• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    REVIEW ON MATHEMATICAL ANALYSIS OF SOME TWO-PHASE FLOW MODELS?

    2018-11-22 09:24:12HuanyaoWEN溫?zé)▓?/span>LeiYAO姚磊ChangjiangZHU朱長(zhǎng)江
    關(guān)鍵詞:長(zhǎng)江

    Huanyao WEN(溫?zé)▓? Lei YAO(姚磊) Changjiang ZHU(朱長(zhǎng)江)?

    1.School of Mathematics,South China University of Technology,Guangzhou 510641,China

    2.School of Mathematics and Center for Nonlinear Studies,Northwest University,Xi’an 710127,China

    E-mail:mahywen@scut.edu.cn;leiyao@nwu.edu.cn;machjzhu@scut.edu.cn

    Abstract The two-phase flow models are commonly used in industrial applications,such as nuclear,power,chemical-process,oil-and-gas,cryogenics,bio-medical,micro-technology and so on.This is a survey paper on the study of compressible nonconservative two- fluid model,drift- flux model and viscous liquid-gas two-phase flow model.We give the research developments of these three two-phase flow models,respectively.In the last part,we give some open problems about the above models.

    Key words compressible nonconservative two- fluid model;drift- flux model;viscous liquidgas two-phase flow model;well-posedness

    1 Compressible Nonconservative Two- fluid Model

    1.1 Research background-1

    One of the typical two-phase flow models,called compressible nonconservative two- fluid model,is

    The variable α+,α?∈ [0,1]are the volume fraction of liquid and gas,satisfy=1;are,respectively,the densities,the velocities and the pressures of each phase,and the two pressure functions satisfy,where A±>0,ˉγ±>1 are constants,f(·)is a known smooth function,it can be a zero function(in this case,the two pressures are equal);are the viscous stress tensors,μ±and λ±are shear and bulk viscosity coefficients,satisfying μ±>0,2μ±+dλ±≥ 0;σ±are the capillary coefficients;The last three terms on the right-hand side of momentum equations,denote wall frictional forces,interfacial forces and gravities,f±,I,g are wall frictional coefficients,interfacial coefficient and gravity constant,respectively.This model is commonly used in industrial applications,such as nuclear,power,oil-and-gas,micro-technology and so on,here we can refer to[2].The classical modeling technique consists of performing a volume average to derive a model without free surface,that is,a two- fluid model.Furthermore,internal viscous and capillary forces cannot be neglected for some applications such as,for instance,wave breaking.Here,we include a capillary pressure term,i.e.,we do not assume that the two phase pressures P+and P?are equal.The assumption about non-equal pressure functions P+6=P?is quite natural.This amounts to including capillary pressure forces and is commonly included in modeling of two-phase flow in porous media.For more information about this model and related models,see for instance[1,36,46]and references therein.There are many numerical results about this model and related models,see[46]and references therein.

    If we ignore frictional forces between wall and fluids,interfacial friction and gravity,then system(1.1)takes the simpli fied form

    Many models are related to system(1.2)such as compressible Navier-Stokes equations(α+≡ 0 or α?≡ 0 and σ±=0),Navier-Stokes-Korteweg equations(α+≡ 0 or α?≡ 0),etc.There is a huge literature on the investigation of global existence and large time behavior of smooth solutions in relation to these models.Here we mention several of the most relevant papers.Matsumura and Nishida[44,45] first considered the global existence of smooth solutions to the compressible Navier-Stokes equations in multidimensional whole space and obtained that the global solutions tended to its equilibrium state,they also obtained the decay rate;Ho ff and Zumbrun[33,34]considered the Green’s function of the compressible isentropic Navier-Stokes equations with the arti ficial viscosity and showed the convergence of global solutions to di ff usion waves.Later,Liu and Wang[43]investigated the properties of Green’s function for the isentropic Navier-Stokes system in odd dimension.They showed an interesting pointwise convergence of global solution to the di ff usion waves with the optimal time decay rate,where the important phenomena of the weaker Huygens’principle was also justi fied due to the dispersion e ff ects of compressible viscous fluids in multidimensional odd space.Recently,Li and Zhang[42]obtained the optimal Lptime-decay rate for isentropic Navier-Stokes equations in three dimensions when initial data belonged to some spaceThe same decay property also appears in the half space and exterior domain,see[37–40].

    Near the constant equilibrium states,Hattori and Li[31,32]considered the local and global existence of the smooth solution of the compressible Navier-Stokes-Korteweg system for multidimensional model in Sobolev space;Danchin and Desjardins[6]proved existence and uniqueness results of suitably smooth solution in the Besov space frame;Next,Wang and Tan[49]obtained the optimal time-decay of the system,which is the same as that of the Navier-Stokes system.Recently,Based on the weighted L2-method and some delicate L1estimates on solutions to the linearized problem,Chen and Zhao[4]studied the existence and uniqueness of stationary solutions of the compressible nonisentropic fluid model of Korteweg type by the contraction mapping principle.Furthermore,they also obtained the stability of the stationary solution.

    In recent years,some e ff orts were made on the existence and large time behavior of global solution to the nonconservative compressible two- fluid model(1.2).For the equal pressures,Bresch,Desjardins,Ghidaglia and Grenier[2]considered the existence of global weak solution in the periodic domain when 1<<6;Bresch,Huang and Li[3]showed the existence of global weak solution in one-dimensional case without capillary e ff ect(i.e.,σ±=0),when>1.Recently,Lai,Wen and Yao[41]obtained the vanishing capillary coefficient limit to the nonconservative compressible two- fluid model(1.2),where two pressure functions are unequal.We refer also to the recent work[25]which was in a gas-liquid context where a polytropic gas law was used for the gas phase whereas the liquid was assumed to be incompressible,and the global existence of strong solutions and large time behavior were obtained for both the initial boundary value problem and initial value problem.For more results about the compressible nonconservative two- fluid model(1.2),see[19,21].

