• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of sign-reversible Berry phase effect in 2D magneto-valley material

    2023-10-11 07:56:00YueTongHan韓曰通YuXianYang楊宇賢PingLi李萍andChangWenZhang張昌文
    Chinese Physics B 2023年9期
    關(guān)鍵詞:李萍

    Yue-Tong Han(韓曰通), Yu-Xian Yang(楊宇賢), Ping Li(李萍), and Chang-Wen Zhang(張昌文)

    School of Physics and Technology,University of Jinan,Jinan 250022,China

    Keywords: valley polarization,topological phase transition,half-valley semimetal,quantum anomalous valley Hall effect,first-principles calculations

    1.Introduction

    Valleytronics offers a versatile platform for fundamental and applied research for spintronics materials due to its additional valley degree of freedom, apart from charge and spin.[1–4]Two-dimensional (2D) hexagonal lattices such as transition-metal dichalcogenides (TMD) are promising valley materials to manipulate charge, spin, and valley degrees of freedom.[5–11]In such materials, owing to the breaking of the space-inversion symmetry (P), phenomena associated with valley contrasting feature can be explored such as valley Hall effect (VHE) and valley-controllable optical selection rules.[12,13]Recent advances in valleytronics focus on generating valley polarization by breaking timeinversion symmetry (T) and thus lifting the degeneracy ofK/K′valleys.[14]Several approaches have been proposed,like optical pumping,[15–17]magnetic doping,[18–20]magnetic proximity effect,[21–23]and applying an external magnetic field.[24–27]Nevertheless,the intrinsic properties have a higher priority than external tunability so as to reach widespread applications in valley-related physics.Hence, intrinsic valleyrelated materials hosting spontaneous valley-polarization are most desirable, thanks to its advantages of robustness, power efficiency,and simplicity in operation.

    Recently, break-through of the discovery of 2D ferrovalley (FV) materials,[28]such as 2H-VSe2,[28]VSSe,[29]LaBr2,[30]LaBrI,[31]GdCl2,[32]CeI2,[33]MXenes,[34]and VSi2N4,[35]may lay the foundation for a spin-valley composite paradigm induced by the integrated effects of ferromagnetic(FM)order and spin–orbit coupling(SOC),which could facilitate the observation of anomalous valley Hall effect(AVHE).Furthermore,considering the perspective of potential applications in valleytronics, except for AVHE, the exploration for magneto-valley materials with valley-related multiple Hall effect(MHE)is of significant importance,which can enrich the valley-related physics and emerging quantum states of matter.One exotic valley-related multiple Hall effect is the quantum anomalous valley Hall effect(QAVHE),[36–40]which possesses the interplay between valley and band topology and combines the valley index and quantum anomalous Hall effect(QAHE),[36]making it possible to realize high-performance quantum devices and thus raising an intensive interest in materials science.However,the realization of QAVHE[37]relies on the combination of SOC, band topology and magnetic ordering,which pose a great challenge for the research on potential high-performance valley-controllable quantum computational devices in 2D materials.

    Motivated by these challenges, based on first-principles calculations with DFT+Uapproach and strainedk·pmodel,[37]we have predicted single-layer(SL)RuCl2as an FV semiconductor,exhibiting intrinsic FM order and giant spontaneous valley polarization.Interestingly, we found that different electronic correlation strengths (U) and strains (ε)[41–44]make SL-RuCl2transition to different valley-controllable electronic states, including FV to half-valley[45]semimetal(HVS) to QAVHE to HVS to FV state.These different electronic states are connected with valley-controllable signreversible Berry curvature.Remarkably, QAVHE phase,which combines both the features of QAHE and AVHE, can be realized due to band inversions of dxy/dx2-y2and dz2orbitals atK/K′valleys.We further demonstrate that QAVHE phase of SL-RuCl2exists when electronic correlation strength(U) ranges from 2.19 eV to 2.29 eV.Even increasingUexceed this scope,takeU=2.4 eV,we can still observe QAVHE in the strain range of-2.3% and-1.1% by exerting biaxial compressive strain.Similar phase transition and QAVHE have also be reported in MBr2,[43]FeCl2, VSi2P4,[46]VN2X2Y2(X= group-III andY= group-IV elements).These results broaden the avenue for low-dissipation electronics devices,highly promising for valleytronics and quantum computational devices.

