• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    STABILITY OF STEADY MULTI-WAVE CONFIGURATIONS FOR THE FULL EULER EQUATIONS OF COMPRESSIBLE FLUID FLOW?

    2018-11-22 09:23:42GuiQiangCHEN陳貴強(qiáng)MatthewRIGBY

    Gui-Qiang G.CHEN(陳貴強(qiáng))Matthew RIGBY

    Mathematical Institute,University of Oxford,Oxford,OX2 6GG,UK

    E-mail:chengq@maths.ox.ac.uk;rigby@maths.ox.ac.uk

    Abstract We are concerned with the stability of steady multi-wave con figurations for the full Euler equations of compressible fluid flow.In this paper,we focus on the stability of steady four-wave con figurations that are the solutions of the Riemann problem in the flow direction,consisting of two shocks,one vortex sheet,and one entropy wave,which is one of the core multi-wave con figurations for the two-dimensional Euler equations.It is proved that such steady four-wave con figurations in supersonic flow are stable in structure globally,even under the BV perturbation of the incoming flow in the flow direction.In order to achieve this,we first formulate the problem as the Cauchy problem(initial value problem)in the flow direction,and then develop a modi fied Glimm di ff erence scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves,but also between the strong vortex sheet/entropy wave and weak waves.The key feature of the Euler equations is that the re flection coefficient is always less than 1,when a weak wave of di ff erent family interacts with the strong vortex sheet/entropy wave or the shock wave,which is crucial to guarantee that the Glimm functional is decreasing.Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution,close to the background solution of steady four-wave con figuration.

    Key words stability;multi-wave con figuration;vortex sheet;entropy wave;shock wave;BV perturbation;full Euler equations;steady;wave interactions;Glimm scheme

    1 Introduction

    We are concerned with the stability of steady multi-wave con figurationsfor the two-dimensional steady full Euler equations of compressible fluid flow governed by

    where(u,v)is the velocity,ρ the density,p the scalar pressure,andthe total energy,with internal energy e that is a given function of(p,ρ)de fined through thermodynamic relations.The other two thermodynamic variables are the temperature T and the entropy S.If(ρ,S)are chosen as two independent variables,then the constitutive relations become

    is de fined as the sonic speed.

    In this paper,we focus on the stability of steady four-wave con figurations in the two spacedimensional case,consisting of two shocks,one vortex sheet,and one entropy wave,which are the solutions of the Riemann problem in the flow direction;see Figure 1.In this con figuration,the vortex sheet and the entropy wave coincide in the Euler coordinates.This is one of the fundamental core multi-wave con figurations,as a solution of the standard steady Riemann problem for the two-dimensional Euler equations:

    (i)For supersonic flow,there are at most eight waves(shocks,vortex sheets,entropy waves,rarefaction waves)that emanate from one single point in the Euler coordinates,which consist of one solution(at most four of these waves)of the Riemann problem in the flow direction and the other solution(at most four of these waves)of the other Riemann problem in the opposite direction,while the later Riemann problem can also be reduced into the standard Riemann problem in the flow direction by the coordinate transformation(x,y) → (?x,?y)and the velocity transformation(u,v)→ (?u,?v),which are invariant for the Euler equations(1.1).

    (ii)Vortex sheets and entropy waves are new key fundamental waves in the multidimensional case,which are normally very sensitive in terms of perturbations as observed in numerical simulations and physical experiments(cf.[1,2,5,7,10]).

    (iii)Such solutions are fundamental con figurations for the local structure of general entropy solutions,which play an essential role in the mathematical theory of hyperbolic conservation laws(cf.[3,4,6,7,15–19,22,23]).

    Figure 1 An unperturbed four-wave con figuration,consisting of two shocks S1and S2,one vortex sheet C2,and one entropy wave C3

    The stability problem involving supersonic flows with a single shock past a Lipschitz wedge has been solved in Chen–Zhang–Zhu[11](also see Chen–Li[9]).The stability problem involving supersonic flows with vortex sheets and entropy waves over a Lipschitz wall has been solved in Chen–Zhang–Zhu[12].See also Chen–Kuang–Zhang[8]for the stability of two-dimensional steady supersonic exothermically reacting Euler flow past Lipschitz bending walls.

    The case of an initial con figuration involving two shocks is treated in[21],by using the method of front tracking,for more general equations,under the finiteness and stability conditions.We think that,with the estimates of Riemann solutions involving more than two strong waves,the estimates on the re flection coefficients of wave interactions should play a similar role so that the method of front tracking may be used.

    In this paper,it is proved that steady four-wave con figurations in supersonic flow are stable in structure globally,even under the BV perturbation of the incoming flow in the flow direction.In order to achieve this,we first formulate the problem as the Cauchy problem(initial value problem)in the flow direction,then develop a modi fied Glimm di ff erence scheme similar to those in[11,12]from the original Glimm scheme in[19]for one-dimensional hyperbolic conservation laws,and further identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves,but also between the strong vortex sheet/entropy wave and weak waves carefully.The key feature of the Euler equations is that the re flection coefficient is always less than 1,when a weak wave of di ff erent family interacts with the vortex sheet/entropy wave or the shock wave,which is crucial to guarantee that the Glimm functional is decreasing.Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution,close to the background solution of steady four-wave con figuration.

    This paper is organized as follows:In Section 2,we first formulate the stability of multiwave con figurations as the Cauchy problem(initial value problem)in the flow direction for the Euler equations(1.1)and then state the main theorem of this paper.In Section 3,some fundamental properties of system(1.1)and the analysis of the Riemann solutions are presented,which are used in the subsequent sections.In Section 4,we make estimates on the wave interactions,especially between strong and weak waves,and identify the key feature of the Euler equations that the re flection coefficient is always less than 1,when a weak wave of di ff erent family interacts with the vortex sheet/entropy wave or the shock wave.In Section 5,we develop a modi fied Glimm di ff erence scheme,based on the ones in[11,12],to construct a family of approximate solutions,and establish necessary estimates that will be used later to obtain its convergence to an entropy solution of the Cauchy problem(1.1)and(2.1).In Section 6,we show the convergence of the approximate solutions to an entropy solution,close to the background solution of steady four-wave con figuration.