    Next,we give the main well-posedness results about the model(1.2).By using the detailed analysis of the Green’s function to the linearized system and elaborate energy estimates to the nonlinear system,the time-decay estimates of classical or strong solutions of nonconservative viscous compressible generic two- fluid model with or without capillary e ff ect in R3were obtained in[5,18],the equal and unequal pressures were considered respectively.

    1.2 Well-posedness Results

    We consider the following compressible nonconservative two- fluid model in R3:

    Furthermore,from(1.4)and dP+?dP?=df(α?ρ?),we obtain

    Substitute(1.5)into(1.4),we get the following expressions:

    and ?:(R+,+∞)7→ (?∞,+∞).

    Applying the implicit function theorem to(1.3)4,there exists ρ+= ρ+(R+,R?)such that ?(ρ+)=0.Furthermore,we can de fine

    Based on the above,system(1.3)can be rewritten as follows:

    We consider the Cauchy problem of(1.10):

    Without loss of generality,we assume.For the above problem(1.10)–(1.11),we obtain the following result.

    Theorem 1.1([18],Theorem 1.1)Under the condition

    where η is a positive,small fixed constant,there exists a constant ? such that if

    then the Cauchy problem(1.10)–(1.11)admits a unique solutionglobally in time in the sense that:

    Moreover,if in addition the initial datais bounded in L1(R3),the solution enjoys the following decay-in-time estimates:

    Remark 1.2The proof of the theorem involves some new ideas.Usually,the proof consists of spectral analysis of the Green function for the corresponding linearized system and energy estimates of the solutions to the nonlinear system,refer for instance to[7,8].Here,we just need spectral analysis of the low-frequency part of the Green function and the energy estimates.Actually,we employ the energy method in the frequency space to get the decay rates of the low-frequency part so that we succeed to avoid some complicate analysis of the Green function,which is a 8×8 matrix.On the other hand,we notice that the high-frequency part can be handled directly by the energy estimates.Thus,the combination of the decay rates of the low-frequency part and the energy estimates show the decay rates of the solutions directly,even for initial data within the H2-framework.

    If the capillary e ff ect is included,we consider the following equations:

    And we consider the two equal pressure functions:.And(1.5)–(1.9)becomes(1.18)–(1.21):

    Then the system(1.17)is equivalent to the following form

    We consider the problem(1.22)with initial value(1.11)–(1.12).For simplicity,set ν+= ν?= ν,σ+=σ?=σ.Introduce n±=R±?1,then the initial value problem(1.22),(1.11)and(1.12)can be rewritten as

    with initial data

    and the far- field behavior

    For the above problem(1.23)–(1.25),we obtain the following result.

    Theorem 1.3([5],Theorem 1.1) For any integer s ≥ 3,there exists a constant δ>0,such that if

    then the initial value problem(1.23)–(1.25)admits a unique solution(n+,u+,n?,u?)globally in time,which satis fies

    and for some c,C>0 independent of t such that

    Moreover,the solution satis fies the decay-in-time estimates:

    Remark 1.4The fraction densities converge to the equilibrium states at the L2-rate(1+t)?14,and the k(∈ [1,s ? 1])order spatial derivatives of the fraction densities converge to zero at the L2-rate,which is slower than theand L2-ratefor the compressible Navier-Stokes system(k=0,1)or Navier-Stokes-Korteweg system(k=0,1,2),see[7,43,49].This is caused by the non-conservation and complexity of the model(1.17).

    2 Drift- flux Model

    2.1 Research Background-2

    The drift- flux model is one of the commonly used models nowadays for the prediction of various two-phase flows.It was first developed by Zuber and Findlay[55].It is used in chemical engineering to predict flow in bubble column reactors,in petroleum applications to model various wellbore operations related to drilling,production of oil and gas,and for the study of geothermal energy related problems and injection of CO2.A one-dimensional transient drift- flux model can be written in the following form:

    where m= αlρl,n= αgρgdenote the masses of liquid and gas;The unknowns are αl,αg∈ [0,1]volume fractions of liquid and gas,satisfying αl+ αg=1;ρl,ρgthe liquid and gas densities;P=P(m,n)common pressure for liquid and gas;ul,ugvelocities of liquid and gas.In order to get a closed system,an algebraic equation called the slip relation which relates the two fluid velocities is added:ug=c0umix+c1,it implies:

    where c0and c1are flow dependent coefficients,c0is referred to as the distribution parameter and c1to as the drift velocity,umix=αgug+αlul;?=?(m,n)(≥0)viscosity coefficient;ˉq external force,such as the gravity and frictional force.

    For previous studies of the 1D model(2.1)with the slip relationwith c0>1,c1=0,for the free boundary problem,we refer to[10,22].In[10],the local existence of weak solution was obtained whereas[22]gave a local existence of weak solution for a general slip(c0>1 and c1>0)and a global existence result for the special case c0>1,c1=0.The more general case c1>0 is important because it allows the model to describe,e.g.counter-current flow,where uland ugpossibly have di ff erent sign.Recently,Evje and Wen[20]obtained the global existence and unique of strong solution for the 1D initial boundary value problem.This work presents a first global existence result for the drift- flux model with a general slip law.

    Next,we give the main well-posedness results about the model(2.1).

