• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Revised Graduated Cylindrical Shell Model and its Application to a Prominence Eruption

    2024-01-16 12:18:32QingMinZhangZhenYongHouandXianYongBai
    Research in Astronomy and Astrophysics 2023年12期

    Qing-Min Zhang, Zhen-Yong Hou, and Xian-Yong Bai

    1 Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Nanjing 210023, China; zhangqm@pmo.ac.cn 2 Yunnan Key Laboratory of the Solar Physics and Space Science, Kunming 650216, China 3 School of Earth and Space Sciences, Peking University, Beijing 100871, China 4 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China 5 University of Chinese Academy of Sciences, Beijing 100049, China 6 Key Laboratory of Solar Activity and Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China Received 2023 May 21; accepted 2023 July 3; published 2023 October 25

    Abstract In this paper,the well-known graduated cylindrical shell(GCS)model is slightly revised by introducing longitudinal and latitudinal deflections of prominences originating from active regions (ARs).Subsequently, it is applied to the three-dimensional(3D)reconstruction of an eruptive prominence in AR 13110,which produced an M1.7 class flare and a fast coronal mass ejection (CME) on 2022 September 23.It is revealed that the prominence undergoes acceleration from ~246 to ~708 km s?1.Meanwhile,the prominence experiences southward deflection by 15°±1°without longitudinal deflection, suggesting that the prominence erupts non-radially.Southward deflections of the prominence and associated CME are consistent, validating the results of fitting using the revised GCS model.Besides, the true speed of the CME is calculated to be 1637±15 km s?1, which is ~2.3 times higher than that of prominence.This is indicative of continuing acceleration of the prominence during which flare magnetic reconnection reaches maximum beneath the erupting prominence.Hence, the reconstruction using the revised GCS model could successfully track a prominence in its early phase of evolution, including acceleration and deflection.

    Key words: Sun: flares – Sun: filaments – prominences – Sun: coronal mass ejections (CMEs)Supporting material: animation

    1.Introduction

    Solar flares and coronal mass ejections (CMEs) are the most powerful activities in the solar atmosphere, which have drastic and profound influences on the heliosphere(Chen 2011;Shibata& Magara 2011; Reames 2013).The primary origins of flares and CMEs are believed to be impulsive eruptions of solar prominences or filaments (Janvier et al.2015).Prominences observed in Hα or extreme-ultraviolet (EUV) wavelengths usually show helical structures (Kumar et al.2012), and fast rotations or untwisting motions are frequently detected during eruptions (Green et al.2007; Yan et al.2014; Shen et al.2019;Zhou et al.2023).Before loss of equilibrium, the gravity of a prominence is balanced by the upward tension force of magnetic dips within a sheared arcade or a flux rope(Liu et al.2012;Chen et al.2018; Zhou et al.2018; Luna & Moreno-Insertis 2021;Guo et al.2022).A magnetic flux rope comprises a bundle of twisted field lines, which are wrapping around a common axis(Titov & Démoulin 1999; Qiu et al.2004; Wang et al.2015;Gou et al.2023).Flux ropes play a central role in driving flares and CMEs (Amari et al.2003; Roussev et al.2003; Aulanier et al.2010;Cheng et al.2013;Inoue et al.2018;Mei et al.2020;Jiang et al.2021).Sometimes, they could be heated up to~10 MK before or during eruptions and are termed as hot channels (Zhang et al.2012; Cheng et al.2013; Zhang et al.2022b; Liu et al.2022), which are merely observed in 94 and 131 ? of the Atmospheric Imaging Assembly (AIA; Lemen et al.2012) on board the Solar Dynamics Observatory (SDO)spacecraft.Flux ropes propagate radially in most cases.However, a fraction of them undergo deflections and propagate non-radially (Guo et al.2019; Mitra & Joshi 2019; Hess et al.2020;Zhang et al.2022a).The inclination angle with the normal direction lies in the range of 15°–70°.In the typical three-part structure of CMEs, the dark cavity and bright core are considered to be a flux rope and the embedded prominence(Illing & Hundhausen 1985; Song et al.2023).

    The three-dimensional (3D) shape and direction of a CME are essential in estimating the arrival time and geo-effectiveness of a CME.The well-known cone model,resembling an ice cream, was proposed and applied to investigate the evolutions of morphology and kinematics of halo CMEs (Micha?ek et al.2003; Xie et al.2004).This model assumes a constant angular width and a constant linear speed during propagation in the radial direction (Zhang et al.2010).Considering that a part of prominences and the driven CMEs propagate non-radially,Zhang (2021) put forward a revised cone model and applied it to two prominence eruptions.The tip of the cone is located at the source region of CME.The model is characterized by four parameters: the length (r) and angular width (ω) of the cone,and two angles (φ1and θ1) denoting the deflections in the longitudinal and latitudinal directions.Using this model,Zhang(2022)satisfactorily tracked the 3D evolution of a halo CME as far as ~12 R⊙on 2011 June 21.

    Figure 1.(a) Positions of Earth(green circle) and two artificial satellites.SAT-1(maroon circle) and SAT-2(purple circle) have separation angles of ?15° and 90°with the Sun-Earth connection,respectively.(b)Positions of Earth(green circle),ahead STEREO(STA,maroon circle),and behind STEREO(STB,purple circle)on 2022 September 23.

