• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface?

    2021-12-22 06:50:52LanLanZhang張?zhí)m蘭PingLi李萍andXiaoWeiSong宋霄薇
    Chinese Physics B 2021年12期
    關鍵詞:李萍蘭蘭

    Lan-Lan Zhang(張?zhí)m蘭), Ping Li(李萍), and Xiao-Wei Song(宋霄薇)

    School of Medical Technology and Engineering,Henan University of Science and Technology,Luoyang 471000,China

    Keywords: metasurface,graphene,polarization converter,multi-band

    1. Introduction

    Effectively manipulating the state of optical polarization is highly valuable.[1–3]Conventional polarization control methods usually include using optical grating, dichroic crystal,Faraday effects,and birefringent materials,etc.[4–6]These approaches require a long optical distance to accumulate the phase difference, which means that the traditional polarization devices are usually bulky and are not suitable for applications requiring miniaturization of optical elements. Therefore,it is urgent to develop new miniaturized polarization devices to meet many practical applications.

    In recent years, metamaterials or metasurfaces have attracted increasing attention.[7,8]Researchers have found that they can easily modulate the polarization modes of electromagnetic (EM) waves.[9–13]To date, a series of novel polarization converters have been realized and studied by using metasurface,[14–20]which greatly promote the development of optoelectronics and optical communication.However,once these polarization converters are manufactured, most of them can neither be externally tuned nor electrically switched,which limits their development.

    Graphene,a novel two-dimensional material,has aroused great interest of researchers in recent years. Graphene has high conductivity and can be continuously tuned by external electrostatic biasing,[21]which provides a bright perspective for the design of tunable optical devices.[22–26]Among these tunable devices, polarization converter is an indispensable component. Recently,many polarization converters have been reported by using graphene.[27–33]For example, Penget al.reported a reflection-type polarization converter using graphene, which is composed of a strip-loaded half elliptical graphene ring array. The polarization converter not only convert linearly polarized incident wave into its crosspolarizations, but also convert circular polarization incident wave into its cross-polarizations.[34]Chenet al.proposed a tunable linear-to-linear(LTL)polarization converter by using hollowed “H” graphene patch array, which realized a broadband polarization conversion from 34.39 THz to 36.92 THz,and the polarization conversion ratio is more than 90%.[35]Penget al.presented a tunable double-band LTL polarization converter in the THz region by using coupled graphene nanostructure. The polarization conversion phenomenon is achieved due to the hybridization effect caused by coupling interactions between plasmonic resonances in two graphene discs.[36]Zhuet al.proposed a broadband sinusoidally-slotted graphene-based cross-polarization converter structure, which realized a tunable broadband polarization conversion from 1.28 THz to 2.13 THz, and the polarization conversion ratio is more than 85%.[37]Zenget al.proposed a dual-band crosspolarization converter by using U-shaped graphene nanostructures array.[38]Yaoet al.proposed a triple-band LTL polarization converter based on graphene metasurface with double L-shaped unit. The polarization conversion ratios are 96.9%, 96.2%, and 83% at 36.15, 48.95, and 52.20 THz,respectively.[39]A triple-band cross-polarization conversion function was also realized by introducing slits into the elliptical graphene array. The polarization conversion ratio is more than 95% at the three operating frequencies.[40]The above multi-band polarization converters are mostly double-band or triple-band. In practical applications, a four-band reflective LTL polarization converter is also needed. Recently, Chenet al.present a four-band reflective LTL polarization converter using two-layer graphene metasurface structure.[41]In their proposed polarization converter structure,two graphene metasurfaces are separated by the dielectric. Compared with the structure based on single-layer graphene, their fabrication is more difficult. To the best knowledge of the authors, fourband polarization converters based on single layer graphene metasurface have been rarely reported.

    In this paper, a tunable wide-angle multi-band reflective LTL polarization converter using single-layer graphene metasurface is proposed and studied. It is a sandwich structure consisting of a single-layer graphene metasurface,a dielectric spacer,and a metal substrate. The single-layer graphene metasurface is composed of an array of two L-shaped graphene patches with different sizes. The polarization converter can transformsx-polarized wave intoy-polarized wave at four resonance frequencies. A High-efficiency, three-band, LTL polarization conversion can also be realized by carefully selecting the geometric parameters. Furthermore, the polarization converter also presents good angular stability under oblique incidence angles, and the working frequency of the proposed polarization converter can be flexibly tuned by changing the Fermi energy without refabricating the structures. Our fourband polarization converter with simpler structure is easily fabricated, which has great application potential in electromagnetic polarization control.

