• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Predicting Gravitational Waves from Jittering-jets-driven Core Collapse Supernovae

    2024-01-16 12:18:22NoamSoker
    Research in Astronomy and Astrophysics 2023年12期

    Noam Soker

    Department of Physics, Technion, Haifa, 3200003, Israel; soker@physics.technion.ac.il

    Received 2023 August 11; revised 2023 September 23; accepted 2023 October 7; published 2023 October 26

    Abstract I estimate the frequencies of gravitational waves from jittering jets that explode core collapse supernovae(CCSNe)to crudely be 5–30 Hz, and with strains that might allow detection of Galactic CCSNe.The jittering jets explosion mechanism (JJEM) asserts that most CCSNe are exploded by jittering jets that the newly born neutron star (NS)launches within a few seconds.According to the JJEM, instabilities in the accreted gas lead to the formation of intermittent accretion disks that launch the jittering jets.Earlier studies that did not include jets calculated the gravitational frequencies that instabilities around the NS emit to have a peak in the crude frequency range of 100–2000 Hz.Based on a recent study, I take the source of the gravitational waves of jittering jets to be the turbulent bubbles(cocoons)that the jets inflate as they interact with the outer layers of the core of the star at thousands of kilometers from the NS.The lower frequencies and larger strains than those of gravitational waves from instabilities in CCSNe allow future,and maybe present,detectors to identify the gravitational wave signals of jittering jets.Detection of gravitational waves from local CCSNe might distinguish between the neutrino-driven explosion mechanism and the JJEM.

    Key words: gravitational waves – stars: neutron – stars: black holes – (stars:) supernovae: general – stars: jets

    1.Introduction

    Since the early days of gravitational wave detectors, core collapse supernovae (CCSNe) have been considered as potential sources of gravitational waves (, de Freitas Pacheco 2010), with intensified research in recent years (,Afle & Brown 2021; Gill et2022; Saiz-Pérez et2022).Gravitational waves from CCSNe are yet to be detected (,Szczepańczyk et2023).Recent studies concentrate on the expected gravitational waves from CCSNe during the explosion process (, Powell & Müller 2019; Lin et2023;Mezzacappa et2023;Pastor-Marcos et2023;Wolfe et al.2023;for more on the results of some studies see Section 3)and shortly after explosion,, in relation to magnetar formation(, Cheng et al.2023; Menon et al.2023).

    Studies that calculate the properties of gravitational waves from CCSN explosions ignore the role of jittering jets.The goal of this exploratory study is to estimate the expected contribution of jittering jets to gravitational wave emission from CCSNe.The motivation for this study results from recent studies that support the jittering jets explosion mechanism (JJEM) of CCSNe (,Soker 2022a, 2022c, 2023b; Shishkin & Soker 2023), and the very recent study by Gottlieb et al.(2023) who found that the turbulent cocoons that energetic relativistic jets form can be a strong source of gravitational waves.A cocoon is the convective bubble that a jet inflates, even if not relativistic (, Izzo et al.2019), and is filled with the shocked jet’s material and the shocked ambient material.Gottlieb et al.(2023) simulated relativistic and very energetic jets, ≈1052–1053erg, that are relevant to rare CCSNe where the pre-explosion core is rapidly rotating and the collapsing core is likely to form a black hole.There are many studies of such rare CCSNe that have fixed-axis jets; some do not consider gravitational waves from jets (e.g.,Khokhlov et al.1999; Aloy et al.2000; Maeda et al.2012;López-Cámara et al.2013; Bromberg & Tchekhovskoy 2016;Nishimura et al.2017; Wang et al.2019; Grimmett et al.2021; Gottlieb et al.2022; Perley et al.2022; Urrutia et al.2023a; Obergaulinger & Reichert 2023), while others do (e.g.,analytically Segalis & Ori 2001; Du et al.2018; Yu 2020;Leiderschneider & Piran 2021 and numerically Urrutia et al.2023b;Gottlieb et al.2023).The results of Gottlieb et al.(2023)are suitable to apply to the JJEM.

    In this study, however, I deal with non-relativistic jets where each jet-pair has a much lower-energy of ≈1050erg.The JJEM asserts that such jets explode most CCSNe (e.g., Soker 2010;Papish & Soker 2011; Soker 2020; Shishkin & Soker 2021;Soker 2023a).The newly born neutron star (NS), or in some cases a black hole,launches the jets as it accretes mass through an accretion disk.There are two sources of the angular momentum of the accretion disk (e.g., Soker 2023a).These are pre-collapse core rotation that has a fixed angular momentum axis, and the convective motion in the pre-collapse core (e.g., Papish &Soker 2014b; Gilkis & Soker 2015; Soker 2019; Shishkin &Soker 2022) or envelope (e.g., Quataert et al.2019; Antoni &Quataert 2022, 2023) that has a stochastically varying angular momentum axis.When the pre-collapse core angular momentum is low the accretion disk has rapidly varying axis direction.Each accretion episode through a given accretion disk lasts for a limited period of time and leads to one jet-launching episode of two opposite jets.A recently released James Webb Space Telescope (JWST) image hints at a point-symmetric structure in the ejecta of SN 1987A,as predicted by the JJEM(Soker 2023c).