    Thernisien et al.(2006) proposed the graduated cylindrical shell(GCS)model to perform 3D reconstructions of flux ropelike CMEs(Vourlidas et al.2013).The flux rope in their model looks like a croissant, which has two identical legs with a length of h and angular separation of 2α (Thernisien et al.2009; Thernisien 2011).The legs are connected by a circulus with varying cross sections so that the aspect ratio κ keeps constant.Another angle γ represents the tilt angle of the polarity inversion line (PIL) of the source region with a longitude φ and a latitude θ, respectively.Besides, electron number density (Ne) is considered to synthesize white-light(WL) images observed by coronagraphs.Thanks to multiperspective observations from the Large Angle and Spectrometric Coronagraph(LASCO;Brueckner et al.1995)on board the SOHO spacecraft and WL coronagraphs(COR1,COR2)on board the twin Solar TErrestrial RElations Observatory(STEREO; Kaiser et al.2008) spacecraft, the GCS model has been widely used to perform 3D reconstructions of CMEs(Mierla et al.2009; Cheng et al.2014; M?stl et al.2014;Liewer et al.2015; Lu et al.2017; Sahade et al.2023; Zhou et al.2023).Isavnin(2016)developed an analytic 3D model for flux rope-like CMEs that incorporate all major deformations during their propagations, such as deflection, rotation,“pancaking,” front flattening, and skewing.

    Table 1Parameters of φ1 and θ1 in Four Cases

    The 3D morphologies of eruptive prominences could be obtained using the triangulation technique when simultaneous observations from two or three perspectives are available(Thompson 2009; Li et al.2011; Bi et al.2013; Guo et al.2019).Deflection,kinking,and rotation of the prominences are found based on the 3D reconstruction.Until now, the GCS model has rarely been applied to the reconstruction of eruptive prominences,especially those propagating non-radially.In this paper, the GCS model is slightly modified and applied to reconstruct the shapes of an eruptive prominence in NOAA active region (AR) 13110(N16E84), which produced a GOES M1.7 class flare and a fast CME on 2022 September 23.The model is described in Section 2.The results of 3D reconstruction are presented in Section 3.A brief summary and discussions are given in Section 4.

    2.Revised GCS Model

    Figure 2.Different views of four artificial flux ropes (Case1?Case4) in the revised GCS model, see text for details.

    Similar to the revised cone model, the GCS model is also modified in two aspects:First,the tip of the two legs is located at the source region of the eruptive prominence rather than the solar center.This applies to flux ropes originating from active regions, instead of quiescent prominences with much longer extensions(Li et al.2011;Dai et al.2021;Zhou et al.2023).It should be emphasized that the footpoints of a flux rope have separation and are not strictly close to each other (Wang et al.2015).Moreover, the footpoints may experience long-distance migration during eruption(Gou et al.2023).In this respect,the assumption that the footpoints of a flux rope are cospatial is relatively strong.Second, the GCS symmetry axis passing through the circulus has inclination angles of φ1and θ1with respect to the local longitude and latitude, respectively.The parameters h, α, κ, γ, φ, and θ have the same meanings(Thernisien et al.2006).γ=0° and γ=90° indicate that the PIL is parallel and perpendicular to the longitude,respectively.Since the traditional GCS model reduces to the ice cream cone model when α=0 (Thernisien et al.2009), the revised GCS model also reduces to the revised cone model when α=0(Zhang 2021).

    The transform between the heliocentric coordinate system(HCS;Xh,Yh,Zh)and local coordinate system(LCS;Xl,Yl,Zl)is (Zhang 2022):

    where

    Figure 3.(a)GOES SXR light curves of the M1.7 flare in 1?8 ?(red line)and 0.5?4 ?(purple line).The dashed–dotted line marks the peak time(18:10:00 UT).(b)Height-time plots of the leading edges of the reconstructed flux rope(blue circles)and CME observed by STA/COR2(green diamonds).(c)Height-time plots of 3h(brown squares)and hLE(dark cyan squares).Linear fittings of hLE are performed before and after 17:53:00 UT,with the speeds being labeled.(d)Time variations of the fitted parameters, including 90 ?γ (green rhombuses), ωFO/2 (purple triangles), α (orange squares), θ1 (yellow circles), ωEO (yellow triangles), and φ1 (gray hexagons), respectively.

    The transform between LCS and GCS flux-rope coordinate system (FCS; Xf, Yf, Zf) is:

    where

    To reconstruct the shape of a flux rope in the revised model,observations from multiple viewpoints are needed as far as possible.In Figure 1(a),the relative positions of Earth and two artificial satellites (SAT-1 and SAT-2) are denoted with green,maroon,and purple circles,respectively.The separation angles between the artificial satellites with the Sun-Earth connection are denoted by ξ1and ξ2, respectively.Note that SAT-1 and SAT-2 could be the ahead STEREO (hereafter STA) and behind STEREO (hereafter STB), or Extreme-Ultraviolet Imager (EUVI; Rochus et al.2020) on board Solar Orbiter(SolO; Müller et al.2020), or Wide-Field Imager for Solar Probe Plus (WISPR; Vourlidas et al.2016) on board Parker Solar Probe (PSP; Fox et al.2016).Note that both SolO and PSP are much closer to the Sun than STEREO.Consequently,the transform between the SAT-1 coordinate system (Xs1, Ys1,

    Figure 4.AIA 131 ? images to illustrate the evolutions of the prominence and flare.The white arrows point to AR 13110,eruptive prominence,and hot flare loops.An animation showing the flare and prominence eruption in AIA 131 ? is available.It covers a duration of 50 minutes from 17:30 UT to 18:20 UT on 2022 September 23.The entire movie runs for 6 s.

