• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Redshift Dependence of the Low-energy Spectral Index of Gamma-Ray Bursts Revisited

    2024-01-16 12:18:22XiaoLiZhangYongFengHuangandZeChengZou
    Research in Astronomy and Astrophysics 2023年12期

    Xiao-Li Zhang, Yong-Feng Huang, and Ze-Cheng Zou

    1 Department of Physics, Nanjing University, Nanjing 210023, China 2 School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China; hyf@nju.edu.cn 3 Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023, China 4 Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China Received 2023 June 12; revised 2023 July 23; accepted 2023 August 4; published 2023 October 25

    Abstract A negative correlation was found to exist between the low-energy spectral index and the redshift of gamma-ray bursts(GRBs)by Amati et al.It was later confirmed by Geng&Huang and Gruber et al.,but the correlation was also found to be quite dispersive when the sample size was significantly expanded.In this study, we have established two even larger samples of GRBs to further examine the correlation.One of our samples consists of 316 GRBs detected by the Swift satellite,and the other one consists of 80 GRBs detected by the Fermi satellite.It is found that there is no correlation between the two parameters for the Swift sample,but there does exist a weak negative correlation for the Fermi sample.The correlation becomes even more significant when the spectral index at the peak flux is considered.It is argued that the absence of the correlation in the Swift sample may be due to the fact that Swift has a very narrow energy response so that it could not measure the low-energy spectral index accurately enough.Further studies based on even larger GRB samples are solicited.

    Key words: (stars:) gamma-ray burst: general – methods: statistical – catalogs

    1.Introduction

    Gamma-ray bursts (GRBs) are the most violent stellar explosions.They were initially discovered in 1967(Klebesadel et al.1973) by the Vela Satellites.Up to now, they have been intensively studied for more than forty years since more and more GRBs are discovered(Qin et al.2021;Yuan et al.2022a;Liu et al.2022).Generally, GRBs are believed to be triggered by the death of massive stars or by the merger of binary compact stars.The empirical correlation between different parameters of GRBs is one of the present interesting objects.For instance, the correlation between Ep(the peak energy)and Eiso(the equivalent isotropic energy), i.e., the so-called Amati relation is investigated by Amati et al.(2002, 2009), Virgili et al.(2012), Azzam & Alothman (2013), Geng & Huang(2013) and Demianski et al.(2017).The correlation between Ep(the peak energy) and Lp(the peak luminosity), i.e., the socalled Yonetoku relation is investigated by Yonetoku et al.(2004), Ghirlanda et al.(2005) and Zhang et al.(2012).Yonetoku et al.(2010)and Tsutsui et al.(2013)have discussed both relations.Furthermore, Wang et al.(2020) has even discussed other more empirical correlations beyond the above relations.

    The redshift (z) is an important parameter of GRBs.Many people have studied the relation between z and other parameters.For example, Zhang et al.(2014a) investigated the correlations between z and Liso, Eiso, Ep,rest, Ep,obs(Ep,obs=Ep,rest/(1+z)) (also see Sakamoto et al.2011;Ukwatta et al.2012).Especially, they found a positive correlation between z and Lisofor the Swift GRBs.Wei &Gao(2003)and Zitouni et al.(2014)studied the z–Eisorelation and the z–Lisorelation.Moreover,the relation between z and Lphas also been investigated by many researchers (Lloyd-Ronning et al.2002; Goldstein 2012; Salvaterra et al.2012;Zhang et al.2014b; Zitouni et al.2018).

    The low-energy spectral index, α, is also an important parameter that characterizes the prompt emission of GRBs.Geng et al.(2018) have tried to derive the value of α through numerical simulations by considering the synchrotron emission mechanism.Especially, the correlation between α and Ephas been studied by many researchers(Gruber et al.2014;Li et al.2019; Duan & Wang 2020; Li 2022).Tang et al.(2019) also investigated the correlation between α and Eiso.

    The structure of this article is organized as follows.A detailed description of the selection of the data sample is provided in Section 2.The correlation between the low-energy spectral index and the redshift, and some other relations between various parameter pairs, are explored in Section 3.Finally, our conclusions and discussion are presented in Section 4.

