• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transition to chaos in lid–driven square cavity flow?

    2021-12-22 06:47:04TaoWang王濤andTiegangLiu劉鐵鋼
    Chinese Physics B 2021年12期
    關(guān)鍵詞:王濤

    Tao Wang(王濤) and Tiegang Liu(劉鐵鋼)

    1School of Mathematics and Information Science,North Minzu University,Yinchuan 750021,China

    2LMIB and School of Mathematical Sciences,Beihang University,Beijing 100191,China

    Keywords: unsteady lid–driven square cavity flows,chaos,time series analysis,third Hopf bifurcation

    1. Introduction

    In the past 60 years, research into two-dimensional(2D)flows in a lid–driven square cavity has been regarded as a benchmark study.[1–6]The shape of this model makes it relatively simple to validate the accuracy and reliability of new methods by comparison with the benchmark solution.

    In recent decades,researchers have shifted research focus to studying the Hopf bifurcations. The early studies on Hopf bifurcation mainly focused on the first bifurcation, in which the flow transfers its stationary state to a non-stationary periodic state. In a former work,[3]it was suggested that the first Hopf bifurcation occurs when the critical Reynolds number ofRec1is larger than 7500. Since then various results have been given. It has been given as aboutRec1=7763±2%,[7]close toRec1=8000[8]or greater than 8000,or aboutRec1∈(8000,8050),[9]while some authors localized in the interval of (10000,10500).[10]All the above work adopted a numerical simulation method. In theoretical analysis, Fortinet al.[11]predicted the critical Reynolds number ofRec1=8000 for the first Hopf bifurcation, through an eigenvalue analysis of the linearized Navier–Stokes equations. Thus, both theoretical analysis and numerical simulation disclosed that the critical Reynolds number for occurrence of the first bifurcation is located in the interval of(7500,10500). With increasing Reynolds number, the flow experiences a transition from the first Hopf bifurcation to the second Hopf bifurcation, in which the flow transfers its non-stationary periodic state to a quasi-periodic state. To date, one can only use numerical simulations to make these investigations and very few results have been disclosed for the second Hopf bifurcation. Auteriet al.[12]numerically forecasted the second Hopf bifurcation with a critical Reynolds numberRec2located in the interval of(9685,9765). Wanget al.[13]numerically identified the critical Reynolds number of the second Hopf bifurcation to be located in the interval of(11093.75,11094.3604).They also discovered that there are two dominant frequencies and the phase diagram changes from an ellipse closed form to a non-ellipse closed form when the flow experiences a transition from the first Hopf bifurcation to the second Hopf bifurcation.

    As the Reynolds number further increases,we expect the flow to experience a transition from the second Hopf bifurcation to the third Hopf bifurcation, in which the flow transfers its quasi-periodic state to a chaotic state. To date,there are no studies on the third Hopf bifurcation.

    In this work, we apply the consistent fourth-order compact finite difference scheme[15]to study the third Hopf bifurcation and beyond in the lid–driven square cavity.We compute the critical interval of the third Hopf bifurcation and analyze the chaotic properties by Fourier analysis.We discover that the flow becomes chaotic beyond the third Hopf transition with a type of period-doubling feature. Further analysis of the phase diagram, Kolmogorov entropy and maximal Lyapunov exponent confirms our findings.

    2. Model description and numerical method

    2.1. Governing equations

    In this paper, two-dimensional lid–driven square cavity problems are considered and governed with the twodimensional incompressible Navier–Stokes equations given in the non-dimensional vorticity–stream function form as

    whereuandvare the velocity components in thex- andydirections respectively,Reis the Reynolds number,ψis the stream function andξis the vorticity function, andu=ψy,v=?ψx. Equation (1) is referred to as the stream function equation,equation(2)is referred to as the vorticity equation.

    The non-dimensional computational domain is set to{(x,y)|:0≤x ≤1,0≤y ≤1}. The boundary conditions are given as follows:

    Because the vorticity on the wall is unknown,in the process of solving Eq.(2),the condition of vorticity on the boundary must be supplemented.In this paper,the numerical boundary conditions of vorticity in Ref.[14]are used,namely,

    Here, the subscripts 1, 2, 3 represent the boundary point, its neighbor and its sub-neighbor points respectively.Vmis the tangential velocity of the wall. On the sliding wall,Vw=1.On the solid wall,Vw=0.

    Fig.1. Schematic of lid–driven square cavity.

    At first, an unexpected balance of viscous and pressure forces causes the fluid to turn into the unit square cavity. The properties of these forces depend upon the Reynolds number,and a hierarchy of eddies develops. First, a larger clockwiserotating primary vortex(PV)arises. Its location occurs toward the geometric center of the unit square cavity. Then, several small eddies arise: counterclockwise-rotating secondary eddies, and clockwise-rotating tertiary eddies. Their locations occur at the three relevant corners of the square cavity (bottom right(BR),bottom left(BL),and top left(TL)),appearing hierarchically at the inclined ellipses in Fig.1.

