse width, something is already clear for LPRPs: (1) For PSR J0901?4046(Caleb et al.2022),etc.with a period less than 76 s,they can be understood in the normal radio pulsar domain.(2) For the two LPRPs GLEAM-X J1627 and GPM J1839?10(Hurley-Walker et al.2022,2023),they are unlikely to be normal radio pulsars.Whether they are magnetars or white dwarf pulsars,they remain inconclusive at present.

    4.Conclusion

    By considering the four aspects together (rotational evolution and energy budget in previous works, death line and pulse width in this work),it is found that:(1)PSR J0250+5854(Tan et al.2018) and PSR J0901?4046 (Caleb et al.2022)should be normal radio pulsars.They have narrow pulse width and they lie near the radio emission death line.Further investigations of their magnetospheric physics are required.(2)The two LPRPs GLEAM-X J1627 and GPM J1839?10(Hurley-Walker et al.2022, 2023) are unlikely to be normal radio pulsars.Their possible pulse width is relatively large.They lie far below the fiducial death line on thediagram.(3)GLEAM-X J1627 and GPM J1839?10 may be(a)magnetars with twisted magnetic field or magnetar+fallack disk systems,or(b)white dwarf radio pulsars.At present,there are many uncertainties in both of these possibilities.More multiwave observations are required in order to tell whether they are magnetars or white dwarfs.

    Acknowledgments

    H.Tong would like to thank Dr.Huang Zhi-Peng and Yan Zhen for discussions on pulse width and emission height.This work is supported by National SKA Program of China (No.2020SKA0120300) and the National Natural Science Foundation of China (NSFC, 12133004).

    ORCID iDs

