• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Embedding any desired number of coexisting attractors in memristive system?

    2021-12-22 06:51:00ChunbiaoLi李春彪RanWang王然XuMa馬旭YichengJiang姜易成andZuohuaLiu劉作華
    Chinese Physics B 2021年12期
    關(guān)鍵詞:馬旭

    Chunbiao Li(李春彪) Ran Wang(王然) Xu Ma(馬旭)Yicheng Jiang(姜易成) and Zuohua Liu(劉作華)

    1Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET),Nanjing University of Information Science&Technology,Nanjing 210044,China

    2School of Artificial Intelligence,Nanjing University of Information Science&Technology,Nanjing 210044,China

    3State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,Chongqing 400044,China

    Keywords: offset boosting,attractor doubling,attractor self-reproducing,memristive system

    1. Introduction

    Memristor is regarded as a new component for circuit design,which has a specific voltage–current restriction with fingerprint characteristics of 8-like pinched hysteresis loop.[1–5]Because of the nonlinear feature,memristor brings chaos possibility even in a very simple system.[6–13]As a memory component, the dynamical states in its networks can characterize various patterns in information system. Coexisting attractors controlled by a direct switch or simple hardware configuration could be helpful for state representation and conducive to the integration of storage and calculation. As a result, it is valuable to explore the dynamics of a simple memristive node and control its states for information processing.

    Multistability in memristive systems has been exhaustedly explored,among which extreme multistability[14–20]and coexistence with infinitely many attractors[21–24]seem especially striking. In the area of information engineering, the number of coexisting attractors seems to be an important issue for effective information representation or signal acquisition. For memristive chaos-based application,there are two challenges lying in this direction,one of which is to find a simple structure for hosting a memristor to give offset boostable chaos while the other one aims to get its attractor controlled by a single knob or hardware configuration. If we ignore the real products of memristors and model a freely defined memristor with representative inherent fingerprints, such a threedimensional(3-D)memristive system is thereby not far away from our goal. In fact, people can investigate those existing systems and try to find the distinct memristor variable dependence. Following with a further nonlinear reforming, a fresh 3-D memristive system is derived for embedding coexisting attractors,as shown in Fig.1.

    Offset control is the fundamental principle for attractor doubling[25–27]and attractor self-reproducing.[28–30]By introducing multiple piecewise-like functions into a seed system,the dominant dynamics generally finds its way for attractor self-reproducing. It was pointed that the substitution of a proper absolute value function gives robust attractor doubling in the routine of symmetrization while the periodic function repeats the desired dynamics in a direct easy way for attractor self-reproducing. Attractor-doubling represents a direct double multiplication while the attractor self-reproducing is helpful for direct cumulative counting. Two regimes of attractor embedding could be applied for effective information representation or even numerical calculating. For a memristive system,system-based attractor doubling and self-reproducing preserve the fundamental system dynamics without changing the architecture and memristor component. The new born attractors stand by in system space as desired depending on the attached function substitutions and provide broad possibilities for information processing in some way.

    Fig.1. Nonlinearly reforming for embedding any number of coexisting attractors.

    In this work,any number of coexisting attractors in a 3-D memristive system are obtained from a very direct offset-based processing. In Section 2, a simple 3-D memristive system is derived from an existing variable boostable system.[31]In Section 3, any number of coexisting attractors are embedded into the derived memristive system in the dimension of system variable with two different regimes: attractor doubling and attractor self-reproducing. The former provides a direct multiplication control while the latter resorts to the combination of signum and periodic function. In Section 4,circuit simulation is completed for physical verification. In fact, coexisting attractors stand in phase space can be recognized by an exact initial condition. Corresponding discussion is wrapped in the last section.

    2. A unique offset-boostable 3-D memristive system

    It is found that system(1)(VB6)[31]could be reformed to host a memristor,which gives chaos as system(2),

    where the following memristor is introduced in the first dimension:

    Whena=0.6, the memductance and pinched hysteresis loop are plotted in Fig.2.Here the variableyis regarded as the internal variable and the introduced memristor has piecewise linear memductance.

    Whena= 0.6,b= 1, andc= 1, memristive system (2) shows chaotic oscillation with Lyapunov exponents(0.1793,0,?1.1809) and Kaplan–Yorke dimensionDKY=2.1518 under initial condition(?1,1,?1),as shown in Fig.3.Note that the internal variableyand system variablesxandzall exhibit chaotic oscillation.

    Fig.2. The memductance and pinched hysteresis loop with sinusoidal excitation under f =0.1: (a)memductance,(b)pinched hysteresis.

    System(2)is offset boostable,which can be proved with a direct substitution likex ?→x+m. Moreover, in the specifically introduced memristor the inherent property of voltagecurrent relation is determined by the two parametersaandb.It turns out that the parameterbrescales the amplitude of system variablexnegatively while the frequency proportionally in a limited region as shown in Fig. 4, which has never been reported in other memristive systems. The evolvement of amplitude and frequency can be seen directly from the waveform and frequency spectra, as shown in Fig.5. To understand the function of parameterb,here take a substitution

    Fig.3. Chaotic attractor in system(2)with a=0.6,b=1,c=1,and initial condition(?1,1,?1): (a)x–y,(b)y–z,(c)x–z.