    2.Sample

    GRBs detected by Swift and Fermi are used in this study.Two conditions are applied in selecting the appropriate GRBs.First, the redshift of the burst should be available.Second, the spectrum should be well defined.The time-averaged spectra of GRBs are usually fitted with three kinds of functions: a single power-law function, a cutoff power-law function, and the socalled Band Function (Band et al.1993).Most of the GRBs spectra can be well fitted by the Band function, which is expressed as

    where E is the photon energy.There are four parameters in this equation: the scaling factor (A), the low- and high-energy spectral indices (α and β, respectively), and the peak photon energy(Ep).In our notation,α and β are positive by using their absolute values.We have collected all the spectrum parameters of those Swift and Fermi GRBs with the redshift measured.

    Fermi has a very wide energy band, i.e., 8–35,000 keV.So,Fermi GRBs are usually best fitted by the Band function,which is represented by the lower-energy spectral index (α) and the high-energy spectral index (β).On the other hand, the Swift/BAT detector has a very narrow energy response of 15–150 keV so that Swift GRBs are generally best fitted by a single power-law function or by a cutoff power-law function.In these cases, the derived power-law index could be regarded as a useful representation of the low-energy spectral index(α),since it is measured in the soft γ-ray range.Note that for the Swift GRBs, the β parameter is completely unavailable.

    Figure 1.Swift sample on the plane.Here α is the lowenergy spectral index and z is the redshift.The solid line is the best fit result and the shaded region shows the corresponding 1σ range.

    For the Swift GRBs, the relevant data are acquired by inquiring on the NASA Swift website.5https://swift.gsfc.nasa.gov/archive/As a result, a total number of 316 GRBs are included in our Swift sample, all of which have the necessary redshift and spectrum data.The time span of these GRBs ranges from 2005 January 26, to 2023 January 16.

    For the Fermi GRBs, the data are collected mainly by consulting NASA’s HEASARC(the High Energy Astrophysics Science Archive Research Center) database.6https://heasarc.gsfc.nasa.gov/db-perl/W3Browse/As a useful supplement,24 bursts were taken from Jochen Greiner’s online GRB catalog.7https://www.mpe.mpg.de/~jcg/grbgen.htmlFinally,our Fermi sample consists of 80 GRBs.The time span of these Fermi GRBs ranges from 2008 September 5 to 2018 July 20.

    3.Correlations

    Figure 3.α vs.Ep(left panel)and Ep vs.z(right panel)for the Fermi GRBs.The solid lines correspond to the best fit results to the data points and the shaded regions show the corresponding 1σ ranges.Note that in the left panel,the isolated data point(GRB 120712A)on the top is not included in the linear fit since it is an obvious outlier.

    The Fermi GRBs have well-measured Epdata.So, in Figure 3, we plot them on the α ?Epplane and the Ep?z plane.We see that there is no obvious correlation either between α and Ep, or between Epand z.The results are also somewhat different from those of previous studies.For example, Geng & Huang (2013) argued that Epand z are positively correlated.Note that GRB 120 712A is again an obvious outlier in this figure and is not included in the fitting procedure.

    Since the peak time of the flux is an important stage of a GRB, we have also investigated the features of the peak flux parameters.For this purpose, we could only adopt the Fermi GRB sample, since peak flux parameters are not available for many Swift GRBs.Here, the low-energy spectral index at the peak flux of the burst is denoted as αpeak.Correspondingly,the high-energy spectral index and peak photon energy at the peak flux are denoted as βpeakand Epeak, respectively.

    Figure 4.The peak flux spectral indices plotted against the redshift for the Fermi GRB sample.The left panel shows the low-energy spectral index at the peak flux moment(αpeak)vs.the redshift.The right panel shows the corresponding high-energy spectral index(βpeak)vs.the redshift.The solid lines correspond to the best fit results to the data points and the shaded regions show the corresponding 1σ ranges.

    Figures 2 and 4 show that there is a weak correlation between the low-energy spectral index and the redshift.Especially, the α–z relation is much less significant than the αpeak–z relation.A natural speculation is that α and αpeakshould be positively connected, then the above two relations should be largely similar.The reason that leads to such a difference thus deserves to be examined.Figure 5 plots α against αpeakfor the Fermi sample.The solid line shows the case when α equals αpeak.We see that α and αpeakare not strictly connected, which could explain their different dependence on the redshift.It reflects the fact that the γ-ray spectrum is highly variable during a GRB.