    The convective fluctuations serve as seed perturbations that are amplified by instabilities behind the stalled shock,which is at ?100?150 km from the newly born NS.Namely, the same instabilities that give rise to gravitational waves in the frame of the neutrino-driven explosion mechanism (e.g., Mezzacappa et al.2020),which does not include jets,exist also in the JJEM.The JJEM has in addition the jittering jets that inflate turbulent bubbles (cocoons) that might emit gravitational waves according to the new results of Gottlieb et al.(2023).Note that the jittering jets in the JJEM result from the termination of accretion disks and the formation of new accretion disks.This is different from the jittering around a precession angle of a long-lived accretion disk as studied by, e.g., Katz (2022).

    In the present, still exploratory, study I present the first prediction, although very crude, for gravitational waves in the frame of the JJEM.I do this by appropriately scaling the recent results that Gottlieb et al.(2023) obtained for gravitational waves from much more energetic jets than the jittering jets(Section 2).I then present the general characteristic of the strain of JJEM-driven CCSNe (Section 3).I summarize the results(Section 4)and strongly encourage simulations of gravitational waves from jittering jets in CCSNe.

    2.Estimating Gravitational Waves from Jittering Jets

    The calculation of gravitational waves by CCSNe as expected in the JJEM requires very demanding three-dimensional hydrodynamical simulations.In this preliminary study I make crude estimates by scaling the results of Gottlieb et al.(2023) whoconduct simulationsof long-lived relativistic jets with energieserg.

    In the JJEM the jets are relatively short-lived and have a typical velocity of 0.3–0.5c (e.g., Papish & Soker 2014a;indeed,Guetta et al.2020 claim that neutrino observations limit the jets in most cases to be non-relativistic).In an explosion process there are ≈5–30 jet-launching episodes, with a typical activity time of each episode of?0.01–0.1s,anda typicalenergy ofthe two jets in each episodeoferg(Papish & Soker 2014a).

    Gottlieb et al.(2023)estimate the range of frequencies of the gravitational waves when the jets’axis is at a large angle to the line of sight (off-axis) to be betweenandwhere △tjcis the time the jets energize the cocoons, csis the sound speed, and △rshis the width of the shell formed by the shock.For their simulations, this range is≈0.1–2000 Hz.The on-axis emission, i.e., when the jets’ axis is at a very small angle to the line of sight, has a strain amplitude that is more than an order of magnitude smaller than for the off-axis emission and the strain amplitude peaks at frequencies of 10–100 Hz.I note that the simulations by Urrutia et al.(2023b),who study gravitational waves from jets in gamma-ray bursts but do not concentrate on turbulence,yield different spectra and lower strains.

    Figure 1.Density (left column with a color coding in logarithmic scale and units of g cm?3)and temperature(right column in log scale in units of K)maps at three times during the three-dimensional hydrodynamical simulation of jittering jets taken from Papish&Soker(2014b).There are three jet-launching episodes,each composed of two opposite jets,one episode after the other with activity times of 0–0.05 s in direction 1 in the lower panel, 0.05–0.1 s in direction 2,and 0.1–0.15 s in direction 3.I added double-lined arrows to point out the two opposite masses at the cocoon(bubble)head.While the first jet-pair inflates axisymmetric cocoons, the following cocoons largely deviate from axisymmetry.Velocity is proportional to the arrow length on the right column,with the inset showing an arrow for 30,000 km s ?1.

    Figure 2.A figure from Mezzacappa et al.(2023) to which I added a crude estimate of the characteristic spectrum of hf?1/2 from jittering jets in a CCSN at a distance of D=10 kpc(the horseshoe-shaped yellow zone).The signal in yellow is for one jet-launching episode.If several jet-launching episodes are considered to inflate only two opposite large bubbles(lower panel of Figure 1)then the strain will be larger, as it is about the sum of these episodes.Other marks are as in the original figure.The blue line is the calculation by Mezzacappa et al.(2023) of the characteristic gravitational wave strain from a CCSN of a 15M⊙stellar model.The five other lines represent the sensitivity curves of gravitational wave detectors: Advanced Laser Interferometer Gravitational Observatory (Advanced LIGO), Advanced VIRGO, and Kamioka Gravitational Wave Detector (KAGRA) that are current-generation gravitational wave detectors, and the more sensitive next-generation detectors,Cosmic Explorer and Einstein Telescope.The predicted full gravitational wave spectrum includes both the contributions from the regions near the NS that exist both in the JJEM and in the neutrino-driven explosion mechanism (blue line),and the contribution of the jittering jets.