    2.Computational details

    First-principles calculations with spin polarization within DFT are performed by the Viennaab initiosimulation package (VASP).[47–50]The generalized gradient approximation(GGA) with the Perdew–Burke–Ernzerhof (PBE) realization is used to describe the exchange–correlation effect.[51]The energy cutoff is chosen as 550 eV for expanding the wave functions and the total energy convergence criterion of 10-6eV is adopted for static calculations.All the structural parameters are fully optimized until the force on each atom is converged to 0.01 eV/?A.Ak-mesh of 17×17×1 is used to sample the Brillouin zone and a vacuum layer about 20 ?A to avoid the interactions between adjacent direction.To describe the on-site Coulomb interactionUterms of strong correlated Ru 4d electrons,we employed the GGA+Umethod.[52,53]Phonon spectrum is calculated by using 5×5×1 supercell and 5×5×1qgrid based on the density functional perturbation theory(DFPT)approach.[54]The Berry curvatures are calculated using the WANNIER90 package.[55]The edge states are calculated by using the iterative Green function method.[56]

    3.Results and dicussion

    In analogy to the TMDs, SL-RuCl2possessPˉ6m2 symmetry with aD3hpoint group, which is composed of Cl–Ru–Cl sandwich layer,and each Ru atom has six nearest Cl neighbors,forming a triangular prism lattice,as shown in Fig.1(a).Thus, thePin SL-RuCl2is broken.Figure 1(b) displays the optimized lattice constants of SL-RuCl2with theUvalues ranging from 0 eV to 3 eV.We can see that the calculated constant increases from 3.46 ?A to 3.61 ?A withUincreasing from 0 eV to 3 eV.By calculating the phonon spectrum in Fig.1(c),no imaginary frequency modes are observed, which demonstrates SL-RuCl2is dynamically stable.In addition, we calculated the elastic constants to check the mechanical stability of SL-RuCl2.The elastic tensorCwith thePˉ6m2 point-group symmetry for SL-RuCl2can be reduced to

    The calculated results show thatC11andC12are 34.14 GPa and 14.66 GPa, respectively.The calculatedCijsatisfy the Born criteria for mechanical stability,[57]C11>0 andC11-C12>0,which confirms the mechanical stability of SL-RuCl2.

    Next, we turn our attention to the magnetic properties of SL-RuCl2.We consider three magnetic configurations,i.e.,nonmagnetic(NM)state,FM state,and antiferromagnetic(AFM) state, as shown in Fig.S1(a) in supporting information, The energy difference as a function ofUis shown in Fig.S1(b).It is clear to see that SL-RuCl2always prefers FM state withUranging from 0 eV to 3 eV,and the magnetic moment unit cell of FM phase is 4.0μBper Ru atom.According to the Mermin–Wagner theorem,[58]the FM order is generally prohibited by thermal fluctuation if 2D FM systems are isotropic.However, the recent discoveries of FM ordering in 2D CrI3[59]and Cr2Ge2Te6,[60,61]with the presence of spinwave excitation gap arising from magnetic anisotropy illustrate that FM ordering can exist at a finite temperature.Thus,to determine the magnetization easy axis of SL-RuCl2,we calculate the magnetic anisotropy energy(MAE)under differentU, as shown in Fig.S1(c).The MAE is defined as the energy difference between the systems with magnetization axis along in-plane (IP) and out-of-plane (OP) direction, namelyEMAE=E100-E001.We can find that SL-RuCl2prefers an OP-FM state whenU <2.41 eV, whenU >2.41 eV, it turns to IP-FM state.

    For 2D FM materials, electronic correlations play an important role in its magnetic, valley and topological properties.[62–65]Thus, we investigate the evolution of electronic band structures driven by electronic correlation (U) in SL-RuCl2and the representative electronic band structures without and with SOC are plotted in Fig.S2 and Fig.2,respectively.Also, the evolution mechanism of the energy bandgap induced by differentUis given in Fig.S3.

    For a smallU(U=0 eV),SL-RuCl2exhibits an indirect gap semiconductor.The conduction band minimum (CBM)atK/K′valleys are mainly contributed by dz2orbital with the spin-down channel, and the spin-up dxz/dyzorbitals form the valence band maximum(VBM)(Fig.2(a)and Fig.S2(a)).The opposite spin directions of VBM and CBM indicate SL-RuCl2possesses bipolar magnetic semiconductor (BMS) character.With increasingUbeforeU=2.19 eV, the global gap firstly increases and then decreases (Fig.S3(a)), and the orbitals of Ru-dxy/dx2-y2move up relative to Ru-dxzand Ru-dyzorbitals gradually(Figs.2(a)–2(d)).As shown in Fig.2(d),on account ofTandPbroken,both the CBM and VBM belong to the spindown channel,forming FV state with direct gap and the giant energy difference of band gap atKandK′valleys is 246.2 meV(Fig.S3(b)).