    Figure 6 illustrates the relations between αpeak, Epeak, and z.There is a weak correlation between Epeakand z, which reads

    Figure 5.αpeak plotted vs.α for the Fermi GRB sample.The solid line corresponds to the case of α=αpeak.

    Figure 6.αpeak plotted vs.Epeak(left panel),and Epeak plotted vs.z(right panel)for the Fermi GRB sample.The solid lines correspond to the best fit results and the shaded regions show the corresponding 1σ ranges.

    Figure 7.The low-energy spectral index measured by Fermi (αF), plotted vs.the spectral index measured by Swift (αS).Note that only overlapping GRBs between the Fermi sample and the Swift sample are shown here.The solid line corresponds to the case of αF=αS.

    Swift/BAT has a relatively narrow passband, i.e.,15–150 keV.Therefore, the measured spectral index should correspond to the low-energy spectral index of the Band function.Some GRBs are simultaneously detected by Swift and Fermi satellites.It is then interesting to know whether the spectral index measured by Swift is consistent with that measured by Fermi.In Figure 7, we have screened out all the overlapping GRBs between the Swift sample and Fermi sample, and compared their spectral indices.Here, αSis the spectral index measured by Swift, while αFis the low-energy spectral index measured by Fermi.We see that αSand αFare not equal for each event.The former is systematically larger than the latter.Also, the data points are quite scattered.For these overlapping GRBs,we have also compared their αSwith their low-energy spectral index at the peak flux as measured by Fermi(αFpeak).The results are shown in Figure 8.Similarly,we see that αSagain is generally larger thanαFpeak.Figures 7 and 8 clearly show that different detectors could generate very different results for the spectrum of even the same GRB,which indicates that acquiring the spectra of GRBs is still a very difficult task.The different α ?z correlations of different GRB samples could thus be caused by the systematic distortion in measuring the spectral indices.

    Figure 8.The low-energy spectral index at the peak flux measured by Fermi(αFpeak), plotted vs.the spectral index measured by Swift (αS).Note that only overlapping GRBs between the Fermi sample and the Swift sample are shown here.The solid line corresponds to the case of

    4.Discussion and Conclusions

    In this study, we use the Swift GRBs and Fermi GRBs to explore the possible correlation between the low-energy spectral index and the redshift.For the Swift GRB sample, it is found that there is no correlation between α and z (see Figure 1).On the other hand, there is a weak correlation between α and z for the Fermi GRB sample(see Figure 2).The correlation is even more obvious when the peak flux spectrum is considered, i.e., when αpeakis plotted versus z (Figure 4).The different features of the two samples may be caused by the different energy responses of the two detectors.The energy band of Fermi is very wide(8–35,000 keV),which ensures that it can present a much better description of the spectra of the detected GRBs.However, the Swift/BAT has a very narrow energy response(15–150 keV).As a result,the spectra of Swift GRBs are usually best fitted by a single power-law function or by a cutoff power-law function.In these cases, the power-law spectral index may significantly deviate from the true lowenergy spectral index.This conjecture was confirmed when the spectra of the overlapping GRBs of the two samples were scrutinized.It is found that when a GRB is simultaneously detected by both Fermi and Swift, then the spectral index reported by Swift is usually quite different from the low-energy spectral index (α) reported by Fermi (Figures 7 and 8).It reflects the difficulty in spectral observations of GRBs.

    Acknowledgments

    This study was supported by the National Natural Science Foundation of China (grant Nos.12233002, 12041306,12147103, and U1938201), by the National SKA Program of China (No.2020SKA0120300), by the National Key R&D Program of China (2021YFA0718500), and by the Youth Innovations and Talents Project of Shandong Provincial Colleges and Universities (grant No.201909118).

