• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ONE-DIMENSIONAL VISCOUS RADIATIVE GAS WITH TEMPERATURE DEPENDENT VISCOSITY?

    2018-11-22 09:23:50LinHE何躪
    關(guān)鍵詞:王濤

    Lin HE(何躪)

    Institute of Applied Mathematics,Academy of Mathematics and System Science The Chinese Academy of Sciences,Beijing 100190,China

    E-mail:helin19891021@163.com

    Yongkai LIAO(廖勇凱)? Tao WANG(王濤)Huijiang ZHAO(趙會(huì)江)

    School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China

    Hubei Key Laboratory of Computational Science,Wuhan University,Wuhan 430072,China

    E-mail:yongkai.liao@whu.edu.cn;tao.wang@whu.edu.cn;hhjjzhao@hotmail.com

    Abstract This paper is concerned with the construction of global,large amplitude solutions to the Cauchy problem of the one-dimensional compressible Navier–Stokes system for a viscous radiative gas when the viscosity and heat conductivity coefficients depend on both speci fic volume and absolute temperature.The data are assumed to be without vacuum,mass concentrations,or vanishing temperatures,and the same is shown to be hold for the global solution constructed.The proof is based on some detailed analysis on uniform positive lower and upper bounds of the speci fic volume and absolute temperature.

    Key words compressible Navier–Stokes system;temperature-dependent viscosity;viscous radiative gas;global solution;asymptotic behavior

    1 Introduction

    The dynamics of one-dimensional compressible viscous and heat-conducting flow can be described in the Lagrangian coordinates by the compressible Navier–Stokes system:

    Here t>0 and x∈R are the time and Lagrangian spatial variables,respectively.The speci fic volume v,velocity u,and absolute temperature θ are unknown functions of t and x.The pressure p,internal energy e,viscosity coefficientμ >0,and heat conductivity coefficient κ >0 are prescribed through constitutive relations as functions of v and θ.The thermodynamic variables are related through Gibbs’equation de= θds?pdv with s being the speci fic entropy.

    This paper concerns system(1.1)with prescribed initial data

    which are assumed to satisfy the far- field condition:

    Our main purpose is devoted to the construction of global,smooth,large amplitude,non-vacuum solution(v(t,x),u(t,x),θ(t,x))to Cauchy problem(1.1)–(1.3)with temperaturedependent transport coefficientsμ and κ when the thermodynamic variables v,p,e,θ,and s do not satisfy the equations of state for ideal polytropic gases.In fact,our choice of constitutive relations are motivated by the following system describing the motion of compressible radiative and reactive gas:

    where z=z(t,x)represents the reactant mass fraction.The positive constants d and λ are the species di ff usion coefficient and the di ff erence in the heat between the reactant and the product,respectively.The reaction rate function φ = φ(θ)is de fined by the first-order Arrhenius law(cf.[11]):

    where positive constants K and A are the coefficients of the rate of the reactant and the activation energy,respectively,and β is a non-negative number.

    When the radiation is treated as a continuous field and both the wave and photonic e ff ect are considered,the high-temperature radiation is at thermal equilibrium with the fluid.Then pressure p consists of a linear term in θ corresponding to the perfect polytropic contribution and a fourth-order radiative part due to the Stefan–Boltzmann radiative law(see[36]for instance)so that

    where positive constants R,cv,and a are the perfect gas constant,the speci fic heat,and the Stefan–Boltzmann constant,respectively.

    Since the energy producing process inside the medium is taken into account in system(1.4),where the gas consists of a reacting mixture and the combustion process is current at the high temperature stage,the experimental results for gases at high temperatures in[54]show that both μ and κ may depend on the speci fic volume v and/or the absolute temperature θ.In this paper,we focus on the case when the heat conductivity κ takes the following form(cf.[7])

    for some positive constants κ1,κ2,and b.As for the viscosity coefficient μ,motivated by the work[52]for the one-dimensional viscous,heat-conducting ideal polytropic gas,we assume that

    where h(v)is a smooth function of v for v>0,and α, ?1, ?2,and C are positive constants.Here and in the rest of this paper,f(x)~g(x)(x→x0)means that there exists a constant C ≥ 1 such that C?1g(x)≤ f(x)≤Cg(x)holds in a neighborhood of x0.

    Before stating our main result,it is worth to pointing out that the study on the global solvability and large time behaviorsof the global solutions to the initial value problem and/or the initial-boundary value problems of the one-dimensional compressible Navier–Stokes equations(1.1)is one of the hottest topics in the field of nonlinear partial di ff erential equations and many results have been obtained up to now.To go to the theme of this paper,we will only review some results on the compressible Navier–Stokes type equations(1.4)–(1.7)describing the motion of compressible radiative and reactive gas as follows:

    When the viscosity coefficientμis a positive constant,the results obtained can be summarized as in the following.

    For the initial-boundary value problem of(1.4)–(1.7)in the bounded interval(0,1)with the free boundary conditions

    on the stress σ(t,x)and homogeneous Neumann condition

    on both θ(t,x)and z(t,x),Umehara–Tani[46]proved the global existence,uniqueness of a classical solutions under the assumptions 4≤b≤16 and 0≤β≤13/2.Later on,they improved the results in[47]to the case of b ≥ 3 and 0 ≤ β

    See also the result by Jiang–Zheng[17]for more general assumptions on κ;

    For the initial-boundary value problem of(1.4)–(1.7)in(0,1)with homogeneous Dirichlet boundary condition u(t,0)=u(t,1)=0 and homogeneous Neumann condition

    on θ(t,x)and z(t,x),Documet[7]established the global existence and exponential decay in H1(0,1)of solutions for b ≥ 4 and β >0.Recently,Jiang–Zheng[18]improved this result to the case of b≥ 2 and 0≤ β

    For the Cauchy problem of(1.4)–(1.7),results on the global solvability and the precise description of large time behavior of the global solution constructed were established very recently by Liao–Zhao in[33]for b>11/3 and 0≤ β

    For sphericallty symmetric motions of compressible radiative and reactive gases,the global existence,uniqueness and exponential stability of spherically symmetric solutions in the bounded annular domain ? ={x ∈ Rn:01}was showed by Liao–Wang–Zhao in[29].