    AroundU=2.19 eV,as shown in Fig.2(e),the band gap atK′point gets closed,while still have a gap of 254.5 meV atKpoint.The gap closed atK′valley and opened atKvalley indicating an HVS state.Here,taking SOC into account,HVS state indicates the Dirac cone shaped linear dispersion with intrinsically 100%spin valley polarization,[66]highly promising for charge and spin transport due to the mass-free electron mobility.Then we further increaseU(U >2.19 eV),the band gap atK′valley reopens and Ru-dxy/dx2-y2bands continue to move up and thus exchange from VBM to CBM,the Ru-dz2component goes down and from CBM exchanges to VBM, correspondingly (Fig.2(f)).AroundU=2.29 eV, another HVS states inevitably encountered, with the band gap closing atKvalley,but the gap of about 247.1 meV atK′valley (Fig.2(g)).Continuing increasingU, the band gap atKvalley reopens and the CBM and VBM are apart from each other.From the perspective of orbital components, the Rudz2of CBM have been swapped with Ru-dxy/dx2-y2orbitals of VBM atKvalley.Hereafter SL-RuCl2returns to FV again.As can be seen from Fig.2(h), the valley-polarization of SLRuCl2distinctly occurs at the CBM and the giant energy difference of band gap atK/K′valleys is 240.3 meV(Fig.S3(b)).Thus, AVHE with an anomalous velocityva~-(e/ˉh)E×Ωcan be clearly observed(Fig.S4).WhenUis above 2.41 eV,SL-RuCl2turns to IP-FM state(Figs.2(i)and 2(j)).

    Fig.2.Orbital-projected band structures of SL-RuCl2 obtained from GGA+SOC+U (U varies from 0 eV to 3.0 eV).Blue circle represents components of Ru-dxy and Ru-dx2-y2 orbitals,red one is for component of Ru-dz2 orbital,and the green one represents Ru-dxz and Ru-dyz orbitals.

    Obviously, from the evolution of electronic band structures driven byUin SL-RuCl2, one can see that whenU <2.19 eV, VBM atK/K′valleys is primarily made up of Rudxy/dx2-y2orbitals,while the energy degeneracy between two valleys is lifted and valley polarization apparently occurs at VBM (Fig.2(d)).After the bandgap closing and reopening again atKandK′valleys,the Ru-dxy/dx2-y2orbitals exchange completely from VBM to CBM, and the energy difference of CBM betweenKandK′valleys is larger than VBM contributed by Ru-dz2orbital(Fig.2(h)).

    With regard to the spontaneous valley-polarization of SLRuCl2,the underlying physical mechanisms can be attributed to the combining effect of magnetic exchange interaction and SOC.We takeU=2 eV as an example, the degeneracy between spin-up and spin-down channel is broken due to the existence of FM ordering.Since the VBM and CBM are both occupied by electrons with identical spin,we can ignore the interaction between spin-up and spin-down states.Thus,the SOC only involves the interaction of same spin channels,which can be approximately expressed by[33]

    From Eq.(3), we can obtain ΔEv=4α.This indicates that valley polarization significantly occurs at VBM (Fig.2(d)).After the completely swapping of Ru-dxy/dx2-y2and Ru-dz2orbitals between VBM and CBM, as the case ofU=2.4 eV,we can infer that ΔEc=4α,thus valley polarization evidently occurs at CBM(Fig.2(h)).It is noteworthy that valley polarization can be reversed as the magnetization is reversed,which is confirmed by DFT results in Fig.S5.When the magnetization along the-zdirection, the spin and valley polarization of carriers is simultaneously switched.From a practical point of view,using intrinsic magnetism to generate valley polarization is more nonvolatile.Additionally,magnetism can be controlled in a fully electric manner,e.g.,by using current pulses through spin torques,[67]which is ideal for device applications.

    Our most prominent finding is that SL-RuCl2is an exotic magneto-valley material,which can host several quantum phase diagrams driven byUstarting from FV phase.Such an FV state is highly beneficial to generating, transporting, and manipulating spin currents in spin-valley spintronics.From the above discussion about the evolution of electronic band structures driven byU, we can observe that SL-RuCl2experienced two critical states, namely HVS state, appears atU=2.19 eV and 2.29 eV,where the band gap closes atK′orKvalley while another valley is still in semiconductor status.Along with the band gap reopening asUincreases,the components of VBM and CBM atK/K′valleys also exchanged.This gap close–reopen scenario and interchanging of orbital compositions indicate a transition from trivial to nontrivial topological phase.This topological phase transition is correlated with valley-controllable sign-reversible Berry curvature asUvariates.In order to investigate this phenomenon, the Berry curvatureΩ(k)of SL-RuCl2is calculated based on the Kubo formula,[68]which could be performed with the following expression:

    wherenandn′are the band indexes,vxandvyare velocity operators in thexandydirections, respectively.f(n) is the Fermi–Dirac distribution function.φnkandφn′kare the periodic part of Bloch wave function with eigenvalueEnandEn′,respectively.