    To scale for one pair of jittering jets I consider the threedimensional simulations by Papish & Soker (2014b).They simulated three pairs of jittering jets that have their axes on the same plane, such that each jet-launching episode lasts for 0.05 s.In Figure 1 I present the density and temperature maps in the jittering plane of these jets.In each jet-launching episode the two opposite jets are seen as two opposite high density(red color on the left column) strips touching the center.While the first jet-pair inflates axisymmetric cocoons (bubbles), the second and third jet-pairs inflate non-axisymmetric bubbles.This is seen by the compressed gas at the head of the cocoon(bubble) that I point out with the double-lined arrows.

    The relatively small ratio ofthat I find here shows that the typical spectrum of the gravitational waves of jittering jets is qualitatively different from the case that Gottlieb et al.(2023) study.In the case of the JJEM, I expect the spectrum to be in the narrow range of

    As seen in Figure 1,the size of the cocoon is smaller than the typical wavelength of ≈20,000 km, which makes phase cancellation very small.

    Scaling Equation(2) of Gottlieb et al.(2023) for the strain amplitude for one pair of jets out of many pairs in the JJEM gives

    I also consider the following quantity that is used in the study of gravitational waves from CCSNe (e.g., Mezzacappa et al.2023)

    where I scaled with the expected frequency range for jittering jets from Equation (1).

    I note that Equations (2) and (3) treat each jet-launching episode as an independent event.If several episodes are considered to inflate only two opposite large bubbles (lower panel of Figure 1) then the energy in the scaling of the equations should be the sum of several jet-launching episodes.Namely, the scaling energy should be ?few×1050to ?1051leading to a strain larger by a factor of a few to ten.

    3.Identifciation of Gravitational Waves from Jittering Jets

    Several papers calculated the gravitational wave properties from CCSNe when jets are not included (e.g., Radice et al.2019; Andresen et al.2021; Mezzacappa et al.2023), i.e., in the frame of the delayed neutrino explosion mechanism (e.g.,Bethe & Wilson 1985; Heger et al.2003; Janka 2012;Nordhaus et al.2012; Müller et al.2019; Fujibayashi et al.2021;Boccioli et al.2022;Nakamura et al.2022;Olejak et al.2022).Mezzacappa et al.(2020), for example, find that lowfrequency emission, ?200 Hz, is emitted by the neutrinodriven convection and the standing accretion shock instability in the gain layer behind the stalled shock,while high-frequency emission, ?200Hz, is emitted by convection in the proto-NS.These studies find that the emission is mainly at frequencies of≈10–2000 Hz with larger strain amplitudes at frequencies of≈100–1000 Hz (e.g., Srivastava et al.2019).

    Figure 3.The gravitational wave strain times distance as a function of time during the early explosion process.The upper panel is a schematic presentation of a possible waveform from jittering jets.The typical amplitude and frequency are according to Equations(2)and(1),respectively.The double-headed arrows present the contributions of four jet-launching episodes,E1–E4.The lower panel is from Mezzacappa et al.(2023)for calculations based on a simulation that does not include jets of an exploding stellar model of 15M⊙.

    The gain region and the convection in the proto-NS exist also in the JJEM.Neutrino heating plays roles also in the JJEM(Soker 2022b).Therefore, the contributions of the gain region and the proto-NS to gravitational waves in the JJEM are similar to those in the delayed neutrino explosion mechanism.In the JJEM there is the additional contribution of the cocoons that the jets inflate in the core and envelope of the exploding star.In Section 2,I crudely estimated this contribution for jittering jets interacting with the core of the exploding star.In Figure 2, I present results from Mezzacappa et al.(2023).The result is of the characteristic gravitational wave strain from a CCSN in the frame of the delayed neutrino explosion mechanism of a 15M⊙stellar model.I added my crude estimate of a typical contribution of jittering jets as the horseshoe-shaped yellow region on the graph.The frequency range is by Equation (1)and the strain is by Equation (3) and with the same scaling.