    2.2 Well-posedness Results

    At first,we ignore the external force,i.e.,.Assume that(where b(t)separates the gas-liquid mixture and the gas region,satis fies:b(0)=b0),t>0,and the pressure is given by

    Initial conditions are

    and boundary conditions are

    Assumptions on the parameters α,γ

    Assumptions on the initial data

    Moreover,the lower bound A of Q and the bound M on the initial energy must satisfy the following relations

    The external pressure p?must obey

    Similarly,the upper bound B of Q and the bound M on the initial energy must satisfy the following relations:

    for some δ>0 and subject to the condition sup<1.In addition,A and B are chosen such that:

    Finally,M must obey the smallness condition as follows:

    Theorem 2.1([23],Theorem 2.1(existence)) Under the assumptions of(2.6)–(2.12),there exists a constant M0>0 such that(2.3)–(2.5)admits a global weak solution(c,Q,u)on[0,1]×[0,T]for any time for all M ≤M0in the sense that

    (A)The following regularity holhs

    Moreover,the following estimates hold

    for(x,t)∈[0,1]×[0,T],where C2depends on A,B,M,T and the initial data.

    (B)The following equations hold

    (C)Interface behavior

    for some r∈(1,2)such that r(α+1)<2,and

    for β1∈ (0,α]∩(0,?α].Here(x,t)∈ [0,1]×[0,T].

    Theorem 2.2([23],Theorem 2.2(uniqueness)) Under the conditions of Theorem 2.1 and by requiring that β1= α,where 0< α ≤,the weak solution is unique.

    Next,assume that c0≥1,c1=0,x∈(a,b(t)),t>0,i.e.,h(cQ)=j(cQ)=0.Set E(c,cQ)=[cQ]β+1,β >0,and n?=0(ρ(1,t)=n?=0).Consider the following initial boundary value problem:

    with initial conditions

    and with boundary condition

    AssumptionsLet A1,B1,and δ be positive constants,whereas α,β>0 and γ>1 such that

    where φ(x)=1 ? x,and α,β,γ as well as the time decay exponents r1,r2,r3,r4>0,satisfy the following

    Theorem 2.3([24],Theorem 3.1(global weak solution)) Under the assumptions of(2.21)–(2.22),there exists a positive constant C0such that if δ≤ C0,then(2.18)–(2.20)admits a unique solution(c,Q,u)on[0,1]× [0,∞)in the sense that:

    (A)the following regularity holds

    (B)the following equations hold

    for any T>0 and any test function

    In the next section,we will consider the model(2.1)with c0=1 and c1=0,i.e.,ug=ul=u,we call this model as the viscous liquid-gas two-phase flow model.We will use the appropriate variable transformation,to rewrite the model in terms ofwhich is similar to the single-phase compressible Navier-Stokes equations,wheresatis fies a transport equation.

    3 Viscous Liquid-gas Two-phase Flow Model

    3.1 Research Background-3

    Viscous liquid-gas two-phase flow model can be viewed to be simpli fied from the model,which are widely used within the petroleum industry to describe production and transport of oil and gas through long pipelines or well.This model is composed of two separate mass conservation equations corresponding to each of the two phases and one mixture momentum conservation equation in following form

    where m= αlρl,n= αgρgdenote liquid mass and gas mass respectively;μ and λ are viscosity coefficients,satisfying:μ >0,λ+≥ 0;The unknown variables αl,αg∈ [0,1]denote liquid and gas volume fractions,satisfying the fundamental relation: αl+ αg=1;Furthermore,ρland ρgdenote liquid and gas densities,respectively;u denotes velocity of liquid and gas;P=P(m,n)is common pressure for both phases,ˉq is the external force.

    The investigation of model(3.1)has been a topic during the last decade.There are many results about the numerical properties of this model or related model.However,there are few results providing insight into existence,uniqueness,regularity,asymptotic behavior and decay rate estimates concerning the two-phase liquid-gas models of the form(3.1).Let us review some previous works about the viscous liquid-gas two-phase flow model.For the model(3.1)in 1D,when the liquid is incompressible and the gas is polytropic,i.e.,P(m,n)Evje and Karlsen[16]studied the existence and uniqueness of the global weak solution to the free boundary value problem withwhen the fluids connected to vacuum state discontinuously.Evje,Fl?atten and Friis[13]also studied the model within a free boundary setting when the fluids connected to vacuum state continuously,and obtained the global existence of the weak solution.If the acceleration terms in the mixture momentum equation was neglected,Evje and Karlsen[14]obtained the global existence of weak solution on the half line.If the external force and frictional force were included,see the related results in[27,28].Speci fically,when both of the two fluids are compressible,i.e.,P(m,n)one can consult[15]for the global existence of strong solution to the 1D case;For multidimensional case,Yao,Zhang and Zhu[51]obtained the existence of the global weak solution to the 2D model when the initial energy is small.Furthermore,they proved a blow-up criterion in terms of the upper bound of the liquid mass for the strong solution to the 2D model in a smooth bounded domain,cf.[52].For the Cauchy problem of a multi-dimensional viscous liquid-gas two-phase flow model,Hao and Li[30]obtained the global existence and uniqueness of strong solution for the initial data close to an equilibrium and the local in time existence and uniqueness of the solution with general initial data in the framework of Besov spaces.Concerning the well-posedness and large time behavior of solutions to the model(3.1)and related models,we refer the reader to the[9,11,12,17,29,35,47]and references therein.

    Next,we give the main well-posedness results about the model(3.1).

    3.2 Well-posedness Results

    At first,we consider the model(3.1)in 1D,in order to avoid some unsolved difficulties,we consider a simpli fied model obtained as follows:

    (1) Due to the fact that the liquid phase density is much higher than the gas phase density,typically to the order,we can neglect the gas phase e ff ects in the mixture momentum conservation equation.

