• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of sign-reversible Berry phase effect in 2D magneto-valley material

    2023-10-11 07:56:00YueTongHan韓曰通YuXianYang楊宇賢PingLi李萍andChangWenZhang張昌文
    Chinese Physics B 2023年9期
    關(guān)鍵詞:李萍

    Yue-Tong Han(韓曰通), Yu-Xian Yang(楊宇賢), Ping Li(李萍), and Chang-Wen Zhang(張昌文)

    School of Physics and Technology,University of Jinan,Jinan 250022,China

    Keywords: valley polarization,topological phase transition,half-valley semimetal,quantum anomalous valley Hall effect,first-principles calculations

    1.Introduction

    Valleytronics offers a versatile platform for fundamental and applied research for spintronics materials due to its additional valley degree of freedom, apart from charge and spin.[1–4]Two-dimensional (2D) hexagonal lattices such as transition-metal dichalcogenides (TMD) are promising valley materials to manipulate charge, spin, and valley degrees of freedom.[5–11]In such materials, owing to the breaking of the space-inversion symmetry (P), phenomena associated with valley contrasting feature can be explored such as valley Hall effect (VHE) and valley-controllable optical selection rules.[12,13]Recent advances in valleytronics focus on generating valley polarization by breaking timeinversion symmetry (T) and thus lifting the degeneracy ofK/K′valleys.[14]Several approaches have been proposed,like optical pumping,[15–17]magnetic doping,[18–20]magnetic proximity effect,[21–23]and applying an external magnetic field.[24–27]Nevertheless,the intrinsic properties have a higher priority than external tunability so as to reach widespread applications in valley-related physics.Hence, intrinsic valleyrelated materials hosting spontaneous valley-polarization are most desirable, thanks to its advantages of robustness, power efficiency,and simplicity in operation.

    Recently, break-through of the discovery of 2D ferrovalley (FV) materials,[28]such as 2H-VSe2,[28]VSSe,[29]LaBr2,[30]LaBrI,[31]GdCl2,[32]CeI2,[33]MXenes,[34]and VSi2N4,[35]may lay the foundation for a spin-valley composite paradigm induced by the integrated effects of ferromagnetic(FM)order and spin–orbit coupling(SOC),which could facilitate the observation of anomalous valley Hall effect(AVHE).Furthermore,considering the perspective of potential applications in valleytronics, except for AVHE, the exploration for magneto-valley materials with valley-related multiple Hall effect(MHE)is of significant importance,which can enrich the valley-related physics and emerging quantum states of matter.One exotic valley-related multiple Hall effect is the quantum anomalous valley Hall effect(QAVHE),[36–40]which possesses the interplay between valley and band topology and combines the valley index and quantum anomalous Hall effect(QAHE),[36]making it possible to realize high-performance quantum devices and thus raising an intensive interest in materials science.However,the realization of QAVHE[37]relies on the combination of SOC, band topology and magnetic ordering,which pose a great challenge for the research on potential high-performance valley-controllable quantum computational devices in 2D materials.

    Motivated by these challenges, based on first-principles calculations with DFT+Uapproach and strainedk·pmodel,[37]we have predicted single-layer(SL)RuCl2as an FV semiconductor,exhibiting intrinsic FM order and giant spontaneous valley polarization.Interestingly, we found that different electronic correlation strengths (U) and strains (ε)[41–44]make SL-RuCl2transition to different valley-controllable electronic states, including FV to half-valley[45]semimetal(HVS) to QAVHE to HVS to FV state.These different electronic states are connected with valley-controllable signreversible Berry curvature.Remarkably, QAVHE phase,which combines both the features of QAHE and AVHE, can be realized due to band inversions of dxy/dx2-y2and dz2orbitals atK/K′valleys.We further demonstrate that QAVHE phase of SL-RuCl2exists when electronic correlation strength(U) ranges from 2.19 eV to 2.29 eV.Even increasingUexceed this scope,takeU=2.4 eV,we can still observe QAVHE in the strain range of-2.3% and-1.1% by exerting biaxial compressive strain.Similar phase transition and QAVHE have also be reported in MBr2,[43]FeCl2, VSi2P4,[46]VN2X2Y2(X= group-III andY= group-IV elements).These results broaden the avenue for low-dissipation electronics devices,highly promising for valleytronics and quantum computational devices.

    2.Computational details

    First-principles calculations with spin polarization within DFT are performed by the Viennaab initiosimulation package (VASP).[47–50]The generalized gradient approximation(GGA) with the Perdew–Burke–Ernzerhof (PBE) realization is used to describe the exchange–correlation effect.[51]The energy cutoff is chosen as 550 eV for expanding the wave functions and the total energy convergence criterion of 10-6eV is adopted for static calculations.All the structural parameters are fully optimized until the force on each atom is converged to 0.01 eV/?A.Ak-mesh of 17×17×1 is used to sample the Brillouin zone and a vacuum layer about 20 ?A to avoid the interactions between adjacent direction.To describe the on-site Coulomb interactionUterms of strong correlated Ru 4d electrons,we employed the GGA+Umethod.[52,53]Phonon spectrum is calculated by using 5×5×1 supercell and 5×5×1qgrid based on the density functional perturbation theory(DFPT)approach.[54]The Berry curvatures are calculated using the WANNIER90 package.[55]The edge states are calculated by using the iterative Green function method.[56]

    3.Results and dicussion

    In analogy to the TMDs, SL-RuCl2possessPˉ6m2 symmetry with aD3hpoint group, which is composed of Cl–Ru–Cl sandwich layer,and each Ru atom has six nearest Cl neighbors,forming a triangular prism lattice,as shown in Fig.1(a).Thus, thePin SL-RuCl2is broken.Figure 1(b) displays the optimized lattice constants of SL-RuCl2with theUvalues ranging from 0 eV to 3 eV.We can see that the calculated constant increases from 3.46 ?A to 3.61 ?A withUincreasing from 0 eV to 3 eV.By calculating the phonon spectrum in Fig.1(c),no imaginary frequency modes are observed, which demonstrates SL-RuCl2is dynamically stable.In addition, we calculated the elastic constants to check the mechanical stability of SL-RuCl2.The elastic tensorCwith thePˉ6m2 point-group symmetry for SL-RuCl2can be reduced to

    The calculated results show thatC11andC12are 34.14 GPa and 14.66 GPa, respectively.The calculatedCijsatisfy the Born criteria for mechanical stability,[57]C11>0 andC11-C12>0,which confirms the mechanical stability of SL-RuCl2.