    The peak of the contribution of the jittering jets is at much lower frequencies than the peak of the other components of CCSNe.In addition, there will be variations with time as the jittering jets are active intermittently.As said, simulations of the JJEM are highly demanding because the calculations of gravitational waves require high-resolution simulations in order to resolve the convection in the cocoon and the head of the jetcore interaction.At this point I only present the possible schematic behavior of the strain as a function of time due to the contribution of jittering jets.In the upper panel of Figure 3, I schematically present such a gravitational wave signal due only to jittering jets.The frequency varies around ?16 Hz by Equation (1), and the typical value of the varying strain is by Equation(2)and with the same scaling.I describe the distance times the strain of four jet-launching episodes (but more are expected at a later time until the star explodes).Over the time period 0.2–0.7 s,the average frequency is 16 Hz.As commonly done, I take t=0 at the bounce of the shock wave from the newly born NS.There is some time delay until instabilities start to feed the intermittent accretion disks that launch the jets.These instabilities give rise to high-frequency-gravitational waves (e.g., Radice et al.2019; Andresen et al.2021).In the lower panel of Figure 3,I present one figure from Mezzacappa et al.(2023) that shows their calculation for the gravitational wave of a CCSN of a 15M⊙stellar model.The expected signal is the sum of all contributions.

    My crude estimate of gravitational waves from jittering jets shows that their signal is qualitatively different than that of the other components that are close to the NS, ?100 km.The jittering jets add long period modulations to the short-period waves from the other components.For a nearby CCSN, even the present Advanced LIGO detector might be able to separate the signal of the jittering jets from the other components.This depends on the signal-to-noise ratio that should be calculated with future simulations of jittering jets.Future detectors will be able to do so for CCSNe in the Local Group, at the same rate that they occur in the Local Group, about two CCSNe per century (e.g., Rozwadowska et al.2021).

    4.Summary

    Based on the very recent results by Gottlieb et al.(2023),which I scaled from long-lasting energetic relativistic jets in super-energetic CCSNe to short-lived low-energy non-relativistic jets in common CCSNe, I concluded that jittering jets lead to detectable gravitational wave signals.The source of the gravitational waves is the turbulence in the cocoons that the jets inflate (Figure 1).Whether present detectors can reveal the gravitational wave signals of jittering jets depends on the signal-to-noise ratio that simulations of jittering jets should calculate, and of course on the distance to the CCSN.Future detectors will be able to reveal the jittering jets signal from CCSNe in the Local Group (Figure 2), at a rate of about two per century.

    The frequencies of the expected gravitational wave signals from jittering jets are lower than the other components of CCSNe, as I mark by the yellow horseshoe-shaped region in Figure 2.I schematically present a gravitational wave signal from jittering jets in the upper panel of Figure 3,and compare it with calculations from a CCSN simulation that includes no jets from Mezzacappa et al.(2023).The signal from jittering jets can be clearly distinguished from the other gravitational wave sources in CCSNe (depending on the signal-to-noise ratio and the distance of the CCSN).

    This, still exploratory, study calls for the performance of highly demanding simulations of jittering jets and the calculation of their gravitational wave signals.The simulations must be of very high resolution as to resolve the turbulence in the cocoon.

    Because I expect jittering jets to explode most CCSNe, my prediction for the gravitational wave signals from nearby CCSNe differs from the prediction of studies that include no jets.

    Acknowledgments

    This research was supported by a grant from the Israel Science Foundation (769/20).