    ORCID iDs

    国产高清视频在线播放一区| 国产成人a区在线观看| 成人无遮挡网站| 给我免费播放毛片高清在线观看| 日本黄色片子视频| 乱码一卡2卡4卡精品| 看黄色毛片网站| 欧美激情久久久久久爽电影| 亚洲中文字幕日韩| 亚洲电影在线观看av| 日韩欧美 国产精品| 亚洲真实伦在线观看| 久久亚洲精品不卡| 日韩欧美三级三区| 九色成人免费人妻av| 香蕉av资源在线| 99在线人妻在线中文字幕| 亚洲熟妇中文字幕五十中出| 床上黄色一级片| 亚洲内射少妇av| 成人漫画全彩无遮挡| 深夜精品福利| av福利片在线观看| 精品熟女少妇av免费看| 国产免费一级a男人的天堂| 国语自产精品视频在线第100页| 国产伦一二天堂av在线观看| 久久亚洲国产成人精品v| 青春草视频在线免费观看| 99久久精品一区二区三区| 国产久久久一区二区三区| 国产成人a区在线观看| 国产激情偷乱视频一区二区| 青春草视频在线免费观看| 久久久久久久久中文| 久久久久国产精品人妻aⅴ院| 两性午夜刺激爽爽歪歪视频在线观看| 少妇人妻一区二区三区视频| 校园人妻丝袜中文字幕| 精品午夜福利视频在线观看一区| 看十八女毛片水多多多| 少妇丰满av| 岛国在线免费视频观看| 亚洲久久久久久中文字幕| 国产成人freesex在线 | 男女视频在线观看网站免费| 成熟少妇高潮喷水视频| 国产黄片美女视频| 免费av毛片视频| 一区二区三区免费毛片| 一本精品99久久精品77| 你懂的网址亚洲精品在线观看 | 人人妻人人澡欧美一区二区| 在线观看美女被高潮喷水网站| 最新在线观看一区二区三区| 日韩国内少妇激情av| 亚洲自拍偷在线| 我要搜黄色片| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区免费观看 | 欧美一区二区亚洲| 极品教师在线视频| 看十八女毛片水多多多| 国产精品免费一区二区三区在线| 午夜精品在线福利| 看片在线看免费视频| 日韩欧美 国产精品| 精品久久久久久久久av| 欧美xxxx性猛交bbbb| 亚洲丝袜综合中文字幕| 婷婷精品国产亚洲av在线| 中文字幕熟女人妻在线| 麻豆乱淫一区二区| 天堂网av新在线| 亚洲最大成人中文| 亚洲中文字幕日韩| 午夜福利高清视频| 国产高清视频在线播放一区| 91午夜精品亚洲一区二区三区| www日本黄色视频网| 国产成人91sexporn| 色综合站精品国产| 俄罗斯特黄特色一大片| av卡一久久| 亚洲精品国产av成人精品 | 22中文网久久字幕| 少妇被粗大猛烈的视频| 亚洲国产欧洲综合997久久,| 日韩欧美免费精品| 插阴视频在线观看视频| 久久精品国产清高在天天线| 国产蜜桃级精品一区二区三区| 亚洲内射少妇av| 少妇猛男粗大的猛烈进出视频 | 真实男女啪啪啪动态图| 日韩欧美 国产精品| 成人特级av手机在线观看| 99热6这里只有精品| 97超碰精品成人国产| 日本与韩国留学比较| 午夜亚洲福利在线播放| 亚洲人成网站在线播| av福利片在线观看| 久久久久久久久久黄片| 国产麻豆成人av免费视频| 97超碰精品成人国产| 亚洲自拍偷在线| 欧美在线一区亚洲| 国产在线精品亚洲第一网站| 神马国产精品三级电影在线观看| 国产精品1区2区在线观看.| 深爱激情五月婷婷| 91久久精品国产一区二区成人| av卡一久久| 午夜老司机福利剧场| 成人性生交大片免费视频hd| 国产精品嫩草影院av在线观看| 午夜激情欧美在线| 亚洲av电影不卡..