• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    REVIEW ON MATHEMATICAL ANALYSIS OF SOME TWO-PHASE FLOW MODELS?

    2018-11-22 09:24:12HuanyaoWEN溫?zé)▓?/span>LeiYAO姚磊ChangjiangZHU朱長(zhǎng)江
    關(guān)鍵詞:長(zhǎng)江

    Huanyao WEN(溫?zé)▓? Lei YAO(姚磊) Changjiang ZHU(朱長(zhǎng)江)?

    1.School of Mathematics,South China University of Technology,Guangzhou 510641,China

    2.School of Mathematics and Center for Nonlinear Studies,Northwest University,Xi’an 710127,China

    E-mail:mahywen@scut.edu.cn;leiyao@nwu.edu.cn;machjzhu@scut.edu.cn

    Abstract The two-phase flow models are commonly used in industrial applications,such as nuclear,power,chemical-process,oil-and-gas,cryogenics,bio-medical,micro-technology and so on.This is a survey paper on the study of compressible nonconservative two- fluid model,drift- flux model and viscous liquid-gas two-phase flow model.We give the research developments of these three two-phase flow models,respectively.In the last part,we give some open problems about the above models.

    Key words compressible nonconservative two- fluid model;drift- flux model;viscous liquidgas two-phase flow model;well-posedness

    1 Compressible Nonconservative Two- fluid Model

    1.1 Research background-1

    One of the typical two-phase flow models,called compressible nonconservative two- fluid model,is

    The variable α+,α?∈ [0,1]are the volume fraction of liquid and gas,satisfy=1;are,respectively,the densities,the velocities and the pressures of each phase,and the two pressure functions satisfy,where A±>0,ˉγ±>1 are constants,f(·)is a known smooth function,it can be a zero function(in this case,the two pressures are equal);are the viscous stress tensors,μ±and λ±are shear and bulk viscosity coefficients,satisfying μ±>0,2μ±+dλ±≥ 0;σ±are the capillary coefficients;The last three terms on the right-hand side of momentum equations,denote wall frictional forces,interfacial forces and gravities,f±,I,g are wall frictional coefficients,interfacial coefficient and gravity constant,respectively.This model is commonly used in industrial applications,such as nuclear,power,oil-and-gas,micro-technology and so on,here we can refer to[2].The classical modeling technique consists of performing a volume average to derive a model without free surface,that is,a two- fluid model.Furthermore,internal viscous and capillary forces cannot be neglected for some applications such as,for instance,wave breaking.Here,we include a capillary pressure term,i.e.,we do not assume that the two phase pressures P+and P?are equal.The assumption about non-equal pressure functions P+6=P?is quite natural.This amounts to including capillary pressure forces and is commonly included in modeling of two-phase flow in porous media.For more information about this model and related models,see for instance[1,36,46]and references therein.There are many numerical results about this model and related models,see[46]and references therein.

    If we ignore frictional forces between wall and fluids,interfacial friction and gravity,then system(1.1)takes the simpli fied form

    Many models are related to system(1.2)such as compressible Navier-Stokes equations(α+≡ 0 or α?≡ 0 and σ±=0),Navier-Stokes-Korteweg equations(α+≡ 0 or α?≡ 0),etc.There is a huge literature on the investigation of global existence and large time behavior of smooth solutions in relation to these models.Here we mention several of the most relevant papers.Matsumura and Nishida[44,45] first considered the global existence of smooth solutions to the compressible Navier-Stokes equations in multidimensional whole space and obtained that the global solutions tended to its equilibrium state,they also obtained the decay rate;Ho ff and Zumbrun[33,34]considered the Green’s function of the compressible isentropic Navier-Stokes equations with the arti ficial viscosity and showed the convergence of global solutions to di ff usion waves.Later,Liu and Wang[43]investigated the properties of Green’s function for the isentropic Navier-Stokes system in odd dimension.They showed an interesting pointwise convergence of global solution to the di ff usion waves with the optimal time decay rate,where the important phenomena of the weaker Huygens’principle was also justi fied due to the dispersion e ff ects of compressible viscous fluids in multidimensional odd space.Recently,Li and Zhang[42]obtained the optimal Lptime-decay rate for isentropic Navier-Stokes equations in three dimensions when initial data belonged to some spaceThe same decay property also appears in the half space and exterior domain,see[37–40].

    Near the constant equilibrium states,Hattori and Li[31,32]considered the local and global existence of the smooth solution of the compressible Navier-Stokes-Korteweg system for multidimensional model in Sobolev space;Danchin and Desjardins[6]proved existence and uniqueness results of suitably smooth solution in the Besov space frame;Next,Wang and Tan[49]obtained the optimal time-decay of the system,which is the same as that of the Navier-Stokes system.Recently,Based on the weighted L2-method and some delicate L1estimates on solutions to the linearized problem,Chen and Zhao[4]studied the existence and uniqueness of stationary solutions of the compressible nonisentropic fluid model of Korteweg type by the contraction mapping principle.Furthermore,they also obtained the stability of the stationary solution.

    In recent years,some e ff orts were made on the existence and large time behavior of global solution to the nonconservative compressible two- fluid model(1.2).For the equal pressures,Bresch,Desjardins,Ghidaglia and Grenier[2]considered the existence of global weak solution in the periodic domain when 1<<6;Bresch,Huang and Li[3]showed the existence of global weak solution in one-dimensional case without capillary e ff ect(i.e.,σ±=0),when>1.Recently,Lai,Wen and Yao[41]obtained the vanishing capillary coefficient limit to the nonconservative compressible two- fluid model(1.2),where two pressure functions are unequal.We refer also to the recent work[25]which was in a gas-liquid context where a polytropic gas law was used for the gas phase whereas the liquid was assumed to be incompressible,and the global existence of strong solutions and large time behavior were obtained for both the initial boundary value problem and initial value problem.For more results about the compressible nonconservative two- fluid model(1.2),see[19,21].