    亚洲av电影在线进入| 国产精品电影一区二区三区 | 精品国产乱子伦一区二区三区| 高清毛片免费观看视频网站 | 免费在线观看完整版高清| 欧美精品高潮呻吟av久久| 亚洲少妇的诱惑av| 日本黄色视频三级网站网址 | 亚洲人成电影观看| 欧美日韩一级在线毛片| 性少妇av在线| 女人被狂操c到高潮| 最新的欧美精品一区二区| 亚洲一区二区三区欧美精品| 好看av亚洲va欧美ⅴa在| 久久精品国产综合久久久| 亚洲精品国产区一区二| 亚洲av美国av| 欧美精品一区二区免费开放| 成人18禁在线播放| 免费av中文字幕在线| 亚洲中文日韩欧美视频| 飞空精品影院首页| 在线天堂中文资源库| 久久精品亚洲av国产电影网| 人人妻人人添人人爽欧美一区卜| 午夜91福利影院| 少妇裸体淫交视频免费看高清 | 捣出白浆h1v1| 免费人成视频x8x8入口观看| 午夜老司机福利片| 丁香六月欧美| 国产一区二区三区视频了| 国产一区有黄有色的免费视频| 久久久久精品国产欧美久久久| 精品国产一区二区三区四区第35| 久久人妻熟女aⅴ| 黄色毛片三级朝国网站| 丝袜在线中文字幕| 婷婷丁香在线五月| 操出白浆在线播放| 在线观看免费视频网站a站| 成人永久免费在线观看视频| 69精品国产乱码久久久| 天天操日日干夜夜撸| 男女下面插进去视频免费观看| 12—13女人毛片做爰片一| 麻豆国产av国片精品| 国产成人精品无人区| 91成人精品电影| 9191精品国产免费久久| 91国产中文字幕| 国产伦人伦偷精品视频| 欧美日韩黄片免| 精品卡一卡二卡四卡免费| 欧美丝袜亚洲另类 | 欧美人与性动交α欧美软件| 老汉色∧v一级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 日本a在线网址| 欧美精品亚洲一区二区| 一级作爱视频免费观看| 一进一出好大好爽视频| 很黄的视频免费| 无遮挡黄片免费观看| 色老头精品视频在线观看| 精品高清国产在线一区| svipshipincom国产片| 法律面前人人平等表现在哪些方面| 每晚都被弄得嗷嗷叫到高潮| 天天躁日日躁夜夜躁夜夜| 老司机午夜福利在线观看视频| 久久久久国内视频| 亚洲av成人不卡在线观看播放网| 国产成人av激情在线播放| 久久久久国产一级毛片高清牌| 精品一品国产午夜福利视频| 国产精品亚洲一级av第二区| 国产亚洲精品一区二区www | 国产熟女午夜一区二区三区| 新久久久久国产一级毛片| 免费在线观看视频国产中文字幕亚洲| 精品国内亚洲2022精品成人 | 三级毛片av免费| 性色av乱码一区二区三区2| 丁香欧美五月| 自线自在国产av| 99热网站在线观看| 亚洲av欧美aⅴ国产| 国产一区二区三区综合在线观看| 欧美激情 高清一区二区三区| 婷婷成人精品国产| 亚洲欧美日韩高清在线视频| 丰满人妻熟妇乱又伦精品不卡| av国产精品久久久久影院| 亚洲成a人片在线一区二区| 亚洲av熟女| 亚洲中文av在线| avwww免费| 国产成人欧美| 夜夜躁狠狠躁天天躁| svipshipincom国产片| 欧美成狂野欧美在线观看| 一夜夜www| 一a级毛片在线观看| 超碰97精品在线观看| 欧美精品啪啪一区二区三区| 亚洲成人手机| 亚洲欧美日韩高清在线视频| 亚洲精品自拍成人| 久久久国产精品麻豆| 美女视频免费永久观看网站| 丝袜美足系列| 欧美精品av麻豆av| 欧美色视频一区免费| 久久中文字幕一级| 天堂√8在线中文| 啦啦啦免费观看视频1| 在线观看www视频免费| 欧美精品啪啪一区二区三区| 两个人看的免费小视频| 国产男女内射视频| 亚洲久久久国产精品| 免费少妇av软件| 国产欧美日韩一区二区三区在线| 精品福利观看| 91精品国产国语对白视频| 女人精品久久久久毛片| 中文欧美无线码| 18禁裸乳无遮挡免费网站照片 | 久久精品人人爽人人爽视色| 悠悠久久av| www.999成人在线观看| 精品国产亚洲在线| 国产精品99久久99久久久不卡| 久久精品国产综合久久久| av网站在线播放免费| 久久亚洲真实| 妹子高潮喷水视频| 久久久久国产精品人妻aⅴ院 | 欧美精品啪啪一区二区三区| 精品国产一区二区三区久久久樱花| 国产精品电影一区二区三区 | 成年人黄色毛片网站| 国产视频一区二区在线看| 久久精品国产亚洲av高清一级| 午夜91福利影院| 免费在线观看视频国产中文字幕亚洲| 97人妻天天添夜夜摸| 国产99白浆流出| 国产精品影院久久| 亚洲精品久久成人aⅴ小说| 成年动漫av网址| 黑丝袜美女国产一区| 99riav亚洲国产免费| 欧美另类亚洲清纯唯美| 成熟少妇高潮喷水视频| 18禁裸乳无遮挡动漫免费视频| 最新美女视频免费是黄的| 黑人操中国人逼视频| 午夜两性在线视频| 999久久久国产精品视频| 999久久久国产精品视频| 一a级毛片在线观看| 