• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ONE-DIMENSIONAL VISCOUS RADIATIVE GAS WITH TEMPERATURE DEPENDENT VISCOSITY?

    2018-11-22 09:23:50LinHE何躪
    關(guān)鍵詞:王濤

    Lin HE(何躪)

    Institute of Applied Mathematics,Academy of Mathematics and System Science The Chinese Academy of Sciences,Beijing 100190,China

    E-mail:helin19891021@163.com

    Yongkai LIAO(廖勇凱)? Tao WANG(王濤)Huijiang ZHAO(趙會(huì)江)

    School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China

    Hubei Key Laboratory of Computational Science,Wuhan University,Wuhan 430072,China

    E-mail:yongkai.liao@whu.edu.cn;tao.wang@whu.edu.cn;hhjjzhao@hotmail.com

    Abstract This paper is concerned with the construction of global,large amplitude solutions to the Cauchy problem of the one-dimensional compressible Navier–Stokes system for a viscous radiative gas when the viscosity and heat conductivity coefficients depend on both speci fic volume and absolute temperature.The data are assumed to be without vacuum,mass concentrations,or vanishing temperatures,and the same is shown to be hold for the global solution constructed.The proof is based on some detailed analysis on uniform positive lower and upper bounds of the speci fic volume and absolute temperature.

    Key words compressible Navier–Stokes system;temperature-dependent viscosity;viscous radiative gas;global solution;asymptotic behavior

    1 Introduction

    The dynamics of one-dimensional compressible viscous and heat-conducting flow can be described in the Lagrangian coordinates by the compressible Navier–Stokes system:

    Here t>0 and x∈R are the time and Lagrangian spatial variables,respectively.The speci fic volume v,velocity u,and absolute temperature θ are unknown functions of t and x.The pressure p,internal energy e,viscosity coefficientμ >0,and heat conductivity coefficient κ >0 are prescribed through constitutive relations as functions of v and θ.The thermodynamic variables are related through Gibbs’equation de= θds?pdv with s being the speci fic entropy.

    This paper concerns system(1.1)with prescribed initial data

    which are assumed to satisfy the far- field condition:

    Our main purpose is devoted to the construction of global,smooth,large amplitude,non-vacuum solution(v(t,x),u(t,x),θ(t,x))to Cauchy problem(1.1)–(1.3)with temperaturedependent transport coefficientsμ and κ when the thermodynamic variables v,p,e,θ,and s do not satisfy the equations of state for ideal polytropic gases.In fact,our choice of constitutive relations are motivated by the following system describing the motion of compressible radiative and reactive gas:

    where z=z(t,x)represents the reactant mass fraction.The positive constants d and λ are the species di ff usion coefficient and the di ff erence in the heat between the reactant and the product,respectively.The reaction rate function φ = φ(θ)is de fined by the first-order Arrhenius law(cf.[11]):

    where positive constants K and A are the coefficients of the rate of the reactant and the activation energy,respectively,and β is a non-negative number.

    When the radiation is treated as a continuous field and both the wave and photonic e ff ect are considered,the high-temperature radiation is at thermal equilibrium with the fluid.Then pressure p consists of a linear term in θ corresponding to the perfect polytropic contribution and a fourth-order radiative part due to the Stefan–Boltzmann radiative law(see[36]for instance)so that

    where positive constants R,cv,and a are the perfect gas constant,the speci fic heat,and the Stefan–Boltzmann constant,respectively.

    Since the energy producing process inside the medium is taken into account in system(1.4),where the gas consists of a reacting mixture and the combustion process is current at the high temperature stage,the experimental results for gases at high temperatures in[54]show that both μ and κ may depend on the speci fic volume v and/or the absolute temperature θ.In this paper,we focus on the case when the heat conductivity κ takes the following form(cf.[7])

    for some positive constants κ1,κ2,and b.As for the viscosity coefficient μ,motivated by the work[52]for the one-dimensional viscous,heat-conducting ideal polytropic gas,we assume that

    where h(v)is a smooth function of v for v>0,and α, ?1, ?2,and C are positive constants.Here and in the rest of this paper,f(x)~g(x)(x→x0)means that there exists a constant C ≥ 1 such that C?1g(x)≤ f(x)≤Cg(x)holds in a neighborhood of x0.

    Before stating our main result,it is worth to pointing out that the study on the global solvability and large time behaviorsof the global solutions to the initial value problem and/or the initial-boundary value problems of the one-dimensional compressible Navier–Stokes equations(1.1)is one of the hottest topics in the field of nonlinear partial di ff erential equations and many results have been obtained up to now.To go to the theme of this paper,we will only review some results on the compressible Navier–Stokes type equations(1.4)–(1.7)describing the motion of compressible radiative and reactive gas as follows:

    When the viscosity coefficientμis a positive constant,the results obtained can be summarized as in the following.

    For the initial-boundary value problem of(1.4)–(1.7)in the bounded interval(0,1)with the free boundary conditions

    on the stress σ(t,x)and homogeneous Neumann condition

    on both θ(t,x)and z(t,x),Umehara–Tani[46]proved the global existence,uniqueness of a classical solutions under the assumptions 4≤b≤16 and 0≤β≤13/2.Later on,they improved the results in[47]to the case of b ≥ 3 and 0 ≤ β

    See also the result by Jiang–Zheng[17]for more general assumptions on κ;

    For the initial-boundary value problem of(1.4)–(1.7)in(0,1)with homogeneous Dirichlet boundary condition u(t,0)=u(t,1)=0 and homogeneous Neumann condition

    on θ(t,x)and z(t,x),Documet[7]established the global existence and exponential decay in H1(0,1)of solutions for b ≥ 4 and β >0.Recently,Jiang–Zheng[18]improved this result to the case of b≥ 2 and 0≤ β

    For the Cauchy problem of(1.4)–(1.7),results on the global solvability and the precise description of large time behavior of the global solution constructed were established very recently by Liao–Zhao in[33]for b>11/3 and 0≤ β

    For sphericallty symmetric motions of compressible radiative and reactive gases,the global existence,uniqueness and exponential stability of spherically symmetric solutions in the bounded annular domain ? ={x ∈ Rn:01}was showed by Liao–Wang–Zhao in[29].