    Next,we give the main well-posedness results about the model(1.2).By using the detailed analysis of the Green’s function to the linearized system and elaborate energy estimates to the nonlinear system,the time-decay estimates of classical or strong solutions of nonconservative viscous compressible generic two- fluid model with or without capillary e ff ect in R3were obtained in[5,18],the equal and unequal pressures were considered respectively.

    1.2 Well-posedness Results

    We consider the following compressible nonconservative two- fluid model in R3:

    Furthermore,from(1.4)and dP+?dP?=df(α?ρ?),we obtain

    Substitute(1.5)into(1.4),we get the following expressions:

    and ?:(R+,+∞)7→ (?∞,+∞).

    Applying the implicit function theorem to(1.3)4,there exists ρ+= ρ+(R+,R?)such that ?(ρ+)=0.Furthermore,we can de fine

    Based on the above,system(1.3)can be rewritten as follows:

    We consider the Cauchy problem of(1.10):

    Without loss of generality,we assume.For the above problem(1.10)–(1.11),we obtain the following result.

    Theorem 1.1([18],Theorem 1.1)Under the condition

    where η is a positive,small fixed constant,there exists a constant ? such that if

    then the Cauchy problem(1.10)–(1.11)admits a unique solutionglobally in time in the sense that:

    Moreover,if in addition the initial datais bounded in L1(R3),the solution enjoys the following decay-in-time estimates:

    Remark 1.2The proof of the theorem involves some new ideas.Usually,the proof consists of spectral analysis of the Green function for the corresponding linearized system and energy estimates of the solutions to the nonlinear system,refer for instance to[7,8].Here,we just need spectral analysis of the low-frequency part of the Green function and the energy estimates.Actually,we employ the energy method in the frequency space to get the decay rates of the low-frequency part so that we succeed to avoid some complicate analysis of the Green function,which is a 8×8 matrix.On the other hand,we notice that the high-frequency part can be handled directly by the energy estimates.Thus,the combination of the decay rates of the low-frequency part and the energy estimates show the decay rates of the solutions directly,even for initial data within the H2-framework.

    If the capillary e ff ect is included,we consider the following equations:

    And we consider the two equal pressure functions:.And(1.5)–(1.9)becomes(1.18)–(1.21):

    Then the system(1.17)is equivalent to the following form

    We consider the problem(1.22)with initial value(1.11)–(1.12).For simplicity,set ν+= ν?= ν,σ+=σ?=σ.Introduce n±=R±?1,then the initial value problem(1.22),(1.11)and(1.12)can be rewritten as

    with initial data

    and the far- field behavior

    For the above problem(1.23)–(1.25),we obtain the following result.

    Theorem 1.3([5],Theorem 1.1) For any integer s ≥ 3,there exists a constant δ>0,such that if

    then the initial value problem(1.23)–(1.25)admits a unique solution(n+,u+,n?,u?)globally in time,which satis fies

    and for some c,C>0 independent of t such that

    Moreover,the solution satis fies the decay-in-time estimates:

    Remark 1.4The fraction densities converge to the equilibrium states at the L2-rate(1+t)?14,and the k(∈ [1,s ? 1])order spatial derivatives of the fraction densities converge to zero at the L2-rate,which is slower than theand L2-ratefor the compressible Navier-Stokes system(k=0,1)or Navier-Stokes-Korteweg system(k=0,1,2),see[7,43,49].This is caused by the non-conservation and complexity of the model(1.17).

    2 Drift- flux Model

    2.1 Research Background-2

    The drift- flux model is one of the commonly used models nowadays for the prediction of various two-phase flows.It was first developed by Zuber and Findlay[55].It is used in chemical engineering to predict flow in bubble column reactors,in petroleum applications to model various wellbore operations related to drilling,production of oil and gas,and for the study of geothermal energy related problems and injection of CO2.A one-dimensional transient drift- flux model can be written in the following form:

    where m= αlρl,n= αgρgdenote the masses of liquid and gas;The unknowns are αl,αg∈ [0,1]volume fractions of liquid and gas,satisfying αl+ αg=1;ρl,ρgthe liquid and gas densities;P=P(m,n)common pressure for liquid and gas;ul,ugvelocities of liquid and gas.In order to get a closed system,an algebraic equation called the slip relation which relates the two fluid velocities is added:ug=c0umix+c1,it implies:

    where c0and c1are flow dependent coefficients,c0is referred to as the distribution parameter and c1to as the drift velocity,umix=αgug+αlul;?=?(m,n)(≥0)viscosity coefficient;ˉq external force,such as the gravity and frictional force.

    For previous studies of the 1D model(2.1)with the slip relationwith c0>1,c1=0,for the free boundary problem,we refer to[10,22].In[10],the local existence of weak solution was obtained whereas[22]gave a local existence of weak solution for a general slip(c0>1 and c1>0)and a global existence result for the special case c0>1,c1=0.The more general case c1>0 is important because it allows the model to describe,e.g.counter-current flow,where uland ugpossibly have di ff erent sign.Recently,Evje and Wen[20]obtained the global existence and unique of strong solution for the 1D initial boundary value problem.This work presents a first global existence result for the drift- flux model with a general slip law.

    Next,we give the main well-posedness results about the model(2.1).