    Figure 3 shows the Berry curvatures withU=2 eV (a),2.25 eV(b),2.4 eV(c),respectively.As shown in Fig.3(a),regarding FV state(U=2 eV),a nonzero Berry curvature occurs aroundK/K′valleys with opposite signs and different magnitudes.WhenU=2.19 eV, FV state experiences a topological phase transition into QAHVE state, bridged by an HVS state.ForU=2.25 eV, the sign ofΩ(k) atK′valley flips(Fig.3(b)).Further increasingU=2.29 eV,Kvalley also experiences a topological phase transition, akin to the case ofK′valley, resulting in the sign change ofΩ(k) atKvalley.With the increase ofU, it transforms from HVS to another FV state.By comparing these two FV states,the sign of Berry curvature atKandK′valleys are quite opposite(Figs.3(a)and 3(c)).Such dynamics of berry curvatureΩ(k)is bound to influence valley-related anomalous transport phenomena, such as AHVE, valley Nernst effect, valley magneto-optical Kerr effect,and valley magneto-optical Faraday effect.[69]

    It is remarkable that QAHVE phase in the range of 2.19 eV<U <2.29 eV can be demonstrated by the calculated Berry curvatures in BZ space (Fig.3(b)).Here, the Berry phase takes the same signs atKandK′valleys,but not the identical values.In this way, the edge spectrum calculated with WANNIER90 package shows a single gapless chiral state connecting the conduction and valence bands,consistent with an integer Chern number (C=1), as shown in Fig.4.Different from valley-polarized quantum anomalous Hall effect(VP-QAHE),the CBM,and VBM atK′/Kvalleys are all contributed by spin-down bands with full valley polarization(Fig.4(a)and Fig.S5(b)).When the magnetization is reversed,the edge state changes to the other valley,with an opposite spin and chiral directions,as shown in Fig.4(b),suggesting a very special behavior of the chiral-spin-valley locking for the obtained edge state.This novel quantum state can be detected by using the noncontact magneto-optical technique,[70]and thus highly promising for most practical applications in valleytronics.

    Fig.4.(a)The calculated nontrivial chiral edge states for a semi-infinite SLRuCl2 with U=2.25 eV.The 100%spin-polarized chiral state is locked with the valley index and spin direction.(b) The same as in panel (a), but the magnetization direction is along the-z direction.

    Yet for now, it is challenging to regulate the correlation effect (U), but we still hope that the various quantum phase diagram can be exhibited in practice.A crucial point is that the competition between kinetic and interaction energies could influence the strength of electronic correlation, which means we could exert epitaxial strain to manipulate the electronic and magnetic properties of 2D materials and thus probably achieve the same effect as changingU.Therefore, the biaxial strain is applied to the SL-RuCl2.The strain strength is defined asε=(a-a0)/a0, whereaanda0are the lattice constants of the system with and without strain, respectively.Hence, the system of SL-RuCl2can be possibly tuned into FV,HVS,and QAVHE states,even though the electronic correlation strengthUis larger than 2.19 eV.We useU=2.4 eV as an example to explore the quantum phase transitions by exerting external biaxial strain.To confirm the FM ground states, the total energy difference between FM and AFM ordering by using rectangle supercell is calculated as a function ofε, as shown in Fig.S6(a).In considered strain range, the magnetic ground states are always the FM states,And the magnetic anisotropy of SL-RuCl2prefers the OP state under the considered range,as is shown in Fig.S6(b).

    Fig.5.(a)The global energy band gap as a function of ε (0%~-4%).(b)The energy band gaps for the K and K′ valleys.

    The energy band gap and orbital-projected band structures of SL-RuCl2under various types of biaxial strain are presented in Figs.5 and 6,respectively.With increasing compressive biaxial strain,the gaps at two valleys decreases,whenε=-1.1%, the band gap atKvalley is closed, but it is still open atK′valley, transforming from FV to HVS state(Figs.5(b) and 6(b)).Further increasing compressive strain untilε=-2.3%,the gap atKvalley reopens and closes gradually atK′valley, and the other HVS state can be achieved,as is shown in Fig.6(d).Continuing increasing compressive biaxial strain, the band gap atK′valley will reopen and the system of SL-RuCl2will turn to the other FV state.

    In the process of applying biaxial compressive strain,the system of SL-RuCl2also encounters two different critical states, i.e., HVS state, with the band gap closes atKandK′valley, respectively.And the band gap reopening as compressiveεincreases along with the swapping of Ru-dxy/dx2-y2and Ru-dz2orbitals.This exotic transition probably suggests that QAVHE phases exist between the two HVS states.And this strain-induced phase transition mechanism for SL-RuCl2can be explained by constructing ak·pmodel.[35]In order to confirm QAVHE,we calculate the edge spectrum,as is shown in Fig.7.We can clearly observe that a single edge band for connecting the bulk conduction and valence bands,which verifies its nontrivial topology and also indicates a very special behavior of the chiral-spin-valley locking.The QAVHE can also be observed between the two HVS states.With increasing biaxial compressive strain, SL-RuCl2can transform from FV to HVS to QAVHE to HVS to FV state.