    (2)Neglect the external forces,i.e.,

    We assume that further the liquid is incompressible and the gas is polytropic,i.e.,ρl=const,.Then the model(3.1)can be simpli fied into the following model in the form

    We will consider(3.2)in a free boundary value problem setting where the masses n and m initially occupy only a finite interval[a,b]∈R.That is

    and n(ξ,0)=m(ξ,0)=0,ξ∈ R[a,b].The boundary conditions are given as

    where a(τ)and b(τ)are vacuum boundary,satisfyingu(b(τ),τ),b(0)=b.As in[16],the viscosity coefficient(0,1],k1is a positive constant.In the Lagrangian coordinates,the free boundary value problem(3.2)–(3.5)becomes the following fixed boundary value problem

    with initial data

    and the boundary conditions

    Remark 3.1Introduce the variableswe can rewrite the initial boundary value problem(3.6)–(3.8)in the form

    which is similar to the model of single-phase Navier-Stokes equations.Therefore,we can apply technique in studying Navier-Stokes equations to deal with the related problem for the viscous liquid-gas two-phase flow model.

    Yao and Zhu[53]improved the previous result of Evje and Karlsen[16]from β∈(0,)to β∈(0,1],and got the global existence of weak solution,regularity of the solutions and the asymptotic behavior result.The result of global existence of weak solution is as follows.

    Theorem 3.2([53],Theorem 2.2(Existence and uniqueness)) Under the assumptions of

    (A1)

    (A2)

    (A3) γ>1,0<β≤1,

    the initial boundary problem(3.6)–(3.8)possesses a unique global weak solution(n(x,t),m(x,t),u(x,t))satisfying for any T>0

    On the other hand,for the viscous liquid-gas model with constant viscosity coefficient when both the initial liquid and gas masses connect to vacuum continuously,Yao and Zhu[54]used a new technique to get the upper and lower bounds of gas and liquid masses n and m,then got the global existence of weak solution by the line method.For this case,the boundary conditions(3.8)is replaced by

    Next,we give the de finition of weak solution.

    De finition 3.3([54],De finition 1) A pair of functions(n(x,t),m(x,t),u(x,t))is called a global weak solution to the initial boundary value problem(3.6),(3.7)and(3.11),if for any T>0

    Furthermore,the following equations hold

    for any test functions ψ(x,t)∈,with ? ={(x,t):0 ≤ x ≤ 1,t≥ 0}.

    Theorem 3.4([54],Theorem 1) Under the assumptions of

    (A1)

    (A2)

    (A3)is a positive constant and satis fies:

    (A4) γ>1,the initial boundary value problem(3.6),(3.7)and(3.11)possesses a unique global weak solution(m(x,t),n(x,t),u(x,t))de fined by De finition 3.3.

    Next,we consider(3.1)in 3D.We neglect the gas phase e ff ects in the mixture momentum conservation equation and external force,i.e.,study the following initial boundary value problem

    For the problem(3.13)–(3.15),Wen,Yao and Zhu[50]proved the local existence of strong solution and established the blow-up criterion,when there was initial vacuum.If the liquid mass was upper bounded,we could obtain a high integrability of the velocityfor some r∈(3,4].Moreover,in order to overcome the singularity brought by the pressure P(m,n)when there is vacuum,we needed the assumptionwere positive constants.

    Theorem 3.5([50],Theorem 1.1(local existence)) Let ? be a bounded smooth domain in R3and q∈ (3,6].Assume that the initial data m0,n0,u0satisfyare positive constants.The following compatible condition is also valid:

    Then,there exist a T0>0 and a unique strong solution(m,n,u)to the problem(3.13)–(3.15),such that

    Theorem 3.6([50],Theorem 1.2(blow-up citerion)) Under the assumptions of Theorem 3.5,if T?<∞is the maximal existence time for the strong solution(m,n,u)(x,t)to the problem problem(3.13)–(3.15)stated in Theorem 3.5,then

    Remark 3.7The analysis in Theorem 3.6 can be applied to study a blow-up criterion of the strong solution to compressible Navier-Stokes equations for

    which improves the corresponding result about Navier-Stokes equations in[48]where 7μ > λ.

    If we don’t neglect the gas phase e ff ects in the mixture momentum conservation equation,and consider the following initial boundary value problem

    the viscosity coefficientμis constant,the pressure P satis fies

    with initial conditions

    and with boundary conditions

    We give a precise de finition of global weak solutions.

    De finition 3.8([26],De finition 1.1) We call(m,n,u):(0,1)×(0,+∞)→R+×R+×R a global weak solution of(3.18)–(3.20)if for any 0

    (1)m,n∈L∞((0,1)×(0,T)),(m+n)u2∈L∞(0,T;L1(0,1)),m,n≥0 a.e.,in(0,1)×(0,T),u∈L2(0,T;

    (2)(m,n,u)satisfy the system(3.18)in the sense of distribution;

    (3)(m,n,(m+n)u)(x,0)=(m0(x),n0(x),M0(x)),a.e.x∈(0,1).

    Theorem 3.9([26],Theorem 1.1(global existence))then there exists a global weak solution(m,n,u):

    Remark 3.10Note that we do not need the conditionsfor sometypically made use of in previous literature[15,50–52].This implies that transition to single phase is allowed,i.e.,one of the two phases can completely occupy some regions.

    4 Open Problems

    ?Compressible nonconservative two- fluid model

    Compared with the single-phase flow(i.e.,compressible Navier-Stokes equations),the twofluid model has its own challenges by means of the nonconservative structure in the pressure terms.More speci fically,when one looks for the global solutions with large initial data in the sense of distribution,the spatial derivatives in the pressure terms can not all be shifted to the test functions.In view of the fact,one has to obtain some estimates of the spatial derivatives of density or the related.This makes that two viscosity coefficients have to be equivalent to the corresponding density,i.e.,,see[3]for 1D case.To our best knowledge,it is still open for the case of multi-dimensions and for thatwith more general α,β ∈ [0,∞).