    2. Theoretical model and design

    A generalized schematic of the proposed reflection wideangle multi-band polarization converter is shown in Fig.1(a).The structure consists of a graphene array at the top, a silica(ε=2.25)dielectric spacer with thicknessts=1000 nm in the middle,and a metal gold substrate with thicknesstm=150 nm at the bottom. Figure 1(b) shows one unit of the proposed structure. Here,graphene layer is composed of two L-shaped graphene sheets with different lengths and widths.drepresents the distance between two L-shaped graphene,L1andW1represent the length and width of the larger L-shaped graphene patch,L2andW2represent the length and width of the smaller L-shaped graphene patch,PxandPyrepresents the periods in thexandydirections. The unit-cell has the following geometric parameters:L1=114 nm,W1=62 nm,L2=74 nm,W2=37 nm,d=6 nm,Px=Py=160 nm. The manufacturing processes of our proposed structure is feasible. In potential fabrication,the substrate gold layer can be obtained by electron beam evaporation, and the silica dielectric acts as an adhesive layer. A large-area graphene film can be fabricated by an optimized liquid precursor chemical vapor deposition method[42]and can be transferred onto silica layer. Two Lshaped array can be obtained by oxygen plasma etching and electron beam lithography.[43]

    Fig.1. (a)Schematic diagram of the proposed wide-angle multi-band polarization converter, where tm =150 nm,ts =1000 nm. (b)Unit cell of structure,where L1=114 nm,W1=62 nm,L2=74 nm,W2=37 nm,d=6 nm,Px=Py=160 nm.

    The permittivity of metal gold substrate is described by the Drude model.[44]The graphene’s relative permittivityεGcan be obtained by[45]

    where, the impedance of airηis about 377 ?,?=1 nm is the typical thickness of graphene thickness,δGrepresents the surface conductivity of graphene. In the mid-infrared range,δGcan be calculated approximately as

    where, ˉh,kB, anderepresent the reduced Plank’s constant,Boltzmann’s constant,and electron charge,respectively.ω,T(=300 K),τandEfare the angular frequency of the incident light, room temperature, electron scattering time, and Fermi energy level,respectively.

    In our simulations,all the electromagnetic simulation results are obtained via the COMSOL software,which are based on the finite element method(FEM).A plane wave with anxpolarized electric field is used as the excitation source. The property of our proposed polarization converter can be described with a reflection matrix,which is as follows:[46]

    To measure the polarization conversion performance,the polarization conversion ratio(PCR)is defined as[47,48]

    3. Results and discussion

    Fig. 2. Numerical results of the proposed wide-angle multi-band polarization polarization converter for normal incident. (a) Calculated copolarization reflection(Rxx)and cross-polarization reflection(Ryx). (b)Calculated PCR spectrum;the magnetic field profiles Hz on the surface of the graphene patch for 27.90 THz(c),33.35 THz(d),37.10 THz(e),and 45.80 THz(f),respectively.

    The co-polarization reflection (Rxx=|rxx|2) and crosspolarization reflection (Ryx=|ryx|2) for normal incident are shown in Fig. 2(a), whereEf=1 eV,τ=1 ps. It is clearly seen that there are four high reflection peaks inRyxat 27.90,33.35, 37.10, and 45.80 THz, respectively. On the contrary,four low reflection dips appear inRxxat these four same frequencies. The PCR spectrum is shown in Fig.2(b). The PCR spectrum shows four peaks which reach 94.4%,92.7%,99.3%,and 93.1%at 27.90,33.35,37.10,and 45.8 THz,respectively.These phenomena indicate that the designed structure can realize the four-band of polarization transfer fromxtoydirection. Figures 2(c)–2(f)depict the magnetic field profilesHzon the surface of the graphene patch for 27.90,33.35,37.10,and 45.80 THz, respectively. The magnetic field distributionsHzare located on the edges of the graphene patch.

    Fig.3. (a)Schematic diagram of the decomposition of linearly polarized incident wave,(b)simulated co-polarization reflection(Ruu,Rvv)for polarization converter at incidences with ?45?(Eu) and 45?(Ev) polarizations. Panels (c)–(f) show the z component of the magnetic field distribution(Hz)at different frequencies(c)27.90 THz with Eu incidence,(d)33.50 THz with Eu incidence,(e)37.10 THz with Ev incidence,and(f)45.80 THz with Ev incidence,respectively.