    Fig.4. Dynamical evolvement of system(2)with a=0.6,c=1,IC=(?1,1,?1): (a)bifurcation behavior,(b)Lyapunov exponents.

    Fig.5. Chaotic oscillation of system(2)with a=0.6,c=1,IC=(?1,1,?1): (a)chaotic signal x(t),(b)frequency spectrum.

    Fig.6. Dynamics of system(2)with a=0.6,b=1,IC=(?1,1,?1): (a)bifurcation diagram,(b)Lyapunov exponents.

    Moreover, system (2) exhibits robust chaos according to the parameterc, which also rescales the amplitude of system variablexin a quasilinear way with occasionally inserted periodic windows,as shown in Fig.6. Whencincreases in region[0,15],only a couple of periodic oscillations break in triggering the collapse of the Lyapunov exponents. All the above analysis shows that system(2)is unique in terms of parameter sensitivity. Two parameters, namely, system parametercand memristor parameterbboth show their independent function of amplitude control. Memristor parameterbalso brings time rescaling for Lyapunov exponent modification.

    3. Two regimes of attractor embedding

    The coexisting attractors can be controlled by functionbased offset boosting. However, one is resort to attractor doubling,and the other is resort to attractor self-reproducing.Therefore, these two approaches bring coexisting attractors with different scales. Attractor doubling can be used to simulate the key processing for high bit generation in binary number representation while attractor self-reproducing can be applied for representation of numerical accumulation. Attractor doubling introduces more parameters for attractor embedding and resorts to system modification more violently. These parameters form control gates by which the number of coexisting attractors is determined by the series[32]if coexisting attractors are doubled more than one times. Attractor self-reproducing seems easier for embedding more attractors even more to infinity. But this seems to out of control if not sufficient control gates are planted. In fact,in both routines of attractor embedding, sufficient offset gates are necessary for controlling the number of coexisting attractors. Only by this, any one of the embedded attractors can be visited by a selected initial condition gate accordingly.

    3.1. Attractor doubling

    The direct substitution of the absolute value function can make the coexisting attractors doubled. The single linear termxin the third dimension of system (2) makes the dimensionxeasily offset boostable, leaving a convenient conversion for attractor doubling. Substitutingxwith|x|?das

    The doubled attractors are controlled with desired distance by the control gate ofd. Note that small gatedmakes the coexisting attractors be linked together forming pseudodouble-scroll. Then a pseudo-double-scroll attractor is captured when coexisting attractors get linked together because of the connected basins of attraction. The doubled coexisting attractors stand in phase space in the dimension ofx,as shown in Fig.7. As a result,the derived system(5)now turns to be a symmetrical system hatching coexisting symmetrical pairs of attractors or pseudo-multiple-scroll attractors.

    Fig. 7. Embedded attractors in system (5) with a=0.6, b=1, c=1 under various control gates. IC=(1,1,?1)is red and IC=(?1,1,?1)is green:(a) d1 =4.11 (pseudo-double-scroll attractor), (b) d2 =5, (c)d3=6.5,(d)d4=8(double coexisting attractors).

    Furthermore,this operation can be repeated in the dimensionz, but this will destroy the feedback of the originally introduced memristor. For doubling the attractors according to the dimension ofz,the derivative of internal variable turns to be associated with the absolute function with offset gatee,and the following equation is obtained:

    The substitution ofzwith|z|?echanges the original system more drastically. Doubled attractors locate in the dimension ofzas predicted, as shown in Fig. 8. Since the system variable is more controllable than the memristor,this transformation does not bring too much trouble since the derivative ofycomes from the feedback ofyand the flexible function of system variablezeven though we see that this transformation does not fully utilize the property of easy offset boosting.

    Fig. 8. Coexisting attractors in system (6) with a=0.6, b=1, c=1,IC=(?1,1,1) is red and IC=(?1,1,?1) is green: (a) a symmetric pair of coexisting attractors under control gate e=4,(b)pseudo-doublescroll attractor under control gate e=2.05.

    Doubling coexisting attractors can also be executed in both dimensions ofx–z, where two control gatesdandeare necessary for settling any of the attractors to desired position as in the following equation:

    Smaller control gatedmakes coexisting attractors link together in the dimension ofxforming two pseudo-two-scroll attractors, while combined small control gateeputs the doubled pseudo-two-scroll attractors together forming a pseudofour-scroll attractor, as shown in Fig. 9. Corresponding signal waveforms are plotted in Fig. 10. Note that two control gates should be arranged with two newly introduced signum functions. The process of attractor doubling depends on the revise of the system structure. Two signum functions sgn(x),sgn(z)and two control gatesd,ein two absolute value functions embed at most four coexisting attractors. For more attractors, the substitution of the absolute value function needs to be repeated, bringing more control gates and switching functions.[32]However, attractor embedding can turn to another way, where the property of offset boosting can be used for more convenient attractor embedding. In the following,we discuss how to embed any desired number of attractors by introducing a periodic function.