    For the case when the viscosity coefficientμis a smooth,possible degenerate function of the speci fic volume v for positive v,the two types of initial-boundary value problems of(1.4)–(1.7)in the bounded interval(0,1)mentioned above were studied in[31,32],while the Cauchy problem was treated in Liao–Xu–Zhao[30].It is worth to pointing out that all the estimates obtained in[30–32]depend on the time variable t,and thus the problem on the large time behavior of global solutions constructed in[30–32]remains unsolved.

    Even so,to the best of our knowledge,no result is available for the case when the viscosity coefficientμdepends on the absolute temperature up to now.As pointed out before,since the physical phenomena described by system(1.4)involve high temperature process and the experimental results for gases at high temperatures in[54]show that the viscosity coefficientμ may also depend on the speci fic volume v and/or the absolute temperature θ,a natural and interesting question is:Whether can we obtain a global solvability result for the Cauchy problem(1.4)–(1.7)with large initial data or not for a class of density and temperature dependent viscosity coefficientμsatisfying(1.8)?The main goal of this paper is devoted to such a problem.Since the appearance of the reaction equation,i.e.,the fourth one in(1.4),does not cause any essential difficulty in our analysis,we will focus on the Cauchy problem of(1.1),(1.6)–(1.8)with prescribed large initial data(1.2)satisfying the far field condition(1.3)in the rest of this paper.

    Now we are in a position to state our main result.To do so,for each given positive constant 0

    and then our result can be stated as follows.

    Theorem 1.1Suppose that

    (i)The viscosity coefficientμsatis fies(1.8);

    (ii)The parameters b,?1,and ?2are assumed to satisfy:

    where Π0and V0≤ 1 are given positive constants.Then there exists ?0>0,which depends only on Π0,V0and H(C0),such that if

    the Cauchy problem(1.1)–(1.3),(1.6)–(1.8)admits a unique solution(v(t,x),u(t,x), θ(t,x))satisfying

    Remark 1.2Several remarks concerning our main result are listed below:

    (i)It is easy to see that for each b ≥ 7,one can easily find ?1>1 and ?2>1 sufficiently large such that the assumption(1.11)holds.Since our main purpose is to show that we can indeed obtain a global solvability result for the Cauchy problem(1.1)–(1.3),(1.6)–(1.7)for a class of density and temperature dependent viscosityμwhich satis fies(1.8),assumptions(1.10)and(1.11)that we imposed on the parameters b, ?1,and ?2are far from being optimal;

    (ii)If we take α=0,then our main result Theorem 1.1 tells us that one can obtain a result on the global solvability together with the precise description of the large time behaviors of solutions to the Cauchy problem(1.1)–(1.3),(1.6)–(1.7)for a class of density dependent viscosityμwhich satis fies

    Here C>0, ?1and ?2are some positive constants satisfying(1.10)and(1.11).Recall that for the case when the viscosity coefficientμis a degenerate function of v(cf.μ=v?α,α ∈ [1/3,1/2)),although a global solvability result is obtained in[30],we do not know how to deduce the desired large time behaviors of the global solutions constructed there due to the lack of uniform-in-time estimates.We note,however,that our main result,i.e.,Theorem 1.1,yields the large time behaviors of the global solutions for a class of nondegenerate density dependent viscosity coefficientμ.

    Now we outline the main difficulties encountered in the proof of Theorem 1.1.As is well known,the key point to deduce the global solvability result of the Cauchy problem(1.1)–(1.3),(1.6)–(1.8)is to derive the desired positive lower and upper bounds on the speci fic volume v(t,x)and the absolute temperature θ(t,x).

    For the case when the viscosity coefficientμis a positive constant,motivated by the work of Jiang[19–21]for the viscous,heat-conducting ideal polytropic gas,Liao–Zhao[33]have used the following cut-o fffunction

    By virtue of(1.14),one can deduce the uniform-in-time positive lower and upper bound of v(t,x).

    As for the uniform positive lower and upper estimate on θ(t,x),motivated by the work of[25]for the initial-boundary value problem of the one-dimensional compressible Navier–Stokes equation in bounded interval for general gas,the following auxiliary functions

    are introduced in[33]to derive the uniform upper bound of the absolute temperature θ(t,x).It is worth to emphasizing that the argument used in[33]to deduce the desired upper bound estimate on θ(t,x)relies highly on the uniform bounds on v(t,x)obtained before.

    When the viscosity coefficientμis not a positive constant but depends only on the speci fic volume v,the above argument can not be used any longer.In fact,for such case we can not deduce a similar explicit repression for v(t,x)and consequently we can not deduce the desired positive lower and upper bounds on v(t,x) first.The main ideas used in[30]are the following:

    (i)Based on the following identity

    which is observed first by Kanel’in[24]for isentropic viscous flow,one can deduce an estimate on the lower and upper bounds of the speci fic volume v in terms ofby employing Kanel’s argument provided that μ satis fies suitable growth conditions as v→0+and v→+∞;(ii)Noticing that h(t,x)=1/θ(t,x)satis fies

    one can employ the standard maximum principle to yield an estimate on the lower bound of the absolute temperature in terms of

    (iii)By utilizing the argument used in[44]and[4,25,33],one can then deduce an estimate onFrom which and the estimates on the lower and upper bounds on v(t,x),the lower estimate on θ(t,x),one can then deduce the desired positive lower and upper estimates on both v(t,x)and θ(t,x)provided that the parameter b appearing in(1.7)and growth rates of the viscosity coefficientμas v→0+and v→+∞satisfy certain conditions and then the desired global solvability result follows immediately.

    For the case considered in this paper,the viscosity coefficientμdepends on both the speci fic volume v and the absolute temperature θ.For such a case,the identity corresponding to(1.15)becomes

    Since the last term in(1.18)is a highly nonlinear term,the temperature dependence of the viscosityμhas a strong in fluence on the solution and leads to difficulties in mathematical analysis for global solvability with large data,and as pointed out in[16],such a dependence has turned out to be especially problematic and challenging.