    For the case when the viscosity coefficientμis a smooth,possible degenerate function of the speci fic volume v for positive v,the two types of initial-boundary value problems of(1.4)–(1.7)in the bounded interval(0,1)mentioned above were studied in[31,32],while the Cauchy problem was treated in Liao–Xu–Zhao[30].It is worth to pointing out that all the estimates obtained in[30–32]depend on the time variable t,and thus the problem on the large time behavior of global solutions constructed in[30–32]remains unsolved.

    Even so,to the best of our knowledge,no result is available for the case when the viscosity coefficientμdepends on the absolute temperature up to now.As pointed out before,since the physical phenomena described by system(1.4)involve high temperature process and the experimental results for gases at high temperatures in[54]show that the viscosity coefficientμ may also depend on the speci fic volume v and/or the absolute temperature θ,a natural and interesting question is:Whether can we obtain a global solvability result for the Cauchy problem(1.4)–(1.7)with large initial data or not for a class of density and temperature dependent viscosity coefficientμsatisfying(1.8)?The main goal of this paper is devoted to such a problem.Since the appearance of the reaction equation,i.e.,the fourth one in(1.4),does not cause any essential difficulty in our analysis,we will focus on the Cauchy problem of(1.1),(1.6)–(1.8)with prescribed large initial data(1.2)satisfying the far field condition(1.3)in the rest of this paper.

    Now we are in a position to state our main result.To do so,for each given positive constant 0

    and then our result can be stated as follows.

    Theorem 1.1Suppose that

    (i)The viscosity coefficientμsatis fies(1.8);

    (ii)The parameters b,?1,and ?2are assumed to satisfy:

    where Π0and V0≤ 1 are given positive constants.Then there exists ?0>0,which depends only on Π0,V0and H(C0),such that if

    the Cauchy problem(1.1)–(1.3),(1.6)–(1.8)admits a unique solution(v(t,x),u(t,x), θ(t,x))satisfying

    Remark 1.2Several remarks concerning our main result are listed below:

    (i)It is easy to see that for each b ≥ 7,one can easily find ?1>1 and ?2>1 sufficiently large such that the assumption(1.11)holds.Since our main purpose is to show that we can indeed obtain a global solvability result for the Cauchy problem(1.1)–(1.3),(1.6)–(1.7)for a class of density and temperature dependent viscosityμwhich satis fies(1.8),assumptions(1.10)and(1.11)that we imposed on the parameters b, ?1,and ?2are far from being optimal;

    (ii)If we take α=0,then our main result Theorem 1.1 tells us that one can obtain a result on the global solvability together with the precise description of the large time behaviors of solutions to the Cauchy problem(1.1)–(1.3),(1.6)–(1.7)for a class of density dependent viscosityμwhich satis fies

    Here C>0, ?1and ?2are some positive constants satisfying(1.10)and(1.11).Recall that for the case when the viscosity coefficientμis a degenerate function of v(cf.μ=v?α,α ∈ [1/3,1/2)),although a global solvability result is obtained in[30],we do not know how to deduce the desired large time behaviors of the global solutions constructed there due to the lack of uniform-in-time estimates.We note,however,that our main result,i.e.,Theorem 1.1,yields the large time behaviors of the global solutions for a class of nondegenerate density dependent viscosity coefficientμ.

    Now we outline the main difficulties encountered in the proof of Theorem 1.1.As is well known,the key point to deduce the global solvability result of the Cauchy problem(1.1)–(1.3),(1.6)–(1.8)is to derive the desired positive lower and upper bounds on the speci fic volume v(t,x)and the absolute temperature θ(t,x).

    For the case when the viscosity coefficientμis a positive constant,motivated by the work of Jiang[19–21]for the viscous,heat-conducting ideal polytropic gas,Liao–Zhao[33]have used the following cut-o fffunction

    By virtue of(1.14),one can deduce the uniform-in-time positive lower and upper bound of v(t,x).

    As for the uniform positive lower and upper estimate on θ(t,x),motivated by the work of[25]for the initial-boundary value problem of the one-dimensional compressible Navier–Stokes equation in bounded interval for general gas,the following auxiliary functions

    are introduced in[33]to derive the uniform upper bound of the absolute temperature θ(t,x).It is worth to emphasizing that the argument used in[33]to deduce the desired upper bound estimate on θ(t,x)relies highly on the uniform bounds on v(t,x)obtained before.

    When the viscosity coefficientμis not a positive constant but depends only on the speci fic volume v,the above argument can not be used any longer.In fact,for such case we can not deduce a similar explicit repression for v(t,x)and consequently we can not deduce the desired positive lower and upper bounds on v(t,x) first.The main ideas used in[30]are the following:

    (i)Based on the following identity

    which is observed first by Kanel’in[24]for isentropic viscous flow,one can deduce an estimate on the lower and upper bounds of the speci fic volume v in terms ofby employing Kanel’s argument provided that μ satis fies suitable growth conditions as v→0+and v→+∞;(ii)Noticing that h(t,x)=1/θ(t,x)satis fies

    one can employ the standard maximum principle to yield an estimate on the lower bound of the absolute temperature in terms of

    (iii)By utilizing the argument used in[44]and[4,25,33],one can then deduce an estimate onFrom which and the estimates on the lower and upper bounds on v(t,x),the lower estimate on θ(t,x),one can then deduce the desired positive lower and upper estimates on both v(t,x)and θ(t,x)provided that the parameter b appearing in(1.7)and growth rates of the viscosity coefficientμas v→0+and v→+∞satisfy certain conditions and then the desired global solvability result follows immediately.

    For the case considered in this paper,the viscosity coefficientμdepends on both the speci fic volume v and the absolute temperature θ.For such a case,the identity corresponding to(1.15)becomes

    Since the last term in(1.18)is a highly nonlinear term,the temperature dependence of the viscosityμhas a strong in fluence on the solution and leads to difficulties in mathematical analysis for global solvability with large data,and as pointed out in[16],such a dependence has turned out to be especially problematic and challenging.

