• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Embedding any desired number of coexisting attractors in memristive system?

    2021-12-22 06:51:00ChunbiaoLi李春彪RanWang王然XuMa馬旭YichengJiang姜易成andZuohuaLiu劉作華
    Chinese Physics B 2021年12期
    關(guān)鍵詞:馬旭

    Chunbiao Li(李春彪) Ran Wang(王然) Xu Ma(馬旭)Yicheng Jiang(姜易成) and Zuohua Liu(劉作華)

    1Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET),Nanjing University of Information Science&Technology,Nanjing 210044,China

    2School of Artificial Intelligence,Nanjing University of Information Science&Technology,Nanjing 210044,China

    3State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,Chongqing 400044,China

    Keywords: offset boosting,attractor doubling,attractor self-reproducing,memristive system

    1. Introduction

    Memristor is regarded as a new component for circuit design,which has a specific voltage–current restriction with fingerprint characteristics of 8-like pinched hysteresis loop.[1–5]Because of the nonlinear feature,memristor brings chaos possibility even in a very simple system.[6–13]As a memory component, the dynamical states in its networks can characterize various patterns in information system. Coexisting attractors controlled by a direct switch or simple hardware configuration could be helpful for state representation and conducive to the integration of storage and calculation. As a result, it is valuable to explore the dynamics of a simple memristive node and control its states for information processing.

    Multistability in memristive systems has been exhaustedly explored,among which extreme multistability[14–20]and coexistence with infinitely many attractors[21–24]seem especially striking. In the area of information engineering, the number of coexisting attractors seems to be an important issue for effective information representation or signal acquisition. For memristive chaos-based application,there are two challenges lying in this direction,one of which is to find a simple structure for hosting a memristor to give offset boostable chaos while the other one aims to get its attractor controlled by a single knob or hardware configuration. If we ignore the real products of memristors and model a freely defined memristor with representative inherent fingerprints, such a threedimensional(3-D)memristive system is thereby not far away from our goal. In fact, people can investigate those existing systems and try to find the distinct memristor variable dependence. Following with a further nonlinear reforming, a fresh 3-D memristive system is derived for embedding coexisting attractors,as shown in Fig.1.

    Offset control is the fundamental principle for attractor doubling[25–27]and attractor self-reproducing.[28–30]By introducing multiple piecewise-like functions into a seed system,the dominant dynamics generally finds its way for attractor self-reproducing. It was pointed that the substitution of a proper absolute value function gives robust attractor doubling in the routine of symmetrization while the periodic function repeats the desired dynamics in a direct easy way for attractor self-reproducing. Attractor-doubling represents a direct double multiplication while the attractor self-reproducing is helpful for direct cumulative counting. Two regimes of attractor embedding could be applied for effective information representation or even numerical calculating. For a memristive system,system-based attractor doubling and self-reproducing preserve the fundamental system dynamics without changing the architecture and memristor component. The new born attractors stand by in system space as desired depending on the attached function substitutions and provide broad possibilities for information processing in some way.

    Fig.1. Nonlinearly reforming for embedding any number of coexisting attractors.

    In this work,any number of coexisting attractors in a 3-D memristive system are obtained from a very direct offset-based processing. In Section 2, a simple 3-D memristive system is derived from an existing variable boostable system.[31]In Section 3, any number of coexisting attractors are embedded into the derived memristive system in the dimension of system variable with two different regimes: attractor doubling and attractor self-reproducing. The former provides a direct multiplication control while the latter resorts to the combination of signum and periodic function. In Section 4,circuit simulation is completed for physical verification. In fact, coexisting attractors stand in phase space can be recognized by an exact initial condition. Corresponding discussion is wrapped in the last section.

    2. A unique offset-boostable 3-D memristive system

    It is found that system(1)(VB6)[31]could be reformed to host a memristor,which gives chaos as system(2),

    where the following memristor is introduced in the first dimension:

    Whena=0.6, the memductance and pinched hysteresis loop are plotted in Fig.2.Here the variableyis regarded as the internal variable and the introduced memristor has piecewise linear memductance.

    Whena= 0.6,b= 1, andc= 1, memristive system (2) shows chaotic oscillation with Lyapunov exponents(0.1793,0,?1.1809) and Kaplan–Yorke dimensionDKY=2.1518 under initial condition(?1,1,?1),as shown in Fig.3.Note that the internal variableyand system variablesxandzall exhibit chaotic oscillation.

    Fig.2. The memductance and pinched hysteresis loop with sinusoidal excitation under f =0.1: (a)memductance,(b)pinched hysteresis.

    System(2)is offset boostable,which can be proved with a direct substitution likex ?→x+m. Moreover, in the specifically introduced memristor the inherent property of voltagecurrent relation is determined by the two parametersaandb.It turns out that the parameterbrescales the amplitude of system variablexnegatively while the frequency proportionally in a limited region as shown in Fig. 4, which has never been reported in other memristive systems. The evolvement of amplitude and frequency can be seen directly from the waveform and frequency spectra, as shown in Fig.5. To understand the function of parameterb,here take a substitution

    Fig.3. Chaotic attractor in system(2)with a=0.6,b=1,c=1,and initial condition(?1,1,?1): (a)x–y,(b)y–z,(c)x–z.