    To further reveal the physical mechanism of our proposed graphene-based polarization conversion, we analyzed the other two incident cases:EuandEv. For anx-polarized incident wave,it can be decomposed into two orthogonal polarized components with equal magnitudes and phases,here theuaxis and thevaxis are the directions that along 45?and?45?clockwise from the +x-axis direction, as shown in Fig. 3(a).Figure 3(b) shows two simulated reflection coefficientsRuuandRvvunderEuandEvincidences, respectively. There are two dips inRuuat 27.90 THz,33.35 THz and two dips inRvvat 37.10 THz,45.80 THz. These four dips originate from four eigenmodes, which are excited byEuandEv. The first two modes are excited byEupolarization incidence at 27.90 THz and 33.35 THz,and the latter two modes are excited byEvpolarization incidence at 37.10 THz and 45.80 THz. These four modes are all derived from the excitation of the graphene surface plasmons(GSPs). The calculated PD ??=?vv?uuis also shown in Fig. 3(b). ??is close to 180?, 180?,?180?, and 0?at 27.90, 33.35, 37.10, and 45.8 THz. Therefore, at these four resonant frequencies, the superimposition of the two reflected components can produce the polarization rotation with rotation angle of 90?. The magnetic field profilesHzat frequencies of 27.90 THz and 33.35 THz forEuincidence are shown in Figs.3(c)and 3(d),and these two eigenmodes show symmetric magnetic field distribution about the 45?direction.The magnetic field profilesHzat frequencies of 37.10 THz and 45.80 THz forEvincidence are shown in Figs. 3(e) and 3(f), and these two eigenmodes show anti-symmetrical magnetic field distribution about the 45?direction.

    Figure 4 shows the simulated PCR under different incident angles,and the other parameters are the same with those of Fig. 2. The PCR is quite stable for the change of incident angle. When the incident angles increase from 0?to 60?four working frequencies of proposed polarization converter at 27.90,33.35,37.10,and 45.80 THz are almost unchanged,and the PCR peak values at these four resonant frequencies are also keep the same.Our polarization converter is based on four localized GSPs resonances,which are insensitive about the incident angle. The small feature size of graphene also contributes to the angle insensitivity of our device. In generally,at the same resonant frequency, the feature size of graphene plasmonic structure is several times smaller than the metal counterpart, which leads to less dependence on the incident angle.[30]When the incident angle is more than 60?the third PCR peak positions have obvious shift, and the PCR peak values of some resonant frequencies decrease. The reason is that the interaction between the electromagnetic wave and graphene is weakened under the large incident angle.[35]The simulation results imply that the proposed polarization converter is angle-insensitive.

    To better understand the excitation of these plasmonic resonant modes, the geometric parametersL1andL2are changed for further study. The corresponding PCRs are illustrated in Figs.5(a)–5(b),respectively. In Fig.5(a),with the increase ofL1(from 112 nm to 118 nm),we notice that the first and third PCR peak positions have obvious red-shifted,but the other two peak positions are almost unchanged, In Fig. 5(b),we notice that the second and fourth PCR peak positions have obvious red-shifted with the increase ofL2,while the position of other two peaks do not change significantly. WhenL2is reduced(from 74 nm to 68 nm),the third PCR peak and second PCR peak are close to each other. Finally,whenL2=68 nm,the second and third polarization conversion bands are coupled to each other,resulting in a wide polarization conversion band in which PCR is greater than 99.2% in the frequency range from 36.45 THz to 37.6 THz. Thus,a three-band polarization converter is achieved, and the three polarization conversion ratios reach 91.50%, 99.20%, and 97.22%, respectively. The above red-shift behavior shown in Figs.5(a)–5(b)can be expected from the magnetic field profiles in Figs.2(c)–2(f). It can be seen from Figs.2(c)and 2(e)that the magnetic field energy is mainly distributed at the edges of the large Lshaped graphene patch for the frequencies of 27.90 THz and 37.10 THz. While the magnetic field energy is mainly distributed at the edges of the small L-shaped graphene patch for the frequencies of 33.35 and 45.80 THz, seen in Figs. 2(d)and 2(f). Therefore, the adjustment of geometric parameters of large L-shaped graphene patch (L1) has a greater impact on the first and the third operating frequencies (27.90 THz and 37.10 THz)than the second and the fourth operating frequencies. But the second and the fourth operating frequencies(33.35 THz and 45.80 THz)are mainly dependent on geometric parameters of small L-shaped graphene patch(L2).

    Fig.4.Simulation of PCRs under different incident angles.Other parameters are the same as those in Fig.2.

    Next,the tunable properties of proposed four-band polarization conversion are discussed. It has been reported that the Femi energy of graphene can be tuned in the range of about?1 eV to 1eV by changing electrical gating,[49]which indicates that graphene has great potential in tunable devices. The PCRs for different graphene Fermi energy (Ef) are presented in Fig.6,other parameters are fixed as same as before. From Fig.6,we can see that the PCRs are tunable over a wide range of frequencies. WhenEfis decreased from 1 eV to 0.8 eV,four peaks of PCR are red-shifted from 27.90, 33.35, 37.10,and 45.80 THz to 25.00, 29.85, 33.25, and 40.90 THz, respectively. The reason of red-shift phenomenon is that the plasmonic resonant frequency(f)has a functional relationship with(Ef)1/2.[50]Therefore,the decrease ofEfcan result in the red-shift of the four peak positions.