    2 Formulation of the Problem and Main Theorem

    In this section,we formulate the stability problem for the steady four-wave con figurations as the Cauchy problem(initial value problem)in the flow direction for the Euler equations(1.1)and then state the main theorem of this paper.

    2.1 Stability Problem

    We focus on the stability problem of the four-wave con figurations consisting of two strong shocks,one strong vortex sheet,and one entropy wave for the supersonic Euler flows governed by system(1.1)for U=(u,v,p,ρ).More precisely,we consider a background solutionthat consists of four constant states:

    where uj>cjfor all j∈{a,m1,m2,b}with the sonic speed of state Uj:

    and state Um1connects to Ubby a strong 1-shock of speed σ10,Um1connects to Um2by a strong 2-vortex sheet and a strong 3-entropy wave of strengths(σ20,σ30),and Uaconnects to Um2by a strong 4-shock of speed σ40;see Figure 2.

    We are interested in the stability of the background solutionof steady four-wave con figuration,under small BV perturbations of the incoming flow as the initial data,to see whether it leads to entropy solutions containing similar strong four-wave con figurations,close to the background solution ofThat is,the stability problem can be formulated as the following Cauchy problem(initial value problem)for the Euler equations(1.1)with the Cauchy data:

    where U0∈ BV(R)is a small perturbation function close to U(·,0)in BV.

    Figure 2 The background solutionconsisting of four waves and four constant states

    The main theorem of this paper is the following:

    Theorem 2.1(existence and stability) There exist ?>0 and C>0 such that,if U0∈BV(R)satis fies

    then there are four functions:

    such that

    (i)U is a global entropy solution of system(1.1)in,satisfying the initial condition(2.1);

    (ii)Curves{y=χi(x)},i=1,2,3,4,are a strong 1-shock,a combined strong 2-vortex sheet and 3-entropy wave(χ2,3:= χ2= χ3),and a strong 4-shock,respectively,all emanating from the origin,with

    In Sections 2–6,we prove this main theorem and related properties of the global solution in BV.

    3 Riemann Problems and Solutions

    This section includes some fundamental properties of system(1.1)and some analysis of the Riemann solutions,which will be used in the subsequent sections;see also[11,12].

    3.1 Euler Equations

    With U=(u,v,p,ρ),the Euler system can be written in the following conservation form:

    where

    so that the eigenvalues of(3.2)are the roots of the fourth order polynomial:

    which are solutions of the equation:

    with four corresponding linearly independent eigenvectors:

    where κjare chosen to ensure that rj·?λj=1 for j=1,4,since the first and fourth characteristic fields are always genuinely nonlinear,and the second and third are linearly degenerate.

    In particular,at a state U=(u,0,p,ρ),

    De finition 3.1is called an entropy solution of(1.1)and(2.1)if

    (i)U satis fies the Euler equations(1.1)in the distributional sense and(2.1)in the trace sense;

    (ii)U satis fies the following entropy inequality:

    in the distributional sense in,including the boundary.

    3.2 Wave Curves in the Phase Space

    In this subsection,based on[11,pp.297–298]and[12,pp.1666–1667],we look at the basic properties of nonlinear waves.

    We focus on the region,{u>c},in the state space,especially in the neighborhoods of Ujin the background solution.

    We first consider self-similar solutions of(1.1):

    which connect to a state U0=(u0,v0,p0,v0).We find that

    which implies

    First,for the cases i=2,3,we obtain

    This yields the following curves Ci(U0)in the phase space through V0:

    which describe compressible vortex sheets(i=2)and entropy waves(i=3).More precisely,we have a vortex sheet governed by

    with strength σ2and slope,which is determined by

    and an entropy wave governed by

    with strength σ3and slope,which is determined by

    For j=1,4,we obtain the j-th rarefaction wave curve Rj(U0),j=1,4,in the phase space through U0:

    For shock wave solutions,the Rankine-Hugoniot conditions for(1.1)are

    where the jump symbol[·]stands for the value of the front state minus that of the back state.We find that

    His primary passion was clear thinking and comprehension. When I was in doubt about a concept that I was teaching him, he said, You must ask the teacher again. Must be clear.

    where u0>for small shocks.

    For si,i=2,3,in(3.15)–(3.18),we obtain the same Ci(U0),i=2,3,de fined in(3.12)–(3.13),since the corresponding fields are linearly degenerate.

    On the other hand,for sj,j=1,4,in(3.15)–(3.18),we obtain the j-th shock wave curve Sj(U0),j=1,4,through U0:

    where ρ0< ρ is equivalent to the entropy condition(3.8)on the shock wave.We also know that Sj(U0)agrees with Rj(U0)up to second order and that

    The entropy inequality(3.8)is equivalent to the following:

    see[11,pp.269–270,pp.297–298]for the details.

    3.3 Riemann Problems

    We consider the Riemann problem for(1.1):

    3.3.1 Riemann Problem only Involving Weak Waves

    Following Lax[20],we can parameterize any physically admissible wave curve in a neighborhood of a constant state U0.

    Lemma 3.2Given U0∈ R4,there exists a neighborhood O?(U0)such that,for all U1,U2∈O?(U0),the Riemann problem(3.24)admits a unique admissible solution consisting of four elementary waves.In addition,state U2can be represented by

    We also note that the renormalization factors κjin(3.7)have been used to ensure that=1 in a neighborhood of any unperturbed statewith u0>0,such as

    Lemma 3.3At any statewith u0>0,

    which also holds in a neighborhood of U0.