    Fig.6.Orbital-projected band structures of SL-RuCl2 with SOC under different biaxial strains.Blue circle represents components of Ru-dxy and Ru-dx2-y2 orbitals,red one is for component of Ru-dz2 orbital,and the green one represents Ru-dxz and Ru-dyz orbitals.

    Fig.7.(a) The calculated nontrivial chiral edge states for a semi-infinite SL-RuCl2 with ε =-1.5%.The 100%spin-polarized chiral state is locked with the valley index and spin direction.(b) The same as in panel (a), but the magnetization direction is along the-z direction.

    The valley-controllable sign-reversible Berry curvature is also related to the biaxial compressive strain,and we plot the Berry curvatures at some representativeεvalues in Fig.8.For a small compressive strain(ε=-0.7%),as shown in Fig.8(a),we find that a nonzero Berry curvature occurs aroundK/K′valleys with opposite signs and different magnitudes, consistent with the FV state.Under the strain of-1.1%, the sign of Berry curvature atKvalley firstly flips,and then the Berry curvature atK′valley change sign at aboutε=-2.3%.These topological phase transitions are also related to the band inversion of dxy/dx2-y2and dz2orbitals,being similar to variedU.Our understanding of the change of sign for the berry curvature at two valleys is that the opposite and half quantized Hall conductivitye2/2hand-e2/2h,respectively.The phase transition at two valleys happens at two different critical on-site Coulomb interactions:WhenU <2.19 eV,C=1/2-1/2=0;whenU >2.29 eV,C=-1/2+1/2=0, while in the case of 2.19 eV<U <2.29 eV, Berry curvature at one of the two valleys changes its sign and leads a total Chern number as 1/2+1/2=1.

    Fig.8.Berry curvature of SL-RuCl2 with ε =-0.7%(a),-1.5%(b),-2.5%(c)at U =2.4 eV.The top planes are contour maps of Berry curvature in the whole 2D BZ,the bottom planes are Berry curvatures along the high-symmetry points.

    Fig.9.The average magnetic moment and specific heat as a function of temperature with U =2 eV (a), 2.25 eV (b), and ε =0% (c), -4% (d) at U =2.4 eV.

    Both electronic correlation effects and compressive strain can effectively tune the strength of FM interaction, which can produce important effects on Curie temperatureTcof SLRuCl2.TheTcis estimated at representativeU(2 eV,2.25 eV,and 2.4 eV)andε(0%and-4%)values with the Wolf algorithm based on the Heisenberg model,which can be expressed as[71]

    whereJi,jrepresents the exchange parameters of the nearest neighbor, which could be calculated according to the energy difference between FM and AFM configurations.HereSi/Sjis the spin vector on each Ru,Aiis the anisotropy energy parameter per magnetic atom, andSziis thezcomponent of the spin vector.As the distance between Ru atoms and its second nearest neighboring Ru is more than 6.0 ?A, which is along enough to be ignored, only the nearestJis taken into account.[46]

    Thus

    On comparing with the energy results from first-principles calculations, the obtained model parameters are found to beJ=4.97 meV andA=117.5 μeV forU=2 eV,J=3.50 meV andA=62.3 μeV forU=2.25 eV,J=2.73 meV andA=0.188 μeV forU= 2.4 eV atε= 0%,J= 5.53 meV andA=158.9 μeV forU=2.4 eV atε=-4%.To make the FMparamagnetic transition clearer,we calculate the heat capacity(Cv)as follows:

    Here, ΔETis the change of the total energy as the temperature increases fromTtoT+ΔT.The Monte Carlo simulation is then performed to estimate the transition point of the ferromagnetism,and the results shown in Fig.9.The estimatedTcis about 211 K forU=2 eV,148 K forU=2.25 eV,116 K,and 234 K forU=2 eV atε=0%and-4%.Thus,it is very key for estimatingTcto use reasonableU.And it is found that the compressive strain can improveTc.

    4.Conclusions

    To summarize,based on first-principles calculations with DFT+Uapproach and ak·pmodel, we found that valleycontrolled quantum phase transitions can be driven by electronic correlation and compressive biaxial strain from FV to HVS to QAVHE to HVS to FV phase in SL-RuCl2.Remarkably, QAVHE and chiral spin-valley, which is induced by sign-reversible Berry curvature or band inversion between dxy/dx2-y2and dz2orbitals,can achieve complete spin and valley polarizations for low-dissipation electronics devices.We also find that this electron valley-polarization can be switched by reversing the magnetization direction, providing a new route of magnetic control of valley degree of freedom.Therefore,our findings not only enrich the research on QAVHE,but also broaden the horizon for the spintronics,valleytronics,and topological nanoelectronics applications.

    Acknowledgements

    Project supported by the Taishan Scholar Program of Shandong Province,China(Grant No.ts20190939),the Independent Cultivation Program of Innovation Team of Jinan City(Grant No.2021GXRC043),and the National Natural Science Founation of China(Grant No.52173283).