    Zs1) and HCS is:

    where

    Similarly, the transform between the SAT-2 coordinate system (Xs2, Ys2, Zs2) and HCS is:

    where

    3.Application to a Prominence Eruption

    3.1.Flare and CME

    The event occurred in AR 13110, accompanied by an M1.7 flare and a fast CME.Figure 3(a) shows SXR light curves of the flare in 1–8 ?(red line)and 0.5–4 ?(purple line).The SXR emissions increase from 17:48:00 UT, peak at 18:10:00 UT,and decrease slowly until ~18:50:00 UT.Time evolutions of the prominence eruption and flare are illustrated by six 131 ? images observed by SDO/AIA in Figure 4 and the associated online movie (anim131.mp4).Panel (a) shows AR 13110 with weak brightening before eruption.The prominence shows up and stands out after ~17:46:00 UT (panel (b)).It continues to rise and expands in height, during which the flare loops brighten significantly (panels (c)–(d)).The prominence accelerates and the apex escapes the field of view (FOV) of AIA,leaving behind the hot post-flare loops that cool down gradually (panels (e)–(f)).It is noticed that the footpoints of the prominence remain in the AR without considerable separation.The morphological evolution of the prominence is similar in other EUV and 1600 ? wavelengths of AIA,indicating its multithermal nature (Zhang et al.2022a; Li et al.2022b).

    Figure 5.(a)–(c) Running-difference images of the related CME observed by LASCO/C2 during 18:12?18:36 UT.(d)–(i) Running-difference images of the CME observed by STA/COR2.The arrows point to the CME that first appears in the coronagraphs.

    In Figure 5, the top panels show running-difference WL images of the related CME observed by LASCO/C2.The CME7www.sidc.be/cactus/first appears at 18:12:00 UT and propagates eastward with an angular width of ~50°and at a speed of ~1644 km s?1(see Table 2).It is worth mentioning that the angular width is measured for the CME itself.Since an interplanetary shock wave was driven by the CME (Figures 5(b)–(c)), the recorded angular width of the CME reaches 189°, which is much wider than the CME itself.8cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL_ver1/2022_09/univ2022_09.htmlIn Figure 1(b), the green, maroon, and purple circles represent the positions of Earth, STA, and STB on 2022 September 23.The twin satellites had separation angles of ?17.9° and 12.9° with the Sun-Earth connection,although STB stopped working after 2016.The middle and bottom panels of Figure 5 show running-difference images of STA/COR2 during 18:23?19:38 UT.The CME enters the FOV of COR2 at 18:23:30 UT and propagates eastward with an angular width of ~64° (see Table 2).The height evolution of the CME leading edge in the FOV of COR2 is plotted with green diamonds in Figure 3(b).A linear fitting results in an apparent speed of ~1482 km s?1.

    3.2.3D Shapes of the Prominence

    Figure 6.Top panels: the prominence observed by AIA 304 ? (a1), SWAP 174 ? (b1), and EUVI 304 ? (c1) passbands around 17:55:40 UT.Bottom panels: the same images superposed with projections of the reconstructed flux rope (atrovirens, magenta, and blue dots).

    Table2 Parameters of the CME Produced by the Prominence Eruption, Including the Apparent Speed (Vapp), True Speed (V3D), Central Position Angle (CPA), and Angular Width (AW)

    In Figure 6, the top panels show the prominence simultaneously observed by AIA 304(base-difference image),SWAP 174(base-difference image), and EUVI 304(original image) passbands around 17:55:40 UT.Due to the low cadence(10 minutes)of EUVI 304passband,this is the only time when the prominence is entirely visible in all instruments.Owing to the smaller FOV of AIA than SWAP and EUVI, the whole prominence was captured by SWAP and EUVI, while the outermost part (i.e., apex) of the prominence was missed by AIA.It is obvious that the two legs are much brighter than the top of the prominence.In panel (c1), the prominence presents clear helical structure, implying that the magnetic fields supporting the prominence are most probably a flux rope.The bottom panels of Figure 6 show the same images, which are superposed with projections of the reconstructed flux rope (atrovirens, magenta, and blue dots)using the revised GCS model.The 3D reconstruction is performed by repeatedly adjusting the free parameters described in Section 2, while the source region location(φ=?84°,θ=15°)is fixed.The best-fit model is subjectively judged when projections of the flux rope nicely match the prominence in EUV images.From Figures 6(a2)–(c2), it is revealed that the fitting of the prominence using the revised GCS model is satisfactory.The derived parameters are:h=150″, α=45°, κ=0.087 (δ=5°), φ1=0°, θ1=16°, andedge-on width of the flux rope is ωEO=2δ=10°,and the faceon angular width is ωFO=2(α+δ)=100°.The flux rope axis deviates from the local vertical direction by 16° and the heliocentric distance (hHC) of the leading edge reaches~1.4 R⊙.

    Figure 7.Top panels:the prominence observed by AIA 304 ? and SWAP 174 ? around 17:57:27 UT.Bottom panels:the same images overlaid with projections of reconstructed flux rope (atrovirens and magenta dots).

    Although there is only one time of simultaneous observations of the prominence from multiple perspectives, 3D reconstruction could still be conducted using observations of telescopes along the Sun-Earth connection (Thernisien et al.2006).In Figure 7, the top panels show the prominence observed by AIA 304 ? and SWAP 174 ? around 17:57:27 UT.The prominence was fully visible in SWAP 174 ? image at 17:57:25 UT, but was partly visible in AIA 304 ? image at 17:57:29 UT.The bottom panels show the same images overlaid with projections of reconstructed flux ropes(atrovirens and magenta dots).Consistency between the shapes of prominence and flux ropes indicates that the fittings are still gratifying.The derived parameters are drawn in Figures 3(c)–(d).