    A natural way to go on is to use certain smallness mechanism induced by the structure of the system to control the last term in(1.18)suitably.It was to do so that we need to ask the viscosity coefficientμ to take the form(1.8)and our main idea is to the smallness of|α|to control the last highly nonlinear term in(1.18).We note,however,that to close the analysis,or in other words to determine the upper bound of|α|in terms of the initial data,one had to deduce the uniform positive lower and upper bounds on the absolute temperature θ which are independent of the time variable t.It is worth to pointing out that such a problem is considered by Wang–Zhao in[52]for the one-dimensional,compressible Navier–Stokes system for a viscous and heat conducting ideal polytropic gas for a class of density and temperature dependent viscosity coefficientμsatisfying(1.8).We recall,however,that the argument of Wang–Zhao in[52]is first to use Kanel’s method[24]to obtain the lower and the upper bound of v(t,x)in terms of(see Lemma 2.3 in[52]),then to employ the technique used in Li–Liang in[27]to derive the uniform upper bound of θ(t,x).Note that the method used by Wang–Zhao in[52]to deduce the uniform upper bound of θ(t,x)relies on the following Sobolev inequality(see also(2.72)in Wang–Zhao[52])For our problemis bounded due to Lemma 2.1,but the method employed in[52]to deduce the estimate onloses its power in our case which is caused by the fourthorder radiative part in both p(v,θ)and e(v,θ),cf.(1.6);Besides,one can see the assumptionμ = κ also plays an important role in the process of deriving the upper bound of θ(t,x)in their discussion.Thus the story is di ff erent sinceμ6=κ in our case.

    To overcome the above difficulties,we introduce some new auxiliary functions X(t),W(t),Z(t)and W(t)(see(3.1)in section 3)to deduce the uniform-in-time upper bound of θ(t,x).More precisely,our strategy to prove Theorem 1.1 can be stated as follows:

    (i)We first apply Kanel’s method[24]to deduce the lower and the upper bounds of v(t,x)in terms ofsimultaneously in Lemma 2.3.Notice that the assumption(1.10)plays an important role in our discussion.To control the last term in(1.18),we will use the smallness of|α|;

    (ii)Due to(3.12)and(3.13),we introduce the auxiliary functions X(t),Y(t),Z(t)and W(t)(see(3.1))to deduce the upper bound of θ(t,x)in Lemmas 3.1–3.4.Thus the lower and the upper bound of v(t,x)follows from Lemma 2.3.We should emphasize that all the bounds obtained above are independent of the time variable t;We then adopt the method in Liao–Zhao[33]to deduce the positive local-in-time lower bound of θ(t,x)and notice that such a bound depends on the time variable t;

    (iii)By using the dedicated energy method,we can derive energy type estimates of higherorder derivatives in Section 4 and Section 5;Then by using the continuation argument designed in Wang–Zhao[52],we can then prove Theorem 1.1.

    Before concluding this section,we recall that there are also many results on the construction of global,smooth,large amplitude,non-vacuum solutions and on the precise description of the large time behaviors of the global solutions constructed to compressible Navier–Stokes system for a viscous and heat conducting ideal polytropic gas,cf.[1–3,16,26,40]for the one-dimensional initial-boundary value problem in bounded interval,[1,6,12–15,20–22,27,34,38,39,41,44,45,50–53]for the corresponding one-dimensional problem in unbounded domain and[19,28,37,48,49]for global symmetric flows of multi-dimensional compressible Navier–Stokes equations.For compressible Navier–Stokes equations with general constitutive relations and other related compressible Navier–Stokes type equations,see[4,25,35,55]and the references therein.

    The rest of the paper is organized as follows.We derive pointwise bounds on the speci fic volume in Section 2.Then pointwise bounds on the absolute temperature will be derived in Section 3.Some second-order and third-order energy type estimates and the proof of our main result will be given in Section 4 and Section 5,respectively.

    NotationsThroughout this paper,C ≥ 1 or Ci≥ 1(i=1,2,···)is used to denote a generic positive constant which may depend only on Π0,V0and H(V0),where Π0,V0and H are given by(1.12),(1.13)and(1.9),respectively.Note that these constants may vary from line to line.C(·,·)stands for some generic constant depending only on the quantities listed in the parenthesis.?<1 represents some small positive constant.

    For function spaces,Lq(R)(1≤q≤∞)denotes the usual Lebesgue space on R with norm k ·kLq(R),while Hq(R)denotes the usual Sobolev space in the L2sense with norm k·kHq(R).We denote by C(I;Hq(R))the space of continuous functions on the internal I with values in Hq(R)and L2(I;Hq(R))stands for the space of L2-functions on I with values in Hq(R).For simplicity,we use k·k∞to denote the norm in L∞([0,T]×R)with T>0 being some given positive constant,k·k and k·kqare used to denote the norm k·kL2(R)and the norm k·kHq(R),respecitively.

    Finally,A.B(or B&A)means that A≤CB holds uniformly for some generic positive constant C.

    2 Pointwise Bounds for the Speci fic Volume

    We de fine the set

    Since the existence and uniqueness of solution(v(t,x),u(t,x),θ(t,x))to the Cauchy problem(1.1)–(1.3)with constitutive relations(1.6),(1.7)and(1.8)in the set of functions X(0,t1;m1,m2,N)for some sufficiently small t1>0 and certain positive constants m1,m2and N is guaranteed by the well-established local existence result for hyperbolic-parabolic system,cf.[23],suppose that the local solution(v(t,x),u(t,x),θ(t,x))to the Cauchy problem(1.1)–(1.3)with constitutive relations(1.6)–(1.8)has been extended to the time step t=T for some positive constant T>0 and(v(t,x),u(t,x),θ(t,x)) ∈ X(0,T;m1,m2,N)for some positive constants T,mi≤1(i=1,2)and N≥1,then in order to prove Theorem 1.1,we only need to derive certain a priori estimates on the solution(v(t,x),u(t,x),θ(t,x))in terms of the initial data(v0(x),u0(x),θ0(x))but independent of the constants mi≤ 1(i=1,2)and N ≥ 1.

    Applying Sobolev’s inequality yields

    This section is devoted to deducing lower and upper bounds on the speci fic volume v(t,x)in terms of.In the next lemma,we present the basic energy estimate.

    Lemma 2.1Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    where

    Proof According to[38],the function η is nothing but the normalized entropy around(v,u,θ)=(1,0,1)for system(1.1),(1.6),(1.7)and(1.8)(see[33]for the derivation).