    ?Drift- flux model

    The main di ff erence between two- fluid model and drift- flux model is that two fluids are considered as a whole in the momentum equations for the latter case.However,in this case,some other equations have to be added to the system for completeness.The so called“slip law”is commonly used.The main challenge is that the global entropy estimate is difficult to find though the momentum equation is of the conservative form.This leads to an open problem whether the global weak solutions with large initial data exist or not for more general slip law.In fact,when c0=1 and c1=0 for large initial data,and c0≥1,c1≥0 for small initial data,it is known that the global weak solutions exist,see[26],and Theorems 2.1 and 3.2 respectively.Here c0and c1are constants.

    ?Viscous liquid-gas two-phase flow model

    The viscous liquid-gas two-phase flow model can be considered as a simpli fied case from the two- fluid model when two velocity fields and two pressure functions are equal respectively.Although there are some results achieved for the simpli fied case particularly,there are still some open problems.For example,whether the global smooth solution with large initial data in high dimensions exists or not,or equivalently whether the smooth solution blows up in finite time.

    猜你喜歡
    長(zhǎng)江
    第17屆長(zhǎng)江韜奮獎(jiǎng)
    中國記者(2022年11期)2023-01-27 10:48:40
    長(zhǎng)江學(xué)人
    理論探索(2022年6期)2023-01-17 01:56:30
    長(zhǎng)江學(xué)人
    理論探索(2022年5期)2022-11-07 10:17:18
    萬里長(zhǎng)江第一站,有一束“光””
    長(zhǎng)江,你從哪里來
    長(zhǎng)江之頭
    青年歌聲(2020年11期)2020-11-24 06:57:28
    游長(zhǎng)江
    長(zhǎng)江之歌(外二首)
    天津詩人(2017年2期)2017-11-29 01:24:30
    長(zhǎng)江圖(外二首)
    天津詩人(2017年2期)2017-11-29 01:24:05
    長(zhǎng)江石的一次大發(fā)現(xiàn)
    寶藏(2017年7期)2017-08-09 08:15:18
    国产黄色视频一区二区在线观看| 另类亚洲欧美激情| 中文字幕最新亚洲高清| 亚洲精品aⅴ在线观看| 国产又色又爽无遮挡免| 日韩中文字幕欧美一区二区 | 久久毛片免费看一区二区三区| 中文字幕精品免费在线观看视频| 国产激情久久老熟女| 欧美精品一区二区大全| 赤兔流量卡办理| 久久人人爽人人片av| 人人澡人人妻人| 桃花免费在线播放| 午夜日本视频在线| 亚洲国产精品999| 老汉色∧v一级毛片| 精品一区二区三区av网在线观看 | 亚洲av在线观看美女高潮| 午夜日韩欧美国产| 一边亲一边摸免费视频| 国产精品成人在线| 免费观看av网站的网址| 国产精品麻豆人妻色哟哟久久| 国产在视频线精品| av网站在线播放免费| 亚洲av国产av综合av卡| 一级毛片黄色毛片免费观看视频| 美女中出高潮动态图| 自线自在国产av| 狂野欧美激情性bbbbbb| 人人澡人人妻人| 国产男女内射视频| 久久这里只有精品19| 18在线观看网站| 天堂中文最新版在线下载| 成人免费观看视频高清| 亚洲精品久久成人aⅴ小说| 精品人妻一区二区三区麻豆| 亚洲精品国产区一区二| 狂野欧美激情性bbbbbb| 黄片播放在线免费| 99热网站在线观看| 又大又黄又爽视频免费| 久久99精品国语久久久| 大话2 