    2.2 Well-posedness Results

    At first,we ignore the external force,i.e.,.Assume that(where b(t)separates the gas-liquid mixture and the gas region,satis fies:b(0)=b0),t>0,and the pressure is given by

    Initial conditions are

    and boundary conditions are

    Assumptions on the parameters α,γ

    Assumptions on the initial data

    Moreover,the lower bound A of Q and the bound M on the initial energy must satisfy the following relations

    The external pressure p?must obey

    Similarly,the upper bound B of Q and the bound M on the initial energy must satisfy the following relations:

    for some δ>0 and subject to the condition sup<1.In addition,A and B are chosen such that:

    Finally,M must obey the smallness condition as follows:

    Theorem 2.1([23],Theorem 2.1(existence)) Under the assumptions of(2.6)–(2.12),there exists a constant M0>0 such that(2.3)–(2.5)admits a global weak solution(c,Q,u)on[0,1]×[0,T]for any time for all M ≤M0in the sense that

    (A)The following regularity holhs

    Moreover,the following estimates hold

    for(x,t)∈[0,1]×[0,T],where C2depends on A,B,M,T and the initial data.

    (B)The following equations hold

    (C)Interface behavior

    for some r∈(1,2)such that r(α+1)<2,and

    for β1∈ (0,α]∩(0,?α].Here(x,t)∈ [0,1]×[0,T].

    Theorem 2.2([23],Theorem 2.2(uniqueness)) Under the conditions of Theorem 2.1 and by requiring that β1= α,where 0< α ≤,the weak solution is unique.

    Next,assume that c0≥1,c1=0,x∈(a,b(t)),t>0,i.e.,h(cQ)=j(cQ)=0.Set E(c,cQ)=[cQ]β+1,β >0,and n?=0(ρ(1,t)=n?=0).Consider the following initial boundary value problem:

    with initial conditions

    and with boundary condition

    AssumptionsLet A1,B1,and δ be positive constants,whereas α,β>0 and γ>1 such that

    where φ(x)=1 ? x,and α,β,γ as well as the time decay exponents r1,r2,r3,r4>0,satisfy the following

    Theorem 2.3([24],Theorem 3.1(global weak solution)) Under the assumptions of(2.21)–(2.22),there exists a positive constant C0such that if δ≤ C0,then(2.18)–(2.20)admits a unique solution(c,Q,u)on[0,1]× [0,∞)in the sense that:

    (A)the following regularity holds

    (B)the following equations hold

    for any T>0 and any test function

    In the next section,we will consider the model(2.1)with c0=1 and c1=0,i.e.,ug=ul=u,we call this model as the viscous liquid-gas two-phase flow model.We will use the appropriate variable transformation,to rewrite the model in terms ofwhich is similar to the single-phase compressible Navier-Stokes equations,wheresatis fies a transport equation.

    3 Viscous Liquid-gas Two-phase Flow Model

    3.1 Research Background-3

    Viscous liquid-gas two-phase flow model can be viewed to be simpli fied from the model,which are widely used within the petroleum industry to describe production and transport of oil and gas through long pipelines or well.This model is composed of two separate mass conservation equations corresponding to each of the two phases and one mixture momentum conservation equation in following form

    where m= αlρl,n= αgρgdenote liquid mass and gas mass respectively;μ and λ are viscosity coefficients,satisfying:μ >0,λ+≥ 0;The unknown variables αl,αg∈ [0,1]denote liquid and gas volume fractions,satisfying the fundamental relation: αl+ αg=1;Furthermore,ρland ρgdenote liquid and gas densities,respectively;u denotes velocity of liquid and gas;P=P(m,n)is common pressure for both phases,ˉq is the external force.

    The investigation of model(3.1)has been a topic during the last decade.There are many results about the numerical properties of this model or related model.However,there are few results providing insight into existence,uniqueness,regularity,asymptotic behavior and decay rate estimates concerning the two-phase liquid-gas models of the form(3.1).Let us review some previous works about the viscous liquid-gas two-phase flow model.For the model(3.1)in 1D,when the liquid is incompressible and the gas is polytropic,i.e.,P(m,n)Evje and Karlsen[16]studied the existence and uniqueness of the global weak solution to the free boundary value problem withwhen the fluids connected to vacuum state discontinuously.Evje,Fl?atten and Friis[13]also studied the model within a free boundary setting when the fluids connected to vacuum state continuously,and obtained the global existence of the weak solution.If the acceleration terms in the mixture momentum equation was neglected,Evje and Karlsen[14]obtained the global existence of weak solution on the half line.If the external force and frictional force were included,see the related results in[27,28].Speci fically,when both of the two fluids are compressible,i.e.,P(m,n)one can consult[15]for the global existence of strong solution to the 1D case;For multidimensional case,Yao,Zhang and Zhu[51]obtained the existence of the global weak solution to the 2D model when the initial energy is small.Furthermore,they proved a blow-up criterion in terms of the upper bound of the liquid mass for the strong solution to the 2D model in a smooth bounded domain,cf.[52].For the Cauchy problem of a multi-dimensional viscous liquid-gas two-phase flow model,Hao and Li[30]obtained the global existence and uniqueness of strong solution for the initial data close to an equilibrium and the local in time existence and uniqueness of the solution with general initial data in the framework of Besov spaces.Concerning the well-posedness and large time behavior of solutions to the model(3.1)and related models,we refer the reader to the[9,11,12,17,29,35,47]and references therein.

    Next,we give the main well-posedness results about the model(3.1).

    3.2 Well-posedness Results

    At first,we consider the model(3.1)in 1D,in order to avoid some unsolved difficulties,we consider a simpli fied model obtained as follows:

    (1) Due to the fact that the liquid phase density is much higher than the gas phase density,typically to the order,we can neglect the gas phase e ff ects in the mixture momentum conservation equation.