    ORCID iDs

    亚洲欧美日韩无卡精品| 91在线精品国自产拍蜜月| 亚洲四区av| 一级av片app| 免费少妇av软件| 黄色配什么色好看| 2021天堂中文幕一二区在线观| 亚洲自偷自拍三级| 能在线免费看毛片的网站| 久久人人爽人人片av| 亚洲在线观看片| av福利片在线观看| 亚洲精品乱久久久久久| 日本欧美国产在线视频| 黄色欧美视频在线观看| 国产成人精品福利久久| 久久久久精品久久久久真实原创| 在线观看免费高清a一片| 美女高潮的动态| 少妇的逼水好多| 亚洲av日韩在线播放| 高清日韩中文字幕在线| 丰满少妇做爰视频| 丝瓜视频免费看黄片| 不卡视频在线观看欧美| 日韩av不卡免费在线播放| 黑人高潮一二区| 大片免费播放器 马上看| 国产精品蜜桃在线观看| 亚洲欧美日韩东京热| av播播在线观看一区| 国国产精品蜜臀av免费| 熟女人妻精品中文字幕| 少妇的逼水好多| 国产爱豆传媒在线观看| 国产亚洲最大av| 简卡轻食公司| 国产在线男女| 久久久午夜欧美精品| 日本猛色少妇xxxxx猛交久久| 午夜免费激情av| 久久精品国产亚洲av天美| 久久久久国产网址| 国内揄拍国产精品人妻在线| 97超视频在线观看视频| 精品不卡国产一区二区三区| 乱码一卡2卡4卡精品| 久久久久久久亚洲中文字幕| 国产在视频线在精品| 九九爱精品视频在线观看| 国产精品国产三级国产专区5o| 久久久久精品性色| 99热6这里只有精品| 毛片女人毛片| 日韩欧美三级三区| 国产91av在线免费观看| 啦啦啦啦在线视频资源| 男人狂女人下面高潮的视频| 精品久久久久久久久久久久久| 欧美97在线视频| .国产精品久久| 国产不卡一卡二| 综合色丁香网| 亚洲一区高清亚洲精品| 亚洲无线观看免费| av播播在线观看一区| 国产亚洲午夜精品一区二区久久 | 色哟哟·www| 日韩亚洲欧美综合| 亚洲av中文字字幕乱码综合| 国产乱人视频| 日韩强制内射视频| 99热全是精品| 久久鲁丝午夜福利片| 欧美日韩在线观看h| 精品久久国产蜜桃| 国产精品久久视频播放| 六月丁香七月| 国产精品av视频在线免费观看| 91av网一区二区| 亚洲国产精品专区欧美| 久久久久精品久久久久真实原创| 国产三级在线视频| 国产极品天堂在线| 亚洲av国产av综合av卡| 国产午夜精品久久久久久一区二区三区| 国产伦精品一区二区三区视频9| 精品人妻视频免费看| 美女黄网站色视频| 最近视频中文字幕2019在线8| 大片免费播放器 马上看| 亚洲人与动物交配视频| 亚洲国产成人一精品久久久| 亚洲人与动物交配视频| 欧美成人精品欧美一级黄| 午夜激情福利司机影院| 亚洲国产日韩欧美精品在线观看| 蜜臀久久99精品久久宅男| 亚洲最大成人av| 国产乱来视频区| 日韩成人伦理影院| 又大又黄又爽视频免费| 2021少妇久久久久久久久久久| 国产在视频线在精品| 国产熟女欧美一区二区| 亚洲欧洲日产国产| 亚洲精品中文字幕在线视频 | 久久精品国产自在天天线| 91久久精品国产一区二区成人| 亚洲美女搞黄在线观看| 大话2 男鬼变身卡| 国产精品日韩av在线免费观看| 国产麻豆成人av免费视频| 欧美高清成人免费视频www| 亚洲精品视频女| 亚洲av一区综合| 免费看av在线观看网站| 亚洲成人av在线免费| 日韩三级伦理在线观看| 国产精品国产三级国产专区5o| 国产午夜精品论理片| 美女大奶头视频| 两个人视频免费观看高清| 九九爱精品视频在线观看| 欧美区成人在线视频| 国产成人免费观看mmmm| 狂野欧美白嫩少妇大欣赏| 在线播放无遮挡| 日韩欧美精品v在线| 亚洲欧美日韩卡通动漫| 成人美女网站在线观看视频| 一区二区三区高清视频在线| 国产综合精华液| 欧美 日韩 精品 国产| 国产精品.