在线观看| 啦啦啦观看免费观看视频高清| 大香蕉久久网| 99热只有精品国产| 一级黄片播放器| 欧美高清成人免费视频www| 97碰自拍视频| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久久丰满| av.在线天堂| 国产一区二区在线av高清观看| 久久人人爽人人片av| 一个人看视频在线观看www免费| 亚洲欧美成人综合另类久久久 | 一进一出好大好爽视频| 一级毛片我不卡| 啦啦啦观看免费观看视频高清| 波多野结衣高清无吗| 超碰av人人做人人爽久久| 女人被狂操c到高潮| 亚洲av五月六月丁香网| 波多野结衣高清作品| 午夜激情福利司机影院| 亚洲最大成人中文| 亚洲国产欧洲综合997久久,| 一级av片app| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av免费在线观看| 一进一出抽搐动态| 伦理电影大哥的女人| 在线免费观看的www视频| 国产人妻一区二区三区在| 亚洲精华国产精华液的使用体验 | 亚洲国产精品成人综合色| 精品人妻一区二区三区麻豆 | 18禁裸乳无遮挡免费网站照片| 精品国内亚洲2022精品成人| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩卡通动漫| av在线老鸭窝| 日韩欧美精品v在线| 一区二区三区免费毛片| 免费av观看视频| 欧美bdsm另类| 成人av在线播放网站| 国产免费男女视频| 天堂动漫精品| 麻豆乱淫一区二区| 午夜日韩欧美国产| 九九在线视频观看精品| 久久人人精品亚洲av| 免费电影在线观看免费观看| 最近中文字幕高清免费大全6| 国产黄色视频一区二区在线观看 | 久久久久九九精品影院| 赤兔流量卡办理| 久久精品国产自在天天线| 亚洲欧美清纯卡通| 伦精品一区二区三区| 国产蜜桃级精品一区二区三区| 国产人妻一区二区三区在| 两性午夜刺激爽爽歪歪视频在线观看| 免费看a级黄色片| 国产一区亚洲一区在线观看| 在线观看美女被高潮喷水网站| 99久久精品国产国产毛片| 亚洲天堂国产精品一区在线| 亚洲成人av在线免费| 精品久久久久久久久亚洲| а√天堂www在线а√下载| 麻豆国产av国片精品| 中文字幕精品亚洲无线码一区| 国产在线精品亚洲第一网站| 欧美激情久久久久久爽电影| 一a级毛片在线观看| 嫩草影院新地址| 高清毛片免费观看视频网站| a级毛色黄片| 欧美日本视频| 亚洲真实伦在线观看| 中国国产av一级| 99久国产av精品国产电影| 99热这里只有是精品50| 不卡一级毛片| 色综合亚洲欧美另类图片| 俄罗斯特黄特色一大片| 国产精品一二三区在线看| 午夜日韩欧美国产| 婷婷精品国产亚洲av在线| 长腿黑丝高跟| 99久国产av精品国产电影| 乱码一卡2卡4卡精品| 亚洲av二区三区四区| 日韩精品有码人妻一区| 丰满乱子伦码专区| 热99re8久久精品国产| 搡老熟女国产l中国老女人| 毛片一级片免费看久久久久| 日本黄色片子视频| 日韩大尺度精品在线看网址| 日韩欧美在线乱码| 看免费成人av毛片| 亚洲第一区二区三区不卡| 日日啪夜夜撸| 草草在线视频免费看| 麻豆国产97在线/欧美| 毛片一级片免费看久久久久| 国产69精品久久久久777片| 啦啦啦观看免费观看视频高清| 日日摸夜夜添夜夜添av毛片| 网址你懂的国产日韩在线| 国产精品一区二区性色av| 国产精品无大码| 99热网站在线观看| 狂野欧美激情性xxxx在线观看| 一边摸一边抽搐一进一小说| 午夜福利成人在线免费观看| 亚洲最大成人中文| 免费看a级黄色片| 国产一区二区在线av高清观看| 99国产精品一区二区蜜桃av| 精品99又大又爽又粗少妇毛片| 天堂av国产一区二区熟女人妻| 国产精品1区2区在线观看.