    Next, we turn our attention to the magnetic properties of SL-RuCl2.We consider three magnetic configurations,i.e.,nonmagnetic(NM)state,FM state,and antiferromagnetic(AFM) state, as shown in Fig.S1(a) in supporting information, The energy difference as a function ofUis shown in Fig.S1(b).It is clear to see that SL-RuCl2always prefers FM state withUranging from 0 eV to 3 eV,and the magnetic moment unit cell of FM phase is 4.0μBper Ru atom.According to the Mermin–Wagner theorem,[58]the FM order is generally prohibited by thermal fluctuation if 2D FM systems are isotropic.However, the recent discoveries of FM ordering in 2D CrI3[59]and Cr2Ge2Te6,[60,61]with the presence of spinwave excitation gap arising from magnetic anisotropy illustrate that FM ordering can exist at a finite temperature.Thus,to determine the magnetization easy axis of SL-RuCl2,we calculate the magnetic anisotropy energy(MAE)under differentU, as shown in Fig.S1(c).The MAE is defined as the energy difference between the systems with magnetization axis along in-plane (IP) and out-of-plane (OP) direction, namelyEMAE=E100-E001.We can find that SL-RuCl2prefers an OP-FM state whenU <2.41 eV, whenU >2.41 eV, it turns to IP-FM state.

    For 2D FM materials, electronic correlations play an important role in its magnetic, valley and topological properties.[62–65]Thus, we investigate the evolution of electronic band structures driven by electronic correlation (U) in SL-RuCl2and the representative electronic band structures without and with SOC are plotted in Fig.S2 and Fig.2,respectively.Also, the evolution mechanism of the energy bandgap induced by differentUis given in Fig.S3.

    For a smallU(U=0 eV),SL-RuCl2exhibits an indirect gap semiconductor.The conduction band minimum (CBM)atK/K′valleys are mainly contributed by dz2orbital with the spin-down channel, and the spin-up dxz/dyzorbitals form the valence band maximum(VBM)(Fig.2(a)and Fig.S2(a)).The opposite spin directions of VBM and CBM indicate SL-RuCl2possesses bipolar magnetic semiconductor (BMS) character.With increasingUbeforeU=2.19 eV, the global gap firstly increases and then decreases (Fig.S3(a)), and the orbitals of Ru-dxy/dx2-y2move up relative to Ru-dxzand Ru-dyzorbitals gradually(Figs.2(a)–2(d)).As shown in Fig.2(d),on account ofTandPbroken,both the CBM and VBM belong to the spindown channel,forming FV state with direct gap and the giant energy difference of band gap atKandK′valleys is 246.2 meV(Fig.S3(b)).

    AroundU=2.19 eV,as shown in Fig.2(e),the band gap atK′point gets closed,while still have a gap of 254.5 meV atKpoint.The gap closed atK′valley and opened atKvalley indicating an HVS state.Here,taking SOC into account,HVS state indicates the Dirac cone shaped linear dispersion with intrinsically 100%spin valley polarization,[66]highly promising for charge and spin transport due to the mass-free electron mobility.Then we further increaseU(U >2.19 eV),the band gap atK′valley reopens and Ru-dxy/dx2-y2bands continue to move up and thus exchange from VBM to CBM,the Ru-dz2component goes down and from CBM exchanges to VBM, correspondingly (Fig.2(f)).AroundU=2.29 eV, another HVS states inevitably encountered, with the band gap closing atKvalley,but the gap of about 247.1 meV atK′valley (Fig.2(g)).Continuing increasingU, the band gap atKvalley reopens and the CBM and VBM are apart from each other.From the perspective of orbital components, the Rudz2of CBM have been swapped with Ru-dxy/dx2-y2orbitals of VBM atKvalley.Hereafter SL-RuCl2returns to FV again.As can be seen from Fig.2(h), the valley-polarization of SLRuCl2distinctly occurs at the CBM and the giant energy difference of band gap atK/K′valleys is 240.3 meV(Fig.S3(b)).Thus, AVHE with an anomalous velocityva~-(e/ˉh)E×Ωcan be clearly observed(Fig.S4).WhenUis above 2.41 eV,SL-RuCl2turns to IP-FM state(Figs.2(i)and 2(j)).

    Fig.2.Orbital-projected band structures of SL-RuCl2 obtained from GGA+SOC+U (U varies from 0 eV to 3.0 eV).Blue circle represents components of Ru-dxy and Ru-dx2-y2 orbitals,red one is for component of Ru-dz2 orbital,and the green one represents Ru-dxz and Ru-dyz orbitals.

    Obviously, from the evolution of electronic band structures driven byUin SL-RuCl2, one can see that whenU <2.19 eV, VBM atK/K′valleys is primarily made up of Rudxy/dx2-y2orbitals,while the energy degeneracy between two valleys is lifted and valley polarization apparently occurs at VBM (Fig.2(d)).After the bandgap closing and reopening again atKandK′valleys,the Ru-dxy/dx2-y2orbitals exchange completely from VBM to CBM, and the energy difference of CBM betweenKandK′valleys is larger than VBM contributed by Ru-dz2orbital(Fig.2(h)).