    A natural way to go on is to use certain smallness mechanism induced by the structure of the system to control the last term in(1.18)suitably.It was to do so that we need to ask the viscosity coefficientμ to take the form(1.8)and our main idea is to the smallness of|α|to control the last highly nonlinear term in(1.18).We note,however,that to close the analysis,or in other words to determine the upper bound of|α|in terms of the initial data,one had to deduce the uniform positive lower and upper bounds on the absolute temperature θ which are independent of the time variable t.It is worth to pointing out that such a problem is considered by Wang–Zhao in[52]for the one-dimensional,compressible Navier–Stokes system for a viscous and heat conducting ideal polytropic gas for a class of density and temperature dependent viscosity coefficientμsatisfying(1.8).We recall,however,that the argument of Wang–Zhao in[52]is first to use Kanel’s method[24]to obtain the lower and the upper bound of v(t,x)in terms of(see Lemma 2.3 in[52]),then to employ the technique used in Li–Liang in[27]to derive the uniform upper bound of θ(t,x).Note that the method used by Wang–Zhao in[52]to deduce the uniform upper bound of θ(t,x)relies on the following Sobolev inequality(see also(2.72)in Wang–Zhao[52])For our problemis bounded due to Lemma 2.1,but the method employed in[52]to deduce the estimate onloses its power in our case which is caused by the fourthorder radiative part in both p(v,θ)and e(v,θ),cf.(1.6);Besides,one can see the assumptionμ = κ also plays an important role in the process of deriving the upper bound of θ(t,x)in their discussion.Thus the story is di ff erent sinceμ6=κ in our case.

    To overcome the above difficulties,we introduce some new auxiliary functions X(t),W(t),Z(t)and W(t)(see(3.1)in section 3)to deduce the uniform-in-time upper bound of θ(t,x).More precisely,our strategy to prove Theorem 1.1 can be stated as follows:

    (i)We first apply Kanel’s method[24]to deduce the lower and the upper bounds of v(t,x)in terms ofsimultaneously in Lemma 2.3.Notice that the assumption(1.10)plays an important role in our discussion.To control the last term in(1.18),we will use the smallness of|α|;

    (ii)Due to(3.12)and(3.13),we introduce the auxiliary functions X(t),Y(t),Z(t)and W(t)(see(3.1))to deduce the upper bound of θ(t,x)in Lemmas 3.1–3.4.Thus the lower and the upper bound of v(t,x)follows from Lemma 2.3.We should emphasize that all the bounds obtained above are independent of the time variable t;We then adopt the method in Liao–Zhao[33]to deduce the positive local-in-time lower bound of θ(t,x)and notice that such a bound depends on the time variable t;

    (iii)By using the dedicated energy method,we can derive energy type estimates of higherorder derivatives in Section 4 and Section 5;Then by using the continuation argument designed in Wang–Zhao[52],we can then prove Theorem 1.1.

    Before concluding this section,we recall that there are also many results on the construction of global,smooth,large amplitude,non-vacuum solutions and on the precise description of the large time behaviors of the global solutions constructed to compressible Navier–Stokes system for a viscous and heat conducting ideal polytropic gas,cf.[1–3,16,26,40]for the one-dimensional initial-boundary value problem in bounded interval,[1,6,12–15,20–22,27,34,38,39,41,44,45,50–53]for the corresponding one-dimensional problem in unbounded domain and[19,28,37,48,49]for global symmetric flows of multi-dimensional compressible Navier–Stokes equations.For compressible Navier–Stokes equations with general constitutive relations and other related compressible Navier–Stokes type equations,see[4,25,35,55]and the references therein.

    The rest of the paper is organized as follows.We derive pointwise bounds on the speci fic volume in Section 2.Then pointwise bounds on the absolute temperature will be derived in Section 3.Some second-order and third-order energy type estimates and the proof of our main result will be given in Section 4 and Section 5,respectively.

    NotationsThroughout this paper,C ≥ 1 or Ci≥ 1(i=1,2,···)is used to denote a generic positive constant which may depend only on Π0,V0and H(V0),where Π0,V0and H are given by(1.12),(1.13)and(1.9),respectively.Note that these constants may vary from line to line.C(·,·)stands for some generic constant depending only on the quantities listed in the parenthesis.?<1 represents some small positive constant.

    For function spaces,Lq(R)(1≤q≤∞)denotes the usual Lebesgue space on R with norm k ·kLq(R),while Hq(R)denotes the usual Sobolev space in the L2sense with norm k·kHq(R).We denote by C(I;Hq(R))the space of continuous functions on the internal I with values in Hq(R)and L2(I;Hq(R))stands for the space of L2-functions on I with values in Hq(R).For simplicity,we use k·k∞to denote the norm in L∞([0,T]×R)with T>0 being some given positive constant,k·k and k·kqare used to denote the norm k·kL2(R)and the norm k·kHq(R),respecitively.

    Finally,A.B(or B&A)means that A≤CB holds uniformly for some generic positive constant C.

    2 Pointwise Bounds for the Speci fic Volume

    We de fine the set

    Since the existence and uniqueness of solution(v(t,x),u(t,x),θ(t,x))to the Cauchy problem(1.1)–(1.3)with constitutive relations(1.6),(1.7)and(1.8)in the set of functions X(0,t1;m1,m2,N)for some sufficiently small t1>0 and certain positive constants m1,m2and N is guaranteed by the well-established local existence result for hyperbolic-parabolic system,cf.[23],suppose that the local solution(v(t,x),u(t,x),θ(t,x))to the Cauchy problem(1.1)–(1.3)with constitutive relations(1.6)–(1.8)has been extended to the time step t=T for some positive constant T>0 and(v(t,x),u(t,x),θ(t,x)) ∈ X(0,T;m1,m2,N)for some positive constants T,mi≤1(i=1,2)and N≥1,then in order to prove Theorem 1.1,we only need to derive certain a priori estimates on the solution(v(t,x),u(t,x),θ(t,x))in terms of the initial data(v0(x),u0(x),θ0(x))but independent of the constants mi≤ 1(i=1,2)and N ≥ 1.

    Applying Sobolev’s inequality yields

    This section is devoted to deducing lower and upper bounds on the speci fic volume v(t,x)in terms of.In the next lemma,we present the basic energy estimate.