久久久| 菩萨蛮人人尽说江南好唐韦庄| 插阴视频在线观看视频| 日韩电影二区| 久久精品久久久久久噜噜老黄| 好男人视频免费观看在线| 在线观看人妻少妇| 亚洲av中文av极速乱| 99九九线精品视频在线观看视频| 日本三级黄在线观看| 日本免费在线观看一区| 丰满乱子伦码专区| 中文字幕免费在线视频6| 波野结衣二区三区在线| 色综合站精品国产| 一级av片app| 最近中文字幕2019免费版| 国产精品av视频在线免费观看| 热99在线观看视频| 色尼玛亚洲综合影院| 亚洲人成网站高清观看| 免费黄频网站在线观看国产| www.av在线官网国产| 国内精品美女久久久久久| 日本午夜av视频| 亚洲精品成人久久久久久| 精品久久久久久电影网| 搡老妇女老女人老熟妇| 亚洲欧美一区二区三区国产| 国产高清三级在线| 免费大片黄手机在线观看| 亚洲精品视频女| 色哟哟·www| 国产精品嫩草影院av在线观看| 成年av动漫网址| 国产午夜精品论理片| 国产永久视频网站| 国产欧美另类精品又又久久亚洲欧美| 视频中文字幕在线观看| 国产片特级美女逼逼视频| 只有这里有精品99| 久久国产乱子免费精品| 青青草视频在线视频观看| 成年av动漫网址| 国内精品美女久久久久久| or卡值多少钱| 真实男女啪啪啪动态图| 日日啪夜夜撸| 亚洲va在线va天堂va国产| 秋霞伦理黄片| 日本wwww免费看| 国产精品嫩草影院av在线观看| 在线播放无遮挡| 热99在线观看视频| 亚洲精品第二区| 国产精品1区2区在线观看.| 亚洲av福利一区| 韩国高清视频一区二区三区| 免费观看av网站的网址| 免费大片18禁| 国产免费又黄又爽又色| 看非洲黑人一级黄片| 美女cb高潮喷水在线观看| 看黄色毛片网站| 日韩精品有码人妻一区| 秋霞在线观看毛片| 免费观看在线日韩| 国产黄片视频在线免费观看| 80岁老熟妇乱子伦牲交| 久久久久久久久大av| 水蜜桃什么品种好| 精品不卡国产一区二区三区| 搡老妇女老女人老熟妇| 免费观看精品视频网站| 久久久成人免费电影| 最近的中文字幕免费完整| 欧美不卡视频在线免费观看| 狂野欧美激情性xxxx在线观看| 丝瓜视频免费看黄片| 91久久精品电影网| 亚洲婷婷狠狠爱综合网| 欧美激情国产日韩精品一区| 国产精品三级大全| 日韩欧美国产在线观看| 哪个播放器可以免费观看大片| 午夜免费激情av| 麻豆成人av视频| 亚洲国产欧美在线一区| 直男gayav资源| 日韩av在线免费看完整版不卡| 日韩av在线大香蕉| 久久久久免费精品人妻一区二区| 2018国产大陆天天弄谢| 久久精品国产亚洲av天美| 日韩一本色道免费dvd| 两个人视频免费观看高清| 免费观看精品视频网站| 免费av毛片视频| 午夜激情欧美在线| 国产成人精品久久久久久| 在线观看美女被高潮喷水网站| 老师上课跳d突然被开到最大视频| 久久久午夜欧美精品| 亚洲国产最新在线播放| av在线亚洲专区| 免费不卡的大黄色大毛片视频在线观看 | 国产单亲对白刺激| 男女边摸边吃奶| 国产av国产精品国产| 精品一区二区三卡| 久久99热这里只有精品18| 欧美xxxx性猛交bbbb| 网址你懂的国产日韩在线| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| 午夜福利高清视频| 国产在视频线精品| 色综合色国产| 欧美一区二区亚洲| 97超碰精品成人国产| 国产 亚洲一区二区三区 | 精品人妻熟女av久视频| 国产有黄有色有爽视频| 一个人观看的视频www高清免费观看| 午夜免费观看性视频| 亚洲av成人精品一二三区| 非洲黑人性xxxx精品又粗又长| 久久久久久久久久人人人人人人| 精品一区在线观看国产| 国产色婷婷99| 高清日韩中文字幕在线| 蜜桃久久精品国产亚洲av| 午夜日本视频在线| 精品一区二区三区视频在线| 日本免费在线观看一区| 成人无遮挡网站| 国产精品99久久久久久久久| 激情五月婷婷亚洲| 免费黄频网站在线观看国产| 婷婷六月久久综合丁香| 国产精品蜜桃在线观看| 亚洲欧美精品专区久久| 国产精品美女特级片免费视频播放器| 国产免费福利视频在线观看| 国模一区二区三区四区视频| 看免费成人av毛片| av在线天堂中文字幕| 亚洲在线观看片| 成人国产麻豆网| 天堂俺去俺来也www色官网 | 婷婷色综合www| 免费看光身美女| 精品久久国产蜜桃| 精品一区二区三卡| 亚洲av免费在线观看| 特大巨黑吊av在线直播| 人人妻人人澡欧美一区二区| 国产黄色视频一区二区在线观看| 中文天堂在线官网| 亚洲最大成人手机在线| 精品不卡国产一区二区三区| 性插视频无遮挡在线免费观看| 日韩在线高清观看一区二区三区| 国产黄a三级三级三级人| 99久久人妻综合| 亚洲欧美精品专区久久| 人妻系列 视频| 永久网站在线| 18禁裸乳无遮挡免费网站照片| 波多野结衣巨乳人妻| 久久久久精品久久久久真实原创| 大片免费播放器 马上看| 丝袜喷水一区| 黄片wwwwww| 亚洲精品成人av观看孕妇| 人人妻人人澡人人爽人人夜夜 | 