日韩欧美三级三区| 国产欧美亚洲国产| 精品国产乱码久久久久久男人| 91字幕亚洲| 一本大道久久a久久精品| 欧美精品啪啪一区二区三区| 久久婷婷成人综合色麻豆| 国产日韩欧美亚洲二区| 国产欧美日韩精品亚洲av| 中亚洲国语对白在线视频| 精品熟女少妇八av免费久了| 欧美中文综合在线视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲中文日韩欧美视频| 香蕉久久夜色| 国产精品亚洲一级av第二区| 老司机靠b影院| 国产av一区二区精品久久| 成在线人永久免费视频| 男人的好看免费观看在线视频 | 国产高清国产精品国产三级| 午夜成年电影在线免费观看| 50天的宝宝边吃奶边哭怎么回事| 午夜福利影视在线免费观看| 国产无遮挡羞羞视频在线观看| 日韩免费av在线播放| 亚洲国产毛片av蜜桃av| 美女高潮到喷水免费观看| 午夜福利乱码中文字幕| 亚洲第一青青草原| 久久亚洲精品不卡| 十八禁网站免费在线| 夜夜爽天天搞| 免费观看a级毛片全部| 可以免费在线观看a视频的电影网站| 在线观看免费高清a一片| 搡老乐熟女国产| 国产精品久久久久成人av| tube8黄色片| 久久久水蜜桃国产精品网| 女性生殖器流出的白浆| 一级片免费观看大全| 国产精品美女特级片免费视频播放器 | 在线观看午夜福利视频| 18禁美女被吸乳视频| 色精品久久人妻99蜜桃| 天天操日日干夜夜撸| 免费高清在线观看日韩| 亚洲色图 男人天堂 中文字幕| 美女 人体艺术 gogo| 可以免费在线观看a视频的电影网站| 啦啦啦在线免费观看视频4| 757午夜福利合集在线观看| 欧美国产精品va在线观看不卡| 一区二区三区国产精品乱码| 精品高清国产在线一区| 王馨瑶露胸无遮挡在线观看| 曰老女人黄片| 18禁观看日本| 亚洲国产毛片av蜜桃av| 搡老岳熟女国产| 久久精品国产清高在天天线| 亚洲人成77777在线视频| 十八禁网站免费在线| 欧美激情高清一区二区三区| 最近最新免费中文字幕在线| 极品教师在线免费播放| 黄色视频,在线免费观看| 19禁男女啪啪无遮挡网站| 日韩欧美免费精品| 国产精品成人在线| 男女下面插进去视频免费观看| 日韩大码丰满熟妇| 大码成人一级视频| 国内久久婷婷六月综合欲色啪| 成人精品一区二区免费| 欧美国产精品va在线观看不卡| 怎么达到女性高潮| 一区二区三区国产精品乱码| www.熟女人妻精品国产| 老司机深夜福利视频在线观看| 麻豆乱淫一区二区| 精品少妇一区二区三区视频日本电影| 亚洲精品在线观看二区| 宅男免费午夜| 人妻 亚洲 视频| 国产三级黄色录像| 如日韩欧美国产精品一区二区三区| 欧美乱妇无乱码| 夜夜夜夜夜久久久久| 在线观看舔阴道视频| 免费一级毛片在线播放高清视频 | 免费日韩欧美在线观看| 身体一侧抽搐| www.自偷自拍.com| 亚洲第一av免费看| 亚洲久久久国产精品| 在线天堂中文资源库| 久久天躁狠狠躁夜夜2o2o| 国产精华一区二区三区| 欧美人与性动交α欧美精品济南到| 性少妇av在线| 婷婷丁香在线五月| 精品国产乱子伦一区二区三区| 欧美日韩瑟瑟在线播放| 国产成人欧美| 国产成人系列免费观看| 欧美日本中文国产一区发布| cao死你这个sao货| 中文字幕另类日韩欧美亚洲嫩草| 久久狼人影院| 天天躁狠狠躁夜夜躁狠狠躁| 黄色女人牲交| 国内毛片毛片毛片毛片毛片| 99国产综合亚洲精品| 大型av网站在线播放| 亚洲精品自拍成人| 中文字幕人妻熟女乱码| 在线观看舔阴道视频| 色在线成人网| 国产有黄有色有爽视频| av片东京热男人的天堂| 丝袜美足系列| 午夜福利欧美成人| 黑丝袜美女国产一区| 国产精品美女特级片免费视频播放器 | 91九色精品人成在线观看| 欧美性长视频在线观看| 久久人人97超碰香蕉20202| 国产蜜桃级精品一区二区三区 | 啦啦啦 在线观看视频| 亚洲国产看品久久| 人人妻人人澡人人爽人人夜夜| 亚洲熟女精品中文字幕| 美女扒开内裤让男人捅视频| 怎么达到女性高潮| 午夜久久久在线观看| 午夜久久久在线观看| 亚洲精品国产色婷婷电影| 国产高清国产精品国产三级| 国产成+人综合+亚洲专区| 日韩免费av在线播放| 国产高清激情床上av| 亚洲av美国av| а√天堂www在线а√下载 | 女人爽到高潮嗷嗷叫在线视频| 亚洲三区欧美一区| 