    Fig. 9. Embedded attractors in system (7) with a=0.6, b=1, c=1,IC=(?1,1,1) is red and IC=(?1,1,?1) is green: (a) a symmetric pair of coexisting pseudo-two-scroll attractors under control gates d=4,e=4,(b)pseudo-four-scroll attractor under d=4,e=2.

    0Fig.10.Waveform of coexisting oscillations in system(7)with a=0.6,b=1, c=1, IC=(?1,1,1)is red and IC=(?1,1,?1)is green: (a)d=4,e=4(coexisting pseudo-two-scroll attractors),(b)d=4,e=2(pseudo-four-scroll attractor).

    3.2. Attractor self-reproducing

    The above attractor embedding has a discrete scale,where the number of coexisting attractors depends on the times of absolute-value-function substitution. Each operation needs an extra function introducing. In fact, infinitely many attractors are available by introducing a periodic trigonometric function to the offset boostable variable. Based on this,further control for embedding any number of coexisting attractors is resort to the modification of the periodic function. Applying signum function,the number of coexisting attractors can be controlled by newly introduced offset gate. Memristive system(2)has a single system variablexin the right hand,and can be modified as

    WhenF(x)=1.25sin(0.2x)(sgn(x)+1)(sgn(?x+d)+1), coexisting attractors can be controlled by the offset gate ofd. Comparing with the approach based on system(4)(with one absolute value function and one signum function)and system (7) (with two absolute value functions and two signum functions), here in system(8), a sinusoidal function modified by two signum functions provides a free control of any coexisting attractors. The principle can be clearly indicated by the curve of the control function shown in Fig.11. Here the control gatedselects the number of coexisting attractors. Positivedoutputs coexisting attractors in positive direction and vice versa. As shown in Fig. 12, a couple of coexisting attractors are controlled by control gatesd. If we want to select coexisting attractors in desired region,two independent control gatesdshould be set according to the two signum functions. More control gates pose more precise and flexible control. Mixed control can be obtained if an extra substitution of the absolute value function in the dimension ofzis made,and correspondingly the selected attractors will get doubled in thezdimension. One can do this for his convenience. Control gatedshould be selected according to the size of an attractor.

    Fig.11. The curve of the control function for attractor embedding.

    Furthermore, the functionF(x) can be replaced by a piecewise linear function and other trigonometric functions.For example, tangent function can be applied into system(8)for hatching coexisting attractors according to its period.WhenF(x) = 72tan(0.05x), infinitely many coexisting attractors are born distributing in phase space with interval of 20πbetween any of two attractors. Applying more control gates based on signum function, more than that, embedded coexisting attractors can be edited in a more flexible way. For example, whenF(x)=1.25sin(0.2x)(sgn(x)+1)(sgn(?x+d1)+1)+4.5tan(0.05x)(sgn(x?d2)+1)(sgn(?x+d3)+1),embedded attractors are edited in region of [0,d1] with interval of 10πand [d2,d3] with interval of 20π, as shown in Fig. 13. Coexisting attractors can be selected and edited by choosing any combination of periodic trigonometric function and signum function.Control gate leaves a convenient channel for attractor group selection while initial condition gate realizes the precise positioning of a desired attractor. However,the control gate has priority over the initial condition.

    Fig. 12. Embedded coexisting attractors in system (8) with F(x) =1.25sin(0.2x)(sgn(x)+1)(sgn(?x+d)+1), a = 0.6, b = 1, c = 1,IC=(1+10π,1,?1)is green,IC=(1+20π,1,?1)is red,IC=(1+30π,1,?1)is blue and IC=(1+40π,1,?1)is cyan:(a)d=12+10π,(b)d=12+20π,(c)d=12+30π,(d)d=12+40π.

    Fig. 13. Control function and embedded coexisting attractors in system (8) with F(x) = 1.25sin(0.2x)(sgn(x) + 1)(sgn(?x + d1) + 1) +4.5tan(0.05x)(sgn(x ?d2)+1)(sgn(?x+d3)+1), d1 = 12+40π, d2 =?25 + 80π, d3 = 25 + 140π, a = 0.6, b = 1, c = 1, IC = (1 +10π/20π/30π/40π,1,?1)are red,IC=(1+80π/100π/120π/140π,1,?1)are green: (a)control function,(b)embedded attractors.

    Fig.14. The analog equivalent circuit schematic of memristor(3).

    4. Circuit implementation

    To verify the above system design for attractor embedding,circuit-based experiment is realized for further observation. To realize system(2),a memristor simulator is designed in Fig. 14. Here the derivative of internal variableyis connected with system variablez. Therefore system(5)for attractor doubling turns to be

    Circuit modules associated with the absolute value function are constructed for attractor doubling. According to the parameters combined with a time scale for attractor showing in oscilloscope, circuit parameters are selected in Fig. 15 asC1 =C2=C3=10 nF,R1=R2=R3=R4=R10=R23=R31 =R32=R33= 10 k?,R5=R6=R7=R8=R11=R12 =R13=R14=R15=R16=R17=R18=R19=R20=R21=R24=R25=R26=R27=R28=R29=R30=100 k?,R9=140 k?,R22=16.67 k?,V2=1 V. Like the attractors plotted in Fig.7,the pseudo-double-scroll attractor and coexisting attractors are captured as shown in Fig.16.