亚洲乱码一区二区免费版| 2022亚洲国产成人精品| 亚洲综合色惰| 国产精品熟女久久久久浪| av专区在线播放| 日韩人妻高清精品专区| 久久久精品欧美日韩精品| 亚洲精品中文字幕在线视频 | 99久久精品国产国产毛片| 国产乱人偷精品视频| 永久免费av网站大全| 国产高清国产精品国产三级 | 久久久国产一区二区| 天堂俺去俺来也www色官网 | 五月天丁香电影| 日韩一区二区视频免费看| 亚洲av国产av综合av卡| 人妻少妇偷人精品九色| 日本免费在线观看一区| 六月丁香七月| 欧美不卡视频在线免费观看| 69av精品久久久久久| 免费看光身美女| 听说在线观看完整版免费高清| 欧美97在线视频| 丰满人妻一区二区三区视频av| 成人亚洲精品av一区二区| 中文欧美无线码| 最近2019中文字幕mv第一页| 午夜福利网站1000一区二区三区| 亚洲最大成人手机在线| 成年女人看的毛片在线观看| 免费观看的影片在线观看| 一个人看的www免费观看视频| 国产黄片视频在线免费观看| 日韩,欧美,国产一区二区三区| 97在线视频观看| 青春草视频在线免费观看| 亚洲精品乱久久久久久| 观看免费一级毛片| 国产伦精品一区二区三区视频9| 91精品国产九色| 亚洲乱码一区二区免费版| 国产精品嫩草影院av在线观看| 美女脱内裤让男人舔精品视频| 卡戴珊不雅视频在线播放| 欧美激情国产日韩精品一区| 校园人妻丝袜中文字幕| 一个人看视频在线观看www免费| 亚洲av电影在线观看一区二区三区 | 亚洲丝袜综合中文字幕| 亚洲内射少妇av| 国产免费又黄又爽又色| 国产国拍精品亚洲av在线观看| 中文在线观看免费www的网站| 九九久久精品国产亚洲av麻豆| 午夜福利成人在线免费观看| 在线观看一区二区三区| 亚洲久久久久久中文字幕| 国产一区二区在线观看日韩| 久久久久久久大尺度免费视频| 久久国产乱子免费精品| 中文字幕亚洲精品专区| 少妇丰满av| 亚洲国产成人一精品久久久| 国产不卡一卡二| 欧美日韩亚洲高清精品| 亚洲欧洲国产日韩| 国产乱人偷精品视频| 日韩制服骚丝袜av| 日韩欧美国产在线观看| 777米奇影视久久| 亚洲三级黄色毛片| 97在线视频观看| 亚洲av中文字字幕乱码综合| or卡值多少钱| 色5月婷婷丁香| 一级二级三级毛片免费看| 日韩在线高清观看一区二区三区| 美女xxoo啪啪120秒动态图| 中国美白少妇内射xxxbb| 男女国产视频网站| 日韩成人伦理影院| 搡老妇女老女人老熟妇| 国产精品.久久久| 一个人观看的视频www高清免费观看| 黄色一级大片看看| 午夜福利在线观看吧| 亚洲成人av在线免费| 一级毛片我不卡| 九九在线视频观看精品| 久久国内精品自在自线图片| 国产精品一区二区性色av| 好男人在线观看高清免费视频| 国产免费一级a男人的天堂| 精品一区二区三区视频在线| 日韩一本色道免费dvd| 亚洲精品第二区| 蜜臀久久99精品久久宅男| 色视频www国产| 亚洲欧美精品专区久久| 亚洲国产成人一精品久久久| 精品久久久久久电影网| 99热这里只有是精品50| 麻豆国产97在线/欧美| 久久久精品免费免费高清| 一级a做视频免费观看| 亚洲人成网站在线观看播放| 国产综合精华液| 国产伦一二天堂av在线观看| 搡老妇女老女人老熟妇| 久久久久久久久久人人人人人人| 2021少妇久久久久久久久久久| 中文天堂在线官网| 国产69精品久久久久777片| 亚洲熟女精品中文字幕| 久久精品国产亚洲av天美| 国产精品国产三级国产av玫瑰| 欧美一级a爱片免费观看看| 久久精品综合一区二区三区| 麻豆成人av视频| 亚洲国产精品成人综合色| 美女脱内裤让男人舔精品视频| 精品欧美国产一区二区三| 91久久精品电影网| 成人鲁丝片一二三区免费| 日本午夜av视频| 亚洲av在线观看美女高潮| 日韩欧美三级三区| 中文字幕av在线有码专区| 午夜亚洲福利在线播放| 精品不卡国产一区二区三区| 能在线免费观看的黄片| 久久国产乱子免费精品| 亚洲天堂国产精品一区在线| 夫妻午夜视频| 亚洲最大成人中文| 一级毛片我不卡| 国产高潮美女av| 99热这里只有是精品在线观看| 日韩中字成人| 国产亚洲av片在线观看秒播厂 | videos熟女内射| 日韩av免费高清视频| 国产又色又爽无遮挡免| 丝袜美腿在线中文| 亚洲欧美精品自产自拍| 日韩一区二区三区影片| 亚洲美女视频黄频| 日韩电影二区| 亚洲精品久久午夜乱码| 国产精品久久久久久久电影| 高清在线视频一区二区三区| 爱豆传媒免费全集在线观看| 97超碰精品成人国产| 国产av国产精品国产| 在线天堂最新版资源| 久久久久网色| 街头女战士在线观看网站| 亚洲精品乱码久久久v下载方式| 国产精品人妻久久久影院| 免费av观看视频| 国产av国产精品国产| av.