    2.2. Numerical method

    As the Reynolds number increases, the flow instability starts from the wall boundary layer, where it becomes much thinner under a high Reynolds number. Thus, to predict the third Hopf bifurcation, the boundary layer has to be resolved accurately with either a very fine mesh or high-order numerical method. This makes the numerical simulation very costly and challenging.Eeven worse,recently,it has been found by us[15]that a high-order method might suffer from numerical instability inside the wall boundary layer if a lower-order treatment of boundary conditions is equipped.Such lower-order techniques of wall treatment are very popular in applications of high-order numerical methods. To fix this problem,we have developed a consistent fourth-order compact finite difference scheme,[15]in which both the order of accuracy and the major truncation error term are kept the same for the inner and boundary schemes. Such a high-order scheme can efficiently suppress the numerical instability inside the wall boundary layer. In this work, the numerical method employed is the consistent fourth-order compact finite difference scheme.[15]

    After spatial discretization with the consistent fourthorder compact finite difference scheme,an explicit third-order TVD Runge–Kutta scheme[16]is used to perform time discretization.

    Mesh convergency for the numerical method is carried out with a driven square cavity withRe= 12500. Table 1 shows the values of velocity at a fixed point(x,y)=(0.5,0.5)of the cavity when the fluid reaches the quasi-periodic state(t=3000) using three uniform meshes (65×65, 129×129,and 257×257)atRe=12500. It can be seen that the results under grid 129×129 are in good agreement with those under the fine grid 257×257 and the maximum error is less than 0.1%.

    Table 1. Comparison of the values of velocity at a fixed point (x,y) =(0.5,0.5) of the cavity when the fluid reaches the quasi-periodic state at Re=12500.

    Based on the mesh convergence test of the above benchmark simulation, in this paper, we take a time step size of?t=1×10?3and solve the system with 129×129 uniform grids in the numerical simulations.

    3. Third Hopf bifurcation

    3.1. Scenario for the transition to chaos

    We determine the different states of the flow according to the time evolution of velocity at a fixed point (x,y) =(0.5,0.5) of the cavity. It is well known that the flow in a lid–driven square cavity becomes quasi-periodic when the Reynolds number is larger than a critical number ofRec2,which is beyond 10000. The flow atRe=12500 is still quasiperiodic in its second Hopf bifurcation as disclosed by Wanget al.[13]

    Fig.2. Time history of u-velocity for Re=20000.

    We first calculated the flow with a higherRe=20000 fortfrom 0 to 4000 as shown in Figs.2(a)and 3(a)for the evolution ofu-velocity andv-velocity at the geometric center point.

    We enlarged Figs.2(a)and 3(a)fortfrom 3960 to 4000 and found that the flow was under chaos as shown in Figs.2(b)and 3(b)for evolution of the respectiveu-andv-velocity components at the geometric center point. From the enlarged figures, one can observe that the flow eventually evolves into a chaotic state.

    Fig.3. Time history of v-velocity for Re=20000.

    3.2. Critical Reynolds number of the third Hopf bifurcation

    The above results atRe= 12500 andRe= 20000 imply that the critical Reynolds number ofRec3is located between 12500 and 20000. We began to findRec3by the method of bisection. Starting froma0= 12500,b0= 20000, if atRe=(ak+bk)/2,we get quasi–periodic solution,then we letak=(ak+bk)/2;If atRe=(ak+bk)/2 we get a chaos solution, then we letbk=(ak+bk)/2. We repeated this process and carried out the dichotomy for 12 times,and we got a very small interval. Finally, in this way,Rec3was localized in the small interval (13944.7021,13946.5333). Table 2 shows the process of localizing the range ofRec3by bisection.

    In a series of Figs.4 and 5,we present the time history ofu(t)for different Reynolds numbers. In these graphs,we can clearly see that during the process of determining the critical Reynolds number, the functionu(t) solution is either quasiperiodic or chaotic.

    Table 2. Process of bisection for confirming Rec3.

    Fig.4. Time history of u-velocity for different Reynolds numbers: (1)total time;(2)local time.

    Fig.5. Time history of u-velocity for different Reynolds numbers: (1)total time;(2)local time.

    Fig.6. (a1)–(e1)Time history(left figures)of u-velocity from t=3960.0 to t=4000.0;(a2)–(e2)power spectrum density(right figures)of u-velocity for different Reynolds numbers.

    3.3. Type of third Hopf bifurcation

    The nontrivial succession of periodic,quasi-periodic and eventually seemingly random regimes is reminiscent of the transition to chaos.

    It can be seen from Ref.[17]that the route of chaos follows one of the three canonical scenarios: the Ruelle–Takens–Newhouse scenario;[18]the Feigenbaum scenario;[19,20]or the Pomeau–Manneville scenario.[21]The characteristic features of each of these scenarios can be tracked from the evolution of the dominating frequencies of the system.[22]Thus, we shall analyze the main frequencies of velocity fluctuations and seek which classical scenario follows during the flow transition to chaos in the cavity.