    Fig.5. Effects of geometric parameters on the performance of the proposed polarization converter. (a)Varying L1,(b)varying L2.

    WhenL2=68 nm, the PCRs of triple-band polarization conversion for different graphene Fermi energies(Ef)are presented in Fig. 7. The working frequencies of three-band polarization conversion are all red-shift withEfdecreasing from 1 eV to 0.8 eV.This phenomenon is attributed to the red shift of the GSPs’resonant frequency(f)with decreasing the Fermi energy(Ef).

    Fig.6. Simulated PCRs of four-band LTL polarization converter for different graphene Fermi energies(Ef).

    Fig.7. Simulated PCRs of triple-band LTL polarization converter for different graphene Fermi energies(Ef).

    Table 1. Comparisons of our proposed device with other graphene-based multi-band polarization converters.

    We compared the key characteristics of our proposed device with other graphene based multi-band polarization converters reported in recent years. As shown in Table 1,the polarization converters based on single-layer graphene metasurface proposed in Refs.[28,29,32,36,39,40]are mostly doubleband or triple-band. Although a four-band polarization converter is proposed in Ref.[41]it is based on bilayer grapehen metasurface. Compared with bilayer graphene-based polarization converter proposed in Ref. [41] our proposed single layer graphene-based structure has the characteristics of simpler structure and easier fabrication.

    4. Conclusion

    In summary, we proposed to achieve dynamically tunable multiple-band LTL polarization conversion by using a graphene metasurface, which is composed of an array of two L-shaped graphene patches with different sizes. The calculation results indicated that the proposed converter can transformx-polarized light intoy-polarized light at four resonance frequencies simultaneously. The PCR can reach 94.4%, 92.7%,99.3%,and 93.1%at 27.90,33.35,37.10,and 45.8 THz.Also,the dynamically tunable triple-band LTL polarization conversion can be realized by designing reasonable geometric parameters. The PCR can reach 91.50%, 99.20%, and 97.22%.The simulation results also indicate that the working frequency of the polarization converter can be easily tuned by changing the Fermi energy instead of redesigning the structure.Furthermore, our polarization converter shows good angleindependent property. We believe that our design will have potential applications in electromagnetic polarization control.