在线天堂| 久久精品夜色国产| 26uuu在线亚洲综合色| 日本一本二区三区精品| 亚洲av电影在线观看一区二区三区 | 国产老妇女一区| 在线免费十八禁| 亚洲欧美精品专区久久| 天堂影院成人在线观看| 91久久精品国产一区二区三区| 免费大片黄手机在线观看| 国产亚洲av嫩草精品影院| 大陆偷拍与自拍| 最后的刺客免费高清国语| 一个人看的www免费观看视频| 亚洲精品久久午夜乱码| 97超碰精品成人国产| 高清av免费在线| 美女被艹到高潮喷水动态| 国产成人精品婷婷| 成人美女网站在线观看视频| 日韩av免费高清视频| 欧美变态另类bdsm刘玥| 国产亚洲91精品色在线| 又爽又黄a免费视频| 亚洲一级一片aⅴ在线观看| 在线观看人妻少妇| 日本色播在线视频| 久久精品国产亚洲网站| 日产精品乱码卡一卡2卡三| 天堂中文最新版在线下载 | 99热这里只有精品一区| 大话2 男鬼变身卡| 日本一二三区视频观看| 亚洲最大成人中文| 亚洲成人中文字幕在线播放| 久久国内精品自在自线图片| 特级一级黄色大片| 精品久久久精品久久久| 亚洲真实伦在线观看| 一级毛片我不卡| 神马国产精品三级电影在线观看| 亚洲久久久久久中文字幕| 精品久久久久久电影网| 国产又色又爽无遮挡免| 一区二区三区免费毛片| 高清午夜精品一区二区三区| 美女高潮的动态| 99久久中文字幕三级久久日本| 老师上课跳d突然被开到最大视频| 综合色av麻豆| 色网站视频免费| 一级毛片我不卡| 亚洲真实伦在线观看| 极品少妇高潮喷水抽搐| xxx大片免费视频| 日韩国内少妇激情av| 在现免费观看毛片| 两个人的视频大全免费| 亚洲av不卡在线观看| 久久精品久久久久久噜噜老黄| 免费看日本二区| 在线观看一区二区三区| 国产高清有码在线观看视频| 午夜精品国产一区二区电影 | 看黄色毛片网站| 青春草亚洲视频在线观看| 一级毛片aaaaaa免费看小| 少妇的逼好多水| 精品亚洲乱码少妇综合久久| 在线观看一区二区三区| av黄色大香蕉| 搡女人真爽免费视频火全软件| 久久久a久久爽久久v久久| freevideosex欧美| 国产精品伦人一区二区| 欧美bdsm另类| 成年av动漫网址| 最近最新中文字幕免费大全7| 99久久人妻综合| 国产精品人妻久久久影院| 真实男女啪啪啪动态图| 国产精品av视频在线免费观看| av黄色大香蕉| 99久久精品热视频| 亚洲成人一二三区av| 国产精品福利在线免费观看| 99热6这里只有精品| 亚洲欧美一区二区三区黑人 | 91aial.com中文字幕在线观看| 晚上一个人看的免费电影| 在线a可以看的网站| 成人无遮挡网站| 亚洲无线观看免费| 国产黄色小视频在线观看| 女人久久www免费人成看片| 69av精品久久久久久| 国产精品一区二区在线观看99 | 国产麻豆成人av免费视频| 久久久久久九九精品二区国产| 91精品伊人久久大香线蕉| 亚洲在久久综合| 久久6这里有精品| 国产精品.久久久| 69av精品久久久久久| 高清午夜精品一区二区三区| 亚洲高清免费不卡视频| 欧美区成人在线视频| 男女视频在线观看网站免费| 亚洲成人av在线免费| 欧美日韩视频高清一区二区三区二| 国产午夜精品一二区理论片| 国产精品三级大全| 大又大粗又爽又黄少妇毛片口| 一级毛片电影观看| a级一级毛片免费在线观看| 成人漫画全彩无遮挡| 免费看不卡的av| 深爱激情五月婷婷| 男女那种视频在线观看| 国产一区二区亚洲精品在线观看| 丝袜喷水一区| 亚洲美女视频黄频| 最近最新中文字幕大全电影3| 日韩欧美三级三区| 国产伦精品一区二区三区四那| 国产精品av视频在线免费观看| 日韩电影二区| 日韩强制内射视频| 久久久精品免费免费高清| 美女xxoo啪啪120秒动态图| 中国美白少妇内射xxxbb| 91久久精品国产一区二区成人| 人妻制服诱惑在线中文字幕| 国产成人a∨麻豆精品| 日本-黄色视频高清免费观看| 好男人视频免费观看在线| 欧美xxⅹ黑人| 亚洲国产精品成人久久小说| 国产黄频视频在线观看| 免费黄色在线免费观看| 亚洲熟女精品中文字幕|