国产淫语在线视频| 欧美在线黄色| 国产91精品成人一区二区三区| 国产有黄有色有爽视频| 亚洲精华国产精华精| 成人国语在线视频| 黄色丝袜av网址大全| 50天的宝宝边吃奶边哭怎么回事| 午夜激情av网站| 黑人巨大精品欧美一区二区蜜桃| 欧美黄色片欧美黄色片| 人成视频在线观看免费观看| 免费在线观看黄色视频的| 久久国产精品人妻蜜桃| 亚洲国产欧美网| 亚洲精品在线观看二区| 欧美日本中文国产一区发布| 国产精品久久久久久人妻精品电影| 午夜老司机福利片| 欧美一级毛片孕妇| 欧美久久黑人一区二区| 久久久久国产精品人妻aⅴ院 | 极品教师在线免费播放| 一区二区日韩欧美中文字幕| 国产欧美日韩一区二区三| 亚洲av电影在线进入| 后天国语完整版免费观看| 搡老乐熟女国产| 欧美精品亚洲一区二区| 新久久久久国产一级毛片| 久久精品人人爽人人爽视色| 亚洲性夜色夜夜综合| 18禁美女被吸乳视频| 国产国语露脸激情在线看| 亚洲精品久久午夜乱码| 国产视频一区二区在线看| 日韩成人在线观看一区二区三区| 亚洲精品一二三| 亚洲五月天丁香| 18禁裸乳无遮挡动漫免费视频| 又黄又粗又硬又大视频| 久久久久久人人人人人| 人人妻人人爽人人添夜夜欢视频| 狠狠婷婷综合久久久久久88av| 女警被强在线播放| 99精品在免费线老司机午夜| 变态另类成人亚洲欧美熟女 | 69av精品久久久久久| 免费观看a级毛片全部| 国产aⅴ精品一区二区三区波| 亚洲中文日韩欧美视频| ponron亚洲| 亚洲久久久国产精品| 免费在线观看黄色视频的| 丰满迷人的少妇在线观看| 老司机在亚洲福利影院| 啦啦啦免费观看视频1| 精品免费久久久久久久清纯 | 女人爽到高潮嗷嗷叫在线视频| 99国产极品粉嫩在线观看| 午夜福利免费观看在线| 国产区一区二久久| 欧美人与性动交α欧美软件| 午夜视频精品福利| 亚洲成av片中文字幕在线观看| 国产精品成人在线| 久久人人爽av亚洲精品天堂| 动漫黄色视频在线观看| 欧美精品高潮呻吟av久久| 国产成人精品在线电影| 很黄的视频免费| 欧美日韩av久久| av在线播放免费不卡| 久久亚洲真实| 最近最新中文字幕大全电影3 | 国产欧美日韩综合在线一区二区| 看免费av毛片| 黑人巨大精品欧美一区二区蜜桃| 久久精品亚洲av国产电影网| 欧美精品亚洲一区二区| 岛国毛片在线播放| 色综合欧美亚洲国产小说| 日韩中文字幕欧美一区二区| 亚洲精品美女久久久久99蜜臀| 欧美日韩福利视频一区二区| 欧美乱色亚洲激情| 婷婷成人精品国产| 日韩欧美一区二区三区在线观看 | 女人精品久久久久毛片| 美女国产高潮福利片在线看| 精品一品国产午夜福利视频| 欧美亚洲 丝袜 人妻 在线| 亚洲色图综合在线观看| 极品少妇高潮喷水抽搐| 国产精品久久久久久人妻精品电影| 中文字幕最新亚洲高清| 欧美日韩亚洲高清精品| 黄色视频不卡| 一级片'在线观看视频| 欧美不卡视频在线免费观看 | 欧美亚洲 丝袜 人妻 在线| 正在播放国产对白刺激| 免费在线观看视频国产中文字幕亚洲| 国产野战对白在线观看| 午夜亚洲福利在线播放| 久久久国产成人精品二区 | 成熟少妇高潮喷水视频| 欧美乱色亚洲激情| 少妇被粗大的猛进出69影院| 成人手机av| 女人爽到高潮嗷嗷叫在线视频| 美女午夜性视频免费| 亚洲熟女精品中文字幕| 色综合婷婷激情| 日本黄色视频三级网站网址 | 日本wwww免费看| 久久精品国产99精品国产亚洲性色 | 十八禁人妻一区二区| www.熟女人妻精品国产| 亚洲国产欧美日韩在线播放| 满18在线观看网站| 我的亚洲天堂| 999久久久国产精品视频| 亚洲性夜色夜夜综合| 正在播放国产对白刺激| 亚洲专区国产一区二区| 久久国产精品大桥未久av| 免费在线观看亚洲国产| 亚洲国产精品合色在线| 777米奇影视久久| 少妇粗大呻吟视频| 久久久国产精品麻豆| 亚洲精品国产一区二区精华液| 美女视频免费永久观看网站| 亚洲七黄色美女视频| 国产激情欧美一区二区| 国产在线观看jvid| tocl精华| 黑人操中国人逼视频| 国产av一区二区精品久久| 两人在一起打扑克的视频| 老司机在亚洲福利影院| 五月开心婷婷网| 免费av中文字幕在线| 好男人电影高清在线观看| 久久久久久久久久久久大奶| 丰满迷人的少妇在线观看| 极品少妇高潮喷水抽搐| 色精品久久人妻99蜜桃| 在线国产一区二区在线| 宅男免费午夜| 女人被狂操c到高潮| 成人av一区二区三区在线看| 国产成人精品无人区| 夫妻午夜视频| 身体一侧抽搐| 男女免费视频国产| 久久青草综合色| 精品人妻在线不人妻| 18禁黄网站禁片午夜丰满| 国产精品免费视频内射| 国产精品自产拍在线观看55亚洲 | 国产亚洲av高清不卡| 色94色欧美一区二区| www.