    猜你喜歡
    李萍
    婦科超聲見盆腔積液診斷探討
    Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface?
    天生一對
    故事會(2021年16期)2021-08-20 00:53:29
    海峽情
    黃河之聲(2020年13期)2020-09-12 16:52:54
    太陽第一家
    黃昏之戀
    SLA:ErroranalysisofthelearnersinvocationalcollegeundertheBlendedLearningModel
    《黃山奇松》(第二課時)教學(xué)設(shè)計
    怎么會這樣
    怎么會這樣
    小說月刊(2016年1期)2015-12-29 17:22:29
    一级毛片我不卡| 十八禁高潮呻吟视频| 99久久99久久久精品蜜桃| 在线观看国产h片| 美女扒开内裤让男人捅视频| 亚洲国产av影院在线观看| 国产欧美日韩综合在线一区二区| 最近最新中文字幕大全免费视频 | 大码成人一级视频| 啦啦啦中文免费视频观看日本| 又紧又爽又黄一区二区| 久久狼人影院| 伊人亚洲综合成人网| 国产成人91sexporn| 亚洲综合色网址| 这个男人来自地球电影免费观看| 人妻人人澡人人爽人人| 欧美另类一区| 欧美日韩成人在线一区二区| 手机成人av网站| 国产精品免费大片| 成年女人毛片免费观看观看9 | 十八禁人妻一区二区| 视频在线观看一区二区三区| 中文字幕最新亚洲高清| 韩国高清视频一区二区三区| 欧美激情 高清一区二区三区| 1024视频免费在线观看| 欧美大码av| 777久久人妻少妇嫩草av网站| 搡老岳熟女国产| 人体艺术视频欧美日本| 国产97色在线日韩免费| 我要看黄色一级片免费的| 午夜免费成人在线视频| 日韩精品免费视频一区二区三区| 亚洲伊人色综图| 亚洲av国产av综合av卡| 亚洲av美国av| 在线精品无人区一区二区三| 免费少妇av软件| 欧美 日韩 精品 国产| 亚洲精品中文字幕在线视频| 国产亚洲一区二区精品| 九色亚洲精品在线播放| 欧美精品亚洲一区二区| 在线观看www视频免费| 亚洲精品中文字幕在线视频| 亚洲精品中文字幕在线视频| 国产成人欧美| 少妇精品久久久久久久| 日本欧美视频一区| 亚洲精品在线美女| 亚洲欧美中文字幕日韩二区| 两个人看的免费小视频| 欧美黄色淫秽网站| 在线观看免费日韩欧美大片| 大陆偷拍与自拍| 一二三四社区在线视频社区8| 老汉色av国产亚洲站长工具| 国产成人精品无人区| 日韩中文字幕视频在线看片| 国产免费一区二区三区四区乱码| 91字幕亚洲| 美女高潮到喷水免费观看| 制服诱惑二区| 脱女人内裤的视频| 亚洲成人免费av在线播放| 你懂的网址亚洲精品在线观看| 日韩一卡2卡3卡4卡2021年| netflix在线观看网站| 欧美+亚洲+日韩+国产| 亚洲中文av在线| 日本wwww免费看| 欧美日韩国产mv在线观看视频| 伊人久久大香线蕉亚洲五| 捣出白浆h1v1| 极品人妻少妇av视频| 欧美日韩国产mv在线观看视频| 国产野战对白在线观看| 日韩人妻精品一区2区三区| 亚洲欧洲日产国产| 精品国产超薄肉色丝袜足j| 国产伦理片在线播放av一区| 又大又黄又爽视频免费| 又黄又粗又硬又大视频| 国产av一区二区精品久久| 日韩av不卡免费在线播放| 多毛熟女@视频| 欧美成人午夜精品| 另类亚洲欧美激情| 亚洲一卡2卡3卡4卡5卡精品中文| 91九色精品人成在线观看| 新久久久久国产一级毛片| 香蕉丝袜av| 中文字幕色久视频| 国产片特级美女逼逼视频| 日韩电影二区| 国产色视频综合| 色视频在线一区二区三区| 黄色 视频免费看| 在线天堂中文资源库| 久久精品久久久久久噜噜老黄| 在线观看免费高清a一片| 亚洲少妇的诱惑av| 中文字幕人妻丝袜制服| 交换朋友夫妻互换小说| 老司机深夜福利视频在线观看 | 国产高清国产精品国产三级| 777米奇影视久久| 国产精品人妻久久久影院| 国产高清国产精品国产三级| 