    Multiply(1.1)2and(1.1)3with u and(1?θ?1),respectively,add the resulting identities,and use(1.1)1to discover

    The lemma follows by integrating the above identity over[0,t]×R.

    The derivation of pointwise bounds for v(t,x)relies on the following lemma.

    Lemma 2.2Suppose that the conditions listed in Theorem 1.1 hold.Then there is a constant 0< ?1≤ 1,depending only on Π0and V0,such that if

    Integrating the above identity over[0,t]× R,we obtain from Cauchy’s inequality and(2.2)the following estimate:

    which combined with(1.8)implies

    Then(2.5)follows by inserting(2.9)–(2.13)and(2.18)into(2.8).

    By applying the Kanel′technique(cf.[24]),we obtain pointwise bounds for the speci fic volume v(t,x)in the following lemma.

    Lemma 2.3 Assume that the conditions listed in Lemma 2.2 hold.Then

    In view of ?1>1 and ?2>1,we plug(2.5)into(2.22)and utilize Young’s inequality to conclude the estimates(2.19).

    A direct corollary follows from Lemmas 2.2 and 2.3.

    Corollary 2.4Assume that the conditions listed in Lemma 2.2 hold.Then for any 0≤t≤T,we have

    3 Pointwise Bounds for the Absolute Temperature

    In this section,we will obtain a uniform-in-time upper bound and a local-in-time lower bound for the absolute temperature θ.For this purpose,we set

    We first employ the basic energy estimate(2.2)to derive the following lemma.

    Lemma 3.1Assume that the conditions listed in Theorem 1.1 hold,then we can get that

    Since 2b+6> ?1+2?2,we deduce(3.2)from Young’s inequality.This completes the proof of Lemma 3.1.

    The next lemma follows directly from Gagliardo–Nirenberg and Sobolev’s inequalities.

    Lemma 3.2Assume that the conditions listed in Theorem 1.1 hold.Then one can get for each 0≤t≤T that

    With the above preparations in hand,our next result is to show that X(T)and Y(T)can be controlled by Z(T)and W(T).

    Lemma 3.3Under the assumptions listed in Theorem 1.1,we have

    ProofIn the same manner as in[25]an[46],if we set

    then it is easy to verify that

    We first rewrite(1.1)3in the following form where the de finition of Hk(4≤k≤9)will be given below.

    We now turn to control Hk(k=4,5,···,9)term by term.To do so,we can infer from(2.19)that

    where we have used(1.8),(1.10),(3.8)and Young’s inequality.

    Next,by virtue of(1.8),(1.10),(2.2)and(3.8),we can conclude

    As for the term H6,it follows from(1.8),(1.10),(2.2),(2.15)and(3.14)that

    Now we deal with the term H7.For this purpose,we have by integration by parts that

    For the first term on the right-hand side of(3.17),it follows from(1.8),(1.10)and(2.19)that

    It is worth to pointing out that we can deduce from(1.10)and(2.20)that

    For the last term on the right-hand side of(3.17),one can get that

    where we have used(1.8),(2.4),(2.19),(3.2),(3.3)and the fact that

    where we have used(1.1)3,(2.2),(3.2),(3.3),(3.8)and H?lder’s inequality.Consequently,to yield an estimate on H8,it suffices to bound the term.To this end,we can get that

    where we have used(1.8),(1.10),(2.2),(2.19),(2.20),(3.2),(3.3)and Young’s inequality.Thus we can deduce from(3.25)and(3.26)that

    As for the term H9,we can deduce from(1.1)3,(2.2),(2.23),(3.8),H?lder’s inequality and the following fact

    then combining all the above estimates and choosing ?>0 small enough,we can complete the proof of our lemma.

    Our next result in this section is to show that Z(T)can be bounded by X(T)and Y(T).

    Lemma 3.4Under the assumptions listed in Theorem 1.1,we have

    ProofDifferentiating(1.1)2with respect to t and multiplying the resulting identity with ut,we have

    On the other hand,according to(1.8),we have

    Thus combining(3.33)–(3.37),we obtain

    In view of(1.10),one can deduce that

    Then by virtue of(3.1)and Young’s inequality,we can complete the proof of our lemma.

    We are in a position to deduce the upper bound of θ(t,x)now.In fact,(3.4),(3.32)and(3.38)tell us that

    Thus with the hand of Young’s inequality and Lemma 3.3,we can deduce from(3.42)that

    Finally,choosing ?>0 small enough then using(3.4)and Young’s inequality again,we immediately obtain

    Recalling the de finition of X(T),Y(T),Z(T)and W(T),then combining Lemmas 2.1–3.4,we have the following lemma.

    Lemma 3.5Under the assumptions listed in Theorem 1.1,there exist positive constants C1and C2,which depend only on Π0and V0,such that

    Before concluding this section,let us deduce uniform bounds onandwhich will be used later on.In fact,we have the following lemma.

    Lemma 3.6Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    Integrating the above identity with respect to t and x over(0,t)×R and taking advantage of(3.41),we arrive at

    Here we have used(2.2),Lemma 3.5 and Sobolev’s inequality.

    Moreover,it follows from(2.2),Lemma 3.5 and Cauchy’s inequality that

    Then combining(3.52)–(3.54)and choosing ?>0 small enough,we can get(3.50).

    Finally,choosing ?>0 small enough,integrating(3.55)with respect to t over(0,t)and using(2.2)as well as(3.49),we can obtain(3.51).

    As a result of Lemmas 2.1–3.6,we can obtain the following corollary immediately.

    Corollary 3.7Under the assumptions listed in Theorem 1.1,there exists a positive constants C3,such that

    The next estimate is concerned with the local-in-time estimate on the lower bound on the absolute temperature θ(t,x).To this end,we can deduce by repeating the method used in[33]that

    Lemma 3.8Under the assumptions stated in Theorem 1.1,for each 0≤s≤t≤T and x∈R,there exist a positive constant C4,such that

    4 Estimates of Second-order Derivatives

    In the following sections,to simplify the presentation,we introduceholds uniformly for some constant Ch,depending only on Π0,V0and H(C2)with C2given in Lemma 3.5.The letter C(m2)will be employed to denote some positive constant which depends only on m2,Π0,V0and H(C2).We note from(1.9)and(3.48)that

    We estimate the second-order derivatives of(u(t,x),θ(t,x))with respect to the space variable x in the next lemma.