    Fig.15. Circuit schematic of memristive system(5).

    Fig. 16. Coexisting attractors in system (5) with V1 =1 V, IC=(1,1,?1) is red and IC=(?1,1,?1) is green: (a) pseudo-double-scroll attractor under V1=4.11 V,(b)–(d)a symmetric pair of coexisting attractors under V1=5 V,V1=6.5 V,and V1=8 V.

    For doubling coexisting attractors in the dimensions ofxandz, more modules are applied for absolute value function realization,the revised system(7)turns to be the circuit with the following equation:

    To realize system(10),a memristor simulator is designed in Fig. 17. According to the parameters combined with a time scale for attractor showing in oscilloscope, circuit components in Fig.18 areC1=C2=C3=10 nF,R1=R2=R3=R10=R23=R31=R32=R33=R34=R35=R36=R37=R38=R47=10 k?,R5=R6=R7=R8=R11=R12=R13=R14=R15=R16=R17=R18=R19=R20=R21=R24=R25 =R26=R27=R28=R29=R30=R39=R40=R41=R42=R43=R44=R45=R48=R49=100 k?,R4=2.5 k?,R9=R46= 140 k?,R22= 16.67 k?,V2= 1 V. Like the embedded attractors and waveform of oscillations plotted in Figs. 9 and 10, the pseudo-double-scroll attractor, pseudofour-scroll and waveform of oscillations are captured as shown in Fig.19.

    Fig.17. The analog equivalent circuit schematic of the memristor.

    Fig.18. Circuit schematic of memristive system(7).

    Fig. 19. Attractors and chaotic signals in circuit (10) with V2 =1 V, IC=(?1,1,1) is red and IC=(?1,1,?1) is green: (a) a symmetric pair of coexisting pseudo-double-scroll attractors with V3=4 V,(b)pseudo-four-scroll attractor with V3=2 V,(c)a symmetric pair of chaotic signals under V3=4 V,(d)chaotic signal under V3=2 V.

    5. Discussion and conclusion

    Flexible memristor definition can make great contribution for constructing a 3-D chaotic memristive system,where additional nonlinearity typically does not destroy the fundamental dynamics inherited from the seed system. In fact,we can construct more 3-D chaotic systems from the existing 3-D manifolds or by defining more mathematical models of memristor.Memristor introducing in a variable-boostable system brings more convenience for attractor embedding. In this work,from the view of attractor embedding,a simple 3-D memristive system is derived, in which the basic property of variable boosting is not destroyed. It brings great convenience for attractor doubling. Besides this, periodic trigonometric function substitution makes the attractor self-reproducing in the dimension of offset boostable variable more conveniently.A simple absolute value function substitution combined with a switch function realizes attractor doubling. Doubling coexisting attractors depends on the operation of function substitution in which the absolute value function determines the intervals and signum function provides necessary polarity balance. Absolute value functions and other periodic trigonometric functions can be applied for attractor embedding with any number of coexisting attractors. There is an obstacle standing in the way of attractor doubling,which is how to realize the substitution of the absolute function in a simple replicable way. Periodic trigonometric function combined with signum function provides an easy way for attractor embedding and control. Further work aiming to this direction is expected in the near future.