熟女人妻精品国产| 午夜免费成人在线视频| 后天国语完整版免费观看| 欧美精品亚洲一区二区| 亚洲av电影在线进入| 欧美精品av麻豆av| 男女午夜视频在线观看| 大香蕉久久成人网| 搡老熟女国产l中国老女人| 日韩 欧美 亚洲 中文字幕| 中文字幕人妻熟女乱码| 亚洲欧美精品综合一区二区三区| 亚洲av电影在线进入| 黑人猛操日本美女一级片| 亚洲专区中文字幕在线| 超色免费av| 欧美人与性动交α欧美软件| 一二三四社区在线视频社区8| 最新在线观看一区二区三区| 亚洲精品在线美女| 日本a在线网址| 亚洲 欧美一区二区三区| 黄色女人牲交| 国产单亲对白刺激| 日韩免费av在线播放| 丝袜人妻中文字幕| 免费日韩欧美在线观看| 午夜福利在线免费观看网站| 国产精品一区二区免费欧美| 日韩 欧美 亚洲 中文字幕| 视频区图区小说| 在线观看www视频免费| 国产精品久久久久久人妻精品电影| 女人爽到高潮嗷嗷叫在线视频| 亚洲av成人av| 成人18禁在线播放| 自线自在国产av| 免费看十八禁软件| 欧美国产精品va在线观看不卡| av有码第一页| 淫妇啪啪啪对白视频| 一a级毛片在线观看| 首页视频小说图片口味搜索| 久久久久久人人人人人| 欧美日韩成人在线一区二区| 国产亚洲精品一区二区www | 国产97色在线日韩免费| 亚洲专区中文字幕在线| 黄片大片在线免费观看| 97人妻天天添夜夜摸| 精品免费久久久久久久清纯 | 久久精品aⅴ一区二区三区四区| 国产亚洲欧美98| 国产成人欧美| 欧美亚洲 丝袜 人妻 在线| 一边摸一边抽搐一进一出视频| 天天添夜夜摸| 色播在线永久视频| av有码第一页| 久久青草综合色| 亚洲熟妇熟女久久| av天堂久久9| 国产真人三级小视频在线观看| 无人区码免费观看不卡| 国产精品久久久久久精品古装| 午夜福利在线观看吧| 激情在线观看视频在线高清 | xxx96com| 欧美午夜高清在线| 国产精品欧美亚洲77777| 天天影视国产精品| 一进一出抽搐动态| 欧美亚洲日本最大视频资源| 亚洲av欧美aⅴ国产| 精品久久久精品久久久| 久久国产精品大桥未久av| 91精品国产国语对白视频| 久久ye,这里只有精品| 午夜福利视频在线观看免费| 亚洲一卡2卡3卡4卡5卡精品中文| 不卡av一区二区三区| 精品国产乱码久久久久久男人| 亚洲午夜理论影院| 亚洲熟妇熟女久久| 国产aⅴ精品一区二区三区波| 人妻 亚洲 视频| 免费av中文字幕在线| 久久亚洲精品不卡| 日韩欧美在线二视频 | 成人黄色视频免费在线看| 超碰97精品在线观看| 大香蕉久久成人网| 亚洲欧美日韩另类电影网站| 日韩人妻精品一区2区三区| 欧美精品亚洲一区二区| 国产成人精品久久二区二区91| 欧美精品啪啪一区二区三区| 天天操日日干夜夜撸| 黄色成人免费大全| 中亚洲国语对白在线视频| 少妇 在线观看| 99riav亚洲国产免费| 婷婷成人精品国产| 成年人黄色毛片网站| 婷婷成人精品国产| 一区在线观看完整版| 超碰97精品在线观看| tocl精华| 亚洲 国产 在线| 极品人妻少妇av视频| 国产成人系列免费观看| 成熟少妇高潮喷水视频| 女同久久另类99精品国产91| 久久精品成人免费网站| 欧美激情久久久久久爽电影 | 日日爽夜夜爽网站| 国产亚洲欧美在线一区二区| 91精品国产国语对白视频| 久久国产精品大桥未久av| 高清欧美精品videossex| 日本a在线网址| 午夜激情av网站| 国产色视频综合| 久久人人97超碰香蕉20202| 黄片大片在线免费观看| 纯流量卡能插随身wifi吗| av片东京热男人的天堂| 99re在线观看精品视频| 制服人妻中文乱码| 美女高潮到喷水免费观看| 亚洲专区字幕在线| 亚洲精华国产精华精| 欧美日韩黄片免| videosex国产| 久久人人爽av亚洲精品天堂| 色94色欧美一区二区| 欧美精品啪啪一区二区三区| 午夜福利在线观看吧| 少妇粗大呻吟视频| 国产成人免费观看mmmm|