    Before 17:54:00 UT, the prominence rose gradually and was entirely recorded in AIA 304 ? and SUTRI 465 ? passbands.Figure 8 shows 304 ? images(a1–a5)and 465 ? images(b1–b5)overlaid with projections of the reconstructed flux ropes(atrovirens and blue dots) during 17:49–17:53 UT.The prominence looks like an ear and the two legs are much clearer than the top.The reconstructed flux ropes coincide with the prominence much better at the legs than the top due to its irregular and asymmetric shape.The derived parameters are drawn in Figures 3(c)–(d).Linear fittings of hLEare separately performed during 17:49:17–17:52:17 UT and 17:53:30–17:57:30 UT,giving rise to true speeds of ~246 and ~708 km s?1of the erupting prominence.Accordingly, the prominence was undergoing acceleration during its early phase of eruption(17:49–17:57 UT).In Figure 3(b), time variation of hHCis plotted with blue circles, which has the same trend as hLE.

    Figure 8.AIA 304 ? images(a1–a5)and SUTRI 465 ? images(b1–b5)superposed with projections of the reconstructed flux ropes(atrovirens and blue dots)during 17:49?17:53 UT.

    The value of γ increases from 0° to 30°, which is probably indicative of counterclockwise rotation of the prominence axis during eruption (Fan & Gibson 2003; Zhou et al.2020).The edge-on width ωEOkeeps a constant of ~10°.The face-on width ωFOdecreases from ~162° to a minimum of ~100°around 17:53:45 UT and increases to ~104° around 17:57:25 UT.The inclination angle θ1increases slightly from 14°to 16°,suggesting a southward deflection of the prominence.The values of φ1remain 0°, meaning that there is no longitudinal deflection.In Table 2,the CPA of CME is 85°–88°,indicating a southward deflection of CME by 11°–14°.In this regard,deflections of the prominence and related CME are accordant,which justifies the results of fitting using the revised GCS model.Furthermore, the true speeds (V3D) of CME are estimated to be 1653 and 1622 km s?1using the apparent speeds in the FOVs of LASCO/C2 and STA/COR2,which are very close to each other.It is noted that the speed of CME(1637±15 km s?1) is ~2.3 times higher than that of prominence, implying continuing acceleration of the prominence between 17:57 UT and 18:23 UT.

    4.Summary and Discussion

    In this paper, the GCS model is slightly revised by introducing longitudinal and latitudinal deflections of prominences originating from ARs.Subsequently,it is applied to the 3D reconstruction of an eruptive prominence in AR 13110,which produced an M1.7 class flare and a fast CME on 2022 September 23.It is found that the prominence undergoes acceleration from ~246 to ~708 km s?1.Meanwhile, the prominence experiences southward deflection by 14°–16°without longitudinal deflection,suggesting that the prominence erupts non-radially.Southward deflections of the prominence and associated CME are consistent, validating the results of fitting using the revised GCS model.Besides,the true speed of the CME is calculated to be 1637±15 km s?1, which is ~2.3 times higher than that of prominence.This is indicative of continuing acceleration of the prominence during which flare magnetic reconnection reaches maximum beneath the erupting prominence.Hence, the reconstruction using the revised GCS model could successfully track a prominence in its early phase of evolution until ~1.5 R⊙, including acceleration and deflection.

    Morphological reconstructions of prominences/filaments are abundant using stereoscopic observations in UV, EUV, and Hα passbands from two or three viewpoints.The triangulation method has been widely used to perform reconstructions of both quiescent and AR prominences (Li et al.2011; Bi et al.2013;Guo et al.2019).However, this method utilizes simultaneous images from two perspectives.In the current study,there is only one moment (~17:55:45 UT) of observations from SDO/AIA and STA/EUVI when the triangulation method is usable(Figure 6).On the contrary, the revised GCS model is at work even if there are observations from a single perspective(Figures 7, 8), although more perspectives impose better constraints and have lower uncertainties.This is particularly advantageous to the reconstruction of hot channels since routine observations in hot emission lines (such as 94, 131 ?) with STEREO and SolO/EUI are still unavailable.Calculations of the thermal energies of hot channels using this model will be the topic of our next paper.

    Of course, there are limitations of the revised GCS model.First, the model is applicable to AR prominences whose footpoints are close to each other, instead of quiescent prominences with much larger sizes and extensions.Second,the model is applicable to coherent, loop-like prominences,rather than those presenting irregular and ragged shapes.Lastly, 3D reconstructions of prominences are severely constrained by the FOVs of solar telescopes working at UV,EUV, and Hα wavelengths, which is in contrast to the reconstructions of CMEs observed by coronagraphs with much larger FOVs.In Figure 3(b), the heliocentric distance of the flux rope leading edge reaches ~1.5 R⊙a(bǔ)t 17:57:25 UT,which is still blocked by the occulting disk of LASCO/C2.

    With the advent of peak year of the 25th solar cycle, largescale solar eruptions are booming, which have a sustained impact on the near-Earth space environment.Precise reconstructions of the shape and direction of eruptive prominences and the related CMEs will undoubtedly improve our ability to space weather forecasts.In the future, more case studies and statistical analysis are worthwhile using stereoscopic observations from spaceborne and ground-based telescopes, such as SDO/AIA, STEREO/EUVI, SolO/EUI, SWAP, SUTRI, the Chinese Hα Solar Explorer (CHASE; Li et al.2022a), and the New Vacuum Solar Telescope (NVST; Liu et al.2014).