    Lemma 2.1Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    where

    Proof According to[38],the function η is nothing but the normalized entropy around(v,u,θ)=(1,0,1)for system(1.1),(1.6),(1.7)and(1.8)(see[33]for the derivation).

    Multiply(1.1)2and(1.1)3with u and(1?θ?1),respectively,add the resulting identities,and use(1.1)1to discover

    The lemma follows by integrating the above identity over[0,t]×R.

    The derivation of pointwise bounds for v(t,x)relies on the following lemma.

    Lemma 2.2Suppose that the conditions listed in Theorem 1.1 hold.Then there is a constant 0< ?1≤ 1,depending only on Π0and V0,such that if

    Integrating the above identity over[0,t]× R,we obtain from Cauchy’s inequality and(2.2)the following estimate:

    which combined with(1.8)implies

    Then(2.5)follows by inserting(2.9)–(2.13)and(2.18)into(2.8).

    By applying the Kanel′technique(cf.[24]),we obtain pointwise bounds for the speci fic volume v(t,x)in the following lemma.

    Lemma 2.3 Assume that the conditions listed in Lemma 2.2 hold.Then

    In view of ?1>1 and ?2>1,we plug(2.5)into(2.22)and utilize Young’s inequality to conclude the estimates(2.19).

    A direct corollary follows from Lemmas 2.2 and 2.3.

    Corollary 2.4Assume that the conditions listed in Lemma 2.2 hold.Then for any 0≤t≤T,we have

    3 Pointwise Bounds for the Absolute Temperature

    In this section,we will obtain a uniform-in-time upper bound and a local-in-time lower bound for the absolute temperature θ.For this purpose,we set

    We first employ the basic energy estimate(2.2)to derive the following lemma.

    Lemma 3.1Assume that the conditions listed in Theorem 1.1 hold,then we can get that

    Since 2b+6> ?1+2?2,we deduce(3.2)from Young’s inequality.This completes the proof of Lemma 3.1.

    The next lemma follows directly from Gagliardo–Nirenberg and Sobolev’s inequalities.

    Lemma 3.2Assume that the conditions listed in Theorem 1.1 hold.Then one can get for each 0≤t≤T that

    With the above preparations in hand,our next result is to show that X(T)and Y(T)can be controlled by Z(T)and W(T).

    Lemma 3.3Under the assumptions listed in Theorem 1.1,we have

    ProofIn the same manner as in[25]an[46],if we set

    then it is easy to verify that

    We first rewrite(1.1)3in the following form where the de finition of Hk(4≤k≤9)will be given below.

    We now turn to control Hk(k=4,5,···,9)term by term.To do so,we can infer from(2.19)that

    where we have used(1.8),(1.10),(3.8)and Young’s inequality.

    Next,by virtue of(1.8),(1.10),(2.2)and(3.8),we can conclude

    As for the term H6,it follows from(1.8),(1.10),(2.2),(2.15)and(3.14)that

    Now we deal with the term H7.For this purpose,we have by integration by parts that

    For the first term on the right-hand side of(3.17),it follows from(1.8),(1.10)and(2.19)that

    It is worth to pointing out that we can deduce from(1.10)and(2.20)that

    For the last term on the right-hand side of(3.17),one can get that

    where we have used(1.8),(2.4),(2.19),(3.2),(3.3)and the fact that

    where we have used(1.1)3,(2.2),(3.2),(3.3),(3.8)and H?lder’s inequality.Consequently,to yield an estimate on H8,it suffices to bound the term.To this end,we can get that

    where we have used(1.8),(1.10),(2.2),(2.19),(2.20),(3.2),(3.3)and Young’s inequality.Thus we can deduce from(3.25)and(3.26)that

    As for the term H9,we can deduce from(1.1)3,(2.2),(2.23),(3.8),H?lder’s inequality and the following fact

    then combining all the above estimates and choosing ?>0 small enough,we can complete the proof of our lemma.

    Our next result in this section is to show that Z(T)can be bounded by X(T)and Y(T).

    Lemma 3.4Under the assumptions listed in Theorem 1.1,we have

    ProofDifferentiating(1.1)2with respect to t and multiplying the resulting identity with ut,we have

    On the other hand,according to(1.8),we have

    Thus combining(3.33)–(3.37),we obtain

    In view of(1.10),one can deduce that

    Then by virtue of(3.1)and Young’s inequality,we can complete the proof of our lemma.

    We are in a position to deduce the upper bound of θ(t,x)now.In fact,(3.4),(3.32)and(3.38)tell us that

    Thus with the hand of Young’s inequality and Lemma 3.3,we can deduce from(3.42)that

    Finally,choosing ?>0 small enough then using(3.4)and Young’s inequality again,we immediately obtain

    Recalling the de finition of X(T),Y(T),Z(T)and W(T),then combining Lemmas 2.1–3.4,we have the following lemma.

    Lemma 3.5Under the assumptions listed in Theorem 1.1,there exist positive constants C1and C2,which depend only on Π0and V0,such that

    Before concluding this section,let us deduce uniform bounds onandwhich will be used later on.In fact,we have the following lemma.

    Lemma 3.6Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    Integrating the above identity with respect to t and x over(0,t)×R and taking advantage of(3.41),we arrive at

    Here we have used(2.2),Lemma 3.5 and Sobolev’s inequality.

    Moreover,it follows from(2.2),Lemma 3.5 and Cauchy’s inequality that

    Then combining(3.52)–(3.54)and choosing ?>0 small enough,we can get(3.50).

    Finally,choosing ?>0 small enough,integrating(3.55)with respect to t over(0,t)and using(2.2)as well as(3.49),we can obtain(3.51).

    As a result of Lemmas 2.1–3.6,we can obtain the following corollary immediately.

    Corollary 3.7Under the assumptions listed in Theorem 1.1,there exists a positive constants C3,such that

    The next estimate is concerned with the local-in-time estimate on the lower bound on the absolute temperature θ(t,x).To this end,we can deduce by repeating the method used in[33]that

    Lemma 3.8Under the assumptions stated in Theorem 1.1,for each 0≤s≤t≤T and x∈R,there exist a positive constant C4,such that

    4 Estimates of Second-order Derivatives

    In the following sections,to simplify the presentation,we introduceholds uniformly for some constant Ch,depending only on Π0,V0and H(C2)with C2given in Lemma 3.5.The letter C(m2)will be employed to denote some positive constant which depends only on m2,Π0,V0and H(C2).We note from(1.9)and(3.48)that

    We estimate the second-order derivatives of(u(t,x),θ(t,x))with respect to the space variable x in the next lemma.