50天的宝宝边吃奶边哭怎么回事| 日本av手机在线免费观看| 人人澡人人妻人| 精品卡一卡二卡四卡免费| 国产在视频线精品| 手机成人av网站| 九色亚洲精品在线播放| 亚洲五月色婷婷综合| av天堂在线播放| 波野结衣二区三区在线| 免费av中文字幕在线| 国产免费一区二区三区四区乱码| 亚洲精品国产区一区二| 一区二区av电影网| 少妇裸体淫交视频免费看高清 | 狂野欧美激情性xxxx| 成人国语在线视频| 菩萨蛮人人尽说江南好唐韦庄| 首页视频小说图片口味搜索 | 国产黄色视频一区二区在线观看| 97在线人人人人妻| 欧美在线一区亚洲| 一级毛片女人18水好多 | av片东京热男人的天堂| 亚洲欧美日韩另类电影网站| 色网站视频免费| 精品欧美一区二区三区在线| 国产日韩欧美视频二区| 国产精品久久久人人做人人爽| 嫁个100分男人电影在线观看 | 国产免费福利视频在线观看| 黄色怎么调成土黄色| 嫩草影视91久久| 男女免费视频国产| 久久综合国产亚洲精品| 亚洲国产精品国产精品| 婷婷色麻豆天堂久久| 啦啦啦在线免费观看视频4| 男女午夜视频在线观看| 国产成人影院久久av| 人人妻人人添人人爽欧美一区卜| 国产野战对白在线观看| 天天躁夜夜躁狠狠久久av| 9色porny在线观看| 日本欧美视频一区| 中文字幕人妻熟女乱码| 亚洲精品国产av成人精品| 欧美变态另类bdsm刘玥| 极品人妻少妇av视频| 丝袜脚勾引网站| 精品人妻熟女毛片av久久网站| 少妇人妻 视频| 国产精品熟女久久久久浪| 午夜免费男女啪啪视频观看| 亚洲免费av在线视频| 手机成人av网站| 99re6热这里在线精品视频| 99热网站在线观看| 国产日韩欧美视频二区| 你懂的网址亚洲精品在线观看| 亚洲精品国产色婷婷电影| 国产欧美日韩一区二区三区在线| 国产精品 国内视频| 看免费av毛片| avwww免费| 香蕉国产在线看| 欧美乱码精品一区二区三区| 人妻一区二区av| 少妇人妻 视频| 丝袜脚勾引网站| 欧美日本中文国产一区发布| 一级片'在线观看视频| 啦啦啦啦在线视频资源| 男女之事视频高清在线观看 | 一区福利在线观看| 操出白浆在线播放| 老司机亚洲免费影院| 国产成人一区二区在线| 2018国产大陆天天弄谢| 999精品在线视频| 精品免费久久久久久久清纯 | 叶爱在线成人免费视频播放| 久久99热这里只频精品6学生| 日本91视频免费播放| 中国美女看黄片| 91精品国产国语对白视频| 国产淫语在线视频| 99久久精品国产亚洲精品| 亚洲精品一卡2卡三卡4卡5卡 | 国产成人精品久久二区二区91| 亚洲av欧美aⅴ国产| 亚洲精品美女久久av网站| 欧美精品一区二区免费开放| av在线播放精品| 女人被躁到高潮嗷嗷叫费观| 在线观看一区二区三区激情| 亚洲av日韩在线播放| 欧美中文综合在线视频| 亚洲国产精品成人久久小说| 日韩电影二区| 国产男女超爽视频在线观看| 亚洲成国产人片在线观看| 亚洲自偷自拍图片 自拍| 无遮挡黄片免费观看| 亚洲人成77777在线视频| 精品国产乱码久久久久久小说| 国产人伦9x9x在线观看| 亚洲成人手机| 丝袜喷水一区| 亚洲一码二码三码区别大吗| 日本猛色少妇xxxxx猛交久久| 黄色视频在线播放观看不卡| 精品国产一区二区三区四区第35| 成年美女黄网站色视频大全免费| 极品人妻少妇av视频| 日韩免费高清中文字幕av| 天天躁夜夜躁狠狠躁躁| 久久久欧美国产精品| 丝袜美腿诱惑在线| 女警被强在线播放| 久久青草综合色| 黄色视频在线播放观看不卡| 国产又爽黄色视频| 国产免费现黄频在线看| 操出白浆在线播放| 天堂8中文在线网| 国产片特级美女逼逼视频| 精品人妻1区二区| 久久鲁丝午夜福利片| 亚洲色图 男人天堂 中文字幕| 久久青草综合色| 男人添女人高潮全过程视频| 国产97色在线日韩免费| 晚上一个人看的免费电影| 母亲3免费完整高清在线观看| 精品卡一卡二卡四卡免费| 国产主播在线观看一区二区 | 久久久国产一区二区| 亚洲七黄色美女视频| 精品国产乱码久久久久久小说| 黑人猛操日本美女一级片| 中文字幕高清在线视频| 