    This will be used later in Section 4.We exploit the symmetries between the shock polar and the reverse shock polar,and the symmetry between the 1-shock polar and the reverse 4-shock polar to allow for more concise arguments.

    3.3.2 Riemann Problem Involving a Strong 1-shock

    The results here are based on those in§6.1.4 of[11],with small changes for our requirements.

    For a fixed U1,when,we useto denote the 1-shock that connectswith speed σ1.

    Lemma 3.4For allwith

    ProofWe follow the same steps as[11,pp.273].First,by(3.20),

    Now,from the Rankine-Hugoniot conditions(3.15)–(3.18),

    so that,as um1>cm1,

    The result now follows by continuity.

    Lemma 3.5Let

    ProofWe omit the full calculations,which can be found at[11,pp.299–300].We use Lemma 3.4,along with the first and fourth Rankine-Hugoniot conditions(3.15)and(3.18),to deduce that P>0.We then use Lemma 3.4 and the entropy condition(3.23)to deduce

    Lemma 3.6There exists a neighborhoodsuch that,for each U0∈O?(Ub),the shock polar S1(Ub)can be parameterized locally for the state which connects to U0by a shock of speed σ10from above as

    ProofIt suffices to solve

    for U in terms of σ1and U0,with the knowledge thatis a solution.We see that

    Then the result follows by the implicit function theorem.

    3.3.3 Riemann Problem Involving a Strong 4-shock

    We now extend our results about 1-shocks to 4-shocks by symmetry.For a fixed U1,whento denote the 4-shock that connects U1to U2with speed σ4.The only di ff erence is the formula for σ4.

    Lemma 3.7For allwith

    ProofNote that,by(3.23),

    Since we have the same Rankine-Hugoniot conditions as in Lemma 3.4,with um2and uataking the roles of um1and ub,respectively,the proof follows identically.

    Lemma 3.8There exists a neighborhood O?(Ua) × O??(σ40)such that,for each U0∈O?(Ua),the reverse shock polar–the set of states that connect to U0by a strong 4-shock from blow–can be parameterized locally for the state which connects to U0by a shock of speed σ40as

    3.3.4 Riemann Problem Involving Strong Vortex Sheets and Entropy Waves

    We now look at the interaction between weak waves and the strong vortex sheet/entropy wave,based on those in §2.5 of[12].For any U1∈ O?(Um1)and U2∈ O?(Um2),we useto denote the strong vortex sheet and entropy wave that connect U1to U2with strength(σ2,σ3).That is,

    By a straightforward calculation,we have

    Lemma 3.9For

    The next property allows us to estimate the strength of re flected weak waves in the interactions between the strong vortex sheet/entropy wave and weak waves:

    Lemma 3.10The following holds

    4 Estimates on the Wave Interactions

    In this section,we make estimates on the wave interactions,especially between the strong and weak waves.This is based on those in§3 of[11,12],with new estimates for the strong 4-shock.

    Below,M>0 is a universal constant which is understood to be large,and O?(Ui)for i∈{a,m1,m2,b}is a universal small neighborhood of Uiwhich is understood to be small.Each of them depends only on the system,which may be di ff erent at each occurrence.

    Figure 3 Interaction estimates

    4.1 Preliminary Identities

    To make later arguments more concise,we now state some elementary identities here to be used later;these are simple consequences of the fundamental theorem of calculus.

    Lemma 4.1The following identities hold:

    4.2 Estimates on Weak Wave Interactions

    We have the following standard proposition;see,for example,[23,Chapter 19]for the proof.Note that,in our analysis of the Glimm functional,we only require the estimates for the cases where the waves are approaching.

    Proposition 4.2Suppose that U1,U2,and U3are three states in a small neighborhood of a given state U0with

    4.3 Estimates on the Interaction between the Strong Vortex Sheet/Entropy Wave and Weak Waves

    We now derive an interaction estimate between the strong vortex sheet/entropy wave and weak waves.The properties thatin(4.5)will be critical in the proof that the Glimm functional is decreasing.

    Proposition 4.3Let

    ProofThis proof is the same as[12,pp.1673],with additional terms.We need to solve foras a function ofin the following equation:

    We see that Kvbiand Kbvjare bounded from the formulae above.To deduce that|Kvb1|<1,we di ff erentiate(4.3)with respect to α4to obtain

    We can then deduce the following result by symmetry:

    Proposition 4.4If

    4.4 Estimates on the Interaction between the Strong Shocks and Weak Waves

    We now derive an interaction estimate between the strong shocks and weak waves.The properties thatin(4.14)will be critical in the proof that the Glimm functional is decreasing.

    4.4.1 Interaction between the Strong 1-shock and Weak Waves

    Proposition 4.5If

    ProofThis is similar to[11,pp.303],with extra terms.We need to show that there exists a solutionto

    Thus,we may reduce(4.7)to

    Now,using the expression of γ in terms of(α,β)and absorbing the residual part of the–term into the,we have the desired result.

    We now prove a result for the case where weak waves approach the strong 1-shock from below.

    Proposition 4.6Suppose that

    ProofWe need to find a solution to

    Now the required result follows by using Lemma 4.1,and noting thatα4=0 and thatis a solution.

    4.4.2 Interaction between the Strong 4-shock and Weak Waves

    Now,by symmetry with the 1-shock case,we deduce the following results:

    Proposition 4.7Suppose thatsuch that

    Proposition 4.8If

    5 Approximate Solutions and BV Estimates

    In this section,we develop a modi fied Glimm di ff erence scheme,based on the ones in[11,12],to construct a family of approximate solutions and establish necessary estimates that will be used later to obtain its convergence to an entropy solution to(1.1)and(2.1).