    Fig.4. Dynamical evolvement of system(2)with a=0.6,c=1,IC=(?1,1,?1): (a)bifurcation behavior,(b)Lyapunov exponents.

    Fig.5. Chaotic oscillation of system(2)with a=0.6,c=1,IC=(?1,1,?1): (a)chaotic signal x(t),(b)frequency spectrum.

    Fig.6. Dynamics of system(2)with a=0.6,b=1,IC=(?1,1,?1): (a)bifurcation diagram,(b)Lyapunov exponents.

    Moreover, system (2) exhibits robust chaos according to the parameterc, which also rescales the amplitude of system variablexin a quasilinear way with occasionally inserted periodic windows,as shown in Fig.6. Whencincreases in region[0,15],only a couple of periodic oscillations break in triggering the collapse of the Lyapunov exponents. All the above analysis shows that system(2)is unique in terms of parameter sensitivity. Two parameters, namely, system parametercand memristor parameterbboth show their independent function of amplitude control. Memristor parameterbalso brings time rescaling for Lyapunov exponent modification.

    3. Two regimes of attractor embedding

    The coexisting attractors can be controlled by functionbased offset boosting. However, one is resort to attractor doubling,and the other is resort to attractor self-reproducing.Therefore, these two approaches bring coexisting attractors with different scales. Attractor doubling can be used to simulate the key processing for high bit generation in binary number representation while attractor self-reproducing can be applied for representation of numerical accumulation. Attractor doubling introduces more parameters for attractor embedding and resorts to system modification more violently. These parameters form control gates by which the number of coexisting attractors is determined by the series[32]if coexisting attractors are doubled more than one times. Attractor self-reproducing seems easier for embedding more attractors even more to infinity. But this seems to out of control if not sufficient control gates are planted. In fact,in both routines of attractor embedding, sufficient offset gates are necessary for controlling the number of coexisting attractors. Only by this, any one of the embedded attractors can be visited by a selected initial condition gate accordingly.

    3.1. Attractor doubling

    The direct substitution of the absolute value function can make the coexisting attractors doubled. The single linear termxin the third dimension of system (2) makes the dimensionxeasily offset boostable, leaving a convenient conversion for attractor doubling. Substitutingxwith|x|?das

    The doubled attractors are controlled with desired distance by the control gate ofd. Note that small gatedmakes the coexisting attractors be linked together forming pseudodouble-scroll. Then a pseudo-double-scroll attractor is captured when coexisting attractors get linked together because of the connected basins of attraction. The doubled coexisting attractors stand in phase space in the dimension ofx,as shown in Fig.7. As a result,the derived system(5)now turns to be a symmetrical system hatching coexisting symmetrical pairs of attractors or pseudo-multiple-scroll attractors.

    Fig. 7. Embedded attractors in system (5) with a=0.6, b=1, c=1 under various control gates. IC=(1,1,?1)is red and IC=(?1,1,?1)is green:(a) d1 =4.11 (pseudo-double-scroll attractor), (b) d2 =5, (c)d3=6.5,(d)d4=8(double coexisting attractors).

    Furthermore,this operation can be repeated in the dimensionz, but this will destroy the feedback of the originally introduced memristor. For doubling the attractors according to the dimension ofz,the derivative of internal variable turns to be associated with the absolute function with offset gatee,and the following equation is obtained:

    The substitution ofzwith|z|?echanges the original system more drastically. Doubled attractors locate in the dimension ofzas predicted, as shown in Fig. 8. Since the system variable is more controllable than the memristor,this transformation does not bring too much trouble since the derivative ofycomes from the feedback ofyand the flexible function of system variablezeven though we see that this transformation does not fully utilize the property of easy offset boosting.

    Fig. 8. Coexisting attractors in system (6) with a=0.6, b=1, c=1,IC=(?1,1,1) is red and IC=(?1,1,?1) is green: (a) a symmetric pair of coexisting attractors under control gate e=4,(b)pseudo-doublescroll attractor under control gate e=2.05.

    Doubling coexisting attractors can also be executed in both dimensions ofx–z, where two control gatesdandeare necessary for settling any of the attractors to desired position as in the following equation:

    Smaller control gatedmakes coexisting attractors link together in the dimension ofxforming two pseudo-two-scroll attractors, while combined small control gateeputs the doubled pseudo-two-scroll attractors together forming a pseudofour-scroll attractor, as shown in Fig. 9. Corresponding signal waveforms are plotted in Fig. 10. Note that two control gates should be arranged with two newly introduced signum functions. The process of attractor doubling depends on the revise of the system structure. Two signum functions sgn(x),sgn(z)and two control gatesd,ein two absolute value functions embed at most four coexisting attractors. For more attractors, the substitution of the absolute value function needs to be repeated, bringing more control gates and switching functions.[32]However, attractor embedding can turn to another way, where the property of offset boosting can be used for more convenient attractor embedding. In the following,we discuss how to embed any desired number of attractors by introducing a periodic function.