    Lemma 4.1Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    ProofFirst,di ff erentiating(1.1)2with respect to x,and multiplying the resulting identity by uxxx,we have

    To estimate the last term in(4.3),we first make some estimate of θα.It follows from(2.4)that

    Since v(t,x)is bounded,for general smooth function f(v),we have

    Combining(4.7)and(4.8),we have

    We plug(4.11),(4.12)and(4.13)into(4.10),and use(4.3)–(4.10)to deduce that

    Integrating the above identity over[0,t]× R,we obtain from Cauchy’s inequality,(2.4)and(3.48)that

    Combining(4.14)and(4.19)and taking δ>0 small enough,we can obtain(4.2). ?

    We next obtain a m2-dependent bound for the second-order derivatives with respect to x of the solution(v(t,x),u(t,x),θ(t,x)).

    Lemma 4.2Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    ProofDifferentiate(2.7)with respect to x and multiply the result byto find

    We integrate the above identity over[0,t]× R,and Cauchy’s inequality to obtain

    On the other hand,one can deduce from(2.14)that

    In view of(4.4)and

    Hence applying Cauchy’s inequality yields

    which combined with(4.2)implies(4.20).

    5 Estimates of Third-order Derivatives

    Estimates on the third-order derivatives of(v(t,x),u(t,x),θ(t,x))with respect to x will be proved in this subsection.We first give an estimate on the third-order derivatives of u(t,x)and θ(t,x)with respect to x in the following lemma.

    Lemma 5.1Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    In view of(3.56)and(4.20),we deduce that

    Next,we di ff erentiate(3.9)with respect to x twice and multiply the result by θxxxxto obtain

    Combining(5.5)and(5.10)and taking δ>0 small enough,we can obtain(5.1).

    By using(2.4)and Gronwall’s inequality,we can deduce the m2-dependent bound for the third-order derivatives of(v(t,x),u(t,x),θ(t,x))with respect to x.The proof is similar to that of Lemma 4.2 and hence we omit the details for brevity.

    Lemma 5.2Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    By virtue of Lemma 2.1–Lemma 5.2,we can get the following corollary.

    Corollary 5.3Under the assumptions listed in Theorem 1.1,there exists a positive constants C(m2)>0 which depends only on m2,Π0,V0and H(C2)with C2being given in Lemma 3.5,such that for all t∈[0,T],

    With Corollary 5.3 in hand,Theorem 1.1 follows by the combing the well-established local existence of solution(v(t,x),u(t,x),θ(t,x))of the Cauchy problem(1.1)–(1.3)with constitutive relations(1.6),(1.7)and(1.8)which is without vacuum,mass concentrations,or vanishing temperatures,cf.[23],and the continuation argument designed in[52]and we omit the details for brevity.