    We focus on the evolution ofu(t)for different Reynolds numbers fromt=3960 tot=4000 as shown in Figs.6(a1)–(e1). Without loss of generality, we analyze the time series data ofuin Figs. 6(a2)–(e2) via the power spectrum density(PSD).The PSDs(ω)is the square mean of the Fourier transformF(t)of the sample time series,

    whereAandBare the real and imaginary parts of the complex number,respectively. We usefto express the frequency andf= 1/T. The time series and power spectrum of velocityuare given in Figs. 6(a2)–6(e2). In these figures, the left figures shows the time series ofuat different Reynolds numbers,and their corresponding PSDs are shown in the right figures. AtRe= 10000 as shown in Fig. 6(a2), there is only a frequency indicating the flow is periodic. When the Reynolds number increases,we can see that the flow tends to be quasi-periodic with two frequencies atRe=12500. The flow becomes chaotic with four frequencies asReincreases toRe=15000 from Fig. 6(c2). The number of frequencies increases to six whenRe=17500 as observed in Fig. 6(d2).Further, asReincreases toRe=20000, the number of frequences increases to eight with two primary frequencies and six secondary frequencies found from Fig. 6(e2). The series of PSD figures shows no existence of odd number frequencies and exhibits a characteristic of period-doubling bifurcation.

    Fig.7. Phase portrait of u(t)for different Reynolds numbers.

    4. Characterization of the dynamical system

    Theoretically,a chaotic dynamical system cannot be fully characterized by means of frequency spectra. In particular,spectra do not offer a way to distinguish a stochastic system from a chaotic one. To ascertain the possible chaotic nature of the flow system in the cavity,most scholars seek to characterize the underlying dynamics by means of nonlinear time series analyses of the attractor,[23]Kolmogorov entropy[24]and maximal Lyapunov exponent.[25,26]In this paper,we also ascertain it by these means.

    4.1. Attractor

    We reconstruct the two-dimensional phase space of the time series ofu(t) fromt= 3960 tot= 3964 at different Reynolds numbers.

    Packard[27]proposed to reconstruct the phase space equivalent to the original phase space of the system by restoring the attractor of the dynamical system from scalar time series. The time delay method is to reconstruct the phase space by selecting the appropriate time delay and embedding dimension for the one-dimensional time series and further observe the attractor characteristics of the phase space. According to embedding theory,[28]it can be reconstructed by selecting the appropriate reconstruction dimensionmand delay timeτfor the one-dimensional time series and anm-dimensional phase space can be reconstructed. In this paper,we rearrange the original time series into a two-dimensional distribution(m=2),namely,

    The autocorrelation method[29]is used to calculate the time delayτ.We calculate the time delayτ= 1.818,1.429,7.500,7.500,8.000,9.2000 forRe=10000,12500,15000,17500,20000,30000.

    Then,we can draw a two-dimensional phase distribution to study the evolution of its phase diagram and attractor of the system with Eq. (4). Figures 7(a)–(f) show the evolution of the phase diagram and thus the characteristics of the attractor at various Reynolds numbers. The series of phase diagrams shows a change from an ellipse closed form at the periodic state to a non-ellipse closed form at the quasi-periodic state and finally to an unclosed curve. The attractor of the system changes from the normal to a strange one. This implies that the flow system eventually becomes chaotic whenRe ∈[Rec3,30000].

    4.2. Kolmogorov entropy

    We compute the Kolmogorov entropy(denoted byK)of the time series ofu(t) fromt=0 tot=4000 for different Reynolds numbers.

    The Kolmogorov entropy can be computed by the method proposed in Ref. [30]. Theoretically, a chaotic (deterministic) system is characterized with a positive finite value of 0

    At present, the correlation integralC2(m,ε) is widely used in the literature to calculateK,called the correlation entropy. The specific calculation process is as follows: (i) For the time seriesu(t), we reconstruct the phase spaceU(t) according to form Eq.(4);two of the vectors areUi(i.e.i=1,2).(ii)The Euclidean distance from the remainingn?1 points toUiis calculated by selecting any point from thenpoints inUi

    K2entropy is usually used as an approximation ofK.

    Table 3 shows the value ofKis zero forReequal to 10000 or 12500. Thus the system is in order. This is consistent with the conclusion of Ref.[13].The value ofKis greater than zero for 15000≤Re ≤20000.Thus the system is in chaos.We continue to calculate theKvalue forRe=25000,30000;the value ofKincreases with increasing Reynolds number. As a result,the flow system in the cavity is chaotic forRe ∈[Rec3,30000].

    Table 3. Kolmogorov entropy for different Reynolds numbers.

    Figure 8 shows the variation of theKvalue for different Reynolds numbers. It shows that asReincreases,the value ofKincreases.

    Fig.8. Variation of K value for different Reynolds numbers.

    In order to observe the subtle changes of the whole flow field more clearly,without loss of generality,we give the twodimensional stream function contours for different Reynolds numbers. Figure 9 shows the contours of the stream function forRe=20000,30000. It can be seen from Fig. 9 that the streamlines in the middle of the cavity are smooth while in three corners of the cavity they are twisted. This is why the values ofKare not as large.