    Fig. 9. Embedded attractors in system (7) with a=0.6, b=1, c=1,IC=(?1,1,1) is red and IC=(?1,1,?1) is green: (a) a symmetric pair of coexisting pseudo-two-scroll attractors under control gates d=4,e=4,(b)pseudo-four-scroll attractor under d=4,e=2.

    0Fig.10.Waveform of coexisting oscillations in system(7)with a=0.6,b=1, c=1, IC=(?1,1,1)is red and IC=(?1,1,?1)is green: (a)d=4,e=4(coexisting pseudo-two-scroll attractors),(b)d=4,e=2(pseudo-four-scroll attractor).

    3.2. Attractor self-reproducing

    The above attractor embedding has a discrete scale,where the number of coexisting attractors depends on the times of absolute-value-function substitution. Each operation needs an extra function introducing. In fact, infinitely many attractors are available by introducing a periodic trigonometric function to the offset boostable variable. Based on this,further control for embedding any number of coexisting attractors is resort to the modification of the periodic function. Applying signum function,the number of coexisting attractors can be controlled by newly introduced offset gate. Memristive system(2)has a single system variablexin the right hand,and can be modified as

    WhenF(x)=1.25sin(0.2x)(sgn(x)+1)(sgn(?x+d)+1), coexisting attractors can be controlled by the offset gate ofd. Comparing with the approach based on system(4)(with one absolute value function and one signum function)and system (7) (with two absolute value functions and two signum functions), here in system(8), a sinusoidal function modified by two signum functions provides a free control of any coexisting attractors. The principle can be clearly indicated by the curve of the control function shown in Fig.11. Here the control gatedselects the number of coexisting attractors. Positivedoutputs coexisting attractors in positive direction and vice versa. As shown in Fig. 12, a couple of coexisting attractors are controlled by control gatesd. If we want to select coexisting attractors in desired region,two independent control gatesdshould be set according to the two signum functions. More control gates pose more precise and flexible control. Mixed control can be obtained if an extra substitution of the absolute value function in the dimension ofzis made,and correspondingly the selected attractors will get doubled in thezdimension. One can do this for his convenience. Control gatedshould be selected according to the size of an attractor.

    Fig.11. The curve of the control function for attractor embedding.

    Furthermore, the functionF(x) can be replaced by a piecewise linear function and other trigonometric functions.For example, tangent function can be applied into system(8)for hatching coexisting attractors according to its period.WhenF(x) = 72tan(0.05x), infinitely many coexisting attractors are born distributing in phase space with interval of 20πbetween any of two attractors. Applying more control gates based on signum function, more than that, embedded coexisting attractors can be edited in a more flexible way. For example, whenF(x)=1.25sin(0.2x)(sgn(x)+1)(sgn(?x+d1)+1)+4.5tan(0.05x)(sgn(x?d2)+1)(sgn(?x+d3)+1),embedded attractors are edited in region of [0,d1] with interval of 10πand [d2,d3] with interval of 20π, as shown in Fig. 13. Coexisting attractors can be selected and edited by choosing any combination of periodic trigonometric function and signum function.Control gate leaves a convenient channel for attractor group selection while initial condition gate realizes the precise positioning of a desired attractor. However,the control gate has priority over the initial condition.

    Fig. 12. Embedded coexisting attractors in system (8) with F(x) =1.25sin(0.2x)(sgn(x)+1)(sgn(?x+d)+1), a = 0.6, b = 1, c = 1,IC=(1+10π,1,?1)is green,IC=(1+20π,1,?1)is red,IC=(1+30π,1,?1)is blue and IC=(1+40π,1,?1)is cyan:(a)d=12+10π,(b)d=12+20π,(c)d=12+30π,(d)d=12+40π.

    Fig. 13. Control function and embedded coexisting attractors in system (8) with F(x) = 1.25sin(0.2x)(sgn(x) + 1)(sgn(?x + d1) + 1) +4.5tan(0.05x)(sgn(x ?d2)+1)(sgn(?x+d3)+1), d1 = 12+40π, d2 =?25 + 80π, d3 = 25 + 140π, a = 0.6, b = 1, c = 1, IC = (1 +10π/20π/30π/40π,1,?1)are red,IC=(1+80π/100π/120π/140π,1,?1)are green: (a)control function,(b)embedded attractors.

    Fig.14. The analog equivalent circuit schematic of memristor(3).

    4. Circuit implementation

    To verify the above system design for attractor embedding,circuit-based experiment is realized for further observation. To realize system(2),a memristor simulator is designed in Fig. 14. Here the derivative of internal variableyis connected with system variablez. Therefore system(5)for attractor doubling turns to be

    Circuit modules associated with the absolute value function are constructed for attractor doubling. According to the parameters combined with a time scale for attractor showing in oscilloscope, circuit parameters are selected in Fig. 15 asC1 =C2=C3=10 nF,R1=R2=R3=R4=R10=R23=R31 =R32=R33= 10 k?,R5=R6=R7=R8=R11=R12 =R13=R14=R15=R16=R17=R18=R19=R20=R21=R24=R25=R26=R27=R28=R29=R30=100 k?,R9=140 k?,R22=16.67 k?,V2=1 V. Like the attractors plotted in Fig.7,the pseudo-double-scroll attractor and coexisting attractors are captured as shown in Fig.16.