    猜你喜歡
    王濤
    綿師學(xué)人
    ——王濤
    Review of a direct epitaxial approach to achieving micro-LEDs
    “雞兔同籠”問(wèn)題解法探析及思考
    Nonlinear excitation of a geodesic acoustic mode by reversed shear Alfvén eignemodes
    Transition to chaos in lid–driven square cavity flow?
    王濤油畫(huà)作品
    大眾文藝(2020年23期)2021-01-04 08:48:40
    王濤 李佳星作品
    大眾文藝(2020年22期)2020-12-13 11:37:16
    Effect of Pore Distribution on Melting Behavior of Paraffin in Fractal Metal Foam?
    Study on the Reduced Traffic Congestion Method Based on Dynamic Guidance Information?
    王濤作品
    欧美乱码精品一区二区三区| 国产蜜桃级精品一区二区三区| 久久草成人影院| 丰满人妻一区二区三区视频av | 最新在线观看一区二区三区| 午夜亚洲福利在线播放| 91麻豆精品激情在线观看国产| 午夜福利在线观看免费完整高清在 | 亚洲真实伦在线观看| h日本视频在线播放| 欧美最黄视频在线播放免费| 在线看三级毛片| 欧美激情在线99| 欧美一区二区国产精品久久精品| eeuss影院久久| 午夜福利高清视频| 国产精品国产高清国产av| 亚洲av成人精品一区久久| 美女cb高潮喷水在线观看| 在线观看一区二区三区| 久久久久久九九精品二区国产| 少妇熟女aⅴ在线视频| 真实男女啪啪啪动态图| 亚洲欧美激情综合另类| 母亲3免费完整高清在线观看| 国产精品一区二区三区四区久久| 久久国产乱子伦精品免费另类| 全区人妻精品视频| 欧美日本视频| 欧洲精品卡2卡3卡4卡5卡区| 99在线视频只有这里精品首页| 叶爱在线成人免费视频播放| 免费电影在线观看免费观看| 亚洲精品一区av在线观看| av福利片在线观看| 亚洲成av人片在线播放无| 天堂影院成人在线观看| 桃色一区二区三区在线观看| 久久久久国内视频| 久久久精品欧美日韩精品| 国产欧美日韩一区二区三| 99国产极品粉嫩在线观看| 国产老妇女一区| 中文资源天堂在线| 久久国产精品人妻蜜桃| 少妇的丰满在线观看| 男人的好看免费观看在线视频| 免费看美女性在线毛片视频| 国产高清视频在线观看网站| 国产一区二区在线观看日韩 | 国产精品99久久久久久久久| 在线播放国产精品三级| 亚洲欧美激情综合另类| 黄片大片在线免费观看| 国产一区二区三区在线臀色熟女| 深夜精品福利| 亚洲精品成人久久久久久| 国产一级毛片七仙女欲春2| 欧美绝顶高潮抽搐喷水| 国产久久久一区二区三区| 99精品久久久久人妻精品| 国产黄色小视频在线观看| 国产黄a三级三级三级人| 九九久久精品国产亚洲av麻豆| 中文字幕av成人在线电影| 又紧又爽又黄一区二区| 18+在线观看网站| 天堂网av新在线| 精品99又大又爽又粗少妇毛片 | 少妇的丰满在线观看| 午夜精品在线福利| 亚洲七黄色美女视频| 久久精品综合一区二区三区| 丁香欧美五月| 午夜免费成人在线视频| 久久精品91蜜桃| 欧美日韩瑟瑟在线播放| 窝窝影院91人妻| 欧美国产日韩亚洲一区| 成熟少妇高潮喷水视频| 少妇人妻精品综合一区二区 | 99久久九九国产精品国产免费| 亚洲天堂国产精品一区在线| av片东京热男人的天堂| 成人性生交大片免费视频hd| 成人无遮挡网站| 欧美一区二区亚洲| 一二三四社区在线视频社区8| avwww免费| 国产高清视频在线播放一区| 老熟妇乱子伦视频在线观看| 好看av亚洲va欧美ⅴa在| 午夜精品一区二区三区免费看| 日本黄色片子视频| 一本一本综合久久| 欧美成人a在线观看| 99国产综合亚洲精品| 一二三四社区在线视频社区8| 国产精品久久久久久亚洲av鲁大| 久久香蕉精品热| 91九色精品人成在线观看| 国产探花在线观看一区二区| 欧美国产日韩亚洲一区| 一卡2卡三卡四卡精品乱码亚洲| 一进一出抽搐动态| 国产精华一区二区三区| 久久亚洲真实| 狠狠狠狠99中文字幕| 淫秽高清视频在线观看| 国产黄a三级三级三级人| 国产精品久久久人人做人人爽| 国产午夜福利久久久久久| 国产成+人综合+亚洲专区| 两个人看的免费小视频| 欧美日韩亚洲国产一区二区在线观看| 国产成人欧美在线观看| 99热6这里只有精品| 男插女下体视频免费在线播放| 最近视频中文字幕2019在线8| 久久久久久久久久黄片| 国产欧美日韩一区二区三| 日韩欧美一区二区三区在线观看| 国产av在哪里看| 精品人妻1区二区| 久久精品人妻少妇| 99久久久亚洲精品蜜臀av| 在线天堂最新版资源| 好看av亚洲va欧美ⅴa在| 免费av观看视频| 人妻丰满熟妇av一区二区三区| 99久久成人亚洲精品观看| aaaaa片日本免费| 日韩有码中文字幕| 免费观看的影片在线观看| 日本 欧美在线| 超碰av人人做人人爽久久 | 美女免费视频网站| av天堂在线播放| 一区二区三区高清视频在线| 国产精品久久久久久久电影 | av欧美777| 国产野战对白在线观看| 老汉色∧v一级毛片| 久久精品91蜜桃| 国产精品亚洲一级av第二区| 99国产精品一区二区三区| 中文资源天堂在线| 欧美成人免费av一区二区三区| 成年免费大片在线观看| 亚洲成人久久爱视频| 操出白浆在线播放| 欧美日韩福利视频一区二区| 在线观看日韩欧美| 男人的好看免费观看在线视频| 一边摸一边抽搐一进一小说| 真实男女啪啪啪动态图| 亚洲天堂国产精品一区在线| 男女那种视频在线观看| 国产精品久久电影中文字幕| 欧美另类亚洲清纯唯美| 99久久精品国产亚洲精品| 午夜激情福利司机影院| 99精品久久久久人妻精品| 男人的好看免费观看在线视频| 日本一二三区视频观看| 一本一本综合久久| 久久久久久久精品吃奶| 欧美在线一区亚洲| 精品久久久久久久末码| 亚洲精华国产精华精| 色播亚洲综合网| avwww免费| 