    猜你喜歡
    李萍蘭蘭
    Design of sign-reversible Berry phase effect in 2D magneto-valley material
    On the green aurora emission of Ar atmospheric pressure plasma
    婦科超聲見盆腔積液診斷探討
    SLA:ErroranalysisofthelearnersinvocationalcollegeundertheBlendedLearningModel
    《黃山奇松》(第二課時)教學設計
    蘭蘭和兔子的游戲
    找春天
    找春天
    在新加坡的蘭蘭姐姐(下)
    在新加坡的蘭蘭姐姐(中)
    国产精品偷伦视频观看了| 我要看黄色一级片免费的| 免费看av在线观看网站| 欧美激情 高清一区二区三区| 久久人妻熟女aⅴ| 最新中文字幕久久久久| 日日摸夜夜添夜夜爱| 三级国产精品片| 精品一区二区三卡| 欧美精品一区二区大全| 一边亲一边摸免费视频| 国产精品熟女久久久久浪| 久热久热在线精品观看| 99re6热这里在线精品视频| 日韩人妻高清精品专区| 有码 亚洲区| 日韩欧美精品免费久久| 免费黄频网站在线观看国产| 国产熟女欧美一区二区| 爱豆传媒免费全集在线观看| 日韩亚洲欧美综合| 国产成人精品一,二区| 国产男女超爽视频在线观看| 少妇人妻久久综合中文| 能在线免费看毛片的网站| 亚洲不卡免费看| 看免费成人av毛片| 亚洲av成人精品一二三区| 国精品久久久久久国模美| 久久精品久久久久久久性| 18+在线观看网站| 亚洲av欧美aⅴ国产| 777米奇影视久久| 一区二区三区乱码不卡18| 成年av动漫网址| 国产一区二区三区综合在线观看 | 18在线观看网站| 国产黄频视频在线观看| av一本久久久久| 人妻少妇偷人精品九色| 国产精品人妻久久久久久| a级毛片在线看网站| 国产国拍精品亚洲av在线观看| 亚洲综合精品二区| 91成人精品电影| 亚洲成人av在线免费| 国产精品秋霞免费鲁丝片| 91精品国产国语对白视频| 中文字幕制服av| 亚洲精品美女久久av网站| 一区在线观看完整版| 欧美日韩视频高清一区二区三区二| 麻豆乱淫一区二区| 99re6热这里在线精品视频| 午夜av观看不卡| 9色porny在线观看| 香蕉精品网在线| 久久毛片免费看一区二区三区| 久久久久久久久久久久大奶| 男女国产视频网站| 日韩一区二区三区影片| 色5月婷婷丁香| 一区二区三区精品91| 狂野欧美激情性xxxx在线观看| 亚洲精品第二区| 亚洲精华国产精华液的使用体验| 如日韩欧美国产精品一区二区三区 | 热re99久久国产66热| 中文字幕免费在线视频6| 国产欧美亚洲国产| 26uuu在线亚洲综合色| 久久青草综合色| 999精品在线视频| 精品少妇黑人巨大在线播放| 亚洲美女视频黄频| 老司机亚洲免费影院| 亚洲三级黄色毛片| 亚洲av国产av综合av卡| 亚洲色图综合在线观看| av黄色大香蕉| 免费观看在线日韩| 有码 亚洲区| 少妇人妻精品综合一区二区| 99re6热这里在线精品视频| 汤姆久久久久久久影院中文字幕| 亚洲情色 制服丝袜| 久久精品久久久久久久性| 久久精品国产亚洲av涩爱| 国产熟女午夜一区二区三区 | 岛国毛片在线播放| 亚州av有码| 热99国产精品久久久久久7| 国产免费又黄又爽又色| 2022亚洲国产成人精品| 高清不卡的av网站| 丁香六月天网| 精品人妻偷拍中文字幕| 天堂8中文在线网| 亚洲国产欧美日韩在线播放| 国产熟女欧美一区二区| 欧美另类一区| 香蕉精品网在线| 看十八女毛片水多多多| 精品久久蜜臀av无| 韩国高清视频一区二区三区| 久久女婷五月综合色啪小说| 亚洲av.av天堂| 亚洲四区av| 精品亚洲成a人片在线观看| 精品熟女少妇av免费看| 制服人妻中文乱码| 久热久热在线精品观看| av.在线天堂| 国产国拍精品亚洲av在线观看| 51国产日韩欧美| 日韩在线高清观看一区二区三区| 免费播放大片免费观看视频在线观看| 亚洲国产最新在线播放| av视频免费观看在线观看| 大香蕉久久成人网| av卡一久久| 涩涩av久久男人的天堂| 伊人亚洲综合成人网| 国产精品一区二区在线不卡| 老熟女久久久| 一级,二级,三级黄色视频| 亚洲av电影在线观看一区二区三区| 国产精品久久久久久精品古装| 国产在线免费精品| 亚洲一级一片aⅴ在线观看| 老司机亚洲免费影院| 另类亚洲欧美激情| 亚洲欧美成人综合另类久久久| 精品卡一卡二卡四卡免费| 午夜福利视频在线观看免费| 欧美日韩成人在线一区二区| 亚洲婷婷狠狠爱综合网| 少妇被粗大的猛进出69影院 | av福利片在线| 午夜福利影视在线免费观看| 亚洲精华国产精华液的使用体验| 亚洲国产精品专区欧美| 免费日韩欧美在线观看| 高清视频免费观看一区二区| av免费在线看不卡| 国产视频内射| 性高湖久久久久久久久免费观看| 18禁裸乳无遮挡动漫免费视频| 春色校园在线视频观看| 蜜桃在线观看..