    (2)Neglect the external forces,i.e.,

    We assume that further the liquid is incompressible and the gas is polytropic,i.e.,ρl=const,.Then the model(3.1)can be simpli fied into the following model in the form

    We will consider(3.2)in a free boundary value problem setting where the masses n and m initially occupy only a finite interval[a,b]∈R.That is

    and n(ξ,0)=m(ξ,0)=0,ξ∈ R[a,b].The boundary conditions are given as

    where a(τ)and b(τ)are vacuum boundary,satisfyingu(b(τ),τ),b(0)=b.As in[16],the viscosity coefficient(0,1],k1is a positive constant.In the Lagrangian coordinates,the free boundary value problem(3.2)–(3.5)becomes the following fixed boundary value problem

    with initial data

    and the boundary conditions

    Remark 3.1Introduce the variableswe can rewrite the initial boundary value problem(3.6)–(3.8)in the form

    which is similar to the model of single-phase Navier-Stokes equations.Therefore,we can apply technique in studying Navier-Stokes equations to deal with the related problem for the viscous liquid-gas two-phase flow model.

    Yao and Zhu[53]improved the previous result of Evje and Karlsen[16]from β∈(0,)to β∈(0,1],and got the global existence of weak solution,regularity of the solutions and the asymptotic behavior result.The result of global existence of weak solution is as follows.

    Theorem 3.2([53],Theorem 2.2(Existence and uniqueness)) Under the assumptions of

    (A1)

    (A2)

    (A3) γ>1,0<β≤1,

    the initial boundary problem(3.6)–(3.8)possesses a unique global weak solution(n(x,t),m(x,t),u(x,t))satisfying for any T>0

    On the other hand,for the viscous liquid-gas model with constant viscosity coefficient when both the initial liquid and gas masses connect to vacuum continuously,Yao and Zhu[54]used a new technique to get the upper and lower bounds of gas and liquid masses n and m,then got the global existence of weak solution by the line method.For this case,the boundary conditions(3.8)is replaced by

    Next,we give the de finition of weak solution.

    De finition 3.3([54],De finition 1) A pair of functions(n(x,t),m(x,t),u(x,t))is called a global weak solution to the initial boundary value problem(3.6),(3.7)and(3.11),if for any T>0

    Furthermore,the following equations hold

    for any test functions ψ(x,t)∈,with ? ={(x,t):0 ≤ x ≤ 1,t≥ 0}.

    Theorem 3.4([54],Theorem 1) Under the assumptions of

    (A1)

    (A2)

    (A3)is a positive constant and satis fies:

    (A4) γ>1,the initial boundary value problem(3.6),(3.7)and(3.11)possesses a unique global weak solution(m(x,t),n(x,t),u(x,t))de fined by De finition 3.3.

    Next,we consider(3.1)in 3D.We neglect the gas phase e ff ects in the mixture momentum conservation equation and external force,i.e.,study the following initial boundary value problem

    For the problem(3.13)–(3.15),Wen,Yao and Zhu[50]proved the local existence of strong solution and established the blow-up criterion,when there was initial vacuum.If the liquid mass was upper bounded,we could obtain a high integrability of the velocityfor some r∈(3,4].Moreover,in order to overcome the singularity brought by the pressure P(m,n)when there is vacuum,we needed the assumptionwere positive constants.

    Theorem 3.5([50],Theorem 1.1(local existence)) Let ? be a bounded smooth domain in R3and q∈ (3,6].Assume that the initial data m0,n0,u0satisfyare positive constants.The following compatible condition is also valid:

    Then,there exist a T0>0 and a unique strong solution(m,n,u)to the problem(3.13)–(3.15),such that

    Theorem 3.6([50],Theorem 1.2(blow-up citerion)) Under the assumptions of Theorem 3.5,if T?<∞is the maximal existence time for the strong solution(m,n,u)(x,t)to the problem problem(3.13)–(3.15)stated in Theorem 3.5,then

    Remark 3.7The analysis in Theorem 3.6 can be applied to study a blow-up criterion of the strong solution to compressible Navier-Stokes equations for

    which improves the corresponding result about Navier-Stokes equations in[48]where 7μ > λ.

    If we don’t neglect the gas phase e ff ects in the mixture momentum conservation equation,and consider the following initial boundary value problem

    the viscosity coefficientμis constant,the pressure P satis fies

    with initial conditions

    and with boundary conditions

    We give a precise de finition of global weak solutions.

    De finition 3.8([26],De finition 1.1) We call(m,n,u):(0,1)×(0,+∞)→R+×R+×R a global weak solution of(3.18)–(3.20)if for any 0

    (1)m,n∈L∞((0,1)×(0,T)),(m+n)u2∈L∞(0,T;L1(0,1)),m,n≥0 a.e.,in(0,1)×(0,T),u∈L2(0,T;

    (2)(m,n,u)satisfy the system(3.18)in the sense of distribution;

    (3)(m,n,(m+n)u)(x,0)=(m0(x),n0(x),M0(x)),a.e.x∈(0,1).

    Theorem 3.9([26],Theorem 1.1(global existence))then there exists a global weak solution(m,n,u):

    Remark 3.10Note that we do not need the conditionsfor sometypically made use of in previous literature[15,50–52].This implies that transition to single phase is allowed,i.e.,one of the two phases can completely occupy some regions.

    4 Open Problems

    ?Compressible nonconservative two- fluid model

    Compared with the single-phase flow(i.e.,compressible Navier-Stokes equations),the twofluid model has its own challenges by means of the nonconservative structure in the pressure terms.More speci fically,when one looks for the global solutions with large initial data in the sense of distribution,the spatial derivatives in the pressure terms can not all be shifted to the test functions.In view of the fact,one has to obtain some estimates of the spatial derivatives of density or the related.This makes that two viscosity coefficients have to be equivalent to the corresponding density,i.e.,,see[3]for 1D case.To our best knowledge,it is still open for the case of multi-dimensions and for thatwith more general α,β ∈ [0,∞).