免费高清视频大片| 97人妻精品一区二区三区麻豆| 欧美精品啪啪一区二区三区| 国产伦一二天堂av在线观看| 久久精品国产亚洲av涩爱 | ponron亚洲| 亚洲成人免费电影在线观看| 国产午夜福利久久久久久| 又黄又爽又免费观看的视频| 99国产精品一区二区三区| 一个人看的www免费观看视频| 一进一出抽搐gif免费好疼| 人人妻,人人澡人人爽秒播| 身体一侧抽搐| 欧美+亚洲+日韩+国产| 老熟妇仑乱视频hdxx| 岛国在线观看网站| 免费人成在线观看视频色| 小蜜桃在线观看免费完整版高清| 久久精品亚洲精品国产色婷小说| 国产午夜精品论理片| 少妇高潮的动态图| 三级男女做爰猛烈吃奶摸视频| 老汉色∧v一级毛片| 亚洲国产高清在线一区二区三| 免费在线观看影片大全网站| 日本黄大片高清| 亚洲专区中文字幕在线| 波多野结衣高清无吗| 久久久久亚洲av毛片大全| 欧美av亚洲av综合av国产av| 午夜a级毛片| 宅男免费午夜| 深夜精品福利| 亚洲国产欧洲综合997久久,| 国产高清视频在线观看网站| 十八禁网站免费在线| 九九热线精品视视频播放| 一夜夜www| 欧美一区二区亚洲| or卡值多少钱| 午夜福利免费观看在线| 亚洲精品国产精品久久久不卡| 深爱激情五月婷婷| 欧美性猛交黑人性爽| 日本免费a在线| 国产高清有码在线观看视频| 欧美激情在线99| 毛片女人毛片| 可以在线观看的亚洲视频| 午夜激情福利司机影院| 欧美另类亚洲清纯唯美| xxx96com| 成年免费大片在线观看| 内地一区二区视频在线| 淫妇啪啪啪对白视频| 丁香六月欧美| 国产精品一区二区三区四区免费观看 | 成年免费大片在线观看| e午夜精品久久久久久久| 欧美乱妇无乱码| x7x7x7水蜜桃| 一卡2卡三卡四卡精品乱码亚洲| 最新美女视频免费是黄的| 国产成人av激情在线播放| 欧美+日韩+精品| av福利片在线观看| 我的老师免费观看完整版| 1000部很黄的大片| 亚洲美女黄片视频| 国产高清videossex| 午夜a级毛片| 变态另类丝袜制服| 欧美一区二区亚洲| 性色avwww在线观看| 无人区码免费观看不卡| 成人亚洲精品av一区二区| 中文字幕人妻熟人妻熟丝袜美 | 我的老师免费观看完整版| 每晚都被弄得嗷嗷叫到高潮| 搡老岳熟女国产| 色吧在线观看| 久久精品综合一区二区三区| 母亲3免费完整高清在线观看| 免费观看人在逋| 嫩草影院入口| 日韩欧美精品免费久久 | www.www免费av| 久久久国产成人精品二区| 欧美大码av| 特级一级黄色大片| 国产午夜福利久久久久久| 啦啦啦免费观看视频1| 久久精品国产亚洲av香蕉五月| 久久久久久国产a免费观看| 最近最新中文字幕大全免费视频| 日本a在线网址| 久久久色成人| 久久精品国产99精品国产亚洲性色| 真实男女啪啪啪动态图| 欧美+日韩+精品| 亚洲国产高清在线一区二区三| 国内精品美女久久久久久| 欧美bdsm另类| 99在线人妻在线中文字幕| 欧美zozozo另类| 久久久久久久精品吃奶| 一级作爱视频免费观看| 欧美一级毛片孕妇| 美女被艹到高潮喷水动态| 又黄又爽又免费观看的视频| 在线观看av片永久免费下载| 热99在线观看视频| 亚洲国产欧美人成| 99久久无色码亚洲精品果冻| 成人av在线播放网站| 一卡2卡三卡四卡精品乱码亚洲| 久久久精品大字幕| 亚洲一区二区三区不卡视频| 欧美日韩瑟瑟在线播放| ponron亚洲| 久久久久久久久大av| 欧美性猛交╳xxx乱大交人| 亚洲精品久久国产高清桃花| 性欧美人与动物交配| 久久久久久久亚洲中文字幕 | 久久久久久久午夜电影| 岛国在线免费视频观看| 久久久色成人| 又爽又黄无遮挡网站| 人妻久久中文字幕网| 色尼玛亚洲综合影院| 中文字幕久久专区| 美女被艹到高潮喷水动态| 搡老熟女国产l中国老女人| 国产黄片美女视频| 欧美日韩精品网址| 一区二区三区高清视频在线| 无遮挡黄片免费观看| 亚洲精品美女久久久久99蜜臀| 51午夜福利影视在线观看| 真人一进一出gif抽搐免费| 成人av在线播放网站| 美女高潮的动态| 精品久久久久久久久久久久久| 狂野欧美激情性xxxx| 日本黄色片子视频| 最新美女视频免费是黄的| 国产精品乱码一区二三区的特点| 欧美区成人在线视频| 亚洲国产精品999在线| 男女床上黄色一级片免费看| 深爱激情五月婷婷| 在线观看日韩欧美| 日韩欧美在线二视频| 人妻丰满熟妇av一区二区三区| 欧美激情久久久久久爽电影| 精品电影一区二区在线| 日本精品一区二区三区蜜桃| 欧美性猛交黑人性爽| 一个人免费在线观看电影| 真人一进一出gif抽搐免费| 国产精品久久电影中文字幕| 真人做人爱边吃奶动态| 免费av不卡在线播放| 村上凉子中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久久精品吃奶| 亚洲成人久久爱视频| 午夜激情欧美在线| 尤物成人国产欧美一区二区三区| 亚洲av电影在线进入| 18美女黄网站色大片免费观看| 欧美日韩一级在线毛片| 亚洲成av人片免费观看| 日本 欧美在线| 美女 人体艺术 gogo| 亚洲男人的天堂狠狠| netflix在线观看网站| 精品国产超薄肉色丝袜足j| 在线视频色国产色| 久久精品国产亚洲av香蕉五月| 日韩欧美精品免费久久 | 久久这里只有精品中国| 在线观看午夜福利视频| 国产aⅴ精品一区二区三区波| 国产色婷婷99| 不卡一级毛片| 欧美性猛交黑人性爽| 国产单亲对白刺激| 国产毛片a区久久久久| 一a级毛片在线观看| 午夜福利在线观看吧| 亚洲天堂国产精品一区在线| 熟女电影av网| 久久久成人免费电影| 99riav亚洲国产免费| 欧美一级a爱片免费观看看| 国产高清视频在线播放一区| 久久精品影院6| 亚洲人与动物交配视频| 亚洲中文日韩欧美视频| 日韩成人在线观看一区二区三区| 亚洲欧美日韩卡通动漫| 99久久成人亚洲精品观看| 在线观看av片永久免费下载| 免费大片18禁| 精品久久久久久成人av| 99视频精品全部免费 在线| www.999成人在线观看| 黄色片一级片一级黄色片| 亚洲午夜理论影院| 亚洲自拍偷在线| 国模一区二区三区四区视频| 国产高清三级在线| 好男人电影高清在线观看| 搡老妇女老女人老熟妇| 亚洲第一电影网av| 国产高潮美女av| av在线天堂中文字幕| 校园春色视频在线观看| 精品国产亚洲在线| 丰满乱子伦码专区| 国产单亲对白刺激| 99视频精品全部免费 在线| 国产亚洲欧美在线一区二区| 老司机午夜十八禁免费视频| 亚洲av五月六月丁香网| 天堂动漫精品| 欧美丝袜亚洲另类 | 99热只有精品国产| 99久久精品国产亚洲精品| 欧美不卡视频在线免费观看| 91麻豆精品激情在线观看国产| 亚洲国产色片| 老司机深夜福利视频在线观看| 精品乱码久久久久久99久播| 操出白浆在线播放| 国产精品99久久久久久久久| 久久久成人免费电影| 久9热在线精品视频| 亚洲va日本ⅴa欧美va伊人久久| www.