| 欧美日韩成人在线一区二区| 国模一区二区三区四区视频| 少妇被粗大的猛进出69影院 | 精品熟女少妇av免费看| 日本猛色少妇xxxxx猛交久久| 人妻少妇偷人精品九色| 日本黄色日本黄色录像| 九九久久精品国产亚洲av麻豆| 18禁在线无遮挡免费观看视频| 97在线人人人人妻| 成人毛片a级毛片在线播放| 多毛熟女@视频| 韩国av在线不卡| 午夜福利,免费看| 观看av在线不卡| 国产免费视频播放在线视频| 男人添女人高潮全过程视频| 天天躁夜夜躁狠狠久久av| av天堂久久9| 国产一级毛片在线| 亚洲av二区三区四区| 亚洲国产精品专区欧美| 久久精品夜色国产| 亚洲精品一二三| 日本色播在线视频| 亚洲av免费高清在线观看| 夜夜爽夜夜爽视频| 欧美精品一区二区免费开放| 一区二区三区乱码不卡18| 在线观看免费视频网站a站| 日本色播在线视频| 一本久久精品| 国产成人午夜福利电影在线观看| 一区在线观看完整版| 大片免费播放器 马上看| 91成人精品电影| 午夜福利网站1000一区二区三区| 中文字幕最新亚洲高清| 欧美 日韩 精品 国产| 一级毛片黄色毛片免费观看视频| 日本猛色少妇xxxxx猛交久久| 麻豆精品久久久久久蜜桃| 国产欧美亚洲国产| 免费久久久久久久精品成人欧美视频 | 国产精品无大码| 久久 成人 亚洲| 丁香六月天网| 亚洲一区二区三区欧美精品| 嫩草影院入口| 国产成人午夜福利电影在线观看| 99久久中文字幕三级久久日本| 亚洲欧美中文字幕日韩二区| 亚洲,欧美,日韩| 国产欧美日韩综合在线一区二区| 日本欧美国产在线视频| 蜜桃在线观看..| 搡女人真爽免费视频火全软件| 免费观看的影片在线观看| 日韩精品免费视频一区二区三区 | 熟女电影av网| 欧美精品国产亚洲| 18禁观看日本| 这个男人来自地球电影免费观看 | 国产无遮挡羞羞视频在线观看| 精品酒店卫生间| 18禁裸乳无遮挡动漫免费视频| 少妇 在线观看| 免费看光身美女| www.色视频.com| 国产精品久久久久久精品电影小说| 久久久久久久久久成人| 亚洲av男天堂| 国产无遮挡羞羞视频在线观看| 夫妻性生交免费视频一级片| 少妇丰满av| 中文字幕最新亚洲高清| 久久婷婷青草| 国产伦理片在线播放av一区| 中文字幕人妻丝袜制服| 久久精品久久久久久噜噜老黄| 国国产精品蜜臀av免费| 亚洲欧美中文字幕日韩二区| 亚洲丝袜综合中文字幕| 我的老师免费观看完整版| 五月玫瑰六月丁香| 男人爽女人下面视频在线观看| 免费人成在线观看视频色| 国产免费一级a男人的天堂| 中文精品一卡2卡3卡4更新| 免费日韩欧美在线观看| 考比视频在线观看| 视频在线观看一区二区三区| a级毛片免费高清观看在线播放| 亚洲精品第二区| 熟女av电影| 午夜av观看不卡| 日韩成人av中文字幕在线观看| 精品久久久噜噜| 26uuu在线亚洲综合色| 欧美xxxx性猛交bbbb| 久久国产精品大桥未久av| 国产精品女同一区二区软件| 一区二区日韩欧美中文字幕 | 亚洲欧美精品自产自拍| 夫妻午夜视频| 亚洲精品乱码久久久v下载方式| 大陆偷拍与自拍| 日韩大片免费观看网站| 九九爱精品视频在线观看| 欧美日韩成人在线一区二区| 狂野欧美激情性bbbbbb| 纵有疾风起免费观看全集完整版| 插阴视频在线观看视频| 五月开心婷婷网| 狂野欧美激情性xxxx在线观看| 又黄又爽又刺激的免费视频.| 观看av在线不卡| 亚洲欧美日韩另类电影网站| 永久免费av网站大全| 国产免费视频播放在线视频| 日韩,欧美,国产一区二区三区| 啦啦啦在线观看免费高清www| 亚洲美女搞黄在线观看| 欧美人与性动交α欧美精品济南到 | 满18在线观看网站| 插阴视频在线观看视频| 国产高清不卡午夜福利| 丝袜美足系列| 国产在线免费精品| 一区二区三区四区激情视频| 国产成人一区二区在线| 亚洲国产精品一区三区| 久久久欧美国产精品| 97超视频在线观看视频| 特大巨黑吊av在线直播| 制服诱惑二区| 亚洲成人一二三区av| 边亲边吃奶的免费视频| av不卡在线播放| 欧美最新免费一区二区三区| 啦啦啦视频在线资源免费观看| 