    Lemma 4.1Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    ProofFirst,di ff erentiating(1.1)2with respect to x,and multiplying the resulting identity by uxxx,we have

    To estimate the last term in(4.3),we first make some estimate of θα.It follows from(2.4)that

    Since v(t,x)is bounded,for general smooth function f(v),we have

    Combining(4.7)and(4.8),we have

    We plug(4.11),(4.12)and(4.13)into(4.10),and use(4.3)–(4.10)to deduce that

    Integrating the above identity over[0,t]× R,we obtain from Cauchy’s inequality,(2.4)and(3.48)that

    Combining(4.14)and(4.19)and taking δ>0 small enough,we can obtain(4.2). ?

    We next obtain a m2-dependent bound for the second-order derivatives with respect to x of the solution(v(t,x),u(t,x),θ(t,x)).

    Lemma 4.2Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    ProofDifferentiate(2.7)with respect to x and multiply the result byto find

    We integrate the above identity over[0,t]× R,and Cauchy’s inequality to obtain

    On the other hand,one can deduce from(2.14)that

    In view of(4.4)and

    Hence applying Cauchy’s inequality yields

    which combined with(4.2)implies(4.20).

    5 Estimates of Third-order Derivatives

    Estimates on the third-order derivatives of(v(t,x),u(t,x),θ(t,x))with respect to x will be proved in this subsection.We first give an estimate on the third-order derivatives of u(t,x)and θ(t,x)with respect to x in the following lemma.

    Lemma 5.1Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    In view of(3.56)and(4.20),we deduce that

    Next,we di ff erentiate(3.9)with respect to x twice and multiply the result by θxxxxto obtain

    Combining(5.5)and(5.10)and taking δ>0 small enough,we can obtain(5.1).

    By using(2.4)and Gronwall’s inequality,we can deduce the m2-dependent bound for the third-order derivatives of(v(t,x),u(t,x),θ(t,x))with respect to x.The proof is similar to that of Lemma 4.2 and hence we omit the details for brevity.

    Lemma 5.2Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    By virtue of Lemma 2.1–Lemma 5.2,we can get the following corollary.

    Corollary 5.3Under the assumptions listed in Theorem 1.1,there exists a positive constants C(m2)>0 which depends only on m2,Π0,V0and H(C2)with C2being given in Lemma 3.5,such that for all t∈[0,T],

    With Corollary 5.3 in hand,Theorem 1.1 follows by the combing the well-established local existence of solution(v(t,x),u(t,x),θ(t,x))of the Cauchy problem(1.1)–(1.3)with constitutive relations(1.6),(1.7)and(1.8)which is without vacuum,mass concentrations,or vanishing temperatures,cf.[23],and the continuation argument designed in[52]and we omit the details for brevity.