| 国产极品精品免费视频能看的| 97碰自拍视频| 一进一出好大好爽视频| 一级毛片我不卡| 天堂网av新在线| 精品人妻偷拍中文字幕| 欧美日韩乱码在线| 久久精品国产亚洲av天美| 婷婷精品国产亚洲av| 国产精品国产三级国产av玫瑰| 国产亚洲精品久久久com| 国产av麻豆久久久久久久| 我的老师免费观看完整版| 国产成人福利小说| 简卡轻食公司| 校园春色视频在线观看| 麻豆一二三区av精品| 人妻夜夜爽99麻豆av| 精品人妻视频免费看| 在线免费观看的www视频| 亚洲美女视频黄频| 草草在线视频免费看| 欧美性感艳星| 99在线视频只有这里精品首页| 欧美成人精品欧美一级黄| 国产精品电影一区二区三区| 看十八女毛片水多多多| 此物有八面人人有两片| 我的女老师完整版在线观看| 少妇裸体淫交视频免费看高清| 国内精品宾馆在线| 男女那种视频在线观看| 精品久久久久久久人妻蜜臀av| 精品不卡国产一区二区三区| 少妇丰满av| 噜噜噜噜噜久久久久久91| 给我免费播放毛片高清在线观看| 成年免费大片在线观看| 国产 一区 欧美 日韩| 免费看光身美女| 午夜a级毛片| 丰满乱子伦码专区| 欧美激情在线99| 国产视频内射| 亚洲国产日韩欧美精品在线观看| av在线蜜桃| 久久精品综合一区二区三区| 少妇人妻精品综合一区二区 | 观看美女的网站| 亚洲四区av| 精品午夜福利视频在线观看一区| 免费观看精品视频网站| 人妻制服诱惑在线中文字幕| 一进一出抽搐gif免费好疼| 久久国产乱子免费精品| 五月玫瑰六月丁香| 日本爱情动作片www.在线观看 | 小说图片视频综合网站| 男人舔奶头视频| 我的女老师完整版在线观看| 少妇裸体淫交视频免费看高清| 99在线视频只有这里精品首页| 99热这里只有精品一区| 久久久久久久久中文| 亚洲国产高清在线一区二区三| 美女大奶头视频| 女生性感内裤真人,穿戴方法视频| 国产精品久久视频播放| 在线看三级毛片| 国产高清三级在线| 欧美激情久久久久久爽电影| 天天躁夜夜躁狠狠久久av| 久久久久久伊人网av| 日本a在线网址| 久久精品夜色国产| 国产高清三级在线| 内射极品少妇av片p| 中文字幕av成人在线电影| 久久中文看片网| 日日干狠狠操夜夜爽| 最近2019中文字幕mv第一页| 国产aⅴ精品一区二区三区波| 欧美绝顶高潮抽搐喷水| 日韩一本色道免费dvd| 99热只有精品国产| av卡一久久| 男人狂女人下面高潮的视频| av专区在线播放| 全区人妻精品视频| 18禁黄网站禁片免费观看直播| 日本黄色片子视频| 在线播放国产精品三级| 内射极品少妇av片p| 国产精品久久久久久亚洲av鲁大| 免费av毛片视频| 日日摸夜夜添夜夜爱| 国产视频内射| 久久久久久久久久成人| 久久亚洲精品不卡| 久久6这里有精品| aaaaa片日本免费| 青春草视频在线免费观看| 全区人妻精品视频| 久久亚洲精品不卡| 国产黄色小视频在线观看| 国产大屁股一区二区在线视频| 国产极品精品免费视频能看的| 淫秽高清视频在线观看| a级毛色黄片| 欧美最黄视频在线播放免费| 变态另类成人亚洲欧美熟女| 婷婷色综合大香蕉| 深爱激情五月婷婷| 久久人人爽人人片av| 日韩一区二区视频免费看| 亚洲一区二区三区色噜噜| 日日撸夜夜添| 欧美在线一区亚洲| 国产v大片淫在线免费观看| av在线亚洲专区| av天堂在线播放| 九九热线精品视视频播放| 亚洲欧美中文字幕日韩二区| 久久久久久久亚洲中文字幕| 在线天堂最新版资源| 国产精品久久久久久精品电影| 性插视频无遮挡在线免费观看| 如何舔出高潮| 