    Fig.15. Circuit schematic of memristive system(5).

    Fig. 16. Coexisting attractors in system (5) with V1 =1 V, IC=(1,1,?1) is red and IC=(?1,1,?1) is green: (a) pseudo-double-scroll attractor under V1=4.11 V,(b)–(d)a symmetric pair of coexisting attractors under V1=5 V,V1=6.5 V,and V1=8 V.

    For doubling coexisting attractors in the dimensions ofxandz, more modules are applied for absolute value function realization,the revised system(7)turns to be the circuit with the following equation:

    To realize system(10),a memristor simulator is designed in Fig. 17. According to the parameters combined with a time scale for attractor showing in oscilloscope, circuit components in Fig.18 areC1=C2=C3=10 nF,R1=R2=R3=R10=R23=R31=R32=R33=R34=R35=R36=R37=R38=R47=10 k?,R5=R6=R7=R8=R11=R12=R13=R14=R15=R16=R17=R18=R19=R20=R21=R24=R25 =R26=R27=R28=R29=R30=R39=R40=R41=R42=R43=R44=R45=R48=R49=100 k?,R4=2.5 k?,R9=R46= 140 k?,R22= 16.67 k?,V2= 1 V. Like the embedded attractors and waveform of oscillations plotted in Figs. 9 and 10, the pseudo-double-scroll attractor, pseudofour-scroll and waveform of oscillations are captured as shown in Fig.19.

    Fig.17. The analog equivalent circuit schematic of the memristor.

    Fig.18. Circuit schematic of memristive system(7).

    Fig. 19. Attractors and chaotic signals in circuit (10) with V2 =1 V, IC=(?1,1,1) is red and IC=(?1,1,?1) is green: (a) a symmetric pair of coexisting pseudo-double-scroll attractors with V3=4 V,(b)pseudo-four-scroll attractor with V3=2 V,(c)a symmetric pair of chaotic signals under V3=4 V,(d)chaotic signal under V3=2 V.

    5. Discussion and conclusion

    Flexible memristor definition can make great contribution for constructing a 3-D chaotic memristive system,where additional nonlinearity typically does not destroy the fundamental dynamics inherited from the seed system. In fact,we can construct more 3-D chaotic systems from the existing 3-D manifolds or by defining more mathematical models of memristor.Memristor introducing in a variable-boostable system brings more convenience for attractor embedding. In this work,from the view of attractor embedding,a simple 3-D memristive system is derived, in which the basic property of variable boosting is not destroyed. It brings great convenience for attractor doubling. Besides this, periodic trigonometric function substitution makes the attractor self-reproducing in the dimension of offset boostable variable more conveniently.A simple absolute value function substitution combined with a switch function realizes attractor doubling. Doubling coexisting attractors depends on the operation of function substitution in which the absolute value function determines the intervals and signum function provides necessary polarity balance. Absolute value functions and other periodic trigonometric functions can be applied for attractor embedding with any number of coexisting attractors. There is an obstacle standing in the way of attractor doubling,which is how to realize the substitution of the absolute function in a simple replicable way. Periodic trigonometric function combined with signum function provides an easy way for attractor embedding and control. Further work aiming to this direction is expected in the near future.