    Fig.9. Streamlines for different Reynolds numbers.

    4.3. Maximal Lyapunov exponent

    The chaotic behavior atRe ∈[Rec3,30000]can be characterized further by computing the maximal Lyapunov exponent(denoted byλ).λis computed as the rate of spatial divergence in the phase space of two trajectories that are initially in the same neighborhood.[31]In a deterministic system,the existence of dynamic chaos can be intuitively judged from whether the maximum Lyapunov exponent is greater than zero. If the maximum Lyapunov exponent of the system is positive(λ> 0), the system is chaotic; the higher the value is, the more chaotic the system is. Otherwise, the system is ordered(λ ≤0).

    Here, we apply the Wolf method[32]to computeλof the time series ofu(t) fromt= 0.0 tot= 4000.0 for different Reynolds numbers. The specific calculation process is as follows: For the time seriesu(t), we (i)reconstruct the phase spaceU(t) according to form Eq. (4), (ii) take the initial pointU0(t0) and find the nearest neighbor of the initial pointU0(t0), let it beU(t0) and then let the Euclidean distance between the two points beL0, (iii) track the evolution trajectory ofU0(t0)andU(t0)with time untilt1,when the distance between them exceeds a certain specified valueε>0 :ifL′0=|U(t1)?U0(t1)|>εthen keepU(t1)and find another pointU1(t1),such thatL1=|U(t1)?U1(t1)|<εand the angle between them is as small as possible, (iv)continue the above process untilU(t) reaches the end pointN(Nis the length of the time series). Let the total number of iterations in the evolution process beM;then the formula forλis

    We obtainλfor different Reynolds numbers. The results are shown in Table 4. Table 4 shows the value ofλis 0 forReequals to 10000 or 12500. Thus the system is in order. This is again consistent with the conclusion of Ref.[13].The value ofλis greater than 0 for 15000≤Re ≤20000, which confirms the chaotic behavior of the system. We continue calculate theλvalue forRe=25000,30000 and findλ>0. As shown in Fig. 10, one can see the variation ofλvalue for different Reynolds numbers. The value ofλincreases asReincreases.

    In conclusion,the various nonlinear analyses above confirm the presence of chaos forRe ∈[Rec3,30000].

    Table 4. Maximal Lyapunov exponent for different Reynolds numbers.

    Fig.10. Variation of λ value for different Reynolds numbers.

    5. Conclusion

    In this paper, we presented a numerical investigation on the pathway to chaos in driven square cavity flow.The flow dynamics were analyzed by means of the time series of theu-velocity component obtained by direct numerical simulation of the unsteady two-dimensional Navier–Stokes equations.As a first result,we confirmed the existence of the third Hopf bifurcation as the Reynolds number increases and located the critical Reynolds number of the third Hopf bifurcation(Rec3)in the interval of(13944.7021,13946.5333).

    Moreover, by analyzing the time series of theu-velocity component, we disclosed that its successive bifurcation is period-doubling and the flow becomes chaotic when the Reynolds number is beyondRec3. The chaotic characteristics were further confirmed via analysis of the Kolmogorov entropy,maximum Lyapunov exponent and phase diagram.

    Acknowledgment

    The authors thank Professor Yong Xu of the Northwestern Polytechnical University for helpful discussion.