    猜你喜歡
    馬旭
    我與馬旭
    火花(2022年5期)2022-06-16 11:03:18
    “當(dāng)代木蘭”的初心與大愛
    “當(dāng)代木蘭”的初心與大愛
    馬旭:感動中國的傳奇女空降兵
    關(guān)鍵詞:不忘初心,不辱使命;無私忘我……
    永遠(yuǎn)赤誠的心
    奮斗(2019年15期)2019-08-27 06:22:22
    永懷一顆赤誠的心
    奶奶86歲了 畢生節(jié)儉竟捐出1000萬
    樂活老年(2019年5期)2019-07-25 01:18:18
    馬旭:分毫積攢 千萬捐贈
    新中國第一代女空降兵馬旭:“一擲千金”為桑梓
    華人時刊(2019年5期)2019-06-14 08:29:13
    大型黄色视频在线免费观看| 久久中文字幕一级| 国产精品久久电影中文字幕| 久久久色成人| 男人舔女人下体高潮全视频| 亚洲中文日韩欧美视频| 特大巨黑吊av在线直播| 少妇裸体淫交视频免费看高清| 国产高潮美女av| 色视频www国产| 我要搜黄色片| 亚洲国产欧美人成| 91麻豆精品激情在线观看国产| 免费在线观看日本一区| 桃色一区二区三区在线观看| 男女之事视频高清在线观看| 在线视频色国产色| 国产野战对白在线观看| 丰满人妻一区二区三区视频av | 亚洲国产精品久久男人天堂| 亚洲成av人片免费观看| 亚洲av电影不卡..在线观看| 99久久无色码亚洲精品果冻| 在线免费观看的www视频| 男人舔奶头视频| 又紧又爽又黄一区二区| 国产成人精品久久二区二区免费| 成年女人毛片免费观看观看9| 日韩av在线大香蕉| 亚洲国产精品sss在线观看| 嫩草影视91久久| xxx96com| 国产美女午夜福利| 欧美成人性av电影在线观看| 1024香蕉在线观看| 日韩欧美国产一区二区入口| 超碰成人久久| 亚洲欧洲精品一区二区精品久久久| 真人一进一出gif抽搐免费| 天堂动漫精品| 老汉色∧v一级毛片| 757午夜福利合集在线观看| 亚洲午夜理论影院| 在线看三级毛片| 一个人免费在线观看的高清视频| 国产乱人视频| 亚洲一区二区三区色噜噜| 成人av一区二区三区在线看| 亚洲自偷自拍图片 自拍| 国产v大片淫在线免费观看| 在线免费观看不下载黄p国产 | 三级男女做爰猛烈吃奶摸视频| 伦理电影免费视频| 99在线视频只有这里精品首页| 久久久久国内视频| 欧美xxxx黑人xx丫x性爽| 一a级毛片在线观看| 91字幕亚洲| 日日夜夜操网爽| 欧美中文综合在线视频| 国产久久久一区二区三区| 欧美3d第一页| 嫁个100分男人电影在线观看| 日韩欧美一区二区三区在线观看| 午夜视频精品福利| 999精品在线视频| 十八禁人妻一区二区| 亚洲国产欧洲综合997久久,| 成人国产一区最新在线观看| 一二三四在线观看免费中文在| 亚洲专区字幕在线| 国产激情偷乱视频一区二区| 久久伊人香网站| 禁无遮挡网站| 免费大片18禁| 日本 av在线| 国产极品精品免费视频能看的| 日韩国内少妇激情av| 精品国内亚洲2022精品成人| 成人亚洲精品av一区二区| 亚洲欧美日韩高清专用| 18禁美女被吸乳视频| 九色成人免费人妻av| 国内揄拍国产精品人妻在线| 成人特级黄色片久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩高清专用| 午夜精品在线福利| 两性夫妻黄色片| 美女 人体艺术 gogo| 两个人视频免费观看高清| 国产精品一及| 精华霜和精华液先用哪个| 国产精品久久久av美女十八| 成人三级黄色视频| 久久久久久九九精品二区国产| 亚洲av五月六月丁香网| 99视频精品全部免费 在线 | 久久精品夜夜夜夜夜久久蜜豆| 国产99白浆流出| 欧美日韩精品网址| 国内精品久久久久精免费| 免费在线观看亚洲国产| 成人无遮挡网站| 又黄又爽又免费观看的视频| 国产亚洲精品一区二区www| 黑人操中国人逼视频| 天堂av国产一区二区熟女人妻| 亚洲成人久久爱视频| 真人一进一出gif抽搐免费| 成人无遮挡网站| 亚洲成av人片免费观看| 午夜精品在线福利| 亚洲成av人片免费观看| 久久中文字幕一级| 国产午夜精品久久久久久| 亚洲熟妇中文字幕五十中出| 国产黄a三级三级三级人| 色综合亚洲欧美另类图片| 伊人久久大香线蕉亚洲五| 99视频精品全部免费 在线 | 男女床上黄色一级片免费看| 男女床上黄色一级片免费看| 亚洲av美国av| 国产精品免费一区二区三区在线| 国产蜜桃级精品一区二区三区| 99国产极品粉嫩在线观看| 人人妻人人澡欧美一区二区| 色哟哟哟哟哟哟| 欧美乱色亚洲激情| 欧美日本视频| 一级毛片精品| 黑人欧美特级aaaaaa片| 