    猜你喜歡
    馬旭
    我與馬旭
    火花(2022年5期)2022-06-16 11:03:18
    “當(dāng)代木蘭”的初心與大愛
    “當(dāng)代木蘭”的初心與大愛
    馬旭:感動中國的傳奇女空降兵
    關(guān)鍵詞:不忘初心,不辱使命;無私忘我……
    永遠(yuǎn)赤誠的心
    奮斗(2019年15期)2019-08-27 06:22:22
    永懷一顆赤誠的心
    奶奶86歲了 畢生節(jié)儉竟捐出1000萬
    樂活老年(2019年5期)2019-07-25 01:18:18
    馬旭:分毫積攢 千萬捐贈
    新中國第一代女空降兵馬旭:“一擲千金”為桑梓
    華人時刊(2019年5期)2019-06-14 08:29:13
    国产视频一区二区在线看| 久久久国产成人精品二区| 亚洲婷婷狠狠爱综合网| 日韩av在线大香蕉| 国模一区二区三区四区视频| 色av中文字幕| 国产精品99久久久久久久久| ponron亚洲| 日日撸夜夜添| 嫩草影院入口| 日本在线视频免费播放| 午夜视频国产福利| 成人毛片a级毛片在线播放| 日韩精品有码人妻一区| av在线天堂中文字幕| 久久久色成人| 亚洲第一电影网av| 国产免费男女视频| 国产男靠女视频免费网站| 色吧在线观看| 久久天躁狠狠躁夜夜2o2o| 老司机午夜福利在线观看视频| 麻豆一二三区av精品| 九九在线视频观看精品| 一进一出好大好爽视频| 成人无遮挡网站| 老司机福利观看| 成人欧美大片| 悠悠久久av| 免费电影在线观看免费观看| 97热精品久久久久久| 久久精品国产99精品国产亚洲性色| 啦啦啦韩国在线观看视频| 国产精品亚洲一级av第二区| 精品乱码久久久久久99久播| 高清毛片免费观看视频网站| 天堂影院成人在线观看| 在线天堂最新版资源| 久久亚洲精品不卡| 狠狠狠狠99中文字幕| 国产麻豆成人av免费视频| 老师上课跳d突然被开到最大视频| 一个人看视频在线观看www免费| 12—13女人毛片做爰片一| 精品久久久久久久久亚洲| a级毛片a级免费在线| 久久久国产成人免费| 十八禁国产超污无遮挡网站| 白带黄色成豆腐渣| 热99在线观看视频| 亚洲婷婷狠狠爱综合网| 级片在线观看| 中文亚洲av片在线观看爽| 色噜噜av男人的天堂激情| 免费看美女性在线毛片视频| 91精品国产九色| 级片在线观看| 波多野结衣巨乳人妻| 赤兔流量卡办理| 午夜亚洲福利在线播放| www日本黄色视频网| 国产精品一区二区三区四区久久| АⅤ资源中文在线天堂| 最近视频中文字幕2019在线8| 狠狠狠狠99中文字幕| 一边摸一边抽搐一进一小说| 国产片特级美女逼逼视频| 麻豆国产av国片精品| 干丝袜人妻中文字幕| 国产精品久久电影中文字幕| 内地一区二区视频在线| 直男gayav资源| 中文在线观看免费www的网站| 又黄又爽又刺激的免费视频.| 久久久久久久久中文| 黄色一级大片看看| 三级国产精品欧美在线观看| 美女大奶头视频| 一区福利在线观看| 国产成年人精品一区二区| 国产一区二区亚洲精品在线观看| 美女xxoo啪啪120秒动态图| 少妇猛男粗大的猛烈进出视频 | 波野结衣二区三区在线| 精品一区二区三区视频在线观看免费| 日本免费一区二区三区高清不卡| 国产 一区精品| www.色视频.com| 精品久久国产蜜桃| 精品久久久久久久末码| 一级黄片播放器| 国产91av在线免费观看| 久久久久国产精品人妻aⅴ院| 3wmmmm亚洲av在线观看| 一边摸一边抽搐一进一小说| 又黄又爽又刺激的免费视频.| 精品一区二区三区视频在线观看免费| 久久久久久大精品| 最近的中文字幕免费完整| 真人做人爱边吃奶动态| 免费看a级黄色片| 黄色视频,在线免费观看| 少妇熟女欧美另类| 人妻制服诱惑在线中文字幕| 日日撸夜夜添| 国产麻豆成人av免费视频| 免费av观看视频| av天堂在线播放| 久久久精品欧美日韩精品| 啦啦啦啦在线视频资源| 日本成人三级电影网站| 亚洲熟妇熟女久久| 日本撒尿小便嘘嘘汇集6| 久久亚洲国产成人精品v| 2021天堂中文幕一二区在线观| 俄罗斯特黄特色一大片| 免费黄网站久久成人精品| 欧美绝顶高潮抽搐喷水| 国产精品国产三级国产av玫瑰| 老司机影院成人| 亚洲av成人精品一区久久| 小说图片视频综合网站| 九色成人免费人妻av| 可以在线观看的亚洲视频| 成人精品一区二区免费| 精品久久久久久久久亚洲| 亚洲五月天丁香| 久久精品国产鲁丝片午夜精品| 亚洲精品一卡2卡三卡4卡5卡| 欧美bdsm另类| 在现免费观看毛片| 亚洲中文日韩欧美视频| 日韩制服骚丝袜av| 午夜免费激情av| 亚洲在线自拍视频| 国产乱人视频| 91在线精品国自产拍蜜月| 内地一区二区视频在线| 日韩欧美 国产精品| 黑人高潮一二区| 精品欧美国产一区二区三| 一级毛片aaaaaa免费看小| 久久欧美精品欧美久久欧美| 亚洲高清免费不卡视频| 亚洲丝袜综合中文字幕| 一a级毛片在线观看| 性插视频无遮挡在线免费观看| av黄色大香蕉| 97碰自拍视频| 99久久无色码亚洲精品果冻| 久久久久精品国产欧美久久久| 国产极品精品免费视频能看的| АⅤ资源中文在线天堂| 色视频www国产| 日韩,欧美,国产一区二区三区 | 婷婷精品国产亚洲av在线| 国产精品1区2区在线观看.