免费看光身美女| 亚洲精品日韩av片在线观看| 久久久久久久午夜电影| 亚洲国产色片| 人妻丰满熟妇av一区二区三区| 你懂的网址亚洲精品在线观看 | 男人狂女人下面高潮的视频| 免费av观看视频| 国产乱人视频| 国产精品日韩av在线免费观看| 亚洲va在线va天堂va国产| 内地一区二区视频在线| 亚洲专区国产一区二区| 成人漫画全彩无遮挡| 精品久久久久久久久久久久久| 99国产极品粉嫩在线观看| 18禁裸乳无遮挡免费网站照片| 中文在线观看免费www的网站| 黄色日韩在线| 色综合亚洲欧美另类图片| 欧美成人一区二区免费高清观看| 国内久久婷婷六月综合欲色啪| 女同久久另类99精品国产91| 99久久中文字幕三级久久日本| 男插女下体视频免费在线播放| 国产色爽女视频免费观看| 午夜福利在线观看免费完整高清在 | 看片在线看免费视频| 中文字幕av成人在线电影| 91久久精品国产一区二区三区| 精品无人区乱码1区二区| 日日摸夜夜添夜夜添av毛片| 亚洲成人精品中文字幕电影| 精品免费久久久久久久清纯| 欧美另类亚洲清纯唯美| 看十八女毛片水多多多| 精品一区二区免费观看| 成人无遮挡网站| 乱码一卡2卡4卡精品| 国产午夜福利久久久久久| 国产亚洲91精品色在线| 99在线视频只有这里精品首页| 国产精品野战在线观看| 久久精品人妻少妇| 欧美一区二区亚洲| 女的被弄到高潮叫床怎么办| 亚洲色图av天堂| 国产精品,欧美在线| 麻豆国产av国片精品| 看黄色毛片网站| 亚洲成人精品中文字幕电影| 亚洲七黄色美女视频| 欧美国产日韩亚洲一区| 精品熟女少妇av免费看| 天堂√8在线中文| 别揉我奶头~嗯~啊~动态视频| 午夜日韩欧美国产| 成人三级黄色视频| 性插视频无遮挡在线免费观看| 国产综合懂色| ponron亚洲| 俄罗斯特黄特色一大片| 极品教师在线视频| 白带黄色成豆腐渣| 国产精品免费一区二区三区在线| 久久久国产成人免费| 久久久欧美国产精品| 亚洲欧美日韩无卡精品| 欧美成人a在线观看| 黄色欧美视频在线观看| 国产精品久久久久久亚洲av鲁大| 免费观看人在逋| 久久久久久久久久久丰满| 成人特级黄色片久久久久久久| 女生性感内裤真人,穿戴方法视频| 成年免费大片在线观看| 精品福利观看| 十八禁网站免费在线| 在线免费十八禁| 亚洲成av人片在线播放无| 少妇被粗大猛烈的视频| 午夜免费激情av| 丝袜喷水一区| 久久欧美精品欧美久久欧美| av在线播放精品| 91久久精品国产一区二区三区| 欧美中文日本在线观看视频| 国产毛片a区久久久久| 日韩三级伦理在线观看| 最近的中文字幕免费完整| 亚洲最大成人中文| 91麻豆精品激情在线观看国产| 1024手机看黄色片| 国产亚洲精品av在线| 一区福利在线观看| 欧美色视频一区免费| 欧美激情国产日韩精品一区| 高清日韩中文字幕在线| 在线免费观看不下载黄p国产| 久久久久国产精品人妻aⅴ院| 男女做爰动态图高潮gif福利片| 亚洲国产色片| 少妇熟女aⅴ在线视频| 国产私拍福利视频在线观看| 非洲黑人性xxxx精品又粗又长| 99久久九九国产精品国产免费| 亚洲熟妇中文字幕五十中出| 美女高潮的动态| 你懂的网址亚洲精品在线观看 | 国产成人a区在线观看| 国产精品福利在线免费观看| 欧美成人一区二区免费高清观看| 国产在线男女| 久久精品国产亚洲av香蕉五月| 欧美色视频一区免费| 国产成人一区二区在线| 国产精品免费一区二区三区在线| 在线看三级毛片| 人人妻人人澡人人爽人人夜夜 | 又黄又爽又免费观看的视频| 亚洲18禁久久av| 久久草成人影院| 国产免费一级a男人的天堂| 亚洲av第一区精品v没综合| 