男鬼变身卡| 伦理电影大哥的女人| 亚洲精华国产精华液的使用体验| 国产色婷婷99| 新久久久久国产一级毛片| 久久久久久人人人人人| 97精品久久久久久久久久精品| 人妻人人澡人人爽人人| 欧美乱码精品一区二区三区| 青春草亚洲视频在线观看| 在线观看三级黄色| 日本午夜av视频| 久久性视频一级片| 国产免费福利视频在线观看| 捣出白浆h1v1| 久久毛片免费看一区二区三区| 日本欧美视频一区| 天天躁狠狠躁夜夜躁狠狠躁| 18禁观看日本| 飞空精品影院首页| 韩国高清视频一区二区三区| 亚洲欧美激情在线| 亚洲国产欧美网| 夫妻午夜视频| 日韩一卡2卡3卡4卡2021年| 国产精品 国内视频| 亚洲精品美女久久久久99蜜臀 | 无限看片的www在线观看| 午夜激情久久久久久久| 母亲3免费完整高清在线观看| 国产熟女欧美一区二区| videosex国产| 久久毛片免费看一区二区三区| 午夜免费观看性视频| 性色av一级| 亚洲国产最新在线播放| 色视频在线一区二区三区| 婷婷色综合大香蕉| 亚洲中文av在线| h视频一区二区三区| 亚洲成人一二三区av| 精品久久久精品久久久| 两个人看的免费小视频| 2018国产大陆天天弄谢| 亚洲免费av在线视频| 久久性视频一级片| 天天添夜夜摸| 亚洲av日韩精品久久久久久密 | 哪个播放器可以免费观看大片| 午夜福利在线免费观看网站| 少妇被粗大的猛进出69影院| 十八禁高潮呻吟视频| 91精品伊人久久大香线蕉| 国产精品一区二区精品视频观看| 亚洲婷婷狠狠爱综合网| 国产男女内射视频| 亚洲七黄色美女视频| 91成人精品电影| 蜜桃国产av成人99| 国产精品一区二区精品视频观看| 中文乱码字字幕精品一区二区三区| 国产精品女同一区二区软件| 国产一区亚洲一区在线观看| 欧美日韩福利视频一区二区| 国产精品一国产av| 亚洲欧美精品自产自拍| 在线天堂最新版资源| 精品福利永久在线观看| 久久av网站| 18禁国产床啪视频网站| 亚洲少妇的诱惑av| 亚洲精品一区蜜桃| 亚洲欧美色中文字幕在线| tube8黄色片| 亚洲av成人不卡在线观看播放网 | 亚洲人成77777在线视频| 亚洲人成网站在线观看播放| 久久国产精品男人的天堂亚洲| 中文字幕制服av| 国产乱来视频区| 制服诱惑二区| 51午夜福利影视在线观看| 一本一本久久a久久精品综合妖精| 亚洲第一av免费看| 97在线人人人人妻| 亚洲图色成人| 男女午夜视频在线观看| av在线app专区| 丁香六月天网| 人妻人人澡人人爽人人| av国产精品久久久久影院| e午夜精品久久久久久久| 国产麻豆69| 久久精品久久久久久噜噜老黄| 性少妇av在线| 亚洲美女黄色视频免费看| 国产精品一国产av| e午夜精品久久久久久久| 大片电影免费在线观看免费| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产一区二区精华液| 日韩不卡一区二区三区视频在线| 欧美日韩福利视频一区二区| 如日韩欧美国产精品一区二区三区| 午夜日本视频在线| 久久久久久久久久久久大奶| 国产免费福利视频在线观看| 在线天堂最新版资源| 老司机影院毛片| 大香蕉久久网| videosex国产| 精品少妇黑人巨大在线播放| 欧美黑人欧美精品刺激| 国产精品.久久久| 成年动漫av网址| 国产成人系列免费观看| 精品一区二区三卡| 国产免费又黄又爽又色| 免费少妇av软件| 国产一区有黄有色的免费视频| 国产av一区二区精品久久| 一区福利在线观看| 国产在线一区二区三区精| 老汉色∧v一级毛片| 婷婷色av中文字幕| 国产亚洲精品第一综合不卡| 在线观看人妻少妇| 国产爽快片一区二区三区| 晚上一个人看的免费电影| 亚洲国产精品成人久久小说| 国产日韩欧美视频二区| 国产亚洲av高清不卡| 超碰97精品在线观看| 一区二区三区激情视频| 亚洲av综合色区一区| 女的被弄到高潮叫床怎么办| 日本91视频免费播放| 精品视频人人做人人爽| 免费看不卡的av| 亚洲国产精品999| 成人免费观看视频高清| 老司机影院毛片| 成人亚洲欧美一区二区av| 你懂的网址亚洲精品在线观看| 夫妻性生交免费视频一级片| 黄频高清免费视频| 国产精品无大码| 精品国产乱码久久久久久小说| 操美女的视频在线观看| 又粗又硬又长又爽又黄的视频| 亚洲情色 制服丝袜| 日韩成人av中文字幕在线观看| 丝袜美足系列| av女优亚洲男人天堂| 久久精品久久久久久久性| 18禁动态无遮挡网站| 精品人妻一区二区三区麻豆| 国产日韩欧美在线精品| 欧美变态另类bdsm刘玥| 熟女av电影| 黄色视频不卡| 天天添夜夜摸| 免费人妻精品一区二区三区视频| 精品国产乱码久久久久久小说| 成年女人毛片免费观看观看9 | 热re99久久国产66热| 一本大道久久a久久精品| 精品少妇一区二区三区视频日本电影 | 久久久久精品久久久久真实原创| 伦理电影免费视频| 最近手机中文字幕大全| 青春草国产在线视频| 精品亚洲成国产av| 国产一区有黄有色的免费视频| 十八禁网站网址无遮挡| 国产女主播在线喷水免费视频网站| 两性夫妻黄色片| 国产免费一区二区三区四区乱码| 国产av国产精品国产| 91精品国产国语对白视频| 国产精品99久久99久久久不卡 | 色精品久久人妻99蜜桃| 国产国语露脸激情在线看| 亚洲精品aⅴ在线观看| 这个男人来自地球电影免费观看 | 天美传媒精品一区二区| 婷婷色综合www| 欧美日韩亚洲高清精品| 久久精品aⅴ一区二区三区四区| 