| 精品国产三级普通话版| av女优亚洲男人天堂| 可以在线观看毛片的网站| 亚洲av中文av极速乱| 18禁在线播放成人免费| 国产精品一区二区免费欧美| 欧美日本亚洲视频在线播放| 一级毛片我不卡| 成人欧美大片| 男人舔女人下体高潮全视频| 日本一二三区视频观看| 久久亚洲国产成人精品v| 色噜噜av男人的天堂激情| 亚洲欧美清纯卡通| 在线播放无遮挡| 亚洲精品成人久久久久久| 18禁在线无遮挡免费观看视频 | 久久久久久国产a免费观看| 夜夜夜夜夜久久久久| 婷婷亚洲欧美| 99热网站在线观看| 卡戴珊不雅视频在线播放| 欧美3d第一页| 精品国内亚洲2022精品成人| 少妇高潮的动态图| 日产精品乱码卡一卡2卡三| 有码 亚洲区| 国产成人影院久久av| 国产69精品久久久久777片| 久久久精品大字幕| 黄色一级大片看看| 亚洲自拍偷在线| 亚洲内射少妇av| 最后的刺客免费高清国语| 麻豆av噜噜一区二区三区| 成人一区二区视频在线观看| 国产亚洲精品久久久久久毛片| 少妇人妻一区二区三区视频| 亚洲国产欧美人成| 久久午夜亚洲精品久久| 久久精品国产亚洲av天美| 免费无遮挡裸体视频| 亚洲美女黄片视频| 国产精品人妻久久久影院| 欧美日韩乱码在线| 国产人妻一区二区三区在| 亚洲图色成人| 欧美+日韩+精品| 嫩草影视91久久| 日本精品一区二区三区蜜桃| 成人无遮挡网站| 国产高清三级在线| 悠悠久久av| 黄色视频,在线免费观看| 女人被狂操c到高潮| 又黄又爽又免费观看的视频| www日本黄色视频网| 97热精品久久久久久| 国产又黄又爽又无遮挡在线| 久久精品91蜜桃| 少妇的逼好多水| 波多野结衣高清作品| 在线观看午夜福利视频| 久久久a久久爽久久v久久| 国产亚洲精品久久久久久毛片| 欧美精品国产亚洲| 男人的好看免费观看在线视频| 久久久a久久爽久久v久久| 永久网站在线| 久久精品综合一区二区三区| 久久99热6这里只有精品| 精品久久久久久久久久免费视频| 日韩精品中文字幕看吧| 日韩中字成人| 嫩草影院新地址| 精品日产1卡2卡| 久久久欧美国产精品| 精品人妻偷拍中文字幕| 九色成人免费人妻av| 亚洲成人久久爱视频| 成人一区二区视频在线观看| 99久久久亚洲精品蜜臀av| 天堂动漫精品| 午夜精品在线福利| a级一级毛片免费在线观看| 五月伊人婷婷丁香| 秋霞在线观看毛片| 永久网站在线| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品综合一区在线观看| 亚洲av美国av| 精品99又大又爽又粗少妇毛片| 国内少妇人妻偷人精品xxx网站| av视频在线观看入口| 久久久精品大字幕| 久久精品国产自在天天线| 国产片特级美女逼逼视频| 老熟妇乱子伦视频在线观看| or卡值多少钱| 99精品在免费线老司机午夜| 国产精品久久久久久精品电影| 麻豆精品久久久久久蜜桃| 亚洲成人av在线免费| 俄罗斯特黄特色一大片| 亚洲av中文字字幕乱码综合| 国产精品免费一区二区三区在线| 如何舔出高潮| 欧美日本亚洲视频在线播放| 国内精品宾馆在线| 免费av不卡在线播放| 亚洲性夜色夜夜综合| 国产在线精品亚洲第一网站| 日韩欧美一区二区三区在线观看| 干丝袜人妻中文字幕| av在线蜜桃| 毛片一级片免费看久久久久| 久久精品国产亚洲av涩爱 | 国模一区二区三区四区视频| 又黄又爽又免费观看的视频| 亚洲av一区综合| 精品国内亚洲2022精品成人| 99热只有精品国产| 欧洲精品卡2卡3卡4卡5卡区| 99国产极品粉嫩在线观看| 日本一二三区视频观看| 国产精品1区2区在线观看.