    With regard to the spontaneous valley-polarization of SLRuCl2,the underlying physical mechanisms can be attributed to the combining effect of magnetic exchange interaction and SOC.We takeU=2 eV as an example, the degeneracy between spin-up and spin-down channel is broken due to the existence of FM ordering.Since the VBM and CBM are both occupied by electrons with identical spin,we can ignore the interaction between spin-up and spin-down states.Thus,the SOC only involves the interaction of same spin channels,which can be approximately expressed by[33]

    From Eq.(3), we can obtain ΔEv=4α.This indicates that valley polarization significantly occurs at VBM (Fig.2(d)).After the completely swapping of Ru-dxy/dx2-y2and Ru-dz2orbitals between VBM and CBM, as the case ofU=2.4 eV,we can infer that ΔEc=4α,thus valley polarization evidently occurs at CBM(Fig.2(h)).It is noteworthy that valley polarization can be reversed as the magnetization is reversed,which is confirmed by DFT results in Fig.S5.When the magnetization along the-zdirection, the spin and valley polarization of carriers is simultaneously switched.From a practical point of view,using intrinsic magnetism to generate valley polarization is more nonvolatile.Additionally,magnetism can be controlled in a fully electric manner,e.g.,by using current pulses through spin torques,[67]which is ideal for device applications.

    Our most prominent finding is that SL-RuCl2is an exotic magneto-valley material,which can host several quantum phase diagrams driven byUstarting from FV phase.Such an FV state is highly beneficial to generating, transporting, and manipulating spin currents in spin-valley spintronics.From the above discussion about the evolution of electronic band structures driven byU, we can observe that SL-RuCl2experienced two critical states, namely HVS state, appears atU=2.19 eV and 2.29 eV,where the band gap closes atK′orKvalley while another valley is still in semiconductor status.Along with the band gap reopening asUincreases,the components of VBM and CBM atK/K′valleys also exchanged.This gap close–reopen scenario and interchanging of orbital compositions indicate a transition from trivial to nontrivial topological phase.This topological phase transition is correlated with valley-controllable sign-reversible Berry curvature asUvariates.In order to investigate this phenomenon, the Berry curvatureΩ(k)of SL-RuCl2is calculated based on the Kubo formula,[68]which could be performed with the following expression:

    wherenandn′are the band indexes,vxandvyare velocity operators in thexandydirections, respectively.f(n) is the Fermi–Dirac distribution function.φnkandφn′kare the periodic part of Bloch wave function with eigenvalueEnandEn′,respectively.

    Figure 3 shows the Berry curvatures withU=2 eV (a),2.25 eV(b),2.4 eV(c),respectively.As shown in Fig.3(a),regarding FV state(U=2 eV),a nonzero Berry curvature occurs aroundK/K′valleys with opposite signs and different magnitudes.WhenU=2.19 eV, FV state experiences a topological phase transition into QAHVE state, bridged by an HVS state.ForU=2.25 eV, the sign ofΩ(k) atK′valley flips(Fig.3(b)).Further increasingU=2.29 eV,Kvalley also experiences a topological phase transition, akin to the case ofK′valley, resulting in the sign change ofΩ(k) atKvalley.With the increase ofU, it transforms from HVS to another FV state.By comparing these two FV states,the sign of Berry curvature atKandK′valleys are quite opposite(Figs.3(a)and 3(c)).Such dynamics of berry curvatureΩ(k)is bound to influence valley-related anomalous transport phenomena, such as AHVE, valley Nernst effect, valley magneto-optical Kerr effect,and valley magneto-optical Faraday effect.[69]

    It is remarkable that QAHVE phase in the range of 2.19 eV<U <2.29 eV can be demonstrated by the calculated Berry curvatures in BZ space (Fig.3(b)).Here, the Berry phase takes the same signs atKandK′valleys,but not the identical values.In this way, the edge spectrum calculated with WANNIER90 package shows a single gapless chiral state connecting the conduction and valence bands,consistent with an integer Chern number (C=1), as shown in Fig.4.Different from valley-polarized quantum anomalous Hall effect(VP-QAHE),the CBM,and VBM atK′/Kvalleys are all contributed by spin-down bands with full valley polarization(Fig.4(a)and Fig.S5(b)).When the magnetization is reversed,the edge state changes to the other valley,with an opposite spin and chiral directions,as shown in Fig.4(b),suggesting a very special behavior of the chiral-spin-valley locking for the obtained edge state.This novel quantum state can be detected by using the noncontact magneto-optical technique,[70]and thus highly promising for most practical applications in valleytronics.

    Fig.4.(a)The calculated nontrivial chiral edge states for a semi-infinite SLRuCl2 with U=2.25 eV.The 100%spin-polarized chiral state is locked with the valley index and spin direction.(b) The same as in panel (a), but the magnetization direction is along the-z direction.

    Yet for now, it is challenging to regulate the correlation effect (U), but we still hope that the various quantum phase diagram can be exhibited in practice.A crucial point is that the competition between kinetic and interaction energies could influence the strength of electronic correlation, which means we could exert epitaxial strain to manipulate the electronic and magnetic properties of 2D materials and thus probably achieve the same effect as changingU.Therefore, the biaxial strain is applied to the SL-RuCl2.The strain strength is defined asε=(a-a0)/a0, whereaanda0are the lattice constants of the system with and without strain, respectively.Hence, the system of SL-RuCl2can be possibly tuned into FV,HVS,and QAVHE states,even though the electronic correlation strengthUis larger than 2.19 eV.We useU=2.4 eV as an example to explore the quantum phase transitions by exerting external biaxial strain.To confirm the FM ground states, the total energy difference between FM and AFM ordering by using rectangle supercell is calculated as a function ofε, as shown in Fig.S6(a).In considered strain range, the magnetic ground states are always the FM states,And the magnetic anisotropy of SL-RuCl2prefers the OP state under the considered range,as is shown in Fig.S6(b).