    5.1 A Modi fied Glimm Scheme

    For?x>0,we de fine

    We also need to make sure that the strong shocks do not interact:If we take the neighborhoods small enough,there exist a and b with?1

    Now de fine

    where θkis randomly chosen in(?1,1).We then choose

    to be the mesh points,and de fine the approximate solutionsfor any θ=(θ0,θ1,···)in the following inductive way:

    To avoid the issues of interaction of strong fronts,we separate out the initial data for k=0.De fineas follows:

    Then de fine U0(y)to be the state that connects to U0(?4?y)by a strong 1-shock of strength σ10on(?4?y,0)which lies in O?(Um1),and the state that connects to U0(0)by a combined strong vortex sheet/entropy wave of strengthon(0,4?y)which lies in.Thus,for ? small,

    Now,as long as we can provide a uniform bound on the solutions and show the Riemann problems involved always have solutions,this algorithm de fines a family of approximate solutions globally.

    Figure 4 Glimm’s scheme

    5.2 Glimm-type Functional and Its Bounds

    In this section,we prove the approximate solutions are well de fined in ??xby uniformly bounding them.We first introduce the following lemma,which is a combination of Lemma 6.7 in[11,pp.305]and Lemma 4.1 in[12,pp.1677],and follows from that Φ,G1,G2,3,and G4are C1functions.

    Lemma 5.1The following bounds of the approximate solutions of the Riemann problems hold:

    We now show that U?x,θcan be de fined globally.Assume that U?x,θhas been de fined in,by the steps in Section 5,and assume the following conditions are satis fied:

    C1(k ? 1) In each,there are a strong 1-shocka combined strong vortex sheet/entropy waveand a strong 4-shockwith strengthswhich divide ??x,jinto four parts:– the part below–the part between–the part betweenand–the part above

    To see that C2(k)holds if C2(k?1)holds,by the discussion earlier,forto emanate further down thanwe require θk>b,which implies thatemanate further down thanto emanate further up thanwe require θk

    We will establish a bound on the total variation of U?x,θon the k-mesh curves to establish C3(k)and C1(k).

    De finition 5.2A k-mesh curve is an unbounded piecewise linear curve consisting of line segments between the mesh points,lying in the strip:

    with each line segment of form

    Figure 5 Separation of the initial data

    Clearly,for any k>0,each k-mesh curve I divides plane R2into a part I+and a part I?,where I?is the one containing set{x<0}.As in[19],we partially order these mesh curves by saying J>I if every point of J is either on I or contained in I+,and we call J an immediate successor to I if J>I and every mesh point of J,except one,is on I.We now de fine a Glimm-type functional on these mesh curves.

    De finition 5.3De fine

    where|α4s1|and|α1s4|are the strengths of the weak 4-shock and 1-shock that emanate from the same point as the strong 1-shock and 4-shock,respectively,and these two weak waves are excluded from,respectively.

    Remark 5.4measures the total variation of U|J,owing to Lemma 5.1;each term Li(J)measures the total variation in region(i),and each termmeasures the magnitude of jumps of U between the regions separated by the large shocks.We also see that Q(J)≤L(J)for L(J)small enough,so that Q(J)is equivalent to

    Proposition 5.5Suppose that I and J are two k–mesh curves such that J is an immediate successor of I.Suppose that

    Let Λ be the diamond that is formed by I and J.We can assume thatsuch thatWe divide our proof into di ff erent cases,based on where diamond Λ is located.

    Case 1Weak-weak interaction

    Suppose that Λ lies in the interior of a region(i);see Figure 6.Then,by Proposition 4.2,

    Figure 6 Case 1:Weak wave interaction

    Case 2Weak waves interact with the strong vortex sheet/entropy wave from below

    Suppose that the approximate strong vortex sheet/entropy wave enters Λ from above;see Figure 7.

    Figure 7 Cases 2&3:Weak waves interact with the strong vortex sheet/entropy wave from below and above

    We have

    Case 3Weak waves interact with the strong vortex sheet/entropy wave from above

    Suppose that the approximate vortex sheet/entropy wave enters Λ from below;see Figure 7.This case follows by symmetry from the above case,owing to the symmetry between Propositions 4.3 and 4.4,and the symmetry between the coefficients.

    Case 4Weak waves interact with the strong 1-shock from above

    Suppose that the strong 1-shock enters Λ from below;see Figure 8.By Proposition 4.5,we have

    Figure 8 Cases 4&5:Weak waves interact with the strong 1-shock from above and below

    Case 5Weak waves interact with the strong 1-shock from below

    Suppose that the strong 1-shock enters Λ from above;see Figure 8.By Proposition 4.6,we have

    Case 6Weak waves interact with the strong 4-shock from below

    Suppose that the strong 4-shock enters Λ from above;see Figure 9.By symmetry from Case 4,we conclude thatdue to the symmetry between Propositions 4.5 and 4.8.

    Figure 9 Cases 6&7:Weak waves interact with the strong 4-shock from below and above.

    Case 7Weak waves interact with the strong 4-shock from above

    Suppose that the strong 4-shock enters Λ from below;see Figure 9.By symmetry from Case 5,we obtain that,owing to the symmetry between Propositions 4.6 and 4.7.

    Let Ikbe the k–mesh curve lying inFrom Proposition 5.5,we obtain the following theorem for any k≥1:

    Theorem 5.6LetK,and C?be the constants speci fied in Proposition 5.5.If the induction hypotheses

    Moreover,we obtain the following theorem by the construction of our approximate solutions:

    Theorem 5.7There exists ?>0 such that,if

    the modi fied Glimm scheme de fines a family of strong approximate frontsand(5.1).In addition,

    for any x≥0 and h>0.