| av在线天堂中文字幕| 国内精品久久久久精免费| eeuss影院久久| 午夜激情福利司机影院| 欧美日韩一区二区视频在线观看视频在线 | 久久鲁丝午夜福利片| 久久久久久久午夜电影| 观看免费一级毛片| 国产成人91sexporn| 成人二区视频| 国产av在哪里看| 男人和女人高潮做爰伦理| 亚洲国产精品合色在线| 国产黄色小视频在线观看| 亚洲成人精品中文字幕电影| 国产亚洲欧美98| 色哟哟哟哟哟哟| 久久韩国三级中文字幕| 成人高潮视频无遮挡免费网站| 国产精品日韩av在线免费观看| 国产综合懂色| 国产精品av视频在线免费观看| 成年免费大片在线观看| 身体一侧抽搐| 美女cb高潮喷水在线观看| 天天一区二区日本电影三级| 观看美女的网站| 成人一区二区视频在线观看| 天堂动漫精品| 国产大屁股一区二区在线视频| 亚洲国产精品sss在线观看| 国产美女午夜福利| 三级国产精品欧美在线观看| 给我免费播放毛片高清在线观看| 国产亚洲精品久久久久久毛片| 99国产精品一区二区蜜桃av| 熟妇人妻久久中文字幕3abv| 国产精品女同一区二区软件| 日韩欧美在线乱码| 久久久久久久午夜电影| 黄色欧美视频在线观看| 亚洲av.av天堂| 91精品国产九色| 国产三级中文精品| 99热全是精品| 蜜臀久久99精品久久宅男| 久久久色成人| 色哟哟哟哟哟哟| 99riav亚洲国产免费| 看免费成人av毛片| 两个人视频免费观看高清| 搡老熟女国产l中国老女人| 男女边吃奶边做爰视频| 中文字幕久久专区| 久久精品影院6| 日韩欧美国产在线观看| 男女做爰动态图高潮gif福利片| 如何舔出高潮| 日本与韩国留学比较| 国产麻豆成人av免费视频| 亚洲第一区二区三区不卡| 97热精品久久久久久| 婷婷亚洲欧美| 日本a在线网址| 国产探花在线观看一区二区| 人人妻,人人澡人人爽秒播| av卡一久久| 老女人水多毛片| 天天躁夜夜躁狠狠久久av| 舔av片在线| 亚洲成a人片在线一区二区| 伦理电影大哥的女人| 亚洲精品色激情综合| 亚洲成a人片在线一区二区| 在线观看66精品国产| 久久久精品94久久精品| 中出人妻视频一区二区| 你懂的网址亚洲精品在线观看 | 一级黄色大片毛片| 国产精品日韩av在线免费观看| 成熟少妇高潮喷水视频| 99视频精品全部免费 在线| 九九热线精品视视频播放| 欧美另类亚洲清纯唯美| 国产女主播在线喷水免费视频网站 | 国产国拍精品亚洲av在线观看| 国产精品伦人一区二区| 午夜福利高清视频| 性插视频无遮挡在线免费观看| 国产成人一区二区在线| 国产精品一区二区三区四区久久| 欧美极品一区二区三区四区| 国内少妇人妻偷人精品xxx网站| 欧美zozozo另类| 成人美女网站在线观看视频| 蜜臀久久99精品久久宅男| 欧美成人一区二区免费高清观看| 国产激情偷乱视频一区二区| 久久亚洲精品不卡| 99热全是精品| 久久精品91蜜桃| 最近中文字幕高清免费大全6| 国产探花在线观看一区二区| 色噜噜av男人的天堂激情| 亚洲一级一片aⅴ在线观看| 又爽又黄无遮挡网站| 午夜福利在线观看免费完整高清在 | 国产精品福利在线免费观看| 男人的好看免费观看在线视频| 欧美日韩一区二区视频在线观看视频在线 | 超碰av人人做人人爽久久| 久久久久久久久久成人| а√天堂www在线а√下载| 日韩精品中文字幕看吧| 一级毛片我不卡| 国产午夜福利久久久久久| 国产欧美日韩一区二区精品| 此物有八面人人有两片| 一级av片app| 一a级毛片在线观看| 亚洲精品乱码久久久v下载方式| 国产精品久久久久久精品电影| 老女人水多毛片| 天堂动漫精品| 午夜日韩欧美国产| 日本爱情动作片www.在线观看 | 国产淫片久久久久久久久| 两个人的视频大全免费| 热99re8久久精品国产| 97碰自拍视频| 国产v大片淫在线免费观看| 最新中文字幕久久久久| 国产色爽女视频免费观看| 亚洲av成人av| 成人欧美大片| 超碰av人人做人人爽久久| 黄色配什么色好看| 国模一区二区三区四区视频| 亚洲成人久久性| 久99久视频精品免费| 亚洲激情五月婷婷啪啪| 亚洲一区高清亚洲精品| 亚洲欧美成人综合另类久久久 | 老司机午夜福利在线观看视频| 少妇丰满av| av黄色大香蕉| 麻豆国产97在线/欧美| 97超碰精品成人国产| 国产精品女同一区二区软件| 国产黄片美女视频| 国产精华一区二区三区| 男人舔奶头视频| 国产单亲对白刺激| 日本 av在线| 内地一区二区视频在线| 国产一区亚洲一区在线观看| 18+在线观看网站| 搡老妇女老女人老熟妇| 在线观看免费视频日本深夜| 国产片特级美女逼逼视频| 久久欧美精品欧美久久欧美| 成熟少妇高潮喷水视频| 国产成年人精品一区二区| 又黄又爽又刺激的免费视频.