    Acknowledgments

    The authors appreciate Profs.Hui Tian and Hongqiang Song for helpful discussions.SDO is a mission of NASA?s Living With a Star Program.AIA data are courtesy of the NASA/SDO science teams.SUTRI is a collaborative project conducted by the National Astronomical Observatories of CAS,Peking University,Tongji University, Xi’an Institute of Optics and Precision Mechanics of CAS and the Innovation Academy for Microsatellites of CAS.This work is supported by the National Key R&D Program of China 2022YFF0503003 (2022YFF0503000),2021YFA1600500 (2021YFA1600502), the National Natural Science Foundation of China (No.12373065) and Yunnan Key Laboratory of Solar Physics and Space Science under the No.YNSPCC202206.NSFC under grant No.12373065.

    成人漫画全彩无遮挡| 色视频在线一区二区三区| 亚洲性久久影院| 亚洲欧美一区二区三区国产| 日韩成人av中文字幕在线观看| 男人操女人黄网站| 国产一区有黄有色的免费视频| 美女内射精品一级片tv| 一本色道久久久久久精品综合| 黑丝袜美女国产一区| 精品亚洲成国产av| 欧美亚洲日本最大视频资源| 久久 成人 亚洲| 亚洲欧美一区二区三区黑人 | 99热全是精品| 国产老妇伦熟女老妇高清| 国产亚洲精品久久久com| av天堂久久9| 又粗又硬又长又爽又黄的视频| 99香蕉大伊视频| 久久免费观看电影| 午夜视频国产福利| a级毛片黄视频| 亚洲综合色惰| 国产免费一级a男人的天堂| 久久精品熟女亚洲av麻豆精品| 51国产日韩欧美| 一区二区三区四区激情视频| 国产麻豆69| 亚洲欧美一区二区三区黑人 | 乱码一卡2卡4卡精品| 免费黄网站久久成人精品| 99热6这里只有精品| 午夜老司机福利剧场| 91在线精品国自产拍蜜月| 欧美国产精品一级二级三级| 日韩不卡一区二区三区视频在线| 性高湖久久久久久久久免费观看| 最近2019中文字幕mv第一页| 久久久久久久精品精品| 爱豆传媒免费全集在线观看| 日韩人妻精品一区2区三区| 日韩,欧美,国产一区二区三区| 午夜福利乱码中文字幕| 免费黄网站久久成人精品| 一本久久精品| 精品久久久精品久久久| 中文字幕av电影在线播放| av国产精品久久久久影院| 大片电影免费在线观看免费| 少妇被粗大猛烈的视频| 交换朋友夫妻互换小说| 全区人妻精品视频| 国产精品一区二区在线观看99| 亚洲成人av在线免费| www.av在线官网国产| 在线精品无人区一区二区三| 韩国高清视频一区二区三区| 丝袜美足系列| 精品卡一卡二卡四卡免费| 高清不卡的av网站| 美女福利国产在线| 精品久久蜜臀av无| 男女边吃奶边做爰视频| 午夜激情久久久久久久| 亚洲综合色网址| 九色成人免费人妻av| 国产国语露脸激情在线看| 插逼视频在线观看| 精品一品国产午夜福利视频| 精品国产一区二区三区四区第35| 国产日韩欧美在线精品| 亚洲欧美成人精品一区二区| 国产精品一区二区在线观看99| 国产精品久久久久久久电影| 制服诱惑二区| 桃花免费在线播放| 国产激情久久老熟女| 天堂8中文在线网| 日本爱情动作片www.在线观看| 搡女人真爽免费视频火全软件| 天天躁夜夜躁狠狠久久av| videosex国产| 在线观看免费视频网站a站| 国产精品蜜桃在线观看| 999精品在线视频| 欧美精品亚洲一区二区| 久久热在线av| 国产精品欧美亚洲77777| 久久久久视频综合| 一级片'在线观看视频| 少妇的逼好多水| 免费播放大片免费观看视频在线观看| 亚洲一区二区三区欧美精品| 日本黄大片高清| 丝袜人妻中文字幕| 大香蕉久久成人网| 国产黄色免费在线视频| 久久久久久久久久久免费av| 18禁国产床啪视频网站| 少妇人妻精品综合一区二区| 免费观看无遮挡的男女| 久久精品熟女亚洲av麻豆精品| 啦啦啦视频在线资源免费观看| 国产亚洲欧美精品永久| 少妇人妻 视频| 亚洲天堂av无毛| 22中文网久久字幕| 99国产综合亚洲精品| 在线天堂最新版资源| 精品酒店卫生间| 精品人妻在线不人妻| 伦精品一区二区三区| 国产午夜精品一二区理论片| 亚洲丝袜综合中文字幕| 亚洲,欧美精品.