    猜你喜歡
    王濤
    綿師學(xué)人
    ——王濤
    Review of a direct epitaxial approach to achieving micro-LEDs
    “雞兔同籠”問(wèn)題解法探析及思考
    Nonlinear excitation of a geodesic acoustic mode by reversed shear Alfvén eignemodes
    Transition to chaos in lid–driven square cavity flow?
    王濤油畫(huà)作品
    大眾文藝(2020年23期)2021-01-04 08:48:40
    王濤 李佳星作品
    大眾文藝(2020年22期)2020-12-13 11:37:16
    Effect of Pore Distribution on Melting Behavior of Paraffin in Fractal Metal Foam?
    Study on the Reduced Traffic Congestion Method Based on Dynamic Guidance Information?
    王濤作品
    亚洲色图av天堂| 在线av久久热| 久久久国产欧美日韩av| 美女福利国产在线| 色婷婷av一区二区三区视频| 国产成人系列免费观看| 黄色片一级片一级黄色片| 免费在线观看完整版高清| 啦啦啦在线免费观看视频4| 国产日韩一区二区三区精品不卡| 欧美精品啪啪一区二区三区| 亚洲自偷自拍图片 自拍| 国产精品一区二区在线不卡| 亚洲第一av免费看| 成人国语在线视频| 亚洲中文av在线| 日韩欧美一区视频在线观看| 老熟妇仑乱视频hdxx| 香蕉久久夜色| 极品人妻少妇av视频| 19禁男女啪啪无遮挡网站| 天堂俺去俺来也www色官网| 成人18禁高潮啪啪吃奶动态图| 一级片'在线观看视频| 久久人妻av系列| 久久精品亚洲av国产电影网| 亚洲美女黄片视频| 好看av亚洲va欧美ⅴa在| 欧美激情高清一区二区三区| 亚洲熟女毛片儿| 欧美不卡视频在线免费观看 | www.自偷自拍.com| 91大片在线观看| 一区二区日韩欧美中文字幕| 欧美日韩瑟瑟在线播放| 日韩国内少妇激情av| www.www免费av| 日韩欧美免费精品| 1024香蕉在线观看| 亚洲专区国产一区二区| 欧美日韩精品网址| 亚洲欧洲精品一区二区精品久久久| 天堂动漫精品| 日本免费一区二区三区高清不卡 | 国产欧美日韩精品亚洲av| 夜夜躁狠狠躁天天躁| 亚洲在线自拍视频| 国产精品国产高清国产av| 亚洲欧美日韩无卡精品| 久久人妻福利社区极品人妻图片| 国产97色在线日韩免费| 欧美久久黑人一区二区| 人妻久久中文字幕网| 欧美日韩视频精品一区| 午夜a级毛片| 亚洲全国av大片| 亚洲专区字幕在线| 久久国产亚洲av麻豆专区| 老司机深夜福利视频在线观看| 国产片内射在线| 久久久水蜜桃国产精品网| 久久久国产欧美日韩av| 水蜜桃什么品种好| 级片在线观看| 高清av免费在线| 精品卡一卡二卡四卡免费| 午夜精品国产一区二区电影| 日本 av在线| 久久久久久免费高清国产稀缺| 久久久国产成人免费| 亚洲aⅴ乱码一区二区在线播放 | 热re99久久精品国产66热6| 法律面前人人平等表现在哪些方面| 午夜日韩欧美国产| 黄色怎么调成土黄色| 高清在线国产一区| 在线观看午夜福利视频| 国产野战对白在线观看| 亚洲三区欧美一区| 9191精品国产免费久久| av国产精品久久久久影院| 真人做人爱边吃奶动态| 最近最新中文字幕大全电影3 | 精品国产一区二区三区四区第35| 久久午夜综合久久蜜桃| 国产成人啪精品午夜网站| 日本三级黄在线观看| 性少妇av在线| av超薄肉色丝袜交足视频| 长腿黑丝高跟| 村上凉子中文字幕在线| 欧美国产精品va在线观看不卡| 亚洲色图综合在线观看| 18禁裸乳无遮挡免费网站照片 | 不卡一级毛片| 三上悠亚av全集在线观看| 久热这里只有精品99| 他把我摸到了高潮在线观看| 日本欧美视频一区| xxxhd国产人妻xxx| av超薄肉色丝袜交足视频| 日日干狠狠操夜夜爽| 日本 av在线| 一二三四社区在线视频社区8| 天堂√8在线中文| 欧美黑人精品巨大| 丰满饥渴人妻一区二区三| 色尼玛亚洲综合影院| 日本vs欧美在线观看视频| 久久久久久久精品吃奶| 精品乱码久久久久久99久播| 99riav亚洲国产免费| 黄色怎么调成土黄色| 天天躁夜夜躁狠狠躁躁| 叶爱在线成人免费视频播放| 国产精品 国内视频| 香蕉国产在线看| 午夜福利一区二区在线看| 成人三级黄色视频| 久久久久国产精品人妻aⅴ院| 久久精品亚洲精品国产色婷小说| av国产精品久久久久影院| 多毛熟女@视频| 在线观看免费高清a一片| 精品高清国产在线一区| 女人被狂操c到高潮| 久久久久国内视频| 国产亚洲欧美在线一区二区| 国产伦人伦偷精品视频| 国产亚洲欧美精品永久| 久久精品91蜜桃| 亚洲熟妇熟女久久| a级毛片在线看网站| 亚洲人成电影观看| 国产精品av久久久久免费| 最好的美女福利视频网| 老司机亚洲免费影院| 久久久久久久久免费视频了| 最近最新中文字幕大全电影3 | 国产蜜桃级精品一区二区三区| 99热只有精品国产| 亚洲国产毛片av蜜桃av| 亚洲av成人不卡在线观看播放网| 又紧又爽又黄一区二区| 欧美不卡视频在线免费观看 | 乱人伦中国视频| 97人妻天天添夜夜摸| 欧美成人免费av一区二区三区| 99精品久久久久人妻精品| 97超级碰碰碰精品色视频在线观看| 久久精品亚洲av国产电影网| 久久午夜亚洲精品久久| 亚洲精品久久成人aⅴ小说| 黄色 视频免费看| 欧美国产精品va在线观看不卡| 日韩国内少妇激情av| 黄色女人牲交| 制服诱惑二区| 亚洲 欧美一区二区三区| 在线十欧美十亚洲十日本专区| 欧美成人午夜精品| 女人高潮潮喷娇喘18禁视频| 99国产极品粉嫩在线观看| 久久精品91蜜桃| 国产精品1区2区在线观看.