    5.3 Estimates on the Approximate Strong Fronts

    Then,by the estimates in Proposition 5.5,we have

    Proposition 5.8There exists,independent of?x,θ,and U?x,θ,such that

    ProofWe follow the proof in[11,pp.290].For any k≥1,and the interaction diamondde fine

    Therefore,we also conclude the following:

    Proposition 5.9There existsindependent of?x,θ,and U?x,θ,such that,for j=1,2,3,4,

    ProofFor j=1,4,this follows immediately from Proposition 5.8.For j=2,3,observe that,if we makesmall enough so thatwe have

    6 Global Entropy Solutions

    In this section,we show the convergence of the approximate solutions to an entropy solution close to the four-wave con figuration solution.

    6.1 Convergence of the Approximate Solutions

    Lemma 6.1For any h>0 and x≥0,there exists a constantˇN,independent of?x,θ,and h,such that

    ProofBy Fubini’s theorem and Theorem 5.7,

    Then,summing over all k and n with k+n≡1(mod2)and re-arranging the terms,we have

    Following the same steps as in[23,Chapter 19],we have

    Lemma 6.2There exist a null setand a subsequencewhich tends to 0,such that

    To complete the proof of the main theorem,we need to estimate the slope of the approximate strong fronts.For k≥1,i=1,2,3,4,

    Lemma 6.3The following statements hold:

    ProofThe first part is a direct calculation.The second follows by the same proof as[11,pp.292];just take two sub-sub-sequences to obtain all three strong front slopes to converge.

    Theorem 6.4(existence and stability) There exist ?>0 and C>0 such that,if the hypotheses of the main theorem hold,then,for eachthere exists a sequenceof mesh sizes with?l→ 0 as l→ ∞,and functionssuch that

    (i)U?l,θconverges to Uθa.e.in R2+,and Uθis a global entropy solution of system(1.1)and satis fies the initial data(2.1)a.e.;

    (ii) χj,?l,θconverges to χj,θuniformly in any bounded x-interval;

    (iii)sj,?l,θconverges to sj,θ∈ BV([0,∞))a.e.andR

    ProofResult(i)follows by the same steps as[23,Chapter 19],(ii)follows by Theorem 5.7 and the Arzela-Ascoli theorem,while(iii)follows Proposition 5.9 and the basic properties of BV functions. ?