| 大香蕉久久网| 国产在线视频一区二区| 国产探花极品一区二区| 亚洲,欧美精品.| 深夜精品福利| 国产精品人妻久久久久久| 国产av一区二区精品久久| 国产不卡av网站在线观看| 久久婷婷青草| 免费在线观看完整版高清| 人人妻人人爽人人添夜夜欢视频| 高清视频免费观看一区二区| 国产免费现黄频在线看| 午夜福利在线观看免费完整高清在| 男女下面插进去视频免费观看 | 亚洲成国产人片在线观看| 亚洲天堂av无毛| 国产精品无大码| 成人毛片a级毛片在线播放| 亚洲人成77777在线视频| 女性生殖器流出的白浆| 久久精品国产亚洲av涩爱| 18+在线观看网站| 久久精品熟女亚洲av麻豆精品| 国产精品国产av在线观看| 亚洲国产毛片av蜜桃av| 国产色爽女视频免费观看| 久久鲁丝午夜福利片| 日本色播在线视频| 黑人欧美特级aaaaaa片| 99久国产av精品国产电影| 丝袜喷水一区| 国产又色又爽无遮挡免| 宅男免费午夜| 少妇高潮的动态图| 一级毛片黄色毛片免费观看视频| av播播在线观看一区| 国产黄频视频在线观看| 国产精品偷伦视频观看了| 国产精品无大码| 日韩制服骚丝袜av| 2018国产大陆天天弄谢| 欧美少妇被猛烈插入视频| 久久国产亚洲av麻豆专区| 丝袜美足系列| 下体分泌物呈黄色| 99热全是精品| 性色av一级| 自线自在国产av| 亚洲三级黄色毛片| 18禁国产床啪视频网站| 久久国产精品男人的天堂亚洲 | 人体艺术视频欧美日本| 天堂中文最新版在线下载| 在线天堂最新版资源| 一级毛片黄色毛片免费观看视频| 久久久久久久久久人人人人人人| 熟女电影av网| 久久精品人人爽人人爽视色| 大陆偷拍与自拍| freevideosex欧美| 日本欧美国产在线视频| 黄色毛片三级朝国网站| 亚洲精品国产av成人精品| 欧美日韩av久久| 亚洲图色成人| 久久狼人影院| 亚洲在久久综合| 人体艺术视频欧美日本| 天天躁夜夜躁狠狠久久av| 日韩中字成人| 欧美精品国产亚洲| 免费久久久久久久精品成人欧美视频 | 男女高潮啪啪啪动态图| 男女高潮啪啪啪动态图| 欧美另类一区| 成人影院久久| 天堂8中文在线网| 欧美人与性动交α欧美软件 | 免费av不卡在线播放| 看十八女毛片水多多多| 大片免费播放器 马上看| 在线观看美女被高潮喷水网站| 日韩免费高清中文字幕av| 久久久久国产精品人妻一区二区| 国产成人精品一,二区| 亚洲,欧美精品.| 成人亚洲欧美一区二区av| 美女大奶头黄色视频| 国产欧美日韩综合在线一区二区| 国产男人的电影天堂91| xxxhd国产人妻xxx| 国产精品嫩草影院av在线观看| 丝袜在线中文字幕| av视频免费观看在线观看| 插逼视频在线观看| av免费观看日本| 精品一区在线观看国产| av国产久精品久网站免费入址| 性色av一级| 少妇的逼水好多| 免费女性裸体啪啪无遮挡网站| 国产麻豆69| 亚洲情色 制服丝袜| 亚洲av免费高清在线观看| 中文字幕亚洲精品专区| 久热这里只有精品99| 人体艺术视频欧美日本| 91国产中文字幕| 少妇的丰满在线观看| 久久97久久精品| 五月天丁香电影| 乱人伦中国视频| 精品人妻熟女毛片av久久网站| 母亲3免费完整高清在线观看 | 精品一品国产午夜福利视频| 亚洲精品美女久久av网站| 久久久亚洲精品成人影院| 亚洲欧洲国产日韩| 制服人妻中文乱码| 国内精品宾馆在线| 国产爽快片一区二区三区| 熟女av电影| 91午夜精品亚洲一区二区三区| 午夜激情久久久久久久| 亚洲,一卡二卡三卡| 亚洲精品日本国产第一区| 久久久a久久爽久久v久久| 黄色配什么色好看| 中文天堂在线官网| 日日撸夜夜添| 有码 亚洲区| 丝袜脚勾引网站| 久久人人97超碰香蕉20202| 精品一品国产午夜福利视频| 亚洲久久久国产精品| 日韩av在线免费看完整版不卡| 国产一区亚洲一区在线观看| 久久国内精品自在自线图片| 人人妻人人添人人爽欧美一区卜| 欧美精品国产亚洲| 日韩成人av中文字幕在线观看| 国产在视频线精品| 亚洲成人一二三区av| 乱人伦中国视频| 日韩欧美一区视频在线观看| 久久久久精品人妻al黑| 大香蕉久久成人网| 十分钟在线观看高清视频www| 亚洲成人手机| 亚洲精品456在线播放app| 两个人免费观看高清视频| kizo精华| 欧美精品一区二区大全| 亚洲精品色激情综合| 丝袜美足系列| 午夜精品国产一区二区电影| 欧美+日韩+精品| 国产黄色免费在线视频| 亚洲欧洲日产国产| 春色校园在线视频观看| 中文字幕亚洲精品专区| 久久av网站| 永久免费av网站大全| 免费播放大片免费观看视频在线观看| 激情五月婷婷亚洲| 国产亚洲精品久久久com| 