    Fig.5.(a)The global energy band gap as a function of ε (0%~-4%).(b)The energy band gaps for the K and K′ valleys.

    The energy band gap and orbital-projected band structures of SL-RuCl2under various types of biaxial strain are presented in Figs.5 and 6,respectively.With increasing compressive biaxial strain,the gaps at two valleys decreases,whenε=-1.1%, the band gap atKvalley is closed, but it is still open atK′valley, transforming from FV to HVS state(Figs.5(b) and 6(b)).Further increasing compressive strain untilε=-2.3%,the gap atKvalley reopens and closes gradually atK′valley, and the other HVS state can be achieved,as is shown in Fig.6(d).Continuing increasing compressive biaxial strain, the band gap atK′valley will reopen and the system of SL-RuCl2will turn to the other FV state.

    In the process of applying biaxial compressive strain,the system of SL-RuCl2also encounters two different critical states, i.e., HVS state, with the band gap closes atKandK′valley, respectively.And the band gap reopening as compressiveεincreases along with the swapping of Ru-dxy/dx2-y2and Ru-dz2orbitals.This exotic transition probably suggests that QAVHE phases exist between the two HVS states.And this strain-induced phase transition mechanism for SL-RuCl2can be explained by constructing ak·pmodel.[35]In order to confirm QAVHE,we calculate the edge spectrum,as is shown in Fig.7.We can clearly observe that a single edge band for connecting the bulk conduction and valence bands,which verifies its nontrivial topology and also indicates a very special behavior of the chiral-spin-valley locking.The QAVHE can also be observed between the two HVS states.With increasing biaxial compressive strain, SL-RuCl2can transform from FV to HVS to QAVHE to HVS to FV state.

    Fig.6.Orbital-projected band structures of SL-RuCl2 with SOC under different biaxial strains.Blue circle represents components of Ru-dxy and Ru-dx2-y2 orbitals,red one is for component of Ru-dz2 orbital,and the green one represents Ru-dxz and Ru-dyz orbitals.

    Fig.7.(a) The calculated nontrivial chiral edge states for a semi-infinite SL-RuCl2 with ε =-1.5%.The 100%spin-polarized chiral state is locked with the valley index and spin direction.(b) The same as in panel (a), but the magnetization direction is along the-z direction.

    The valley-controllable sign-reversible Berry curvature is also related to the biaxial compressive strain,and we plot the Berry curvatures at some representativeεvalues in Fig.8.For a small compressive strain(ε=-0.7%),as shown in Fig.8(a),we find that a nonzero Berry curvature occurs aroundK/K′valleys with opposite signs and different magnitudes, consistent with the FV state.Under the strain of-1.1%, the sign of Berry curvature atKvalley firstly flips,and then the Berry curvature atK′valley change sign at aboutε=-2.3%.These topological phase transitions are also related to the band inversion of dxy/dx2-y2and dz2orbitals,being similar to variedU.Our understanding of the change of sign for the berry curvature at two valleys is that the opposite and half quantized Hall conductivitye2/2hand-e2/2h,respectively.The phase transition at two valleys happens at two different critical on-site Coulomb interactions:WhenU <2.19 eV,C=1/2-1/2=0;whenU >2.29 eV,C=-1/2+1/2=0, while in the case of 2.19 eV<U <2.29 eV, Berry curvature at one of the two valleys changes its sign and leads a total Chern number as 1/2+1/2=1.

    Fig.8.Berry curvature of SL-RuCl2 with ε =-0.7%(a),-1.5%(b),-2.5%(c)at U =2.4 eV.The top planes are contour maps of Berry curvature in the whole 2D BZ,the bottom planes are Berry curvatures along the high-symmetry points.

    Fig.9.The average magnetic moment and specific heat as a function of temperature with U =2 eV (a), 2.25 eV (b), and ε =0% (c), -4% (d) at U =2.4 eV.

    Both electronic correlation effects and compressive strain can effectively tune the strength of FM interaction, which can produce important effects on Curie temperatureTcof SLRuCl2.TheTcis estimated at representativeU(2 eV,2.25 eV,and 2.4 eV)andε(0%and-4%)values with the Wolf algorithm based on the Heisenberg model,which can be expressed as[71]

    whereJi,jrepresents the exchange parameters of the nearest neighbor, which could be calculated according to the energy difference between FM and AFM configurations.HereSi/Sjis the spin vector on each Ru,Aiis the anisotropy energy parameter per magnetic atom, andSziis thezcomponent of the spin vector.As the distance between Ru atoms and its second nearest neighboring Ru is more than 6.0 ?A, which is along enough to be ignored, only the nearestJis taken into account.[46]

    Thus

    On comparing with the energy results from first-principles calculations, the obtained model parameters are found to beJ=4.97 meV andA=117.5 μeV forU=2 eV,J=3.50 meV andA=62.3 μeV forU=2.25 eV,J=2.73 meV andA=0.188 μeV forU= 2.4 eV atε= 0%,J= 5.53 meV andA=158.9 μeV forU=2.4 eV atε=-4%.To make the FMparamagnetic transition clearer,we calculate the heat capacity(Cv)as follows:

    Here, ΔETis the change of the total energy as the temperature increases fromTtoT+ΔT.The Monte Carlo simulation is then performed to estimate the transition point of the ferromagnetism,and the results shown in Fig.9.The estimatedTcis about 211 K forU=2 eV,148 K forU=2.25 eV,116 K,and 234 K forU=2 eV atε=0%and-4%.Thus,it is very key for estimatingTcto use reasonableU.And it is found that the compressive strain can improveTc.