少妇的丰满在线观看| 精品一区二区三区四区五区乱码| 国产淫片久久久久久久久 | 中文字幕精品亚洲无线码一区| 两性夫妻黄色片| 嫁个100分男人电影在线观看| 亚洲五月天丁香| 久久亚洲真实| 亚洲aⅴ乱码一区二区在线播放| 国产伦人伦偷精品视频| 亚洲av日韩精品久久久久久密| 日韩三级视频一区二区三区| 日本精品一区二区三区蜜桃| 1024香蕉在线观看| 国产极品精品免费视频能看的| 黑人巨大精品欧美一区二区mp4| 熟女电影av网| 999精品在线视频| 国产精品国产高清国产av| 亚洲欧美日韩东京热| 亚洲午夜理论影院| 亚洲自偷自拍图片 自拍| 婷婷精品国产亚洲av| ponron亚洲| 亚洲中文字幕一区二区三区有码在线看 | 两性夫妻黄色片| 久久午夜亚洲精品久久| 成年女人永久免费观看视频| 欧美午夜高清在线| 草草在线视频免费看| 亚洲av美国av| 免费观看人在逋| 免费观看的影片在线观看| 国产欧美日韩一区二区精品| 桃色一区二区三区在线观看| 日韩欧美国产在线观看| 欧美国产日韩亚洲一区| 国产aⅴ精品一区二区三区波| 亚洲国产日韩欧美精品在线观看 | 日韩欧美在线二视频| 国产欧美日韩一区二区精品| 麻豆av在线久日| 国模一区二区三区四区视频 | 欧美另类亚洲清纯唯美| 91麻豆av在线| 黄色丝袜av网址大全| svipshipincom国产片| 婷婷丁香在线五月| www.精华液| av黄色大香蕉| 成人18禁在线播放| 可以在线观看毛片的网站| 91麻豆av在线| 欧洲精品卡2卡3卡4卡5卡区| 丰满人妻熟妇乱又伦精品不卡| 国产高清videossex| 淫妇啪啪啪对白视频| 国产午夜精品论理片| 亚洲成av人片在线播放无| 国产黄片美女视频| 精品电影一区二区在线| 亚洲电影在线观看av| 国内精品一区二区在线观看| 国产毛片a区久久久久| 亚洲中文字幕日韩| 999久久久国产精品视频| 热99在线观看视频| 在线永久观看黄色视频| 在线免费观看的www视频| 黄色视频,在线免费观看| 18美女黄网站色大片免费观看| 亚洲人成电影免费在线| 女人被狂操c到高潮| 久久久久九九精品影院| 99久久无色码亚洲精品果冻| 啪啪无遮挡十八禁网站| 国产亚洲精品久久久com| 国产单亲对白刺激| 制服人妻中文乱码| 一级毛片女人18水好多| 国产亚洲精品av在线| 久久久久久久久中文| 亚洲专区字幕在线| 在线十欧美十亚洲十日本专区| 精品一区二区三区视频在线观看免费| 成人国产一区最新在线观看| 一级a爱片免费观看的视频| 老汉色∧v一级毛片| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩无卡精品| 亚洲精品色激情综合| 日韩欧美一区二区三区在线观看| 少妇人妻一区二区三区视频| 精品国产美女av久久久久小说| 亚洲av成人av| 一夜夜www| 国产亚洲精品久久久com| 欧美丝袜亚洲另类 | АⅤ资源中文在线天堂| 中文字幕熟女人妻在线| 国产亚洲av嫩草精品影院| xxxwww97欧美| 亚洲一区高清亚洲精品| 国产精品永久免费网站| 午夜精品一区二区三区免费看| 看片在线看免费视频| 超碰成人久久| 欧美三级亚洲精品| 欧美又色又爽又黄视频| 中文字幕人成人乱码亚洲影| 日本精品一区二区三区蜜桃| 亚洲狠狠婷婷综合久久图片| 久久久久久久精品吃奶| 精品欧美国产一区二区三| 老司机午夜十八禁免费视频| 欧美成人免费av一区二区三区| 制服人妻中文乱码| 亚洲国产欧美网| 精品福利观看| 日韩欧美 国产精品| 精华霜和精华液先用哪个| 深夜精品福利| 一夜夜www| 一本久久中文字幕| 女警被强在线播放| 国内久久婷婷六月综合欲色啪| 99国产精品99久久久久| 国产1区2区3区精品| 一本综合久久免费| 亚洲精品一卡2卡三卡4卡5卡| 波多野结衣高清无吗| 深夜精品福利| 啪啪无遮挡十八禁网站| 亚洲成人久久爱视频| 首页视频小说图片口味搜索| 久久伊人香网站| 网址你懂的国产日韩在线| 亚洲国产精品999在线| 国产精品九九99| 久久天躁狠狠躁夜夜2o2o| 啪啪无遮挡十八禁网站| www.www免费av| 精品一区二区三区四区五区乱码| 久久人妻av系列| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品一区av在线观看| 亚洲国产欧美人成| 性色avwww在线观看| 亚洲av电影不卡..