国产精品久久久久久久久免| 日韩欧美一区视频在线观看| 亚洲国产看品久久| 十八禁网站网址无遮挡| 最近最新中文字幕大全免费视频 | 大香蕉久久网| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美在线一区| 大片免费播放器 马上看| 欧美成人精品欧美一级黄| 久久久精品免费免费高清| 日本-黄色视频高清免费观看| 又黄又粗又硬又大视频| 亚洲国产色片| 久久久久久人妻| 99re6热这里在线精品视频| 日韩一本色道免费dvd| 大片电影免费在线观看免费| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av天美| 不卡视频在线观看欧美| 只有这里有精品99| 寂寞人妻少妇视频99o| 国产女主播在线喷水免费视频网站| 少妇的丰满在线观看| 高清欧美精品videossex| 日韩视频在线欧美| 母亲3免费完整高清在线观看 | 波野结衣二区三区在线| 国产精品一国产av| 制服人妻中文乱码| 亚洲av综合色区一区| 国产精品人妻久久久久久| 男女边摸边吃奶| 少妇的逼好多水| 国产片特级美女逼逼视频| 精品亚洲乱码少妇综合久久| 国产男女超爽视频在线观看| 精品午夜福利在线看| 欧美 亚洲 国产 日韩一| 精品亚洲成a人片在线观看| 99国产精品免费福利视频| 精品人妻偷拍中文字幕| 国产成人精品婷婷| 国产精品嫩草影院av在线观看| 男女午夜视频在线观看 | 日韩大片免费观看网站| 天堂8中文在线网| 韩国高清视频一区二区三区| 国产xxxxx性猛交| 在线天堂最新版资源| 久久精品久久久久久噜噜老黄| 久久 成人 亚洲| 一级爰片在线观看| 边亲边吃奶的免费视频| 亚洲综合色网址| 国产精品嫩草影院av在线观看| 一级爰片在线观看| 欧美xxⅹ黑人| 国产成人精品婷婷| 侵犯人妻中文字幕一二三四区| 久久久精品免费免费高清| 亚洲精品久久久久久婷婷小说| 日本爱情动作片www.在线观看| 亚洲精品成人av观看孕妇| 免费看不卡的av| 只有这里有精品99| 亚洲色图综合在线观看| 日日啪夜夜爽| 欧美日韩一区二区视频在线观看视频在线| 久久久国产一区二区| 亚洲国产精品成人久久小说| 日本91视频免费播放| 人人妻人人澡人人爽人人夜夜| 久久99精品国语久久久| 一级a做视频免费观看| 久久国内精品自在自线图片| 国产精品麻豆人妻色哟哟久久| 国产熟女欧美一区二区| 日本wwww免费看| 99久久综合免费| 久久99热6这里只有精品| 欧美老熟妇乱子伦牲交| 国产一区二区三区av在线| 成人影院久久| 免费黄色在线免费观看| 国产欧美亚洲国产| 国产精品秋霞免费鲁丝片| 国产免费一区二区三区四区乱码| 伊人久久国产一区二区| 日韩人妻精品一区2区三区| 欧美性感艳星| 成年av动漫网址| 肉色欧美久久久久久久蜜桃| 日韩av免费高清视频| 丝袜在线中文字幕| 满18在线观看网站| 在线观看美女被高潮喷水网站| 91成人精品电影| 免费女性裸体啪啪无遮挡网站| 免费av中文字幕在线| 欧美 日韩 精品 国产| 人人妻人人澡人人爽人人夜夜| 成人国产麻豆网| av卡一久久| 少妇精品久久久久久久| 精品人妻偷拍中文字幕| 黑人欧美特级aaaaaa片| 飞空精品影院首页| 九草在线视频观看| 极品人妻少妇av视频| 亚洲av免费高清在线观看| 日韩精品免费视频一区二区三区 | 亚洲精品自拍成人| 久久久久人妻精品一区果冻| 18禁动态无遮挡网站| 人人妻人人澡人人爽人人夜夜| 黑人高潮一二区| 亚洲精品成人av观看孕妇| 免费在线观看完整版高清| 五月伊人婷婷丁香| 国产精品久久久久久av不卡| 午夜影院在线不卡| 亚洲激情五月婷婷啪啪| 久久久久人妻精品一区果冻| 国产成人欧美| 久久精品人人爽人人爽视色| 久久久精品94久久精品| 精品亚洲乱码少妇综合久久| 水蜜桃什么品种好| 国产日韩欧美亚洲二区| 色网站视频免费| 亚洲精品色激情综合| 人妻少妇偷人精品九色| 午夜免费男女啪啪视频观看| 亚洲欧美成人综合另类久久久| 日本欧美国产在线视频| 欧美激情 高清一区二区三区| 少妇人妻久久综合中文| 欧美精品亚洲一区二区| 久久久久精品人妻al黑| 亚洲国产欧美在线一区| 激情视频va一区二区三区| 老司机影院毛片| 激情五月婷婷亚洲| 欧美成人午夜免费资源| 久久久亚洲精品成人影院| 日本午夜av视频| 久久97久久精品| 免费少妇av软件| 大香蕉久久成人网| 一二三四中文在线观看免费高清| 夜夜爽夜夜爽视频| 一区在线观看完整版| 老司机影院成人| 人人妻人人澡人人爽人人夜夜| 在线观看三级黄色| a级毛色黄片| 久久久久国产网址| av免费在线看不卡| 下体分泌物呈黄色| 91精品三级在线观看| 精品国产一区二区久久| 日本欧美国产在线视频| 深夜精品福利| 日本色播在线视频| 欧美日韩国产mv在线观看视频| 日韩视频在线欧美| 