    4.Conclusions

    To summarize,based on first-principles calculations with DFT+Uapproach and ak·pmodel, we found that valleycontrolled quantum phase transitions can be driven by electronic correlation and compressive biaxial strain from FV to HVS to QAVHE to HVS to FV phase in SL-RuCl2.Remarkably, QAVHE and chiral spin-valley, which is induced by sign-reversible Berry curvature or band inversion between dxy/dx2-y2and dz2orbitals,can achieve complete spin and valley polarizations for low-dissipation electronics devices.We also find that this electron valley-polarization can be switched by reversing the magnetization direction, providing a new route of magnetic control of valley degree of freedom.Therefore,our findings not only enrich the research on QAVHE,but also broaden the horizon for the spintronics,valleytronics,and topological nanoelectronics applications.

    Acknowledgements

    Project supported by the Taishan Scholar Program of Shandong Province,China(Grant No.ts20190939),the Independent Cultivation Program of Innovation Team of Jinan City(Grant No.2021GXRC043),and the National Natural Science Founation of China(Grant No.52173283).

    猜你喜歡
    李萍
    婦科超聲見盆腔積液診斷探討
    Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface?
    天生一對
    故事會(2021年16期)2021-08-20 00:53:29
    海峽情
    黃河之聲(2020年13期)2020-09-12 16:52:54
    太陽第一家
    黃昏之戀
    SLA:ErroranalysisofthelearnersinvocationalcollegeundertheBlendedLearningModel
    《黃山奇松》(第二課時)教學(xué)設(shè)計
    怎么會這樣
    怎么會這樣
    小說月刊(2016年1期)2015-12-29 17:22:29
    狂野欧美激情性bbbbbb| 国产精品欧美亚洲77777| 蜜桃在线观看..| 中文字幕制服av| 丰满少妇做爰视频| 久久久精品94久久精品| 又大又黄又爽视频免费| 国产精品久久久久久人妻精品电影 | 亚洲成色77777| 日韩电影二区| 日本91视频免费播放| 在线亚洲精品国产二区图片欧美| 97精品久久久久久久久久精品| 精品少妇久久久久久888优播| 又粗又硬又长又爽又黄的视频| 各种免费的搞黄视频| 亚洲国产欧美一区二区综合| 国产三级黄色录像| 天天躁夜夜躁狠狠躁躁| 成年人午夜在线观看视频| 久久久亚洲精品成人影院| 叶爱在线成人免费视频播放| 国产精品国产三级国产专区5o| 99热网站在线观看| 精品第一国产精品| 国产一区二区激情短视频 | 手机成人av网站| 精品欧美一区二区三区在线| 两性夫妻黄色片| 国产成人精品久久二区二区91| 国产一区二区激情短视频 | 国产在线一区二区三区精| 国产亚洲一区二区精品| 亚洲一区中文字幕在线| 国语对白做爰xxxⅹ性视频网站| 校园人妻丝袜中文字幕| 欧美精品av麻豆av| 国产成人91sexporn| 人人妻人人澡人人看| 麻豆av在线久日| 精品国产乱码久久久久久男人| 国产精品香港三级国产av潘金莲 | 美女大奶头黄色视频| 欧美日韩亚洲综合一区二区三区_| 日韩,欧美,国产一区二区三区| 成人午夜精彩视频在线观看| 精品亚洲乱码少妇综合久久| 9热在线视频观看99| 男男h啪啪无遮挡| 成人三级做爰电影| 又大又黄又爽视频免费| 亚洲黑人精品在线| 国产男女超爽视频在线观看| 一二三四社区在线视频社区8| 在线观看一区二区三区激情| www.