熟女av电影| 国产亚洲欧美精品永久| 黄色欧美视频在线观看| 久久久久视频综合| 老熟女久久久| 亚洲国产av新网站| 日本黄色片子视频| 婷婷色麻豆天堂久久| 在线观看免费视频网站a站| 免费观看av网站的网址| 桃花免费在线播放| 日韩亚洲欧美综合| 两个人免费观看高清视频| 男的添女的下面高潮视频| 欧美少妇被猛烈插入视频| a级毛色黄片| 国产成人精品福利久久| 精品午夜福利在线看| 99热6这里只有精品| 色网站视频免费| 青春草亚洲视频在线观看| 自线自在国产av| 成人毛片60女人毛片免费| 18禁观看日本| 久久久久久久精品精品| a级毛色黄片| 国产毛片在线视频| 各种免费的搞黄视频| a级毛色黄片| 人妻制服诱惑在线中文字幕| 七月丁香在线播放| 午夜激情av网站| 国产精品人妻久久久久久| 欧美日韩在线观看h| 精品少妇久久久久久888优播| 成年av动漫网址| 亚洲av日韩在线播放| 国产视频首页在线观看| 精品99又大又爽又粗少妇毛片| 欧美日韩一区二区视频在线观看视频在线| 国产精品免费大片| 亚洲av综合色区一区| 欧美最新免费一区二区三区| 日韩av免费高清视频| 丰满饥渴人妻一区二区三| 久久久久久久久久久免费av| 亚洲综合色网址| 午夜福利视频在线观看免费| 亚洲精品色激情综合| 久久久久久久久久久丰满| 欧美日韩精品成人综合77777| 国产无遮挡羞羞视频在线观看| 日产精品乱码卡一卡2卡三| 人妻少妇偷人精品九色| 亚洲精品亚洲一区二区| 秋霞在线观看毛片| 免费人妻精品一区二区三区视频| 韩国av在线不卡| 亚洲精品亚洲一区二区| 少妇熟女欧美另类| 只有这里有精品99| 成人二区视频| 哪个播放器可以免费观看大片| 日本黄色片子视频| 哪个播放器可以免费观看大片| 国产无遮挡羞羞视频在线观看| 日本与韩国留学比较| 国产精品一二三区在线看| 国产黄色免费在线视频| 性色av一级| 一区二区三区精品91| 久久精品国产亚洲网站| 日产精品乱码卡一卡2卡三| 99热6这里只有精品| 亚洲精品自拍成人| 麻豆精品久久久久久蜜桃| 久久久午夜欧美精品| 一级黄片播放器| 亚洲精品自拍成人| 久久精品久久久久久久性| av播播在线观看一区| 国产精品一二三区在线看| 只有这里有精品99| 亚洲国产欧美日韩在线播放| 人人妻人人澡人人看| 成年av动漫网址| 国产国语露脸激情在线看| 免费黄网站久久成人精品| 成人国产麻豆网| 亚洲精品乱码久久久v下载方式| 亚洲美女视频黄频| 午夜福利视频在线观看免费| 午夜激情久久久久久久| 两个人免费观看高清视频| 黑人猛操日本美女一级片| 80岁老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 免费大片黄手机在线观看| 日日摸夜夜添夜夜爱| 国产精品.久久久| 国产免费视频播放在线视频| 99国产综合亚洲精品| 人妻人人澡人人爽人人| 人妻夜夜爽99麻豆av| 欧美日韩av久久| 伊人亚洲综合成人网| 狂野欧美白嫩少妇大欣赏| 国产精品国产三级专区第一集| 国产视频内射| 少妇丰满av| 亚洲图色成人| 18禁裸乳无遮挡动漫免费视频| 一级爰片在线观看| 亚洲综合色网址| 久久久精品免费免费高清| 中文字幕最新亚洲高清| 国产在线视频一区二区| 国产免费一区二区三区四区乱码| 亚洲欧美一区二区三区黑人 | 中国三级夫妇交换| 一级毛片aaaaaa免费看小| 一级a做视频免费观看| 赤兔流量卡办理| 一级二级三级毛片免费看| 国产精品99久久久久久久久| 男男h啪啪无遮挡| 人体艺术视频欧美日本| 中文乱码字字幕精品一区二区三区| 男的添女的下面高潮视频| 久久人人爽人人片av| 日本与韩国留学比较| 国产精品蜜桃在线观看| 精品国产一区二区久久| 又黄又爽又刺激的免费视频.| 高清av免费在线| 男女无遮挡免费网站观看| 色哟哟·www| 欧美老熟妇乱子伦牲交| 日日摸夜夜添夜夜爱| 黑丝袜美女国产一区| 夜夜骑夜夜射夜夜干| 日本-黄色视频高清免费观看| 国产精品嫩草影院av在线观看| 高清黄色对白视频在线免费看| 精品人妻熟女av久视频| av在线观看视频网站免费| 如何舔出高潮| 亚洲国产av影院在线观看| 精品亚洲成a人片在线观看| 啦啦啦在线观看免费高清www| 少妇被粗大的猛进出69影院 | videossex国产| 永久网站在线| 日韩一区二区三区影片| 少妇丰满av| 久久久国产欧美日韩av| 丰满乱子伦码专区| 国产在线视频一区二区| 国产在视频线精品| av网站免费在线观看视频| 天堂俺去俺来也www色官网| 久久精品国产自在天天线| 老熟女久久久| 九色成人免费人妻av| 久久亚洲国产成人精品v| 亚洲,一卡二卡三卡| 人体艺术视频欧美日本| 国产黄色视频一区二区在线观看| 国产熟女午夜一区二区三区 | 免费av中文字幕在线| 日韩成人伦理影院| 毛片一级片免费看久久久久| 狠狠婷婷综合久久久久久88av| 国产黄色视频一区二区在线观看| 51国产日韩欧美| 日本免费在线观看一区| 国产精品国产三级专区第一集| 2018国产大陆天天弄谢| 日日啪夜夜爽| www.