日本免费一区二区三区高清不卡| 国产精品爽爽va在线观看网站| 日本三级黄在线观看| 此物有八面人人有两片| 在线观看午夜福利视频| 尾随美女入室| 国产精品日韩av在线免费观看| 国产 一区 欧美 日韩| 亚洲av美国av| 天堂影院成人在线观看| 人人妻人人澡欧美一区二区| 国产精华一区二区三区| 内射极品少妇av片p| 国产国拍精品亚洲av在线观看| 蜜桃久久精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 在线观看午夜福利视频| 欧美日韩国产亚洲二区| 国产男人的电影天堂91| 亚洲久久久久久中文字幕| 日韩精品青青久久久久久| 国产成人影院久久av| 精品少妇黑人巨大在线播放 | 久久精品国产鲁丝片午夜精品| 亚洲精品在线观看二区| 国模一区二区三区四区视频| 亚洲,欧美,日韩| 亚洲精品粉嫩美女一区| 国产乱人偷精品视频| 国产一区二区三区av在线 | 插阴视频在线观看视频| 免费看光身美女| 国产精品爽爽va在线观看网站| 国产高清三级在线| 在线观看一区二区三区| 国产精品一区www在线观看| 成人亚洲欧美一区二区av| 日本免费a在线| 美女被艹到高潮喷水动态| 香蕉av资源在线| 女的被弄到高潮叫床怎么办| 亚洲av中文av极速乱| 99久久精品国产国产毛片| 看十八女毛片水多多多| 欧美一区二区亚洲| 日韩一区二区视频免费看| 99久久中文字幕三级久久日本| 精品午夜福利视频在线观看一区| 波多野结衣高清无吗| 欧美色视频一区免费| 女同久久另类99精品国产91| 日日干狠狠操夜夜爽| 国产精品不卡视频一区二区| 亚洲内射少妇av| 又黄又爽又刺激的免费视频.| 亚洲欧美成人综合另类久久久 | 蜜臀久久99精品久久宅男| 国产片特级美女逼逼视频| 99视频精品全部免费 在线| 91在线精品国自产拍蜜月| 搡老熟女国产l中国老女人| 麻豆国产97在线/欧美| 日本一本二区三区精品| 久久婷婷人人爽人人干人人爱| 国产精品久久久久久久久免| av在线观看视频网站免费| 国产美女午夜福利| 国产精品一区二区性色av| 男插女下体视频免费在线播放| 国产黄片美女视频| 亚洲av第一区精品v没综合| 91在线观看av| 一级毛片电影观看 | 国产精品一区二区性色av| 最近手机中文字幕大全| 国产精品1区2区在线观看.| 舔av片在线| 久久久久久久久中文| 亚洲精品粉嫩美女一区| 黄色欧美视频在线观看| 黑人高潮一二区| 国产又黄又爽又无遮挡在线| 日韩精品有码人妻一区| 午夜爱爱视频在线播放| 精品一区二区三区视频在线观看免费| 97热精品久久久久久| av天堂中文字幕网| 精品免费久久久久久久清纯| 亚洲三级黄色毛片| 欧美精品国产亚洲| 亚洲欧美日韩高清在线视频| 久久久久久久久久黄片| 久久人妻av系列| 亚洲av美国av| 久久久久久久亚洲中文字幕| 国产精品国产三级国产av玫瑰| 老师上课跳d突然被开到最大视频| 精品一区二区免费观看| 久久久久久久久久久丰满| 日韩制服骚丝袜av| 床上黄色一级片| 大又大粗又爽又黄少妇毛片口| 十八禁网站免费在线| 人妻丰满熟妇av一区二区三区| 亚洲18禁久久av| 青春草视频在线免费观看| 哪里可以看免费的av片| 一级毛片aaaaaa免费看小| 精品久久国产蜜桃| 国产在线男女| 乱人视频在线观看| 国产精品99久久久久久久久| 少妇裸体淫交视频免费看高清| 熟妇人妻久久中文字幕3abv| 校园人妻丝袜中文字幕| .国产精品久久| 老司机影院成人| 亚洲成人精品中文字幕电影| 欧洲精品卡2卡3卡4卡5卡区| av免费在线看不卡| 免费av观看视频|