色视频.com| 亚洲人与动物交配视频| 久久久久国产精品人妻aⅴ院| 欧美黑人欧美精品刺激| 久99久视频精品免费| 久久精品亚洲精品国产色婷小说| 久久精品夜夜夜夜夜久久蜜豆| 真人一进一出gif抽搐免费| 国产熟女xx| 香蕉av资源在线| 久99久视频精品免费| 国产精品99久久久久久久久| 久久这里只有精品中国| 1024手机看黄色片| 搞女人的毛片| 一二三四社区在线视频社区8| e午夜精品久久久久久久| 亚洲av五月六月丁香网| 有码 亚洲区| 精品99又大又爽又粗少妇毛片 | 免费观看人在逋| 久久国产精品人妻蜜桃| 精品人妻1区二区| 欧美xxxx黑人xx丫x性爽| 级片在线观看| 男女午夜视频在线观看| 一边摸一边抽搐一进一小说| 精品久久久久久久人妻蜜臀av| avwww免费| 精品熟女少妇八av免费久了| 久久人人精品亚洲av| 亚洲av熟女| 夜夜躁狠狠躁天天躁| 亚洲精品一区av在线观看| 成人无遮挡网站| 国产色婷婷99| 午夜福利在线观看免费完整高清在 | 久久人人精品亚洲av| 久久性视频一级片| 在线观看舔阴道视频| 久久精品国产清高在天天线| 免费在线观看亚洲国产| 精品不卡国产一区二区三区| 丰满乱子伦码专区| 成熟少妇高潮喷水视频| 欧美一区二区精品小视频在线| 亚洲七黄色美女视频| 成人一区二区视频在线观看| 最新中文字幕久久久久| 麻豆成人午夜福利视频| 老司机在亚洲福利影院| 丰满乱子伦码专区| 狂野欧美激情性xxxx| 亚洲av二区三区四区| 国产三级黄色录像| 国产精品 欧美亚洲| 此物有八面人人有两片| 男女视频在线观看网站免费| 色综合婷婷激情| 黄片小视频在线播放| 成年免费大片在线观看| 三级国产精品欧美在线观看| 一夜夜www| 99热精品在线国产| 亚洲美女视频黄频| 久久久久性生活片| 国产极品精品免费视频能看的| 18禁在线播放成人免费| 日韩大尺度精品在线看网址| 久久精品夜夜夜夜夜久久蜜豆| 美女 人体艺术 gogo| 女同久久另类99精品国产91| 一个人免费在线观看电影| 免费在线观看日本一区| 欧美bdsm另类| 一级黄片播放器| 1000部很黄的大片| 一区二区三区免费毛片| 亚洲一区二区三区不卡视频| 男女床上黄色一级片免费看| 亚洲男人的天堂狠狠| 男女午夜视频在线观看| 国产亚洲精品久久久com| 欧美激情久久久久久爽电影| 成人特级av手机在线观看| 国产综合懂色| 亚洲成人中文字幕在线播放| 女警被强在线播放| 欧美三级亚洲精品| 久久久久久久精品吃奶| 国产午夜精品论理片| 老汉色av国产亚洲站长工具| 欧美国产日韩亚洲一区| 国产男靠女视频免费网站| 精品熟女少妇八av免费久了| 一区二区三区激情视频| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区国产精品乱码| 88av欧美| 欧美中文综合在线视频| 亚洲国产精品sss在线观看| 毛片女人毛片| 女同久久另类99精品国产91| 狠狠狠狠99中文字幕| 18+在线观看网站| 老汉色av国产亚洲站长工具| 一本精品99久久精品77| 午夜福利欧美成人| 国产视频内射| 精品一区二区三区人妻视频| 亚洲黑人精品在线| 国产成+人综合+亚洲专区| 一个人免费在线观看的高清视频| 在线播放国产精品三级| 五月伊人婷婷丁香| 午夜激情欧美在线| 亚洲一区二区三区色噜噜| 一区二区三区免费毛片| 又黄又粗又硬又大视频| 国产一区二区在线av高清观看| 久久久久性生活片| 亚洲专区中文字幕在线| 国产亚洲av嫩草精品影院| 757午夜福利合集在线观看| 亚洲av电影在线进入| 久久久精品大字幕| 色综合亚洲欧美另类图片| 国产97色在线日韩免费| 好男人电影高清在线观看| 精品欧美国产一区二区三| 欧美日韩精品网址| 91在线精品国自产拍蜜月 | 亚洲精品成人久久久久久| e午夜精品久久久久久久| 国产乱人视频| 麻豆国产av国片精品| 一区二区三区激情视频| 一区二区三区免费毛片| 岛国在线观看网站| 搡老妇女老女人老熟妇| 国产精品亚洲美女久久久| 亚洲av日韩精品久久久久久密| 国内精品久久久久精免费| 97超视频在线观看视频| 中文在线观看免费www的网站| 色噜噜av男人的天堂激情| 特大巨黑吊av在线直播| 精品久久久久久,| 欧美中文日本在线观看视频| 人人妻人人澡欧美一区二区| 国产成人av教育| 国产精品综合久久久久久久免费| 最近在线观看免费完整版| 成年女人看的毛片在线观看| 亚洲五月天丁香| 手机成人av网站| 岛国在线免费视频观看| 岛国在线观看网站| 黄色视频,在线免费观看| 麻豆一二三区av精品| 欧美黄色片欧美黄色片| 国产色爽女视频免费观看| 欧美在线黄色| 国产69精品久久久久777片| 2021天堂中文幕一二区在线观| 亚洲人成伊人成综合网2020| 伊人久久大香线蕉亚洲五| 亚洲人与动物交配视频| 在线观看av片永久免费下载| 亚洲成人久久爱视频| 久久精品人妻少妇| 在线免费观看不下载黄p国产 | 十八禁人妻一区二区| 小说图片视频综合网站| 日韩av在线大香蕉| 激情在线观看视频在线高清| 亚洲欧美一区二区三区黑人| 亚洲欧美日韩东京热| 18禁美女被吸乳视频| 亚洲欧美日韩东京热| 欧美激情在线99| 免费无遮挡裸体视频| 亚洲精品影视一区二区三区av| 国产乱人伦免费视频| 天天躁日日操中文字幕| 欧美日韩精品网址| 69人妻影院| 婷婷亚洲欧美| 久久天躁狠狠躁夜夜2o2o| 精品不卡国产一区二区三区| 俺也久久电影网| 亚洲精品在线美女| 好男人在线观看高清免费视频| 12—13女人毛片做爰片一| bbb黄色大片| 国产精品久久久久久亚洲av鲁大| 99久久精品国产亚洲精品| 在线视频色国产色| 成熟少妇高潮喷水视频| 久久亚洲精品不卡| 一本精品99久久精品77|