自偷自拍.com| 午夜老司机福利片| 捣出白浆h1v1| 亚洲av成人不卡在线观看播放网 | 国产不卡av网站在线观看| 97人妻天天添夜夜摸| 色婷婷久久久亚洲欧美| 久久精品国产综合久久久| 久久久久久久精品精品| 久久ye,这里只有精品| 精品久久蜜臀av无| 在线观看免费午夜福利视频| 男女边摸边吃奶| 少妇精品久久久久久久| 国产精品国产三级国产专区5o| 九色亚洲精品在线播放| 激情视频va一区二区三区| 亚洲欧美一区二区三区国产| 看十八女毛片水多多多| 久久狼人影院| 日本欧美视频一区| 巨乳人妻的诱惑在线观看| 男人添女人高潮全过程视频| 欧美+亚洲+日韩+国产| 国产免费现黄频在线看| 精品人妻熟女毛片av久久网站| 久久99一区二区三区| 国产色视频综合| 日本午夜av视频| 大片电影免费在线观看免费| 高清不卡的av网站| 日日夜夜操网爽| 最新的欧美精品一区二区| 久久九九热精品免费| 色精品久久人妻99蜜桃| 日韩制服骚丝袜av| 久久免费观看电影| 精品少妇内射三级| 国产免费视频播放在线视频| 亚洲av男天堂| 午夜久久久在线观看| 国产1区2区3区精品| 黄色片一级片一级黄色片| 国产97色在线日韩免费| 久久精品久久精品一区二区三区| 美女视频免费永久观看网站| 精品少妇黑人巨大在线播放| 别揉我奶头~嗯~啊~动态视频 | bbb黄色大片| 9色porny在线观看| 亚洲av综合色区一区| 久久毛片免费看一区二区三区| a级毛片在线看网站| 大片电影免费在线观看免费| 欧美精品亚洲一区二区| 欧美在线黄色| 中国美女看黄片| 成人三级做爰电影| 亚洲五月色婷婷综合| 男人添女人高潮全过程视频| 视频在线观看一区二区三区| 久久ye,这里只有精品| 久热爱精品视频在线9| 男女无遮挡免费网站观看| 99国产精品一区二区蜜桃av | 亚洲欧洲日产国产| 亚洲欧美精品综合一区二区三区| 免费日韩欧美在线观看| 久久天躁狠狠躁夜夜2o2o | 丝袜美腿诱惑在线| 午夜福利视频在线观看免费| 99国产精品99久久久久| www.av在线官网国产| 午夜免费观看性视频| 男女午夜视频在线观看| 97在线人人人人妻| 9191精品国产免费久久| 黑人欧美特级aaaaaa片| 欧美精品一区二区免费开放| 丁香六月天网| 国产精品一国产av| 成年人免费黄色播放视频| 韩国精品一区二区三区| 亚洲成人免费电影在线观看 | 日韩人妻精品一区2区三区| 亚洲视频免费观看视频| 80岁老熟妇乱子伦牲交| 国产主播在线观看一区二区 | 国产黄色免费在线视频| 五月开心婷婷网| 国产野战对白在线观看| 日本av手机在线免费观看| 成人影院久久| 久久久久久久国产电影| 最近中文字幕2019免费版| 亚洲av男天堂| 秋霞在线观看毛片| 亚洲人成77777在线视频| 亚洲av男天堂| 亚洲专区国产一区二区| 女人久久www免费人成看片| 精品国产一区二区久久| 国产精品熟女久久久久浪| 青春草视频在线免费观看| 伊人亚洲综合成人网| 国产激情久久老熟女| 欧美国产精品va在线观看不卡| 一个人免费看片子| 亚洲国产欧美一区二区综合| 国产成人免费无遮挡视频| 国产成人欧美| 免费观看av网站的网址| 午夜激情久久久久久久| 亚洲欧美精品综合一区二区三区| 国产在线免费精品| 精品久久蜜臀av无| 少妇 在线观看| 久久国产精品男人的天堂亚洲| 一级毛片黄色毛片免费观看视频| 国产成人啪精品午夜网站| 国产精品免费视频内射| 美女高潮到喷水免费观看| 亚洲欧美成人综合另类久久久| 精品卡一卡二卡四卡免费| 少妇精品久久久久久久| 亚洲欧美一区二区三区黑人| 国产精品秋霞免费鲁丝片| 午夜91福利影院| av在线老鸭窝| 亚洲人成电影观看| 精品国产国语对白av| 国产日韩欧美在线精品| 伊人亚洲综合成人网| 久久国产精品人妻蜜桃| 亚洲国产精品国产精品| 伊人亚洲综合成人网| 青青草视频在线视频观看| 99久久人妻综合| 国产福利在线免费观看视频| 国产成人av激情在线播放| 激情视频va一区二区三区| 国产免费现黄频在线看| av网站在线播放免费| 亚洲欧美激情在线| 51午夜福利影视在线观看| 欧美少妇被猛烈插入视频| 丝袜在线中文字幕| 电影成人av| 黄色怎么调成土黄色| 日韩制服丝袜自拍偷拍| 电影成人av| 啦啦啦中文免费视频观看日本| 成人国产一区最新在线观看 | 亚洲欧美日韩另类电影网站| 日本黄色日本黄色录像| 一本—道久久a久久精品蜜桃钙片| a级毛片黄视频| 久久精品国产亚洲av涩爱| 精品久久久久久电影网| 精品福利观看| 亚洲人成77777在线视频| 亚洲国产精品一区二区三区在线| 在线观看免费视频网站a站| 男人舔女人的私密视频| 久久精品人人爽人人爽视色| 男女国产视频网站| 亚洲精品国产av蜜桃| 欧美老熟妇乱子伦牲交| 一本一本久久a久久精品综合妖精| 婷婷色麻豆天堂久久| 高清不卡的av网站| www日本在线高清视频| 免费高清在线观看视频在线观看| 老司机影院成人| 在线观看国产h片| 91麻豆av在线| 国产高清不卡午夜福利| 中文字幕人妻丝袜一区二区| 欧美黄色片欧美黄色片| 午夜免费观看性视频| 亚洲视频免费观看视频| 超碰成人久久| 欧美97在线视频| 欧美中文综合在线视频| 99热全是精品| 国产一卡二卡三卡精品| 国产一区二区 视频在线| 久久久国产精品麻豆| 国产有黄有色有爽视频| 狂野欧美激情性xxxx| 如日韩欧美国产精品一区二区三区| 日本欧美国产在线视频| 