色视频.com| 久久精品国产a三级三级三级| 免费播放大片免费观看视频在线观看| 国产爽快片一区二区三区| 少妇人妻 视频| 狠狠精品人妻久久久久久综合| 免费高清在线观看视频在线观看| 最近的中文字幕免费完整| 国产熟女欧美一区二区| 久久影院123| 免费人成在线观看视频色| 亚洲国产av影院在线观看| 亚洲av综合色区一区| 久久久亚洲精品成人影院| 国产精品嫩草影院av在线观看| 国产av码专区亚洲av| 国产在视频线精品| 国产av码专区亚洲av| 精品卡一卡二卡四卡免费| 五月开心婷婷网| 日日摸夜夜添夜夜爱| 少妇高潮的动态图| 亚洲色图综合在线观看| 伊人久久精品亚洲午夜| 精品少妇久久久久久888优播| av视频免费观看在线观看| 久久久久视频综合| 18禁观看日本| 日本与韩国留学比较| 免费看av在线观看网站| 亚洲精品日韩av片在线观看| 欧美亚洲日本最大视频资源| 在线观看免费日韩欧美大片 | 不卡视频在线观看欧美| 亚洲精品久久午夜乱码| 日韩,欧美,国产一区二区三区| 校园人妻丝袜中文字幕| 尾随美女入室| 久久午夜综合久久蜜桃| 97超碰精品成人国产| 久久ye,这里只有精品| 国产免费又黄又爽又色| 久久久久久伊人网av| 国产爽快片一区二区三区| 日本色播在线视频| 91精品国产九色| 午夜av观看不卡| 少妇 在线观看| 亚洲国产精品一区二区三区在线| 免费观看的影片在线观看| 精品酒店卫生间| 91在线精品国自产拍蜜月| 欧美+日韩+精品| 国产综合精华液| 91精品一卡2卡3卡4卡| 制服人妻中文乱码| 国产精品国产av在线观看| 久久ye,这里只有精品| 久久久久久久久久成人| 久久午夜综合久久蜜桃| 国产又色又爽无遮挡免| 亚洲内射少妇av| 久久狼人影院| 狂野欧美激情性xxxx在线观看| 91精品三级在线观看| 色哟哟·www| 国产精品人妻久久久久久| av天堂久久9| 国产午夜精品一二区理论片| 国产片内射在线| 久久婷婷青草| 九色成人免费人妻av| 日韩电影二区| 日本vs欧美在线观看视频| 欧美97在线视频| 精品久久久久久久久av| 国产精品麻豆人妻色哟哟久久| 国产欧美另类精品又又久久亚洲欧美| 国产一区有黄有色的免费视频| 精品一区二区免费观看| 久久久久久人妻| www.色视频.com| 国产成人精品一,二区| 午夜激情久久久久久久| 精品视频人人做人人爽| 中文精品一卡2卡3卡4更新| 天天影视国产精品| 国产精品国产三级国产av玫瑰| 三上悠亚av全集在线观看| 91国产中文字幕| 国产日韩欧美视频二区| 成人手机av| 亚洲av不卡在线观看| 亚洲伊人久久精品综合| 午夜福利视频在线观看免费| 少妇人妻 视频| 极品少妇高潮喷水抽搐| av又黄又爽大尺度在线免费看| 久久狼人影院| 多毛熟女@视频| 九草在线视频观看| 日本av手机在线免费观看| 欧美日本中文国产一区发布| 美女福利国产在线| 一级毛片黄色毛片免费观看视频| 国产精品99久久99久久久不卡 | 亚洲伊人久久精品综合| 成年女人在线观看亚洲视频| 国产片内射在线| 欧美人与善性xxx| 亚洲高清免费不卡视频| 精品熟女少妇av免费看| 欧美日韩av久久| 少妇被粗大猛烈的视频| 国产爽快片一区二区三区| 色婷婷av一区二区三区视频| 午夜福利视频在线观看免费| 午夜激情久久久久久久| 亚洲欧美成人精品一区二区| 亚洲,一卡二卡三卡| 高清午夜精品一区二区三区| 女性被躁到高潮视频| 亚洲av国产av综合av卡| 蜜桃国产av成人99| 日本vs欧美在线观看视频| 在线观看一区二区三区激情| 大片电影免费在线观看免费| 国产又色又爽无遮挡免| 国精品久久久久久国模美| 黄色一级大片看看| av国产久精品久网站免费入址| 大话2 男鬼变身卡| 久久精品夜色国产| 亚洲av中文av极速乱| 18禁动态无遮挡网站| 最新中文字幕久久久久| 亚洲国产精品国产精品| 我的女老师完整版在线观看| 久久这里有精品视频免费| 亚洲精品久久午夜乱码| 亚洲成人av在线免费| 欧美日韩av久久| 亚洲精品久久久久久婷婷小说| 亚洲av综合色区一区| 日韩伦理黄色片|