    ?Drift- flux model

    The main di ff erence between two- fluid model and drift- flux model is that two fluids are considered as a whole in the momentum equations for the latter case.However,in this case,some other equations have to be added to the system for completeness.The so called“slip law”is commonly used.The main challenge is that the global entropy estimate is difficult to find though the momentum equation is of the conservative form.This leads to an open problem whether the global weak solutions with large initial data exist or not for more general slip law.In fact,when c0=1 and c1=0 for large initial data,and c0≥1,c1≥0 for small initial data,it is known that the global weak solutions exist,see[26],and Theorems 2.1 and 3.2 respectively.Here c0and c1are constants.

    ?Viscous liquid-gas two-phase flow model

    The viscous liquid-gas two-phase flow model can be considered as a simpli fied case from the two- fluid model when two velocity fields and two pressure functions are equal respectively.Although there are some results achieved for the simpli fied case particularly,there are still some open problems.For example,whether the global smooth solution with large initial data in high dimensions exists or not,or equivalently whether the smooth solution blows up in finite time.

    猜你喜歡
    長(zhǎng)江
    第17屆長(zhǎng)江韜奮獎(jiǎng)
    中國記者(2022年11期)2023-01-27 10:48:40
    長(zhǎng)江學(xué)人
    理論探索(2022年6期)2023-01-17 01:56:30
    長(zhǎng)江學(xué)人
    理論探索(2022年5期)2022-11-07 10:17:18
    萬里長(zhǎng)江第一站,有一束“光””
    長(zhǎng)江,你從哪里來
    長(zhǎng)江之頭
    青年歌聲(2020年11期)2020-11-24 06:57:28
    游長(zhǎng)江
    長(zhǎng)江之歌(外二首)
    天津詩人(2017年2期)2017-11-29 01:24:30
    長(zhǎng)江圖(外二首)
    天津詩人(2017年2期)2017-11-29 01:24:05
    長(zhǎng)江石的一次大發(fā)現(xiàn)
    寶藏(2017年7期)2017-08-09 08:15:18
    成年版毛片免费区| 亚洲成人免费电影在线观看| 欧美乱色亚洲激情| 无遮挡黄片免费观看| 黄片小视频在线播放| 欧美在线一区亚洲| 校园春色视频在线观看| 老司机深夜福利视频在线观看| 黄色 视频免费看| 亚洲激情在线av| 国产精品自产拍在线观看55亚洲| 国产精品美女特级片免费视频播放器 | 国产精品秋霞免费鲁丝片| 国产成人av激情在线播放| 少妇 在线观看| 久久国产精品男人的天堂亚洲| 欧美激情极品国产一区二区三区| 成年人黄色毛片网站| 国产伦一二天堂av在线观看| 一边摸一边做爽爽视频免费| 看黄色毛片网站| 精品久久久精品久久久| 咕卡用的链子| 中文字幕精品免费在线观看视频| 亚洲av片天天在线观看| 啦啦啦韩国在线观看视频| 精品国产国语对白av| 欧美最黄视频在线播放免费| 中文字幕av电影在线播放| 在线观看舔阴道视频| 日日摸夜夜添夜夜添小说| 亚洲在线自拍视频| 久久午夜综合久久蜜桃| 亚洲精品国产一区二区精华液| 自拍欧美九色日韩亚洲蝌蚪91| 人妻久久中文字幕网| 大码成人一级视频| 欧美成人免费av一区二区三区| 国产精品美女特级片免费视频播放器 | 天堂√8在线中文| 十八禁网站免费在线| 国产一区二区激情短视频| 午夜福利,免费看| 视频区欧美日本亚洲| 视频区欧美日本亚洲| 免费看美女性在线毛片视频| 久久中文字幕一级| 