欧美日本中文国产一区发布| 欧美日韩视频高清一区二区三区二| 一级毛片 在线播放| 亚洲精品久久久久久婷婷小说| 国产黄色免费在线视频| 女人精品久久久久毛片| 视频区图区小说| 亚洲中文av在线| 大型av网站在线播放| 欧美老熟妇乱子伦牲交| 亚洲一区中文字幕在线| av不卡在线播放| 亚洲精品在线美女| 国产成人欧美在线观看 | 国产精品偷伦视频观看了| 99re6热这里在线精品视频| 亚洲精品久久成人aⅴ小说| 亚洲,欧美,日韩| 亚洲熟女精品中文字幕| 日本av手机在线免费观看| 999精品在线视频| 老司机影院毛片| 亚洲国产av新网站| 2021少妇久久久久久久久久久| 国产成人系列免费观看| 人成视频在线观看免费观看| 国产精品人妻久久久影院| 日韩 亚洲 欧美在线| 在线精品无人区一区二区三| 免费看十八禁软件| av又黄又爽大尺度在线免费看| 又黄又粗又硬又大视频| 久久久久久人人人人人| www.999成人在线观看| 麻豆av在线久日| 亚洲av成人精品一二三区| 大片电影免费在线观看免费| 色播在线永久视频| 成年人午夜在线观看视频| 国产亚洲精品第一综合不卡| 国产在线免费精品| 精品国产乱码久久久久久小说| 丰满迷人的少妇在线观看| 国产精品熟女久久久久浪| 飞空精品影院首页| av欧美777| 中文字幕另类日韩欧美亚洲嫩草| 两性夫妻黄色片| 久久人人爽av亚洲精品天堂| 婷婷色av中文字幕| 国产精品.久久久| 国产一区二区在线观看av| 免费在线观看视频国产中文字幕亚洲 | 51午夜福利影视在线观看| 欧美国产精品一级二级三级| 国产精品久久久久久精品古装| 中文字幕人妻丝袜一区二区| 精品熟女少妇八av免费久了| 亚洲欧美日韩高清在线视频 | 免费在线观看黄色视频的| 久久综合国产亚洲精品| 老司机靠b影院| 十八禁网站网址无遮挡| 国产色视频综合| 美女主播在线视频| 成人国语在线视频| 久9热在线精品视频| 菩萨蛮人人尽说江南好唐韦庄| 免费av中文字幕在线| 久久 成人 亚洲| 美女国产高潮福利片在线看| 国产高清视频在线播放一区 | 99热网站在线观看| 日韩中文字幕视频在线看片| 亚洲,一卡二卡三卡| 精品国产国语对白av| 老司机影院成人| 亚洲av在线观看美女高潮| 精品亚洲成a人片在线观看| 国产伦人伦偷精品视频| 亚洲免费av在线视频| 91老司机精品| 精品人妻一区二区三区麻豆| 欧美精品人与动牲交sv欧美| 啦啦啦在线观看免费高清www| 国产亚洲午夜精品一区二区久久| 久久精品国产综合久久久| www.自偷自拍.com| 纵有疾风起免费观看全集完整版| 国产精品免费大片| 精品久久久精品久久久| 两个人免费观看高清视频| 亚洲激情五月婷婷啪啪| 中文字幕高清在线视频| 国产日韩欧美在线精品| 日韩av不卡免费在线播放| 免费不卡黄色视频| 亚洲国产最新在线播放| 国产亚洲av片在线观看秒播厂| 欧美日韩成人在线一区二区| 校园人妻丝袜中文字幕| 免费在线观看影片大全网站 | 精品国产一区二区久久| av电影中文网址| 蜜桃在线观看..| 成人国产av品久久久| 三上悠亚av全集在线观看| 亚洲欧美色中文字幕在线| 久久国产精品大桥未久av| 在线观看免费午夜福利视频| 热re99久久国产66热| 国产在线一区二区三区精| 久久女婷五月综合色啪小说| 色综合欧美亚洲国产小说| 欧美精品亚洲一区二区| 国产精品香港三级国产av潘金莲 | 精品高清国产在线一区| 好男人电影高清在线观看| 欧美精品人与动牲交sv欧美| 国产一区二区 视频在线| 亚洲伊人色综图| 99国产精品一区二区蜜桃av | 久久久久国产精品人妻一区二区| www.av在线官网国产| 黑人猛操日本美女一级片| 精品人妻1区二区| 在线观看免费日韩欧美大片| 美国免费a级毛片| 国产一卡二卡三卡精品| 国产97色在线日韩免费| 久久久精品区二区三区| 亚洲av日韩在线播放| 免费在线观看日本一区| 午夜免费观看性视频| 操出白浆在线播放| 久久久久国产精品人妻一区二区| 国产av精品麻豆| 国产精品一区二区在线不卡| 丝袜喷水一区| 欧美日韩福利视频一区二区| 亚洲国产精品成人久久小说| 看免费成人av毛片| 日本猛色少妇xxxxx猛交久久| 国产免费又黄又爽又色| 黑人猛操日本美女一级片| 国产精品久久久人人做人人爽| av网站在线播放免费| 成年动漫av网址| 亚洲精品国产一区二区精华液| 欧美黑人精品巨大| 中国国产av一级| 男女床上黄色一级片免费看| 欧美日韩视频高清一区二区三区二| 中文字幕人妻丝袜一区二区| 亚洲 欧美一区二区三区| 国产一区二区激情短视频 | 女人被躁到高潮嗷嗷叫费观| 日韩制服骚丝袜av| 巨乳人妻的诱惑在线观看| 精品欧美一区二区三区在线| 国产午夜精品一二区理论片| 伦理电影免费视频| 黄片小视频在线播放| 黑人欧美特级aaaaaa片| 日韩,欧美,国产一区二区三区| 欧美久久黑人一区二区| 国产欧美日韩精品亚洲av| 脱女人内裤的视频| 亚洲成色77777| 9191精品国产免费久久| 亚洲av日韩在线播放| 国产精品99久久99久久久不卡| a级毛片在线看网站| 久热爱精品视频在线9| 国产黄频视频在线观看| 欧美成人精品欧美一级黄| 亚洲av成人精品一二三区| videos熟女内射| 91麻豆av在线| 宅男免费午夜| 久久国产亚洲av麻豆专区| 亚洲精品美女久久av网站| 