    猜你喜歡
    王濤
    綿師學(xué)人
    ——王濤
    Review of a direct epitaxial approach to achieving micro-LEDs
    “雞兔同籠”問題解法探析及思考
    Nonlinear excitation of a geodesic acoustic mode by reversed shear Alfvén eignemodes
    王濤油畫作品
    大眾文藝(2020年23期)2021-01-04 08:48:40
    王濤 李佳星作品
    大眾文藝(2020年22期)2020-12-13 11:37:16
    Effect of Pore Distribution on Melting Behavior of Paraffin in Fractal Metal Foam?
    ONE-DIMENSIONAL VISCOUS RADIATIVE GAS WITH TEMPERATURE DEPENDENT VISCOSITY?
    Study on the Reduced Traffic Congestion Method Based on Dynamic Guidance Information?
    王濤作品
    精品久久久久久久久av| 岛国毛片在线播放| 精品99又大又爽又粗少妇毛片| 国产精品蜜桃在线观看| av线在线观看网站| 少妇 在线观看| 亚洲国产色片| 国产老妇伦熟女老妇高清| 国产淫片久久久久久久久| 丝袜脚勾引网站| 男人爽女人下面视频在线观看| 熟女人妻精品中文字幕| 亚洲国产色片| 国产无遮挡羞羞视频在线观看| 欧美成人午夜免费资源| 欧美成人午夜免费资源| 老熟女久久久| 久久久久久久久久久丰满| 乱码一卡2卡4卡精品| 国产成人午夜福利电影在线观看| 亚洲人成网站在线观看播放| 蜜桃在线观看..| 亚洲欧美成人精品一区二区| 亚洲丝袜综合中文字幕| 精品一区二区三卡| 成年女人在线观看亚洲视频| av在线app专区| 欧美精品高潮呻吟av久久| 青春草视频在线免费观看| 成年女人在线观看亚洲视频| 在线观看免费视频网站a站| 80岁老熟妇乱子伦牲交| 国产亚洲av片在线观看秒播厂| 少妇精品久久久久久久| 免费少妇av软件| 国产伦精品一区二区三区四那| 成人午夜精彩视频在线观看| 亚洲丝袜综合中文字幕| 人妻 亚洲 视频| 亚洲无线观看免费| 精品少妇黑人巨大在线播放| 99re6热这里在线精品视频| 久久鲁丝午夜福利片| 女人久久www免费人成看片| 九草在线视频观看| 黄色日韩在线| 黑丝袜美女国产一区| 国产有黄有色有爽视频| 精品国产露脸久久av麻豆| 国产av码专区亚洲av| 高清黄色对白视频在线免费看 | 最黄视频免费看| 深夜a级毛片| 国产熟女午夜一区二区三区 | 午夜日本视频在线| 我的老师免费观看完整版| 国产免费一级a男人的天堂| 欧美精品人与动牲交sv欧美| 纵有疾风起免费观看全集完整版| 精品人妻偷拍中文字幕| 久久热精品热| 国产黄色免费在线视频| 亚洲欧美精品专区久久| 国产黄频视频在线观看| 汤姆久久久久久久影院中文字幕| 成人毛片60女人毛片免费| 亚洲av国产av综合av卡| 久久99蜜桃精品久久| 日韩制服骚丝袜av| 又大又黄又爽视频免费| 九九久久精品国产亚洲av麻豆| 人人妻人人澡人人看| 女人精品久久久久毛片| 国产精品欧美亚洲77777| 丰满迷人的少妇在线观看| 91在线精品国自产拍蜜月| 久久6这里有精品| 国语对白做爰xxxⅹ性视频网站| 99久久精品国产国产毛片| 黄色视频在线播放观看不卡| 国产精品一二三区在线看| 久久久久久久国产电影| 乱人伦中国视频| 久久久久久久大尺度免费视频| av黄色大香蕉| 80岁老熟妇乱子伦牲交| 亚洲久久久国产精品| 99国产精品免费福利视频| 欧美最新免费一区二区三区| 日韩欧美 国产精品| 欧美日韩视频精品一区| 国产一区二区在线观看av| 又粗又硬又长又爽又黄的视频| 国产视频首页在线观看| 欧美 亚洲 国产 日韩一| 久久久久精品性色| 国产精品国产三级国产专区5o| 欧美 日韩 精品 国产| 久久久国产欧美日韩av| 成人综合一区亚洲| 亚洲,欧美,日韩| 国产高清不卡午夜福利| av.