精品一品国产午夜福利视频| 亚洲国产看品久久| 欧美乱色亚洲激情| 在线观看舔阴道视频| 日本在线视频免费播放| 欧美日韩亚洲国产一区二区在线观看| 啦啦啦 在线观看视频| 色综合站精品国产| 精品国产美女av久久久久小说| 亚洲欧美日韩无卡精品| 国产99白浆流出| 男女午夜视频在线观看| 一区二区日韩欧美中文字幕| 宅男免费午夜| 国产一卡二卡三卡精品| 女性生殖器流出的白浆| av有码第一页| 91麻豆精品激情在线观看国产| 国产精品免费一区二区三区在线| 视频区欧美日本亚洲| 国产精品爽爽va在线观看网站 | 午夜福利一区二区在线看| 国产av一区二区精品久久| 女人高潮潮喷娇喘18禁视频| 免费看a级黄色片| 国产精品免费视频内射| 麻豆成人av在线观看| 9热在线视频观看99| 国语自产精品视频在线第100页| 国产精品99久久99久久久不卡| 男男h啪啪无遮挡| 亚洲自偷自拍图片 自拍| 高潮久久久久久久久久久不卡| 国产区一区二久久| АⅤ资源中文在线天堂| 国产真人三级小视频在线观看| 自线自在国产av| 亚洲一区中文字幕在线| 熟妇人妻久久中文字幕3abv| 久久热在线av| 黑人操中国人逼视频| 两人在一起打扑克的视频| 国产成人精品在线电影| 日本免费一区二区三区高清不卡 | 国产av一区二区精品久久| 国产欧美日韩一区二区三区在线| 成人欧美大片| 一区二区三区激情视频| 精品国产一区二区三区四区第35| 精品久久久久久久毛片微露脸| 18禁裸乳无遮挡免费网站照片 | www.www免费av| 日本vs欧美在线观看视频| 高潮久久久久久久久久久不卡| 少妇 在线观看| 免费少妇av软件| 日韩视频一区二区在线观看| 在线观看日韩欧美| 制服人妻中文乱码| 成人欧美大片| 日本黄色视频三级网站网址| 日韩精品免费视频一区二区三区| 香蕉丝袜av| 久久亚洲真实| 午夜亚洲福利在线播放| 久久精品国产亚洲av高清一级| 两性夫妻黄色片| 97超级碰碰碰精品色视频在线观看| 国产精品爽爽va在线观看网站 | 两个人看的免费小视频| 久9热在线精品视频| 老司机午夜十八禁免费视频| 日韩欧美在线二视频| 美女扒开内裤让男人捅视频| 91精品国产国语对白视频| 黑人巨大精品欧美一区二区mp4| 又黄又爽又免费观看的视频| 国产视频一区二区在线看| 国产激情久久老熟女| 精品高清国产在线一区| 超碰成人久久| 999精品在线视频| 一进一出好大好爽视频| 久久久久九九精品影院| 国产亚洲精品av在线| 男女午夜视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久国产乱子伦精品免费另类| www.999成人在线观看| 国产一区在线观看成人免费| 国产精品久久久久久人妻精品电影| 日本在线视频免费播放| 欧美+亚洲+日韩+国产| 免费看美女性在线毛片视频| 91大片在线观看| 国产高清视频在线播放一区| 两个人视频免费观看高清| 高清在线国产一区| 亚洲全国av大片| 欧美日韩亚洲综合一区二区三区_| 久久久国产成人精品二区| 成人国产综合亚洲| 亚洲精品粉嫩美女一区| 精品国产一区二区久久| 在线观看66精品国产| 欧美黑人欧美精品刺激| av福利片在线| 日韩精品中文字幕看吧| 国产一区二区三区综合在线观看| 欧美成人免费av一区二区三区| 亚洲人成网站在线播放欧美日韩| 极品教师在线免费播放| 多毛熟女@视频| 999久久久精品免费观看国产| 国产精品久久久久久精品电影 | 亚洲人成伊人成综合网2020| 老司机午夜福利在线观看视频| 一级毛片女人18水好多| 麻豆成人av在线观看| av视频免费观看在线观看| 美女高潮到喷水免费观看| a在线观看视频网站| 亚洲情色 制服丝袜| 久久精品亚洲熟妇少妇任你| 欧美日本亚洲视频在线播放| 亚洲av第一区精品v没综合| 免费在线观看亚洲国产| 窝窝影院91人妻| 黑人巨大精品欧美一区二区mp4| 亚洲国产毛片av蜜桃av| www.999成人在线观看| 禁无遮挡网站| 成人亚洲精品av一区二区| 在线观看www视频免费| 91成年电影在线观看| 国产亚洲欧美98| 成年版毛片免费区| 国产黄a三级三级三级人| 成人国语在线视频| 丝袜在线中文字幕| 啪啪无遮挡十八禁网站| 丝袜美足系列| 免费av毛片视频| 日韩有码中文字幕| 少妇 在线观看| 色综合站精品国产| 操美女的视频在线观看| √禁漫天堂资源中文www| 制服丝袜大香蕉在线| 色哟哟哟哟哟哟| 亚洲国产看品久久| 日韩三级视频一区二区三区| 桃红色精品国产亚洲av| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久精品电影 | 久热这里只有精品99| 国产成人精品在线电影| 中亚洲国语对白在线视频| 欧美黄色淫秽网站| 久久午夜综合久久蜜桃| 久久久久国产精品人妻aⅴ院| 不卡一级毛片| av欧美777| 51午夜福利影视在线观看| 国产av又大| 中文字幕色久视频| 丝袜美足系列| 色老头精品视频在线观看| 亚洲精品久久成人aⅴ小说| www.www免费av| 久久精品国产综合久久久| 少妇被粗大的猛进出69影院| 在线av久久热| 免费在线观看影片大全网站| 日本 欧美在线| 色综合婷婷激情| 他把我摸到了高潮在线观看| 可以免费在线观看a视频的电影网站| 亚洲电影在线观看av| 男女之事视频高清在线观看| 亚洲国产欧美网| 国产欧美日韩一区二区三| 一区在线观看完整版| 国产成+人综合+亚洲专区| 中文字幕人妻丝袜一区二区| 亚洲男人的天堂狠狠| 国产欧美日韩一区二区三区在线| 