| www日本在线高清视频| 久久精品亚洲熟妇少妇任你| 又紧又爽又黄一区二区| 大陆偷拍与自拍| 在线观看免费日韩欧美大片| 国产成人av教育| 99久久国产精品久久久| 日本精品一区二区三区蜜桃| 天堂√8在线中文| 欧美日本中文国产一区发布| 99精品欧美一区二区三区四区| 两个人免费观看高清视频| 日韩高清综合在线| 国产亚洲欧美精品永久| 我的亚洲天堂| 亚洲情色 制服丝袜| 欧美另类亚洲清纯唯美| 亚洲免费av在线视频| 久久精品人人爽人人爽视色| 日韩欧美三级三区| 欧美日本中文国产一区发布| 免费高清在线观看日韩| 国产成人精品久久二区二区91| 欧美日韩亚洲高清精品| 精品高清国产在线一区| 好看av亚洲va欧美ⅴa在| 免费日韩欧美在线观看| 国产伦一二天堂av在线观看| 欧美日韩国产mv在线观看视频| 国产99久久九九免费精品| 人妻久久中文字幕网| 黄片大片在线免费观看| 1024视频免费在线观看| 国产精品成人在线| a级毛片在线看网站| 香蕉国产在线看| 成年女人毛片免费观看观看9| 国产在线精品亚洲第一网站| 亚洲人成电影免费在线| 午夜亚洲福利在线播放| 亚洲精品中文字幕一二三四区| 国产有黄有色有爽视频| 母亲3免费完整高清在线观看| 久久人妻熟女aⅴ| 黄色片一级片一级黄色片| 亚洲免费av在线视频| 黑人欧美特级aaaaaa片| 91在线观看av| 欧美日韩黄片免| 悠悠久久av| 欧美 亚洲 国产 日韩一| 亚洲五月色婷婷综合| 久久狼人影院| 午夜免费激情av| 色综合婷婷激情| 另类亚洲欧美激情| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩黄片免| 欧美黑人精品巨大| 一个人免费在线观看的高清视频| 岛国视频午夜一区免费看| 久久精品国产亚洲av香蕉五月| 国产xxxxx性猛交| 黄片小视频在线播放| 国产一区二区三区综合在线观看| 日韩欧美免费精品| 欧美乱妇无乱码| 精品日产1卡2卡| 女人被狂操c到高潮| 国产欧美日韩综合在线一区二区| 老司机午夜福利在线观看视频| 亚洲精品国产色婷婷电影| 欧美日韩黄片免| 19禁男女啪啪无遮挡网站| 亚洲人成电影观看| 日本三级黄在线观看| 黄色片一级片一级黄色片| 亚洲成国产人片在线观看| 久久久久国产一级毛片高清牌| 欧美一级毛片孕妇| 亚洲欧美精品综合久久99| 可以免费在线观看a视频的电影网站| 伦理电影免费视频| 久久香蕉激情| 一区二区三区精品91| 日本一区二区免费在线视频| 国产片内射在线| 国产高清视频在线播放一区| 亚洲精品美女久久久久99蜜臀| 亚洲国产欧美一区二区综合| 露出奶头的视频| 国产真人三级小视频在线观看| 三上悠亚av全集在线观看| 色综合站精品国产| а√天堂www在线а√下载| 自拍欧美九色日韩亚洲蝌蚪91| 人妻丰满熟妇av一区二区三区| 国产亚洲欧美在线一区二区| 久久人人97超碰香蕉20202| 人人妻,人人澡人人爽秒播| 神马国产精品三级电影在线观看 | 色婷婷久久久亚洲欧美| 女人高潮潮喷娇喘18禁视频| 日韩视频一区二区在线观看| 一级作爱视频免费观看| 久久精品成人免费网站| 国产精品成人在线| 亚洲国产欧美一区二区综合| 美女 人体艺术 gogo| 高清在线国产一区| 日韩国内少妇激情av| 日韩欧美国产一区二区入口| 国产成年人精品一区二区 | 欧美黄色淫秽网站| 99热国产这里只有精品6| 高潮久久久久久久久久久不卡| 动漫黄色视频在线观看| 国产精品免费一区二区三区在线| 免费看十八禁软件| 最新在线观看一区二区三区| 美女扒开内裤让男人捅视频| 丰满迷人的少妇在线观看| 91精品国产国语对白视频| 亚洲va日本ⅴa欧美va伊人久久| 97碰自拍视频| 国产成人精品久久二区二区91| 欧美另类亚洲清纯唯美| 成人18禁高潮啪啪吃奶动态图| 91在线观看av| 国产av精品麻豆| 久久人妻福利社区极品人妻图片| 精品久久蜜臀av无| xxx96com| 欧美激情久久久久久爽电影 | 精品国产乱子伦一区二区三区| 无限看片的www在线观看| 亚洲 欧美 日韩 在线 免费| 国产一区二区在线av高清观看| 高清av免费在线| 久久人人97超碰香蕉20202| 老汉色av国产亚洲站长工具| 母亲3免费完整高清在线观看| 一进一出抽搐动态| 黑人猛操日本美女一级片| 人妻丰满熟妇av一区二区三区| 热re99久久精品国产66热6| 欧美激情 高清一区二区三区| 丝袜美腿诱惑在线| av网站免费在线观看视频| 大香蕉久久成人网| 香蕉丝袜av| 欧美日韩中文字幕国产精品一区二区三区 | 少妇粗大呻吟视频| 99精国产麻豆久久婷婷| 色综合婷婷激情| www.999成人在线观看| 久久久国产一区二区| 美国免费a级毛片| 亚洲av五月六月丁香网| 99久久久亚洲精品蜜臀av| 不卡一级毛片| 欧美日本亚洲视频在线播放| 长腿黑丝高跟| x7x7x7水蜜桃| 色婷婷久久久亚洲欧美| 婷婷六月久久综合丁香| 久久久久久久久久久久大奶| 久久人妻福利社区极品人妻图片| e午夜精品久久久久久久| 黄色毛片三级朝国网站| 美女福利国产在线| 999精品在线视频| 亚洲熟妇熟女久久| 性少妇av在线| 麻豆成人av在线观看| 性色av乱码一区二区三区2| 久久国产亚洲av麻豆专区| 宅男免费午夜| 国产国语露脸激情在线看| 久久草成人影院| 高潮久久久久久久久久久不卡| 亚洲欧美一区二区三区久久| 999久久久精品免费观看国产| 他把我摸到了高潮在线观看| 一个人免费在线观看的高清视频| 一级作爱视频免费观看| 真人做人爱边吃奶动态| 黄色女人牲交| 亚洲欧洲精品一区二区精品久久久| 国产主播在线观看一区二区| www.精华液| 欧美在线黄色| 别揉我奶头~嗯~啊~动态视频| 午夜免费鲁丝| 亚洲色图av天堂| www.自偷自拍.com| 国产成人系列免费观看| 免费av毛片视频| 99国产综合亚洲精品| 两人在一起打扑克的视频| 性欧美人与动物交配| 91在线观看av| 亚洲熟妇中文字幕五十中出 | 国产亚洲精品综合一区在线观看 | 亚洲国产精品合色在线| 欧美成人午夜精品| 午夜福利欧美成人| 欧美在线一区亚洲| 日韩一卡2卡3卡4卡2021年| 中文字幕最新亚洲高清| 欧美精品啪啪一区二区三区| 日韩精品青青久久久久久| 免费av毛片视频| 18美女黄网站色大片免费观看| 夫妻午夜视频| 久久午夜综合久久蜜桃| 久久人人97超碰香蕉20202| 国产亚洲精品久久久久5区| 精品一区二区三区四区五区乱码| 亚洲一区二区三区不卡视频| 波多野结衣av一区二区av| 在线观看一区二区三区| 亚洲五月天丁香| 久久久久国产一级毛片高清牌| 美国免费a级毛片| 国产真人三级小视频在线观看| 国产成人精品无人区| 人人妻人人澡人人看| 韩国av一区二区三区四区| 亚洲精品在线观看二区| 久久久水蜜桃国产精品网| 