| 麻豆国产97在线/欧美| 网址你懂的国产日韩在线| 国产在视频线在精品| 国产男人的电影天堂91| 搡老熟女国产l中国老女人| 舔av片在线| 亚洲中文日韩欧美视频| 欧美zozozo另类| 在线天堂最新版资源| 男女边吃奶边做爰视频| 国产精品亚洲美女久久久| 一个人观看的视频www高清免费观看| 精品一区二区三区视频在线| 亚洲成人久久性| 亚洲va在线va天堂va国产| av在线蜜桃| 国产视频内射| 精品国产三级普通话版| 青春草视频在线免费观看| 中国国产av一级| 久久久久久久久久久丰满| 亚洲成人中文字幕在线播放| 99在线视频只有这里精品首页| 婷婷精品国产亚洲av在线| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩综合久久久久久| 一本一本综合久久| 欧美+亚洲+日韩+国产| 性欧美人与动物交配| 国产av在哪里看| 蜜桃久久精品国产亚洲av| 亚洲一级一片aⅴ在线观看| 国产大屁股一区二区在线视频| 亚洲精品粉嫩美女一区| 亚洲在线观看片| 狂野欧美激情性xxxx在线观看| 国产毛片a区久久久久| 国产国拍精品亚洲av在线观看| 又黄又爽又刺激的免费视频.| 狂野欧美激情性xxxx在线观看| 国产色爽女视频免费观看| 草草在线视频免费看| 国产aⅴ精品一区二区三区波| 长腿黑丝高跟| 联通29元200g的流量卡| 嫩草影院新地址| 成人特级黄色片久久久久久久| 最后的刺客免费高清国语| 中文字幕av成人在线电影| 午夜福利成人在线免费观看| 悠悠久久av| 老司机午夜福利在线观看视频| 国产精品免费一区二区三区在线| 亚洲av不卡在线观看| 日韩欧美精品v在线| 国产aⅴ精品一区二区三区波| 国产爱豆传媒在线观看| 极品教师在线视频| 在线免费观看的www视频| 日本三级黄在线观看| 精品久久国产蜜桃| 色综合色国产| 91在线精品国自产拍蜜月| 成人高潮视频无遮挡免费网站| 给我免费播放毛片高清在线观看| 2021天堂中文幕一二区在线观| 亚洲不卡免费看| eeuss影院久久| 国产色婷婷99| 国产高清有码在线观看视频| 精品久久久久久久人妻蜜臀av| 国产一区二区在线av高清观看| 亚洲国产精品合色在线| 舔av片在线| 小说图片视频综合网站| 少妇熟女欧美另类| 国内精品美女久久久久久| 日韩亚洲欧美综合| 国产伦在线观看视频一区| 国产综合懂色| avwww免费| 美女 人体艺术 gogo| 波多野结衣高清无吗| 别揉我奶头~嗯~啊~动态视频| 嫩草影视91久久| 少妇猛男粗大的猛烈进出视频 | 美女免费视频网站| 直男gayav资源| 国产蜜桃级精品一区二区三区| 亚洲精品久久国产高清桃花| 全区人妻精品视频| 插阴视频在线观看视频| 亚洲,欧美,日韩| av卡一久久| 国产精品亚洲一级av第二区| 校园人妻丝袜中文字幕| 网址你懂的国产日韩在线| 国模一区二区三区四区视频| 国产 一区 欧美 日韩| eeuss影院久久| 少妇猛男粗大的猛烈进出视频 | 久久久久久久久久黄片| 国产精品三级大全| 国产成人影院久久av| 日韩,欧美,国产一区二区三区 | 最后的刺客免费高清国语| 亚洲专区国产一区二区| 久久久久国内视频| 久久亚洲国产成人精品v| 搡老妇女老女人老熟妇| 成人高潮视频无遮挡免费网站| 69av精品久久久久久| 亚洲色图av天堂| 国产中年淑女户外野战色| 91麻豆精品激情在线观看国产| 亚洲性久久影院| 亚洲性夜色夜夜综合| 成年女人看的毛片在线观看| 99久国产av精品| 久久亚洲精品不卡| 免费观看精品视频网站| 免费不卡的大黄色大毛片视频在线观看 | 日韩 亚洲 欧美在线| 在线观看一区二区三区| 在现免费观看毛片| 亚洲成人久久性| 成年免费大片在线观看| 男人舔奶头视频| 色av中文字幕| 亚洲精品国产成人久久av| 国产亚洲精品久久久久久毛片| 我要搜黄色片| 亚洲中文字幕一区二区三区有码在线看| 欧美成人精品欧美一级黄| 自拍偷自拍亚洲精品老妇| 天堂网av新在线| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 中国美女看黄片| 国产真实伦视频高清在线观看| 丝袜喷水一区| 男女之事视频高清在线观看| 日韩欧美在线乱码| 国产亚洲精品久久久com| 少妇被粗大猛烈的视频| 欧美极品一区二区三区四区| 天堂√8在线中文| 国产精品精品国产色婷婷| 精品久久久久久成人av| 99在线人妻在线中文字幕| 免费观看精品视频网站| 天美传媒精品一区二区| 国产爱豆传媒在线观看| 一本精品99久久精品77| 国产国拍精品亚洲av在线观看| av天堂中文字幕网| 夜夜夜夜夜久久久久| 亚洲美女黄片视频| 日韩大尺度精品在线看网址| 久久天躁狠狠躁夜夜2o2o| 亚洲成人精品中文字幕电影| 国产乱人偷精品视频| 亚洲av第一区精品v没综合| 亚洲精品亚洲一区二区| 秋霞在线观看毛片| 免费不卡的大黄色大毛片视频在线观看 | 中国美白少妇内射xxxbb| 亚洲欧美清纯卡通|