嫁个100分男人电影在线观看| 中文字幕高清在线视频| 他把我摸到了高潮在线观看| 成人三级做爰电影| 午夜影院日韩av| 香蕉国产在线看| 欧美激情久久久久久爽电影 | 欧美绝顶高潮抽搐喷水| 视频区欧美日本亚洲| 亚洲天堂国产精品一区在线| 99re在线观看精品视频| 十分钟在线观看高清视频www| 日本黄色视频三级网站网址| 国产成人精品无人区| 免费观看精品视频网站| 18禁国产床啪视频网站| 日本撒尿小便嘘嘘汇集6| 国产视频一区二区在线看| 国产亚洲精品久久久久5区| 怎么达到女性高潮| 精品人妻在线不人妻| 亚洲欧美激情综合另类| 男人舔女人的私密视频| 成人手机av| 日韩精品中文字幕看吧| 丝袜美腿诱惑在线| 麻豆一二三区av精品| 久久精品国产清高在天天线| 亚洲精品国产一区二区精华液| av天堂在线播放| 给我免费播放毛片高清在线观看| 久久久久国产精品人妻aⅴ院| 视频区欧美日本亚洲| 正在播放国产对白刺激| 波多野结衣av一区二区av| 精品熟女少妇八av免费久了| 亚洲 欧美 日韩 在线 免费| www.www免费av| 热re99久久国产66热| 88av欧美| 91大片在线观看| 亚洲国产看品久久| 91麻豆av在线| 最好的美女福利视频网| 欧美日韩福利视频一区二区| 亚洲精品中文字幕在线视频| 日本 欧美在线| 亚洲自偷自拍图片 自拍| 国产精品日韩av在线免费观看 | 成人亚洲精品一区在线观看| 日日爽夜夜爽网站| 国产一区二区三区综合在线观看| 国产成人av激情在线播放| av在线播放免费不卡| 日韩一卡2卡3卡4卡2021年| 亚洲熟女毛片儿| 最近最新中文字幕大全免费视频| 一本大道久久a久久精品| 亚洲熟妇熟女久久| 亚洲欧美日韩高清在线视频| 美女高潮喷水抽搐中文字幕| 国产av一区在线观看免费| 久久国产精品男人的天堂亚洲| 久久午夜亚洲精品久久| 国产亚洲av高清不卡| 高清黄色对白视频在线免费看| 窝窝影院91人妻| 久久精品国产亚洲av香蕉五月| 久久久久久亚洲精品国产蜜桃av| 国产av在哪里看| 免费在线观看黄色视频的| 成人特级黄色片久久久久久久| 久久亚洲真实| 国语自产精品视频在线第100页| 免费女性裸体啪啪无遮挡网站| 男男h啪啪无遮挡| 一二三四社区在线视频社区8| 黄色丝袜av网址大全| 巨乳人妻的诱惑在线观看| 国内精品久久久久久久电影| www.自偷自拍.com| 麻豆国产av国片精品| 一边摸一边做爽爽视频免费| 亚洲人成电影观看| 一边摸一边做爽爽视频免费| a在线观看视频网站| 国产乱人伦免费视频| 一夜夜www| netflix在线观看网站| 老汉色av国产亚洲站长工具| 久久青草综合色| 欧美激情 高清一区二区三区| 午夜成年电影在线免费观看| 男女下面进入的视频免费午夜 | 日本三级黄在线观看| 丁香欧美五月| 成年女人毛片免费观看观看9| 人人妻人人澡欧美一区二区 | 国产成人系列免费观看| 成人国语在线视频| 美女免费视频网站| 精品日产1卡2卡| 亚洲国产精品sss在线观看| 99久久精品国产亚洲精品| 97碰自拍视频| 99久久精品国产亚洲精品| www.自偷自拍.com| 欧美色欧美亚洲另类二区 | 免费不卡黄色视频| 亚洲国产欧美日韩在线播放| 久9热在线精品视频| 在线观看www视频免费| 99riav亚洲国产免费| 久热爱精品视频在线9| 男女下面插进去视频免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 真人做人爱边吃奶动态| 一个人免费在线观看的高清视频| 欧美日本视频| 亚洲九九香蕉| 欧美乱色亚洲激情| 久久人妻福利社区极品人妻图片| 中文字幕精品免费在线观看视频| 欧美成人性av电影在线观看| 亚洲国产精品合色在线| 亚洲黑人精品在线| 一级a爱视频在线免费观看| 人成视频在线观看免费观看| 国产精品98久久久久久宅男小说| 中国美女看黄片| 国产乱人伦免费视频| 国产伦人伦偷精品视频| 手机成人av网站| 性色av乱码一区二区三区2| 看黄色毛片网站| 午夜福利免费观看在线| 亚洲 欧美一区二区三区| 精品国产美女av久久久久小说| 伦理电影免费视频| 88av欧美| 黄色毛片三级朝国网站| 久久久久久大精品| netflix在线观看网站| 免费高清视频大片| 男男h啪啪无遮挡| 琪琪午夜伦伦电影理论片6080| 脱女人内裤的视频| 亚洲熟妇中文字幕五十中出| 国产日韩一区二区三区精品不卡| 在线免费观看的www视频| 精品第一国产精品| 19禁男女啪啪无遮挡网站| 中文字幕久久专区| 变态另类丝袜制服| 亚洲午夜理论影院| 国产伦人伦偷精品视频| 日韩精品中文字幕看吧| 久久精品成人免费网站| 国产精品99久久99久久久不卡| 丝袜美腿诱惑在线| 欧美国产精品va在线观看不卡| 少妇裸体淫交视频免费看高清 | e午夜精品久久久久久久| 国产野战对白在线观看| 欧美一级毛片孕妇| 一区二区日韩欧美中文字幕| 精品第一国产精品| 久久精品影院6| 啦啦啦观看免费观看视频高清 | 91九色精品人成在线观看| 国产成人精品在线电影| 国产亚洲精品av在线| 午夜免费成人在线视频| 国产精品亚洲av一区麻豆| 国产在线观看jvid| 午夜久久久在线观看| 少妇被粗大的猛进出69影院| 50天的宝宝边吃奶边哭怎么回事| 欧美激情极品国产一区二区三区| 精品国产国语对白av| 制服丝袜大香蕉在线| 欧美乱色亚洲激情| 性色av乱码一区二区三区2| 美女国产高潮福利片在线看| 久久久久九九精品影院| 丝袜在线中文字幕| 欧美色欧美亚洲另类二区 | 