在线观看| 国产精品一区二区三区四区免费观看 | 天天一区二区日本电影三级| 夜夜看夜夜爽夜夜摸| 国产不卡一卡二| or卡值多少钱| 欧美成狂野欧美在线观看| 在线国产一区二区在线| 色尼玛亚洲综合影院| 久久久久久久久免费视频了| 不卡av一区二区三区| 精品人妻1区二区| 最新中文字幕久久久久 | 亚洲中文av在线| 在线观看午夜福利视频| 色av中文字幕| 中文资源天堂在线| 日本免费一区二区三区高清不卡| 国内揄拍国产精品人妻在线| 精品国产乱码久久久久久男人| 99精品久久久久人妻精品| 久久热在线av| 成人欧美大片| 中文亚洲av片在线观看爽| 九九久久精品国产亚洲av麻豆 | 少妇裸体淫交视频免费看高清| 国产欧美日韩一区二区精品| 法律面前人人平等表现在哪些方面| 99久久99久久久精品蜜桃| 国产午夜福利久久久久久| av欧美777| 俄罗斯特黄特色一大片| 久久久国产成人免费| 久久久久精品国产欧美久久久| 又黄又粗又硬又大视频| av在线蜜桃| 午夜免费观看网址| 国产成人精品久久二区二区91| 国产精品亚洲av一区麻豆| 日韩大尺度精品在线看网址| 在线a可以看的网站| 97人妻精品一区二区三区麻豆| 国产一区二区在线av高清观看| 欧美成狂野欧美在线观看| 99久久国产精品久久久| 国产v大片淫在线免费观看| 99久久精品一区二区三区| 国内精品美女久久久久久| 1024香蕉在线观看| 色精品久久人妻99蜜桃| 午夜成年电影在线免费观看| 国产亚洲精品综合一区在线观看| 午夜两性在线视频| 久久精品aⅴ一区二区三区四区| 国产精品久久久久久人妻精品电影| 美女扒开内裤让男人捅视频| 又黄又粗又硬又大视频| 99久久久亚洲精品蜜臀av| 午夜影院日韩av| 九色成人免费人妻av| 国产成人精品无人区| 精品日产1卡2卡| 又黄又爽又免费观看的视频| 日韩成人在线观看一区二区三区| 精品久久久久久久毛片微露脸| 给我免费播放毛片高清在线观看| 国产高清三级在线| 在线a可以看的网站| 国产主播在线观看一区二区| 久久亚洲真实| 制服人妻中文乱码| 我的老师免费观看完整版| 老汉色av国产亚洲站长工具| 国产亚洲精品久久久com| 蜜桃久久精品国产亚洲av| 欧美日本视频| 精品电影一区二区在线| 成人特级av手机在线观看| 99久久国产精品久久久| 国产人伦9x9x在线观看| 无限看片的www在线观看| av天堂在线播放| 淫秽高清视频在线观看| xxxwww97欧美| 欧美绝顶高潮抽搐喷水| av国产免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品99又大又爽又粗少妇毛片 | 中文字幕最新亚洲高清| 999久久久精品免费观看国产| 18禁国产床啪视频网站| 这个男人来自地球电影免费观看| 亚洲国产中文字幕在线视频| 手机成人av网站| 久久亚洲精品不卡| 亚洲五月天丁香| 国产久久久一区二区三区| 国产乱人伦免费视频| 国产精品av视频在线免费观看| 亚洲黑人精品在线| 欧美另类亚洲清纯唯美| 亚洲av五月六月丁香网| av欧美777| 中亚洲国语对白在线视频| 成人18禁在线播放| 99视频精品全部免费 在线 | 欧美色欧美亚洲另类二区| 亚洲avbb在线观看| 最新美女视频免费是黄的| 搞女人的毛片| avwww免费| 18禁裸乳无遮挡免费网站照片| 制服人妻中文乱码| 国产乱人视频| 香蕉丝袜av| 久久久久性生活片| 在线观看舔阴道视频| 美女免费视频网站| 男插女下体视频免费在线播放| 99久久精品一区二区三区| 成人国产一区最新在线观看| or卡值多少钱| 校园春色视频在线观看| 又黄又爽又免费观看的视频| av国产免费在线观看| 精品久久久久久久毛片微露脸| 国产日本99.免费观看| 日日摸夜夜添夜夜添小说| 亚洲乱码一区二区免费版| 亚洲精品一卡2卡三卡4卡5卡| 麻豆久久精品国产亚洲av| 精品久久久久久久毛片微露脸| 91麻豆av在线| 九色国产91popny在线| 日韩免费av在线播放| av在线天堂中文字幕| 亚洲av电影不卡..在线观看| 精品不卡国产一区二区三区| 老汉色av国产亚洲站长工具| 首页视频小说图片口味搜索| 婷婷精品国产亚洲av| 长腿黑丝高跟| 欧美黄色淫秽网站| 日韩中文字幕欧美一区二区| 亚洲自拍偷在线| а√天堂www在线а√下载| 久久精品国产99精品国产亚洲性色| 一个人看的www免费观看视频| 五月玫瑰六月丁香| 禁无遮挡网站| 亚洲 欧美一区二区三区| 亚洲专区中文字幕在线| 日本a在线网址| 中文在线观看免费www的网站| 精品电影一区二区在线| 91在线精品国自产拍蜜月 | 热99re8久久精品国产| 欧美激情久久久久久爽电影| 欧美黑人欧美精品刺激| 在线免费观看不下载黄p国产 | www国产在线视频色| 欧美绝顶高潮抽搐喷水| 国产不卡一卡二| 俺也久久电影网| 99国产精品99久久久久| 一级a爱片免费观看的视频| 一边摸一边抽搐一进一小说| 看免费av毛片| 在线视频色国产色| 51午夜福利影视在线观看| 