    国产真实伦视频高清在线观看 | 亚洲av熟女| 一区福利在线观看| 他把我摸到了高潮在线观看| 久久久久久久久久黄片| 有码 亚洲区| 听说在线观看完整版免费高清| 一二三四社区在线视频社区8| 欧美一区二区国产精品久久精品| 在线观看美女被高潮喷水网站 | 99热只有精品国产| 少妇人妻一区二区三区视频| 色吧在线观看| 久久香蕉国产精品| 日韩高清综合在线| 18禁黄网站禁片午夜丰满| 久久久国产成人精品二区| 观看免费一级毛片| 国产在视频线在精品| 欧美中文日本在线观看视频| 观看免费一级毛片| 国产精品乱码一区二三区的特点| 国产精品1区2区在线观看.| 成人av一区二区三区在线看| 一a级毛片在线观看| 欧美黑人欧美精品刺激| 超碰av人人做人人爽久久 | 亚洲人成网站高清观看| 特级一级黄色大片| 在线观看66精品国产| 国产99白浆流出| av天堂在线播放| 亚洲熟妇中文字幕五十中出| 搡老妇女老女人老熟妇| 午夜激情福利司机影院| 法律面前人人平等表现在哪些方面| 夜夜躁狠狠躁天天躁| 国产精品99久久99久久久不卡| 亚洲精品亚洲一区二区| 久久欧美精品欧美久久欧美| 国产男靠女视频免费网站| 天堂动漫精品| 日韩高清综合在线| 法律面前人人平等表现在哪些方面| 午夜福利成人在线免费观看| 欧美高清成人免费视频www| 亚洲欧美日韩东京热| 亚洲国产精品合色在线| 熟女电影av网| 亚洲专区中文字幕在线| 一a级毛片在线观看| 国产一区二区亚洲精品在线观看| 香蕉丝袜av| 老鸭窝网址在线观看| tocl精华| 国产97色在线日韩免费| 色尼玛亚洲综合影院| 人妻丰满熟妇av一区二区三区| 在线观看舔阴道视频| 日韩欧美 国产精品| 欧美乱码精品一区二区三区| 国产精品99久久99久久久不卡| 久久香蕉精品热| 欧美日韩黄片免| 久久国产乱子伦精品免费另类| 久久婷婷人人爽人人干人人爱| 国产欧美日韩精品亚洲av| 丰满乱子伦码专区| 欧美在线一区亚洲| 久久久国产成人免费| 精品日产1卡2卡| 夜夜躁狠狠躁天天躁| 久久精品国产亚洲av涩爱 | 人妻夜夜爽99麻豆av| 国产成年人精品一区二区| 美女cb高潮喷水在线观看| 国产精品一区二区免费欧美| 我的老师免费观看完整版| 波多野结衣高清作品| 亚洲国产色片| 国产亚洲精品一区二区www| 男女午夜视频在线观看| 啪啪无遮挡十八禁网站| xxx96com| 日本五十路高清| 免费看美女性在线毛片视频| 丰满人妻熟妇乱又伦精品不卡| 九九在线视频观看精品| 亚洲精品粉嫩美女一区| e午夜精品久久久久久久| 国产亚洲精品一区二区www| 国产成人系列免费观看| 色精品久久人妻99蜜桃| 99精品在免费线老司机午夜| 亚洲精品亚洲一区二区| 成人午夜高清在线视频| 欧美大码av| 国产午夜福利久久久久久| 亚洲18禁久久av| 在线观看日韩欧美| 免费av观看视频| 亚洲自拍偷在线| 两个人视频免费观看高清| 国产精品久久电影中文字幕| 亚洲一区二区三区色噜噜| 亚洲精品粉嫩美女一区| 中出人妻视频一区二区| 午夜两性在线视频| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲欧美98| 亚洲最大成人中文| 色吧在线观看| 国产日本99.免费观看| 成人永久免费在线观看视频| 99久久精品热视频| 欧美日韩福利视频一区二区| 久久久久久久久中文| 最好的美女福利视频网| 99国产精品一区二区蜜桃av| 日韩大尺度精品在线看网址| 男人舔奶头视频| 免费看美女性在线毛片视频| 国产aⅴ精品一区二区三区波| 欧美三级亚洲精品| 亚洲av成人av| 欧美中文日本在线观看视频| 999久久久精品免费观看国产| 国产一区二区激情短视频| 老司机午夜十八禁免费视频| 国语自产精品视频在线第100页| 宅男免费午夜| 久久久国产成人免费| 免费av观看视频| 3wmmmm亚洲av在线观看| 18美女黄网站色大片免费观看| 国产高清三级在线| 日韩欧美精品v在线| 亚洲黑人精品在线| 免费人成在线观看视频色| 午夜免费成人在线视频| 久久精品91无色码中文字幕| 怎么达到女性高潮| 一a级毛片在线观看| 母亲3免费完整高清在线观看| 性色avwww在线观看| 午夜影院日韩av| 午夜福利在线在线| 国产精品久久久人人做人人爽| 午夜福利免费观看在线| 最后的刺客免费高清国语| 免费看日本二区| 中文字幕av在线有码专区| 亚洲中文字幕日韩| 男人舔女人下体高潮全视频| 天天添夜夜摸| 1024手机看黄色片| 亚洲天堂国产精品一区在线| 日韩精品中文字幕看吧| 男女午夜视频在线观看| 亚洲精品国产精品久久久不卡| 一本久久中文字幕| 日本三级黄在线观看| 一本综合久久免费| 午夜福利高清视频| 天堂√8在线中文| 免费观看的影片在线观看| 黄色丝袜av网址大全| 成人国产综合亚洲| 五月玫瑰六月丁香| 老司机午夜福利在线观看视频| 熟女电影av网| 18禁美女被吸乳视频| 色尼玛亚洲综合影院| 国内少妇人妻偷人精品xxx网站| 性色av乱码一区二区三区2| www.熟女人妻精品国产| 人人妻人人澡欧美一区二区| 禁无遮挡网站| 天天一区二区日本电影三级| 国产成人福利小说| 成人18禁在线播放| 亚洲美女黄片视频| 午夜精品久久久久久毛片777| 国产午夜精品论理片| 国产免费av片在线观看野外av| bbb黄色大片| 欧美精品啪啪一区二区三区| 午夜福利免费观看在线| 国产成人a区在线观看| 男女午夜视频在线观看| 一边摸一边抽搐一进一小说| 中文字幕av在线有码专区| 久久亚洲精品不卡| 夜夜夜夜夜久久久久| 国产精品亚洲一级av第二区| 一夜夜www| 国产成人av激情在线播放| 国产三级在线视频| 一级作爱视频免费观看| av福利片在线观看| 变态另类丝袜制服| 高清在线国产一区| 欧美av亚洲av综合av国产av| 桃红色精品国产亚洲av| 欧美不卡视频在线免费观看| 中文字幕熟女人妻在线| 国产成人a区在线观看| 国产真实伦视频高清在线观看 | 五月玫瑰六月丁香| 