人体艺术视频欧美日本| 免费高清在线观看视频在线观看| 成人国产av品久久久| 伊人亚洲综合成人网| 一区二区三区精品91| 日本vs欧美在线观看视频| 成人18禁高潮啪啪吃奶动态图| 最近手机中文字幕大全| 三上悠亚av全集在线观看| 欧美老熟妇乱子伦牲交| 精品国产乱码久久久久久男人| 两性夫妻黄色片| 欧美国产精品一级二级三级| 亚洲精品国产av成人精品| 老司机靠b影院| 日韩欧美一区视频在线观看| 狠狠婷婷综合久久久久久88av| 99香蕉大伊视频| √禁漫天堂资源中文www| 亚洲自偷自拍图片 自拍| 中文字幕亚洲精品专区| 精品人妻在线不人妻| 中文字幕人妻丝袜制服| 欧美日韩视频精品一区| 欧美国产精品一级二级三级| 精品少妇内射三级| 老汉色∧v一级毛片| 久久天堂一区二区三区四区| 国产av精品麻豆| 久久99精品国语久久久| 色综合欧美亚洲国产小说| 亚洲国产欧美网| 老司机靠b影院| 人人妻人人爽人人添夜夜欢视频| 男女边摸边吃奶| 自拍欧美九色日韩亚洲蝌蚪91| 高清欧美精品videossex| 欧美亚洲日本最大视频资源| 亚洲,欧美精品.| 高清黄色对白视频在线免费看| 精品一区二区免费观看| 天美传媒精品一区二区| 国产亚洲av高清不卡| 亚洲人成网站在线观看播放| 交换朋友夫妻互换小说| 免费久久久久久久精品成人欧美视频| 成年人午夜在线观看视频| 久久久国产欧美日韩av| 欧美日韩综合久久久久久| 久久久久精品久久久久真实原创| 久久久精品94久久精品| 男人爽女人下面视频在线观看| 老司机靠b影院| 亚洲视频免费观看视频| 国产精品av久久久久免费| 亚洲美女视频黄频| 黑人欧美特级aaaaaa片| 黄网站色视频无遮挡免费观看| 久久毛片免费看一区二区三区| 国产成人精品无人区| xxx大片免费视频| 午夜福利影视在线免费观看| 亚洲国产成人一精品久久久| 午夜福利,免费看| 日韩人妻精品一区2区三区| 一级毛片 在线播放| 久久影院123| 侵犯人妻中文字幕一二三四区| 美女午夜性视频免费| 国产伦人伦偷精品视频| 七月丁香在线播放| 丰满少妇做爰视频| 狠狠精品人妻久久久久久综合| 亚洲国产日韩一区二区| 看非洲黑人一级黄片| 国产亚洲最大av| 国产精品免费视频内射| 欧美精品高潮呻吟av久久| 国产成人精品在线电影| 免费在线观看黄色视频的| 日本爱情动作片www.在线观看| 欧美日韩亚洲高清精品| 亚洲欧美成人精品一区二区| 亚洲一码二码三码区别大吗| 中文精品一卡2卡3卡4更新| 欧美乱码精品一区二区三区| 精品一区二区三卡| 午夜福利,免费看| 午夜福利免费观看在线| 男人操女人黄网站| 亚洲av电影在线观看一区二区三区| 欧美日韩av久久| 国产一卡二卡三卡精品 | 99热网站在线观看| 男男h啪啪无遮挡| 九九爱精品视频在线观看| 国产男女超爽视频在线观看| 免费在线观看黄色视频的| 中文字幕av电影在线播放| 国产爽快片一区二区三区| 亚洲国产日韩一区二区| 如日韩欧美国产精品一区二区三区| 9色porny在线观看| 久久精品久久久久久久性| 亚洲精品一二三| av在线app专区| 久久久久精品人妻al黑| 最黄视频免费看| 国产精品免费大片| 水蜜桃什么品种好| 亚洲精品一二三| 国产一区二区三区av在线| 黄片播放在线免费| 如何舔出高潮| 性高湖久久久久久久久免费观看| 69精品国产乱码久久久| 国产99久久九九免费精品| 亚洲五月色婷婷综合| 亚洲成av片中文字幕在线观看| av免费观看日本| 亚洲,一卡二卡三卡| 免费黄网站久久成人精品| 欧美日韩综合久久久久久| 中文字幕色久视频| 亚洲自偷自拍图片 自拍| 欧美精品高潮呻吟av久久| 中文字幕人妻丝袜制服| 一级片'在线观看视频| 91精品国产国语对白视频| 亚洲美女搞黄在线观看| 成人亚洲欧美一区二区av| 日本wwww免费看| 免费日韩欧美在线观看| 久久毛片免费看一区二区三区| 黄片无遮挡物在线观看| 久久国产亚洲av麻豆专区| 亚洲av在线观看美女高潮| 国产熟女欧美一区二区| 在线观看三级黄色| 黄色视频在线播放观看不卡| 深夜精品福利| 一区二区av电影网| 中文字幕精品免费在线观看视频| 80岁老熟妇乱子伦牲交| 亚洲精品久久久久久婷婷小说| 国产高清国产精品国产三级| 黄网站色视频无遮挡免费观看| 高清视频免费观看一区二区| 操出白浆在线播放| 99久久99久久久精品蜜桃| 巨乳人妻的诱惑在线观看| 欧美在线一区亚洲| 国产精品 欧美亚洲| 亚洲熟女毛片儿| 不卡视频在线观看欧美| 国产一区二区在线观看av| 亚洲四区av| 国产一卡二卡三卡精品 | 大片电影免费在线观看免费| 国产日韩欧美视频二区| 在线天堂中文资源库| 成人国产av品久久久| 国产av国产精品国产| 国产野战对白在线观看| 制服丝袜香蕉在线| 制服人妻中文乱码| 久久久久久久大尺度免费视频| 精品国产露脸久久av麻豆| 欧美中文综合在线视频| 在线亚洲精品国产二区图片欧美| 国产在线视频一区二区| 日本vs欧美在线观看视频| 最近2019中文字幕mv第一页| 九草在线视频观看| 最近最新中文字幕免费大全7| 日韩 亚洲 欧美在线| 欧美黑人欧美精品刺激| 成人国产麻豆网| 亚洲精品日本国产第一区| 久久av网站| 色婷婷av一区二区三区视频| 久久久久网色| 亚洲精品一二三| 亚洲av成人精品一二三区| 五月天丁香电影| 不卡视频在线观看欧美| 日韩大片免费观看网站| 少妇 在线观看| 国产精品.