啦啦啦在线免费观看视频4| 看免费成人av毛片| 国产在视频线精品| 纵有疾风起免费观看全集完整版| 建设人人有责人人尽责人人享有的| 一区在线观看完整版| 嫩草影视91久久| 免费不卡黄色视频| 久久亚洲精品不卡| 色视频在线一区二区三区| 亚洲av日韩精品久久久久久密 | 国产免费又黄又爽又色| 精品国产一区二区久久| 日本欧美视频一区| 制服人妻中文乱码| 人人妻人人爽人人添夜夜欢视频| 欧美黄色淫秽网站| 久久久久久人人人人人| 国产成人影院久久av| 欧美精品啪啪一区二区三区 | 亚洲av成人不卡在线观看播放网 | 视频区图区小说| 麻豆乱淫一区二区| 国产亚洲精品久久久久5区| 午夜日韩欧美国产| 国产av一区二区精品久久| 久久久精品国产亚洲av高清涩受| 亚洲中文字幕日韩| 99国产精品一区二区蜜桃av | 丝袜美足系列| 免费黄频网站在线观看国产| 观看av在线不卡| 亚洲三区欧美一区| 欧美xxⅹ黑人| 日日爽夜夜爽网站| 18禁国产床啪视频网站| 高清av免费在线| 亚洲欧美色中文字幕在线| 两人在一起打扑克的视频| 欧美亚洲日本最大视频资源| 国产av精品麻豆| 日本av手机在线免费观看| 国产成人一区二区在线| 色94色欧美一区二区| 男女高潮啪啪啪动态图| 午夜影院在线不卡| 在线av久久热| 午夜精品国产一区二区电影| 亚洲人成电影观看| 欧美日韩精品网址| 亚洲欧美精品自产自拍| 国产成人精品无人区| 亚洲欧美清纯卡通| videosex国产| 久久久久久久久免费视频了| 另类亚洲欧美激情| 91麻豆av在线| av在线老鸭窝| 亚洲伊人久久精品综合| 欧美日韩亚洲高清精品| 中国美女看黄片| 老司机影院成人| 国产伦人伦偷精品视频| xxxhd国产人妻xxx| 欧美激情 高清一区二区三区| 男女边吃奶边做爰视频| 日韩精品免费视频一区二区三区| 国产成人免费观看mmmm| 男人舔女人的私密视频| 成年人黄色毛片网站| 麻豆乱淫一区二区| 十八禁人妻一区二区| 老司机在亚洲福利影院| 人人妻人人澡人人爽人人夜夜| 制服人妻中文乱码| 精品视频人人做人人爽| 国产国语露脸激情在线看| 国产精品一二三区在线看| 久久精品成人免费网站| 老司机深夜福利视频在线观看 | 日韩电影二区| 免费久久久久久久精品成人欧美视频| 国产精品香港三级国产av潘金莲 | 纯流量卡能插随身wifi吗| 亚洲美女黄色视频免费看| 国产精品99久久99久久久不卡| 男女免费视频国产| 我要看黄色一级片免费的| 免费观看av网站的网址| 无限看片的www在线观看| 亚洲九九香蕉| 在现免费观看毛片| 日韩av在线免费看完整版不卡| 下体分泌物呈黄色| 男女边摸边吃奶| 一级黄色大片毛片| 免费人妻精品一区二区三区视频| 亚洲欧美中文字幕日韩二区| 精品福利永久在线观看| 国语对白做爰xxxⅹ性视频网站| 人人妻人人爽人人添夜夜欢视频| 在线观看国产h片| 亚洲男人天堂网一区| 青春草亚洲视频在线观看| 国产精品香港三级国产av潘金莲 | 亚洲伊人色综图| 精品国产乱码久久久久久小说| 免费在线观看影片大全网站 | 久久午夜综合久久蜜桃| 亚洲av日韩在线播放| 亚洲av男天堂| 日韩视频在线欧美| √禁漫天堂资源中文www| 亚洲,欧美,日韩| 91精品伊人久久大香线蕉| 人人妻人人澡人人爽人人夜夜| 国产在视频线精品| 美女大奶头黄色视频| 精品少妇一区二区三区视频日本电影| 久久精品成人免费网站| 久久精品久久久久久久性| 黄色片一级片一级黄色片| 国产精品久久久av美女十八| 男女国产视频网站| 亚洲国产日韩一区二区| 黄色毛片三级朝国网站| 成人亚洲欧美一区二区av| 一边摸一边抽搐一进一出视频| 一级片免费观看大全| 97精品久久久久久久久久精品| 国产精品一国产av| 悠悠久久av| 国产97色在线日韩免费| 免费少妇av软件| 丰满人妻熟妇乱又伦精品不卡| 久久av网站| 久久综合国产亚洲精品| 国产精品九九99| 一区二区三区乱码不卡18| 满18在线观看网站| 狂野欧美激情性bbbbbb| 欧美人与性动交α欧美精品济南到| 老熟女久久久| av片东京热男人的天堂| 美女中出高潮动态图| 久久久精品94久久精品| 国产欧美日韩精品亚洲av| 欧美乱码精品一区二区三区| 国产亚洲欧美在线一区二区| 精品久久久精品久久久| 一级,二级,三级黄色视频| 午夜视频精品福利| 桃花免费在线播放| 国产主播在线观看一区二区 | 乱人伦中国视频| 久久久久国产一级毛片高清牌| 另类亚洲欧美激情| 啦啦啦视频在线资源免费观看| 丝袜美腿诱惑在线| 国产精品久久久久久精品电影小说| 成人手机av| 99久久人妻综合| 色综合欧美亚洲国产小说| 亚洲,欧美精品.| 国产成人免费无遮挡视频| 国产福利在线免费观看视频| 国产精品一二三区在线看| 菩萨蛮人人尽说江南好唐韦庄| 日韩精品免费视频一区二区三区| 国产日韩一区二区三区精品不卡| 国产男女超爽视频在线观看| netflix在线观看网站| 男女之事视频高清在线观看 | 黄色视频不卡| 老司机亚洲免费影院| 天天操日日干夜夜撸| 美女视频免费永久观看网站| 国产成人欧美在线观看 | 又大又黄又爽视频免费| 国产日韩欧美在线精品| 9色porny在线观看| 国产精品av久久久久免费| 丝袜脚勾引网站| 18禁黄网站禁片午夜丰满| 午夜福利视频在线观看免费| 欧美精品av麻豆av|