精品国产美女av久久久久小说| 叶爱在线成人免费视频播放| 一级片免费观看大全| 欧美另类亚洲清纯唯美| 高清欧美精品videossex| 99国产极品粉嫩在线观看| 男女床上黄色一级片免费看| 人人妻人人澡人人看| 人妻丰满熟妇av一区二区三区| 国产成人免费无遮挡视频| 在线十欧美十亚洲十日本专区| 久久人人97超碰香蕉20202| 亚洲欧美日韩无卡精品| 亚洲熟妇熟女久久| 久久香蕉国产精品| 香蕉丝袜av| 高清在线国产一区| 久久人人精品亚洲av| 51午夜福利影视在线观看| 视频区图区小说| 丰满迷人的少妇在线观看| 精品一区二区三区视频在线观看免费 | 每晚都被弄得嗷嗷叫到高潮| 中文字幕人妻丝袜制服| 欧美日韩亚洲国产一区二区在线观看| 国产精品亚洲一级av第二区| 亚洲av成人不卡在线观看播放网| 久久久水蜜桃国产精品网| 香蕉国产在线看| 99国产精品99久久久久| 国产真人三级小视频在线观看| 亚洲欧美一区二区三区黑人| 欧美日韩福利视频一区二区| 午夜日韩欧美国产| 最好的美女福利视频网| 国产精品久久视频播放| av片东京热男人的天堂| 一级毛片高清免费大全| 国产野战对白在线观看| 满18在线观看网站| 欧美中文综合在线视频| 一级黄色大片毛片| 亚洲熟妇中文字幕五十中出 | 久久精品91无色码中文字幕| www.999成人在线观看| 精品国产乱码久久久久久男人| 成人18禁高潮啪啪吃奶动态图| 一a级毛片在线观看| 嫁个100分男人电影在线观看| 在线国产一区二区在线| 免费av毛片视频| 久久久久国产一级毛片高清牌| 日本免费一区二区三区高清不卡 | 久久影院123| 久久久水蜜桃国产精品网| 精品久久久久久久久久免费视频 | 久久中文看片网| 99热国产这里只有精品6| 国产精品免费视频内射| 国产一区二区在线av高清观看| 亚洲男人的天堂狠狠| 波多野结衣高清无吗| 免费搜索国产男女视频| 日日夜夜操网爽| 精品一品国产午夜福利视频| 女警被强在线播放| 亚洲 欧美 日韩 在线 免费| 国产av又大| 亚洲av成人不卡在线观看播放网| 色综合欧美亚洲国产小说| av在线播放免费不卡| 国产成人av教育| 国产亚洲精品久久久久久毛片| а√天堂www在线а√下载| 免费久久久久久久精品成人欧美视频| 午夜视频精品福利| 国产成人精品久久二区二区91| 香蕉久久夜色| 欧美日本中文国产一区发布| 国产激情久久老熟女| 精品国产亚洲在线| 91av网站免费观看| www.熟女人妻精品国产| 国产精品久久久人人做人人爽| 怎么达到女性高潮| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看视频国产中文字幕亚洲| 精品免费久久久久久久清纯| 91在线观看av| 成人亚洲精品一区在线观看| 正在播放国产对白刺激| 校园春色视频在线观看| 精品福利观看| 国产免费av片在线观看野外av| e午夜精品久久久久久久| 精品一区二区三区视频在线观看免费 | 亚洲国产精品999在线| 欧美在线一区亚洲| 精品国产乱子伦一区二区三区| 欧美激情 高清一区二区三区| 久久久久精品国产欧美久久久| 日韩欧美一区视频在线观看| 日日夜夜操网爽| 一夜夜www| 黑人巨大精品欧美一区二区mp4| tocl精华| 亚洲国产精品999在线| www.熟女人妻精品国产| 宅男免费午夜| www.熟女人妻精品国产| 亚洲少妇的诱惑av| 热99re8久久精品国产| 视频区图区小说| 美国免费a级毛片| 99国产精品免费福利视频| 国产欧美日韩一区二区精品| 亚洲精品在线美女| 国产有黄有色有爽视频| 午夜免费鲁丝| 天天躁夜夜躁狠狠躁躁| 亚洲人成电影观看| 午夜两性在线视频| tocl精华| 91字幕亚洲| 欧美一级毛片孕妇| 长腿黑丝高跟| www日本在线高清视频| 一级,二级,三级黄色视频| 丝袜美足系列| 国产成人系列免费观看| 热99re8久久精品国产| 久久香蕉精品热| 日韩av在线大香蕉| 国产亚洲精品综合一区在线观看 | 午夜福利免费观看在线| 国产1区2区3区精品| 99久久久亚洲精品蜜臀av| 中亚洲国语对白在线视频| 岛国在线观看网站| 国产成人精品久久二区二区91| 一边摸一边抽搐一进一出视频| 中文欧美无线码| 亚洲国产毛片av蜜桃av| 高潮久久久久久久久久久不卡| 18禁美女被吸乳视频| 天堂俺去俺来也www色官网| 女人精品久久久久毛片| 在线观看一区二区三区激情| 狂野欧美激情性xxxx| 国产精品影院久久| x7x7x7水蜜桃| 欧美日韩黄片免| 大香蕉久久成人网| 亚洲精品在线美女| 欧美日韩视频精品一区| 天堂俺去俺来也www色官网| 成人手机av| 国产精品一区二区精品视频观看| 亚洲国产精品一区二区三区在线| 欧美精品啪啪一区二区三区| 狠狠狠狠99中文字幕| 老熟妇乱子伦视频在线观看| 久久久久九九精品影院| 午夜免费成人在线视频| 高清在线国产一区| 国产一区二区三区在线臀色熟女 | 亚洲av成人av| 国产1区2区3区精品| 成年人免费黄色播放视频| 国产激情欧美一区二区| 精品久久久久久久毛片微露脸| 看片在线看免费视频| 国产精品日韩av在线免费观看 | 亚洲色图综合在线观看| 亚洲精品美女久久av网站| 成人影院久久| 国产成年人精品一区二区 | av视频免费观看在线观看| 搡老乐熟女国产| 国产主播在线观看一区二区| 丝袜美足系列| 在线观看免费日韩欧美大片| 在线视频色国产色| 啦啦啦在线免费观看视频4| 一级,二级,三级黄色视频| 男女午夜视频在线观看| 两个人看的免费小视频| 高清黄色对白视频在线免费看| 女人被躁到高潮嗷嗷叫费观| 国产精品久久电影中文字幕| 亚洲av电影在线进入| 在线观看www视频免费| 真人一进一出gif抽搐免费| 999久久久国产精品视频| 久久这里只有精品19| 巨乳人妻的诱惑在线观看| 欧美日韩亚洲国产一区二区在线观看| 一区福利在线观看| 亚洲男人的天堂狠狠| av视频免费观看在线观看| 欧美久久黑人一区二区| 亚洲久久久国产精品| 国产1区2区3区精品| 日韩三级视频一区二区三区| 一区二区三区国产精品乱码| 日韩欧美免费精品| www日本在线高清视频| 最近最新免费中文字幕在线| 午夜激情av网站| 男人操女人黄网站| 久久久国产欧美日韩av| 日日夜夜操网爽| 久久精品91无色码中文字幕| 精品久久久久久,| 国产成人免费无遮挡视频| 亚洲一区二区三区欧美精品| 成人三级黄色视频| 精品高清国产在线一区| 男人的好看免费观看在线视频 |