久久久| 在线观看三级黄色| 青春草国产在线视频| 90打野战视频偷拍视频| 99精品久久久久人妻精品| 久久韩国三级中文字幕| 女的被弄到高潮叫床怎么办| 两个人免费观看高清视频| 欧美激情高清一区二区三区 | av网站在线播放免费| 久久青草综合色| 高清欧美精品videossex| 欧美成人精品欧美一级黄| 日本黄色日本黄色录像| 日韩不卡一区二区三区视频在线| www日本在线高清视频| 男女床上黄色一级片免费看| 狂野欧美激情性xxxx| 久久人人爽人人片av| 黄色视频不卡| 午夜激情久久久久久久| 丝袜在线中文字幕| av.在线天堂| 亚洲情色 制服丝袜| 999久久久国产精品视频| 成人亚洲精品一区在线观看| 一级片'在线观看视频| 丝袜在线中文字幕| 亚洲av日韩在线播放| 中文精品一卡2卡3卡4更新| 老汉色∧v一级毛片| 欧美日韩亚洲国产一区二区在线观看 | 青春草亚洲视频在线观看| 天天躁夜夜躁狠狠躁躁| 久久人妻熟女aⅴ| 黄色怎么调成土黄色| 欧美黑人精品巨大| 国产成人午夜福利电影在线观看| 亚洲av国产av综合av卡| 天美传媒精品一区二区| 亚洲国产看品久久| 精品国产一区二区久久| 美女国产高潮福利片在线看| 国产一区二区激情短视频 | 天天躁狠狠躁夜夜躁狠狠躁| 十八禁人妻一区二区| 欧美 亚洲 国产 日韩一| 捣出白浆h1v1| 国产精品三级大全| 精品亚洲成国产av| 99香蕉大伊视频| 亚洲精品成人av观看孕妇| 色网站视频免费| 免费观看性生交大片5| 一区二区日韩欧美中文字幕| 成人国产麻豆网| 国产 精品1| 美女脱内裤让男人舔精品视频| 丰满迷人的少妇在线观看| 美女午夜性视频免费| 成人黄色视频免费在线看| 夜夜骑夜夜射夜夜干| 亚洲中文av在线| 中国国产av一级| 亚洲欧美色中文字幕在线| 中文字幕人妻熟女乱码| 水蜜桃什么品种好| 精品免费久久久久久久清纯 | 在线精品无人区一区二区三| 国产一区亚洲一区在线观看| 日韩一区二区三区影片| 精品免费久久久久久久清纯 | 欧美日本中文国产一区发布| 一级片'在线观看视频| 婷婷成人精品国产| 国产精品久久久久久人妻精品电影 | 高清黄色对白视频在线免费看| 少妇猛男粗大的猛烈进出视频| a级片在线免费高清观看视频| 久久久国产一区二区| av线在线观看网站| 亚洲精品,欧美精品| 国产黄色视频一区二区在线观看| 亚洲成人av在线免费| 免费观看性生交大片5| 欧美老熟妇乱子伦牲交| 国产亚洲欧美精品永久| 人人妻,人人澡人人爽秒播 | 亚洲精品一二三| 亚洲av中文av极速乱| 国产片特级美女逼逼视频| 国产在线免费精品| 黑人欧美特级aaaaaa片| 国产午夜精品一二区理论片| 少妇的丰满在线观看| 午夜精品国产一区二区电影| 黄片无遮挡物在线观看| 一级a爱视频在线免费观看| 亚洲国产精品一区二区三区在线| av卡一久久| 九草在线视频观看| 日本av手机在线免费观看| 亚洲欧美成人精品一区二区| 欧美中文综合在线视频| 欧美在线黄色| 桃花免费在线播放| 免费黄网站久久成人精品| 制服诱惑二区| 亚洲欧美激情在线| 久久精品国产亚洲av高清一级| 国语对白做爰xxxⅹ性视频网站| 久久久国产精品麻豆| 丁香六月欧美| 国产一区二区三区综合在线观看| 久久午夜综合久久蜜桃| 另类亚洲欧美激情| 久久久国产一区二区| 国产亚洲精品第一综合不卡| 哪个播放器可以免费观看大片| 最近2019中文字幕mv第一页| 天天操日日干夜夜撸| 亚洲国产最新在线播放| 日韩熟女老妇一区二区性免费视频| 最近中文字幕高清免费大全6| 国产不卡av网站在线观看| 免费久久久久久久精品成人欧美视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产97色在线日韩免费| 人人妻,人人澡人人爽秒播 | 深夜精品福利| 久久热在线av| 久久天堂一区二区三区四区| 欧美精品av麻豆av| 午夜福利乱码中文字幕| 国产亚洲午夜精品一区二区久久| 国产免费又黄又爽又色| 国产一区亚洲一区在线观看| 一级爰片在线观看| 在线观看三级黄色| 巨乳人妻的诱惑在线观看| 亚洲av福利一区| 成年动漫av网址| 日韩不卡一区二区三区视频在线| 国产 精品1| 男女免费视频国产| 亚洲欧美清纯卡通| 中文字幕人妻丝袜一区二区 | 亚洲精品一区蜜桃| 极品人妻少妇av视频| 伊人久久国产一区二区| 少妇人妻久久综合中文| av在线app专区| 成人国产av品久久久| 嫩草影视91久久| 人人妻人人澡人人看| 成年av动漫网址| 日本wwww免费看| 精品亚洲成国产av| 国产精品人妻久久久影院| 国产精品麻豆人妻色哟哟久久| 亚洲免费av在线视频| 国产成人系列免费观看| 国产男女内射视频| 另类亚洲欧美激情| xxxhd国产人妻xxx| 日韩熟女老妇一区二区性免费视频| 日日摸夜夜添夜夜爱| 亚洲中文av在线| 99九九在线精品视频| 香蕉丝袜av| 久久久久网色| 久久久亚洲精品成人影院| 韩国高清视频一区二区三区| 男人操女人黄网站| 午夜精品国产一区二区电影| 少妇人妻久久综合中文| 天天躁狠狠躁夜夜躁狠狠躁| av网站在线播放免费| 日韩欧美一区视频在线观看| 丰满乱子伦码专区| 亚洲第一青青草原| 精品少妇久久久久久888优播| 美女高潮到喷水免费观看| 午夜福利视频精品| 欧美日韩亚洲综合一区二区三区_| 热99国产精品久久久久久7| 久久99一区二区三区| 少妇 在线观看| 国产精品无大码| 日韩制服丝袜自拍偷拍| 狂野欧美激情性xxxx| 午夜福利乱码中文字幕| 精品第一国产精品|