在线天堂| av在线观看视频网站免费| 草草在线视频免费看| 日本猛色少妇xxxxx猛交久久| 亚洲av电影在线观看一区二区三区| √禁漫天堂资源中文www| 少妇裸体淫交视频免费看高清| 成人无遮挡网站| 秋霞在线观看毛片| 亚洲精品乱码久久久v下载方式| 亚洲国产毛片av蜜桃av| 久久毛片免费看一区二区三区| 九草在线视频观看| 纵有疾风起免费观看全集完整版| 蜜臀久久99精品久久宅男| 国产黄色免费在线视频| 日日撸夜夜添| av一本久久久久| 国产成人免费无遮挡视频| 国产在视频线精品| 三级国产精品片| 国产一级毛片在线| 免费少妇av软件| 精品少妇黑人巨大在线播放| 欧美区成人在线视频| 边亲边吃奶的免费视频| 黄片无遮挡物在线观看| 国产成人免费观看mmmm| 噜噜噜噜噜久久久久久91| 一区二区三区四区激情视频| 一本一本综合久久| 亚洲av综合色区一区| 亚洲精品乱码久久久v下载方式| 秋霞伦理黄片| 亚洲国产日韩一区二区| 人妻夜夜爽99麻豆av| 国产极品粉嫩免费观看在线 | 伊人久久精品亚洲午夜| 欧美最新免费一区二区三区| 伊人亚洲综合成人网| 国产熟女午夜一区二区三区 | 爱豆传媒免费全集在线观看| 日韩成人av中文字幕在线观看| 午夜福利影视在线免费观看| 嘟嘟电影网在线观看| 97在线人人人人妻| 中国美白少妇内射xxxbb| 天天躁夜夜躁狠狠久久av| 精品久久久久久电影网| 一级a做视频免费观看| 人人澡人人妻人| 国语对白做爰xxxⅹ性视频网站| 欧美精品亚洲一区二区| 丝袜脚勾引网站| 久久久久久久大尺度免费视频| 久久久精品免费免费高清| 久久久久久久久久人人人人人人| 亚洲精品久久久久久婷婷小说| 免费不卡的大黄色大毛片视频在线观看| 久久综合国产亚洲精品| 女性被躁到高潮视频| 啦啦啦啦在线视频资源| 国产亚洲av片在线观看秒播厂| 久久精品国产亚洲av涩爱| 国产熟女欧美一区二区| 亚洲av中文av极速乱| 国产伦精品一区二区三区视频9| 久久久国产一区二区| 久久6这里有精品| 少妇人妻精品综合一区二区| 免费少妇av软件| 看免费成人av毛片| 最新的欧美精品一区二区| 啦啦啦在线观看免费高清www| av国产久精品久网站免费入址| 亚洲不卡免费看| 欧美激情极品国产一区二区三区 | 最近2019中文字幕mv第一页| av在线app专区| 国产在线视频一区二区| av有码第一页| 伊人亚洲综合成人网| 日韩制服骚丝袜av| 国产综合精华液| 亚洲欧美一区二区三区国产| av在线app专区| 欧美激情国产日韩精品一区| 熟女电影av网| 国内揄拍国产精品人妻在线| 97在线视频观看| 99久国产av精品国产电影| 伊人久久国产一区二区| 日韩,欧美,国产一区二区三区| 国产精品国产三级专区第一集| 久久久精品94久久精品| 色婷婷久久久亚洲欧美| 精品99又大又爽又粗少妇毛片| 久久婷婷青草| 人体艺术视频欧美日本| 国产熟女午夜一区二区三区 | 国国产精品蜜臀av免费| 国语对白做爰xxxⅹ性视频网站| 九九爱精品视频在线观看| 亚洲久久久国产精品| 汤姆久久久久久久影院中文字幕| 高清av免费在线| 精品一区二区三区视频在线| 日韩一区二区视频免费看| 国产探花极品一区二区| 久久久午夜欧美精品| 色哟哟·www| 51国产日韩欧美| 久热这里只有精品99| 永久免费av网站大全| 黑人高潮一二区| 熟女人妻精品中文字幕| 亚洲精品国产av蜜桃| 亚洲中文av在线| 国产极品粉嫩免费观看在线 | 少妇人妻久久综合中文| 免费观看性生交大片5| 韩国av在线不卡| 夜夜爽夜夜爽视频| 国产精品久久久久久久电影| 一本—道久久a久久精品蜜桃钙片| 免费观看的影片在线观看| 99热这里只有是精品50| 欧美日韩一区二区视频在线观看视频在线| 亚洲美女视频黄频| 精品国产国语对白av| 丝袜喷水一区| 国产成人精品久久久久久| 亚洲精品色激情综合| 春色校园在线视频观看| 中文字幕免费在线视频6| .国产精品久久| 久久久久精品久久久久真实原创| 好男人视频免费观看在线| 高清毛片免费看| 亚洲成人av在线免费| 亚洲精品色激情综合| 亚洲人与动物交配视频| 男女无遮挡免费网站观看| 日韩欧美 国产精品| 免费av中文字幕在线| 亚洲人与动物交配视频| 在线观看免费视频网站a站| 久久人妻熟女aⅴ| 中文精品一卡2卡3卡4更新| 老司机亚洲免费影院| 亚洲三级黄色毛片| 伊人亚洲综合成人网| 亚洲欧洲精品一区二区精品久久久 | 在现免费观看毛片| 国产精品麻豆人妻色哟哟久久| 成年美女黄网站色视频大全免费 | 国产欧美日韩综合在线一区二区 | 自线自在国产av| 夫妻性生交免费视频一级片| 日韩大片免费观看网站| 最近手机中文字幕大全| 国产淫语在线视频| 国产精品国产三级专区第一集| 综合色丁香网| 国产无遮挡羞羞视频在线观看| 久久久久久久久久久免费av| 各种免费的搞黄视频| 简卡轻食公司| 国产精品人妻久久久久久| 日本午夜av视频| videossex国产| 日本欧美视频一区| freevideosex欧美| 天堂8中文在线网| 天堂俺去俺来也www色官网| 精品酒店卫生间| 国产成人91sexporn| 亚洲四区av| 国产午夜精品一二区理论片| 亚洲av国产av综合av卡| 卡戴珊不雅视频在线播放| 亚洲国产毛片av蜜桃av| 欧美区成人在线视频| 久久人人爽人人爽人人片va| 