欧美国产日韩亚洲一区| 黄色女人牲交| 精品久久久久久久久久免费视频| 啦啦啦 在线观看视频| 国产成人精品久久二区二区免费| 免费看美女性在线毛片视频| 亚洲av五月六月丁香网| 国产精华一区二区三区| 色哟哟哟哟哟哟| 精品熟女少妇八av免费久了| 久久人人精品亚洲av| 亚洲欧美精品综合久久99| 一区福利在线观看| 精品一区二区三区av网在线观看| 久久久久久久午夜电影| 不卡av一区二区三区| 夜夜爽天天搞| 精品不卡国产一区二区三区| 亚洲色图 男人天堂 中文字幕| 男人舔女人的私密视频| 久久这里只有精品19| 亚洲伊人色综图| 精品久久蜜臀av无| 国产私拍福利视频在线观看| 97碰自拍视频| 亚洲人成伊人成综合网2020| 日韩 欧美 亚洲 中文字幕| 正在播放国产对白刺激| 国产一区二区激情短视频| 香蕉久久夜色| 一级片免费观看大全| 久久精品91蜜桃| 国产欧美日韩综合在线一区二区| 成人三级黄色视频| 在线播放国产精品三级| 啦啦啦 在线观看视频| 欧美日本视频| 国产精品 国内视频| 精品国产亚洲在线| 亚洲欧美激情综合另类| 国产主播在线观看一区二区| 91老司机精品| 嫩草影院精品99| 成人国产综合亚洲| 香蕉国产在线看| 亚洲伊人色综图| 欧美日韩亚洲国产一区二区在线观看| 岛国视频午夜一区免费看| 波多野结衣巨乳人妻| 久久人妻熟女aⅴ| 九色亚洲精品在线播放| 69精品国产乱码久久久| 亚洲欧美日韩无卡精品| 中文字幕最新亚洲高清| 国产三级黄色录像| 欧美 亚洲 国产 日韩一| 国产精品久久视频播放| 日本免费一区二区三区高清不卡 | av视频免费观看在线观看| 国内精品久久久久精免费| 黄色视频,在线免费观看| 亚洲av五月六月丁香网| 久9热在线精品视频| 亚洲美女黄片视频| 天堂影院成人在线观看| 淫秽高清视频在线观看| 欧美不卡视频在线免费观看 | 国产成人精品久久二区二区91| 成人特级黄色片久久久久久久| 无人区码免费观看不卡| 一区福利在线观看| 99精品在免费线老司机午夜| 亚洲欧美一区二区三区黑人| 成人特级黄色片久久久久久久| 精品国产一区二区久久| 一区二区日韩欧美中文字幕| 一级毛片精品| а√天堂www在线а√下载| 一区二区三区激情视频| 亚洲成a人片在线一区二区| avwww免费| 人妻丰满熟妇av一区二区三区| 免费看美女性在线毛片视频| 亚洲欧美激情在线| 国产成人av教育| 国产真人三级小视频在线观看| 9色porny在线观看| 久久人妻福利社区极品人妻图片| 欧美成人午夜精品| 美女 人体艺术 gogo| 国产精品香港三级国产av潘金莲| 久久青草综合色| 51午夜福利影视在线观看| 亚洲电影在线观看av| 两人在一起打扑克的视频| 丰满的人妻完整版| 亚洲av片天天在线观看| 中国美女看黄片| 此物有八面人人有两片| 高清在线国产一区| or卡值多少钱| 国产精品亚洲一级av第二区| 日本vs欧美在线观看视频| 日韩欧美一区二区三区在线观看| 看黄色毛片网站| 日本 欧美在线| 亚洲全国av大片| 国产精品久久电影中文字幕| 亚洲精品国产精品久久久不卡| 女性被躁到高潮视频| 午夜精品在线福利| 啦啦啦免费观看视频1| 欧美一级a爱片免费观看看 | 美女高潮到喷水免费观看| 久久久久国产精品人妻aⅴ院| 一区在线观看完整版| 巨乳人妻的诱惑在线观看| 高潮久久久久久久久久久不卡| 性色av乱码一区二区三区2| 久久久久久免费高清国产稀缺| 在线av久久热| 亚洲熟妇中文字幕五十中出| www日本在线高清视频| 成人手机av| 国产在线观看jvid| 欧美最黄视频在线播放免费| 国产成人精品无人区| 国产精品综合久久久久久久免费 | 免费看a级黄色片| 91大片在线观看| 久久中文字幕一级| 欧美日韩黄片免| 亚洲欧美精品综合久久99| 国产一区二区三区综合在线观看| 国产精品国产高清国产av| 国产欧美日韩综合在线一区二区| 婷婷六月久久综合丁香| 在线国产一区二区在线| a在线观看视频网站| 村上凉子中文字幕在线| 精品久久久久久久久久免费视频| 一夜夜www| 免费在线观看影片大全网站| 亚洲精品国产一区二区精华液| 琪琪午夜伦伦电影理论片6080| 国产精品1区2区在线观看.| 精品一区二区三区四区五区乱码| 91麻豆精品激情在线观看国产| 女人爽到高潮嗷嗷叫在线视频| 亚洲五月婷婷丁香| 亚洲欧美日韩无卡精品| 精品国内亚洲2022精品成人| 亚洲国产精品成人综合色| 男人舔女人的私密视频| 级片在线观看| 俄罗斯特黄特色一大片| 欧美日韩黄片免| 欧美另类亚洲清纯唯美| 国产成人精品在线电影| 夜夜看夜夜爽夜夜摸| 女人被狂操c到高潮| www.999成人在线观看| 亚洲av五月六月丁香网| x7x7x7水蜜桃| 欧美黑人欧美精品刺激| 亚洲午夜精品一区,二区,三区| 热99re8久久精品国产| 色综合亚洲欧美另类图片| 亚洲专区字幕在线| 99精品久久久久人妻精品| 黄色女人牲交| 欧美乱色亚洲激情| 精品熟女少妇八av免费久了| 国产精品久久久久久精品电影 | 波多野结衣av一区二区av| 免费在线观看日本一区| 国产精品久久视频播放| 亚洲美女黄片视频| 亚洲 欧美一区二区三区| 欧美成人一区二区免费高清观看 | 亚洲avbb在线观看| 久久久精品欧美日韩精品| 亚洲国产高清在线一区二区三 | 欧美久久黑人一区二区| 搡老妇女老女人老熟妇| 久久久久久人人人人人| 天堂影院成人在线观看| а√天堂www在线а√下载| www.自偷自拍.com| 久久久久久久久免费视频了| 亚洲黑人精品在线| 国产男靠女视频免费网站| 看免费av毛片|