精品人妻偷拍中文字幕| 国产成人av激情在线播放| 久久精品国产鲁丝片午夜精品| 午夜福利网站1000一区二区三区| 人人澡人人妻人| 极品少妇高潮喷水抽搐| 人成视频在线观看免费观看| 黑人欧美特级aaaaaa片| av线在线观看网站| 成人毛片a级毛片在线播放| 人人澡人人妻人| 亚洲国产精品国产精品| 男女边摸边吃奶| 丝袜美足系列| 18+在线观看网站| 一级毛片 在线播放| 激情视频va一区二区三区| 亚洲欧美一区二区三区黑人 | 日韩精品有码人妻一区| 亚洲欧美中文字幕日韩二区| 欧美激情 高清一区二区三区| 国产一区二区在线观看av| 亚洲精品日本国产第一区| 国产精品蜜桃在线观看| 肉色欧美久久久久久久蜜桃| 亚洲国产精品一区三区| 日韩电影二区| 中国三级夫妇交换| 亚洲国产精品国产精品| 久久精品国产自在天天线| 亚洲欧美中文字幕日韩二区| 99精国产麻豆久久婷婷| 国产精品女同一区二区软件| 国产淫语在线视频| 亚洲成国产人片在线观看| 内地一区二区视频在线| 如日韩欧美国产精品一区二区三区| 国产精品熟女久久久久浪| 久久久久久久久久人人人人人人| 两个人看的免费小视频| 久久国产精品男人的天堂亚洲 | 黄网站色视频无遮挡免费观看| 精品熟女少妇av免费看| 男男h啪啪无遮挡| 国产在线免费精品| 久久人人爽av亚洲精品天堂| av视频免费观看在线观看| 亚洲欧洲日产国产| 亚洲欧美色中文字幕在线| 国产一区二区在线观看av| 久久久久久久国产电影| av播播在线观看一区| 亚洲av在线观看美女高潮| 成人毛片a级毛片在线播放| 国产精品嫩草影院av在线观看| 九九在线视频观看精品| 国语对白做爰xxxⅹ性视频网站| 国产成人精品在线电影| 午夜福利视频精品| 亚洲精品美女久久av网站| 在线观看国产h片| 日韩一区二区视频免费看| 亚洲av男天堂| 欧美 日韩 精品 国产| 汤姆久久久久久久影院中文字幕| 国产精品久久久久成人av| 90打野战视频偷拍视频| 欧美日韩视频高清一区二区三区二| 蜜桃在线观看..| 中文字幕最新亚洲高清| 久久精品熟女亚洲av麻豆精品| 精品一区二区免费观看| 久久久久久人妻| 日韩不卡一区二区三区视频在线| 午夜精品国产一区二区电影| 91午夜精品亚洲一区二区三区| 免费日韩欧美在线观看| 成人亚洲精品一区在线观看| 青春草亚洲视频在线观看| 久久国产精品男人的天堂亚洲 | av女优亚洲男人天堂| 成人亚洲欧美一区二区av| 亚洲情色 制服丝袜| 精品视频人人做人人爽| 国产精品秋霞免费鲁丝片| 久久精品久久久久久久性| 男的添女的下面高潮视频| 成人无遮挡网站| 亚洲在久久综合| 中文字幕最新亚洲高清| 精品一区二区三卡| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦啦在线视频资源| 永久免费av网站大全| 一级毛片我不卡| 女人久久www免费人成看片| 国产精品女同一区二区软件| 亚洲精华国产精华液的使用体验| 夫妻午夜视频| 久久狼人影院| 日韩av免费高清视频| 人妻 亚洲 视频| 亚洲四区av| 插逼视频在线观看| 久久精品国产综合久久久 | 久久ye,这里只有精品| 欧美97在线视频| 国产国拍精品亚洲av在线观看| 国产成人精品一,二区| 国产欧美另类精品又又久久亚洲欧美| 日日啪夜夜爽| 精品一区二区免费观看| 国产在线一区二区三区精| 成人国产麻豆网| 精品99又大又爽又粗少妇毛片| 69精品国产乱码久久久| 丰满少妇做爰视频| 黑丝袜美女国产一区| 午夜福利影视在线免费观看| 亚洲欧美一区二区三区黑人 | 国产亚洲精品久久久com| 国产精品久久久av美女十八| 亚洲国产av影院在线观看| 男女午夜视频在线观看 | 国产亚洲av片在线观看秒播厂| 亚洲一级一片aⅴ在线观看| 国产一区有黄有色的免费视频| 亚洲av福利一区| 国产成人午夜福利电影在线观看| av一本久久久久| 欧美激情 高清一区二区三区| 久久人人爽av亚洲精品天堂| 欧美日本中文国产一区发布| 91在线精品国自产拍蜜月| 亚洲中文av在线| 亚洲欧美清纯卡通| 国产免费一级a男人的天堂| 老司机影院成人| 久久99一区二区三区| 国产精品一区www在线观看| 一级片免费观看大全| 秋霞在线观看毛片| 一区二区三区精品91| 热re99久久精品国产66热6| 亚洲熟女精品中文字幕| 欧美成人精品欧美一级黄| 成人黄色视频免费在线看| 国产一级毛片在线| 欧美人与性动交α欧美精品济南到 | 国产在线一区二区三区精| 人人妻人人澡人人看| 九九爱精品视频在线观看| 少妇人妻 视频| 亚洲伊人色综图| av片东京热男人的天堂| av黄色大香蕉| 国产欧美另类精品又又久久亚洲欧美| 老女人水多毛片| 国产一区亚洲一区在线观看| 日韩精品免费视频一区二区三区 | 亚洲国产色片| 天天躁夜夜躁狠狠久久av| 国产日韩欧美视频二区| 看非洲黑人一级黄片|