日韩欧美国产在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美激情综合另类| 动漫黄色视频在线观看| 欧美成人性av电影在线观看| 欧美一级a爱片免费观看看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av免费在线观看| 91麻豆av在线| 三级国产精品欧美在线观看 | 国产av一区在线观看免费| 国产精品影院久久| 国产精品 国内视频| 亚洲av成人一区二区三| 国产精品,欧美在线| 首页视频小说图片口味搜索| 亚洲成人久久性| 欧美在线一区亚洲| 丁香六月欧美| 一a级毛片在线观看| 99久久国产精品久久久| 久久国产精品影院| 久久精品综合一区二区三区| 天堂影院成人在线观看| 国产成人系列免费观看| 久9热在线精品视频| 欧美激情久久久久久爽电影| 国产黄a三级三级三级人| 国产v大片淫在线免费观看| 亚洲中文字幕一区二区三区有码在线看 | 黄频高清免费视频| 淫妇啪啪啪对白视频| 久久精品夜夜夜夜夜久久蜜豆| 国内精品久久久久久久电影| 亚洲熟女毛片儿| а√天堂www在线а√下载| 丁香六月欧美| 男女做爰动态图高潮gif福利片| 国产成人一区二区三区免费视频网站| 欧美激情久久久久久爽电影| 19禁男女啪啪无遮挡网站| 黄色丝袜av网址大全| 丁香欧美五月| 中文字幕精品亚洲无线码一区| 精品不卡国产一区二区三区| 日韩欧美免费精品| 久久久精品大字幕| 亚洲国产看品久久| 欧美色视频一区免费| 国产精品一区二区三区四区免费观看 | 欧美日韩中文字幕国产精品一区二区三区| 99热这里只有精品一区 | 午夜免费观看网址| 欧美中文日本在线观看视频| 久久久久久九九精品二区国产| 麻豆av在线久日| 搞女人的毛片| 视频区欧美日本亚洲| 黑人欧美特级aaaaaa片| 一区福利在线观看| 成人av在线播放网站| 熟女电影av网| 亚洲aⅴ乱码一区二区在线播放| 亚洲中文日韩欧美视频| 岛国视频午夜一区免费看| 成人三级做爰电影| 日本五十路高清| 欧美色视频一区免费| 老熟妇乱子伦视频在线观看| 国产精品爽爽va在线观看网站| 久久人妻av系列| 国产欧美日韩一区二区三| 日韩欧美在线二视频| 日本五十路高清| 免费在线观看亚洲国产| 身体一侧抽搐| 免费搜索国产男女视频| 91九色精品人成在线观看| 十八禁网站免费在线| 国产精品 欧美亚洲| 无遮挡黄片免费观看| 亚洲成人久久爱视频| 成人特级黄色片久久久久久久| 最近最新中文字幕大全免费视频| 真人做人爱边吃奶动态| 国产av一区在线观看免费| 亚洲自拍偷在线| 在线免费观看不下载黄p国产 | 波多野结衣巨乳人妻| 黄片小视频在线播放| 99热这里只有精品一区 | 一二三四社区在线视频社区8| 日韩欧美在线二视频| 国产精品久久久av美女十八| 一进一出抽搐动态| 成人特级黄色片久久久久久久| 91久久精品国产一区二区成人 | 午夜精品在线福利| 在线a可以看的网站| cao死你这个sao货| 成人永久免费在线观看视频| 久久精品综合一区二区三区| 91老司机精品| 他把我摸到了高潮在线观看| 亚洲av电影不卡..在线观看| 无遮挡黄片免费观看| aaaaa片日本免费| 男人舔女人的私密视频| 精品一区二区三区视频在线 | 国产精品亚洲美女久久久| 国内毛片毛片毛片毛片毛片| 怎么达到女性高潮| 免费高清视频大片| 日韩大尺度精品在线看网址| 男女床上黄色一级片免费看| 国产高清三级在线| 色综合亚洲欧美另类图片| 美女扒开内裤让男人捅视频| 天天躁狠狠躁夜夜躁狠狠躁| 日本撒尿小便嘘嘘汇集6| 又粗又爽又猛毛片免费看| 热99re8久久精品国产| 亚洲成人久久性| 麻豆成人午夜福利视频| 人妻夜夜爽99麻豆av| 久久九九热精品免费| 日本黄色视频三级网站网址| 又大又爽又粗| 日本成人三级电影网站| 久久久久国内视频| 在线观看免费视频日本深夜| 欧美黑人巨大hd| h日本视频在线播放| 男女视频在线观看网站免费| 国产精品99久久99久久久不卡| 日本 欧美在线| 亚洲精品一卡2卡三卡4卡5卡| 欧美成人一区二区免费高清观看 | АⅤ资源中文在线天堂| 精品久久久久久久久久免费视频| 色吧在线观看| 欧美极品一区二区三区四区| 97人妻精品一区二区三区麻豆| 欧美3d第一页| 18禁黄网站禁片免费观看直播| 欧美成人免费av一区二区三区| 国产精品香港三级国产av潘金莲| 蜜桃久久精品国产亚洲av| 亚洲美女视频黄频| 成人18禁在线播放| 久久久成人免费电影| 一本精品99久久精品77| 欧美黄色片欧美黄色片| 欧美一级a爱片免费观看看| 亚洲熟妇中文字幕五十中出| 精品国内亚洲2022精品成人| 亚洲精品国产精品久久久不卡| 真人做人爱边吃奶动态| 俄罗斯特黄特色一大片| 少妇熟女aⅴ在线视频| 久久亚洲真实|