国产精品一区www在线观看| a级片在线免费高清观看视频| 自拍偷自拍亚洲精品老妇| 偷拍熟女少妇极品色| 色视频www国产| 久久鲁丝午夜福利片| 99热国产这里只有精品6| 在线 av 中文字幕| 青春草视频在线免费观看| 日韩av在线免费看完整版不卡| 国产日韩一区二区三区精品不卡 | 国模一区二区三区四区视频| 国产色爽女视频免费观看| 22中文网久久字幕| 男女免费视频国产| 老司机影院成人| 久久av网站| 国产免费视频播放在线视频| 99精国产麻豆久久婷婷| 麻豆成人av视频| 性高湖久久久久久久久免费观看| 极品人妻少妇av视频| 女性被躁到高潮视频| 在线精品无人区一区二区三| 日本wwww免费看| 中文字幕精品免费在线观看视频 | av在线播放精品| 一个人免费看片子| 亚洲精品亚洲一区二区| 天堂8中文在线网| 中文字幕人妻熟人妻熟丝袜美| 国产免费福利视频在线观看| 国产亚洲最大av| 欧美3d第一页| 黑丝袜美女国产一区| 国产国拍精品亚洲av在线观看| 性色av一级| 尾随美女入室| 亚洲国产精品专区欧美| 中文乱码字字幕精品一区二区三区| 国产午夜精品一二区理论片| av免费观看日本| 美女内射精品一级片tv| 美女中出高潮动态图| 免费高清在线观看视频在线观看| av在线播放精品| 观看免费一级毛片| 在线观看av片永久免费下载| 欧美性感艳星| 亚洲精品国产av蜜桃| 老司机影院毛片| 成人特级av手机在线观看| 91精品国产九色| 国产高清不卡午夜福利| 亚洲内射少妇av| 国产亚洲一区二区精品| 美女脱内裤让男人舔精品视频| 久久久久人妻精品一区果冻| 晚上一个人看的免费电影| 熟女电影av网| 久久午夜综合久久蜜桃| 九九爱精品视频在线观看| 交换朋友夫妻互换小说| 观看美女的网站| 又爽又黄a免费视频| 三级国产精品欧美在线观看| 天堂8中文在线网| 欧美成人午夜免费资源| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧洲日产国产| 妹子高潮喷水视频| 欧美最新免费一区二区三区| 又粗又硬又长又爽又黄的视频| 性色av一级| 黑丝袜美女国产一区| 久久久久人妻精品一区果冻| 在线亚洲精品国产二区图片欧美 | 成年美女黄网站色视频大全免费 | 久久影院123| 黑人巨大精品欧美一区二区蜜桃 | 中文字幕精品免费在线观看视频 | 青青草视频在线视频观看| 免费看日本二区| 中文字幕人妻丝袜制服| 9色porny在线观看| 国产日韩欧美亚洲二区| 亚洲激情五月婷婷啪啪| 久久 成人 亚洲| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品视频女| 91久久精品国产一区二区成人| av在线老鸭窝| 蜜臀久久99精品久久宅男| 午夜福利影视在线免费观看| 国产又色又爽无遮挡免| 亚洲av男天堂| 亚洲精品成人av观看孕妇| 国产在线视频一区二区| av免费在线看不卡| 三级国产精品片| 亚洲国产日韩一区二区| 亚洲精品乱久久久久久| 人妻系列 视频| 欧美三级亚洲精品| 一级二级三级毛片免费看| av黄色大香蕉| 亚洲av欧美aⅴ国产| 久久97久久精品| 日韩欧美一区视频在线观看 | 亚洲精品第二区| 你懂的网址亚洲精品在线观看| 国产高清国产精品国产三级| 精品亚洲成国产av| 在线观看免费日韩欧美大片 | 在现免费观看毛片| 精品人妻熟女毛片av久久网站| www.色视频.com| 麻豆乱淫一区二区| 欧美日韩一区二区视频在线观看视频在线| 99九九线精品视频在线观看视频| 日本欧美视频一区| 一区在线观看完整版| 精品一区二区三区视频在线| 久久女婷五月综合色啪小说| 男女国产视频网站| 涩涩av久久男人的天堂| 亚洲美女黄色视频免费看| 国产在视频线精品| 在线精品无人区一区二区三| 午夜激情久久久久久久| 九九爱精品视频在线观看| 一区二区三区精品91| 亚洲精品国产av成人精品| 日韩成人伦理影院| 七月丁香在线播放| 久久精品久久久久久久性| 欧美日韩一区二区视频在线观看视频在线| 国产精品一区二区在线不卡| av黄色大香蕉| 国产真实伦视频高清在线观看| 国产精品.