欧美国产日韩亚洲一区| 日韩欧美国产一区二区入口| 久久精品91无色码中文字幕| 欧美乱妇无乱码| 脱女人内裤的视频| 婷婷六月久久综合丁香| 桃色一区二区三区在线观看| 国产精品亚洲一级av第二区| 欧美激情在线99| 人妻丰满熟妇av一区二区三区| 美女免费视频网站| 午夜激情福利司机影院| 国内精品美女久久久久久| 18禁美女被吸乳视频| 免费在线观看日本一区| 国产主播在线观看一区二区| av片东京热男人的天堂| 国产高潮美女av| 日日干狠狠操夜夜爽| 美女被艹到高潮喷水动态| 午夜福利欧美成人| 两人在一起打扑克的视频| 全区人妻精品视频| 狠狠狠狠99中文字幕| 99精品在免费线老司机午夜| 美女黄网站色视频| 内地一区二区视频在线| 最好的美女福利视频网| 成年人黄色毛片网站| 亚洲va日本ⅴa欧美va伊人久久| www.999成人在线观看| 亚洲第一欧美日韩一区二区三区| 国产乱人视频| 久久午夜亚洲精品久久| 国产视频一区二区在线看| 少妇裸体淫交视频免费看高清| 精品一区二区三区av网在线观看| 日韩 欧美 亚洲 中文字幕| 可以在线观看的亚洲视频| h日本视频在线播放| a级毛片a级免费在线| 午夜久久久久精精品| 亚洲成人精品中文字幕电影| 非洲黑人性xxxx精品又粗又长| 麻豆成人av在线观看| 俄罗斯特黄特色一大片| 在线国产一区二区在线| 亚洲精品粉嫩美女一区| 夜夜躁狠狠躁天天躁| 精品国产三级普通话版| 狂野欧美激情性xxxx| 精品一区二区三区人妻视频| 美女cb高潮喷水在线观看| 久久久久国产精品人妻aⅴ院| 久久久久久大精品| 成人欧美大片| 草草在线视频免费看| 亚洲欧美激情综合另类| 国产高清视频在线播放一区| 亚洲五月天丁香| 无限看片的www在线观看| 国产一区二区在线av高清观看| 级片在线观看| 亚洲精品成人久久久久久| 亚洲人成电影免费在线| 1000部很黄的大片| 久久久色成人| 精品国产超薄肉色丝袜足j| 日韩av在线大香蕉| 亚洲va日本ⅴa欧美va伊人久久| 久久精品综合一区二区三区| 日韩大尺度精品在线看网址| 亚洲18禁久久av| 国内久久婷婷六月综合欲色啪| 亚洲自拍偷在线| 国产美女午夜福利| 亚洲电影在线观看av| 免费人成视频x8x8入口观看| 免费看光身美女| a级毛片a级免费在线| 天堂网av新在线| 男女做爰动态图高潮gif福利片| 97超级碰碰碰精品色视频在线观看| 成人av一区二区三区在线看| 国产欧美日韩一区二区精品| 精品一区二区三区人妻视频| 一本一本综合久久| 国产一区二区三区视频了| 久久精品91无色码中文字幕| 中文字幕av在线有码专区| 亚洲成人精品中文字幕电影| 无人区码免费观看不卡| 在线观看免费视频日本深夜| 亚洲av电影在线进入| 观看免费一级毛片| 美女黄网站色视频| 黑人欧美特级aaaaaa片| 18禁国产床啪视频网站| 尤物成人国产欧美一区二区三区| 国产精品av视频在线免费观看| 美女高潮的动态| 此物有八面人人有两片| 18禁黄网站禁片午夜丰满| 老汉色∧v一级毛片| 性色avwww在线观看| 国产乱人伦免费视频| 国产伦人伦偷精品视频| 亚洲va日本ⅴa欧美va伊人久久| 极品教师在线免费播放| 国产熟女xx| 欧美日韩中文字幕国产精品一区二区三区| 天堂av国产一区二区熟女人妻| 欧美午夜高清在线| 亚洲人与动物交配视频| 观看免费一级毛片| 成年女人毛片免费观看观看9| 免费看光身美女| 成人三级黄色视频| 夜夜爽天天搞| 亚洲在线观看片| 日韩免费av在线播放| 欧美色视频一区免费| 欧美乱码精品一区二区三区| 国产精品av视频在线免费观看| 久久久国产成人免费| 99国产精品一区二区三区| 一进一出好大好爽视频| 51国产日韩欧美| 国语自产精品视频在线第100页| 亚洲av成人av| 欧美中文日本在线观看视频| 亚洲av五月六月丁香网| 有码 亚洲区| 精品久久久久久成人av| 91av网一区二区| 久久久国产成人精品二区| 欧美日本亚洲视频在线播放| 性欧美人与动物交配| 亚洲真实伦在线观看| 在线免费观看不下载黄p国产 | 小蜜桃在线观看免费完整版高清| 亚洲无线在线观看| 亚洲午夜理论影院| av在线天堂中文字幕| 9191精品国产免费久久| 国产精品女同一区二区软件 | 免费人成在线观看视频色| 波多野结衣高清作品| 亚洲av成人精品一区久久| 欧美黄色片欧美黄色片| 日韩大尺度精品在线看网址| 成年女人永久免费观看视频| 亚洲中文日韩欧美视频| 久久久精品欧美日韩精品| 午夜免费男女啪啪视频观看 | 激情在线观看视频在线高清| 中亚洲国语对白在线视频| 欧美不卡视频在线免费观看| 国产精品久久视频播放| 亚洲 欧美 日韩 在线 免费| 欧美乱妇无乱码| 欧美日韩黄片免| 国产精品嫩草影院av在线观看 | 美女被艹到高潮喷水动态| 亚洲内射少妇av| 免费人成在线观看视频色| 床上黄色一级片| 成人欧美大片| 久久久精品欧美日韩精品| 韩国av一区二区三区四区| 一个人免费在线观看的高清视频| 久久6这里有精品| 熟妇人妻久久中文字幕3abv| 女人十人毛片免费观看3o分钟| 天天一区二区日本电影三级| 嫩草影院入口| 成年女人看的毛片在线观看| 操出白浆在线播放| 女人高潮潮喷娇喘18禁视频| 欧美黄色淫秽网站| 欧美在线黄色| 级片在线观看| 老汉色av国产亚洲站长工具| 午夜久久久久精精品| 少妇人妻一区二区三区视频| 亚洲精华国产精华精| 女人十人毛片免费观看3o分钟| 男女那种视频在线观看| 色在线成人网| 十八禁人妻一区二区| 婷婷亚洲欧美| 俺也久久电影网| 欧美三级亚洲精品| 女警被强在线播放| 国产三级在线视频| 99热这里只有精品一区| 99久久精品热视频| 夜夜躁狠狠躁天天躁| 亚洲精品粉嫩美女一区| 久久久久免费精品人妻一区二区| 最近最新中文字幕大全免费视频| 日韩中文字幕欧美一区二区| 日韩欧美免费精品| 欧美不卡视频在线免费观看| a在线观看视频网站| 国产一区二区三区视频了| 成人性生交大片免费视频hd| 午夜福利在线在线| 精品日产1卡2卡| 