久久久| 狂野欧美激情性xxxx在线观看| tube8黄色片| 街头女战士在线观看网站| 欧美xxxx性猛交bbbb| 夜夜看夜夜爽夜夜摸| 午夜福利视频精品| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 丝瓜视频免费看黄片| 国产亚洲5aaaaa淫片| 精品人妻熟女av久视频| 全区人妻精品视频| 91在线精品国自产拍蜜月| 久久久欧美国产精品| 色婷婷av一区二区三区视频| 国产视频内射| 国产免费一级a男人的天堂| 国产精品久久久久久av不卡| 免费看不卡的av| 中国三级夫妇交换| 韩国高清视频一区二区三区| 大话2 男鬼变身卡| 日韩欧美精品免费久久| 亚洲成人av在线免费| 嫩草影院新地址| 人人妻人人看人人澡| 最近最新中文字幕免费大全7| 欧美xxxx性猛交bbbb| 亚洲精品色激情综合| 国产老妇伦熟女老妇高清| 久久久a久久爽久久v久久| 亚洲激情五月婷婷啪啪| 午夜老司机福利剧场| 日本黄色日本黄色录像| 18禁在线播放成人免费| 少妇的逼水好多| 爱豆传媒免费全集在线观看| 三上悠亚av全集在线观看 | 日韩 亚洲 欧美在线| 免费观看av网站的网址| 91精品伊人久久大香线蕉| 亚洲在久久综合| 男女国产视频网站| 黄色欧美视频在线观看| 女人精品久久久久毛片| 欧美成人午夜免费资源| 又大又黄又爽视频免费| 嘟嘟电影网在线观看| 国产熟女午夜一区二区三区 | 午夜精品国产一区二区电影| 只有这里有精品99| 狂野欧美激情性bbbbbb| 亚洲国产精品一区二区三区在线| 亚洲综合精品二区| 精品酒店卫生间| 欧美bdsm另类| 精品卡一卡二卡四卡免费| 国产精品一区二区三区四区免费观看| 久久人人爽av亚洲精品天堂| 另类亚洲欧美激情| 2018国产大陆天天弄谢| 乱码一卡2卡4卡精品| 七月丁香在线播放| 亚洲国产精品国产精品| 欧美日韩精品成人综合77777| 亚洲国产欧美日韩在线播放 | 亚洲成人一二三区av| 日日啪夜夜撸| 国产黄色视频一区二区在线观看| 22中文网久久字幕| 水蜜桃什么品种好| 日韩人妻高清精品专区| 日韩亚洲欧美综合| 国产熟女欧美一区二区| 高清不卡的av网站| 看免费成人av毛片| 免费观看性生交大片5| 国产探花极品一区二区| 国产综合精华液| 国产伦在线观看视频一区| av天堂久久9| 18+在线观看网站| 精品久久国产蜜桃| 大又大粗又爽又黄少妇毛片口| 欧美精品国产亚洲| 精品视频人人做人人爽| 啦啦啦在线观看免费高清www| 乱码一卡2卡4卡精品| 七月丁香在线播放| 久久久久久久久久久丰满| 亚洲欧洲国产日韩| 18禁动态无遮挡网站| 久久精品国产自在天天线| 免费看av在线观看网站| 久久久午夜欧美精品| 天堂俺去俺来也www色官网| 午夜日本视频在线| 免费在线观看成人毛片| 这个男人来自地球电影免费观看 | 啦啦啦在线观看免费高清www| 免费黄频网站在线观看国产| 国产伦精品一区二区三区视频9| 蜜桃久久精品国产亚洲av| 免费播放大片免费观看视频在线观看| 如何舔出高潮| 久久国产乱子免费精品| 亚洲国产成人一精品久久久| 最新中文字幕久久久久| 亚洲精品国产av蜜桃| 3wmmmm亚洲av在线观看| 亚洲av不卡在线观看| 五月开心婷婷网| 18禁在线无遮挡免费观看视频| 亚洲成人av在线免费| 春色校园在线视频观看| 高清黄色对白视频在线免费看 | 人体艺术视频欧美日本| 美女内射精品一级片tv| 国产男女超爽视频在线观看| 久久午夜福利片| av天堂中文字幕网| 午夜老司机福利剧场| 高清午夜精品一区二区三区| 国产在视频线精品| 亚洲欧美一区二区三区黑人 | 免费黄网站久久成人精品| 国产极品粉嫩免费观看在线 | 夜夜骑夜夜射夜夜干| 国产av精品麻豆| 日本免费在线观看一区| av卡一久久| 久久女婷五月综合色啪小说| 国产精品久久久久久av不卡| 成人免费观看视频高清| 91久久精品国产一区二区成人| 黄色配什么色好看| 国产成人免费无遮挡视频| 国产高清不卡午夜福利| 一级毛片我不卡| 你懂的网址亚洲精品在线观看| 我要看黄色一级片免费的| 国产成人精品久久久久久| 亚洲国产精品成人久久小说| 天天躁夜夜躁狠狠久久av| 狂野欧美激情性bbbbbb| 亚洲激情五月婷婷啪啪| 国产乱来视频区| 深夜a级毛片| 三上悠亚av全集在线观看 | 亚洲婷婷狠狠爱综合网| 亚洲精华国产精华液的使用体验| 伦理电影免费视频| 精品人妻一区二区三区麻豆| 日本色播在线视频| 国产精品伦人一区二区| 久久精品国产自在天天线| 久久久久久人妻| 极品人妻少妇av视频| 在线观看一区二区三区激情| 日韩av免费高清视频| 国产淫语在线视频| 丰满乱子伦码专区| 91精品一卡2卡3卡4卡| 大片电影免费在线观看免费| 精品一区二区三卡| 国国产精品蜜臀av免费| 在线播放无遮挡| 免费观看性生交大片5| av福利片在线观看| av不卡在线播放| 制服丝袜香蕉在线| 国产精品一区www在线观看| 国产精品国产三级专区第一集| 一级av片app| 国产精品秋霞免费鲁丝片| 涩涩av久久男人的天堂| 国产亚洲欧美精品永久| 国产av一区二区精品久久| 亚洲精品国产色婷婷电影| 欧美人与善性xxx| 嫩草影院入口| 永久网站在线| 久久99热6这里只有精品| 欧美日韩精品成人综合77777| 国产日韩欧美亚洲二区| 日韩av免费高清视频| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品国产av蜜桃|