99久久精品热视频| 亚洲欧美日韩高清在线视频| 国产精品爽爽va在线观看网站| 国产成+人综合+亚洲专区| 成人午夜高清在线视频| 国产视频一区二区在线看| tocl精华| 精品人妻1区二区| 久久精品国产99精品国产亚洲性色| 色噜噜av男人的天堂激情| 丰满人妻熟妇乱又伦精品不卡| 免费电影在线观看免费观看| 欧美最黄视频在线播放免费| 欧美性感艳星| 国产精品99久久99久久久不卡| 桃红色精品国产亚洲av| 中文字幕av成人在线电影| 国产亚洲欧美98| 国产一区在线观看成人免费| 久久久久精品国产欧美久久久| 亚洲精品色激情综合| 99久久精品一区二区三区| 欧美性猛交╳xxx乱大交人| 国产探花极品一区二区| 久久天躁狠狠躁夜夜2o2o| 国产极品精品免费视频能看的| 午夜精品久久久久久毛片777| 亚洲精品在线观看二区| 亚洲avbb在线观看| 国产高清视频在线观看网站| 久久精品国产综合久久久| 亚洲欧美日韩卡通动漫| 亚洲国产高清在线一区二区三| 欧美日韩一级在线毛片| 久久人人精品亚洲av| 午夜福利成人在线免费观看| 在线观看免费视频日本深夜| 国产亚洲精品久久久com| 国产乱人视频| 老司机福利观看| 色吧在线观看| 18+在线观看网站| 91在线精品国自产拍蜜月 | 欧美激情在线99| 在线天堂最新版资源| 别揉我奶头~嗯~啊~动态视频| 免费看a级黄色片| 亚洲avbb在线观看| 十八禁网站免费在线| 一区二区三区国产精品乱码| av视频在线观看入口| 全区人妻精品视频| x7x7x7水蜜桃| 国产真人三级小视频在线观看| 高清在线国产一区| 久久精品综合一区二区三区| 国内精品一区二区在线观看| 久久性视频一级片| 亚洲精品一区av在线观看| 色av中文字幕| 国产高清视频在线观看网站| 一本综合久久免费| 国产成人影院久久av| 伊人久久大香线蕉亚洲五| 99久国产av精品| 国产私拍福利视频在线观看| 麻豆一二三区av精品| 亚洲av熟女| 午夜福利在线观看免费完整高清在 | 欧美最新免费一区二区三区 | 香蕉久久夜色| 18禁在线播放成人免费| 欧美乱码精品一区二区三区| 制服丝袜大香蕉在线| 久久精品国产亚洲av涩爱 | 久久精品综合一区二区三区| 91在线观看av| 免费观看人在逋| 在线十欧美十亚洲十日本专区| 亚洲性夜色夜夜综合| 韩国av一区二区三区四区| 搡老妇女老女人老熟妇| 国产毛片a区久久久久| 欧美成人a在线观看| 免费av不卡在线播放| 一边摸一边抽搐一进一小说| 国产精品久久久久久久电影 | 国产精品99久久99久久久不卡| 欧美成人性av电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 日本免费a在线| 天天一区二区日本电影三级| 一夜夜www| 国产精品乱码一区二三区的特点| 免费观看人在逋| 成人永久免费在线观看视频| 少妇裸体淫交视频免费看高清| 亚洲一区二区三区不卡视频| 日韩欧美免费精品| 熟妇人妻久久中文字幕3abv| 国产伦人伦偷精品视频| 一个人看视频在线观看www免费 | 欧美绝顶高潮抽搐喷水| 在线观看美女被高潮喷水网站 | 天堂网av新在线| 国产国拍精品亚洲av在线观看 | 国产男靠女视频免费网站| e午夜精品久久久久久久| 国产午夜精品久久久久久一区二区三区 | 亚洲精华国产精华精| 中文字幕av成人在线电影| 精品久久久久久成人av| 亚洲精品粉嫩美女一区| 白带黄色成豆腐渣| 国产麻豆成人av免费视频| eeuss影院久久| 免费人成在线观看视频色| 女人十人毛片免费观看3o分钟| 免费在线观看影片大全网站| 欧美另类亚洲清纯唯美| 床上黄色一级片| 亚洲av五月六月丁香网| 狂野欧美白嫩少妇大欣赏| 99久久精品热视频| 久久精品国产综合久久久| a在线观看视频网站| 午夜影院日韩av| 99热这里只有是精品50| а√天堂www在线а√下载| 精品一区二区三区人妻视频| 午夜福利成人在线免费观看| 成年女人永久免费观看视频| 黄色日韩在线| xxxwww97欧美| 99精品欧美一区二区三区四区| 成人永久免费在线观看视频| 国产精品嫩草影院av在线观看 | 一个人看的www免费观看视频| 国产成人aa在线观看| 久久婷婷人人爽人人干人人爱| 欧美高清成人免费视频www| 国产亚洲精品综合一区在线观看| 国产成人影院久久av| 色在线成人网| 日韩大尺度精品在线看网址| 69av精品久久久久久| 精品人妻偷拍中文字幕| 国产av一区在线观看免费| 欧美性猛交╳xxx乱大交人| 欧美三级亚洲精品| 特大巨黑吊av在线直播| 国产精品日韩av在线免费观看| 又黄又爽又免费观看的视频| 久久午夜亚洲精品久久| 久久精品人妻少妇| 日本撒尿小便嘘嘘汇集6| 欧美精品啪啪一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 欧美国产日韩亚洲一区| 国产伦精品一区二区三区视频9 | 99久久99久久久精品蜜桃| 中文字幕熟女人妻在线| 熟妇人妻久久中文字幕3abv| 色播亚洲综合网| 中文亚洲av片在线观看爽| 99在线视频只有这里精品首页| 91字幕亚洲| 国产69精品久久久久777片| 中文字幕人成人乱码亚洲影| 国产久久久一区二区三区| 亚洲av美国av| 一区二区三区国产精品乱码| 亚洲无线在线观看| 伊人久久精品亚洲午夜| 亚洲五月天丁香| 不卡一级毛片| 在线免费观看不下载黄p国产 | 色综合婷婷激情| 制服丝袜大香蕉在线| 国产精品1区2区在线观看.| 日本一二三区视频观看| 18禁黄网站禁片免费观看直播| 精品久久久久久久人妻蜜臀av| 亚洲精品久久国产高清桃花| 午夜福利18| 日日摸夜夜添夜夜添小说| 久久久久国内视频| 欧美av亚洲av综合av国产av| a级一级毛片免费在线观看| 桃红色精品国产亚洲av| 午夜福利欧美成人| 亚洲午夜理论影院| 99在线视频只有这里精品首页| 国产蜜桃级精品一区二区三区| 特级一级黄色大片| 黄色片一级片一级黄色片| 久久中文看片网|