99热全是精品| 午夜福利影视在线免费观看| 成年人午夜在线观看视频| 欧美av亚洲av综合av国产av| 亚洲av日韩精品久久久久久密 | 各种免费的搞黄视频| 我要看黄色一级片免费的| 亚洲专区中文字幕在线| 色94色欧美一区二区| 午夜激情久久久久久久| av在线app专区| 两性夫妻黄色片| 久久久久网色| 天堂中文最新版在线下载| 国产1区2区3区精品| 另类亚洲欧美激情| 成人三级做爰电影| 国产日韩欧美在线精品| 日韩大片免费观看网站| 新久久久久国产一级毛片| 美女主播在线视频| 欧美亚洲日本最大视频资源| 国产精品偷伦视频观看了| 欧美 亚洲 国产 日韩一| 亚洲国产日韩一区二区| 我的亚洲天堂| 人妻一区二区av| 夫妻午夜视频| 男人添女人高潮全过程视频| 国产精品人妻久久久影院| 亚洲图色成人| 精品国产乱码久久久久久小说| 欧美成人午夜精品| 亚洲精品日韩在线中文字幕| 亚洲精品一卡2卡三卡4卡5卡 | 超色免费av| 亚洲欧美中文字幕日韩二区| 大型av网站在线播放| 99久久综合免费| 国产欧美日韩精品亚洲av| 国产高清videossex| 日本91视频免费播放| 女警被强在线播放| 狠狠精品人妻久久久久久综合| 久久性视频一级片| 超碰成人久久| 午夜福利,免费看| 久久人人97超碰香蕉20202| 热99久久久久精品小说推荐| 免费人妻精品一区二区三区视频| 亚洲精品久久午夜乱码| 久久久久久久大尺度免费视频| 久久亚洲国产成人精品v| 这个男人来自地球电影免费观看| 国产成人av激情在线播放| 少妇粗大呻吟视频| 九草在线视频观看| 日本午夜av视频| 不卡av一区二区三区| 久久亚洲国产成人精品v| 久久精品久久久久久噜噜老黄| 亚洲精品日本国产第一区| 国产精品二区激情视频| 一区二区av电影网| 国产老妇伦熟女老妇高清| 在线精品无人区一区二区三| 18禁裸乳无遮挡动漫免费视频| 一级黄片播放器| 国产欧美亚洲国产| 可以免费在线观看a视频的电影网站| 国产精品99久久99久久久不卡| 久久久久精品人妻al黑| 国产一区亚洲一区在线观看| 丰满饥渴人妻一区二区三| 最近中文字幕2019免费版| 国产片内射在线| 97在线人人人人妻| 最新的欧美精品一区二区| 人人妻人人添人人爽欧美一区卜| 老司机靠b影院| 国产成人精品久久久久久| 免费不卡黄色视频| 亚洲欧美一区二区三区国产| 性色av乱码一区二区三区2| 欧美大码av| 久久久国产欧美日韩av| 日韩av在线免费看完整版不卡| 少妇猛男粗大的猛烈进出视频| av在线app专区| 18在线观看网站| 国产1区2区3区精品| av在线老鸭窝| 伊人亚洲综合成人网| 国产男人的电影天堂91| 下体分泌物呈黄色| 99国产精品免费福利视频| 精品一区二区三区四区五区乱码 | 欧美 日韩 精品 国产| 天堂中文最新版在线下载| 人人澡人人妻人| 一个人免费看片子| 香蕉国产在线看| 在现免费观看毛片| 亚洲精品美女久久av网站| 高清av免费在线| 中文字幕制服av| 99国产精品一区二区蜜桃av | 天天躁夜夜躁狠狠躁躁| 欧美精品人与动牲交sv欧美| 日日摸夜夜添夜夜爱| 80岁老熟妇乱子伦牲交| 99精品久久久久人妻精品| 99久久综合免费| 亚洲精品一卡2卡三卡4卡5卡 | √禁漫天堂资源中文www| 99九九在线精品视频| 搡老岳熟女国产| 日本色播在线视频| 咕卡用的链子| 精品人妻在线不人妻| 婷婷色麻豆天堂久久| 日本av手机在线免费观看| 国产欧美日韩一区二区三区在线| 亚洲av电影在线进入| 久久久精品94久久精品| 99久久人妻综合| 国产黄频视频在线观看| 免费在线观看视频国产中文字幕亚洲 | 欧美日韩亚洲国产一区二区在线观看 | 久久国产亚洲av麻豆专区| 国产av一区二区精品久久| 少妇人妻久久综合中文| 黄网站色视频无遮挡免费观看| 免费女性裸体啪啪无遮挡网站| 看免费av毛片| 亚洲欧美色中文字幕在线| 别揉我奶头~嗯~啊~动态视频 | 久久久精品区二区三区| cao死你这个sao货| 日日摸夜夜添夜夜爱| 国产免费福利视频在线观看| 国产亚洲欧美精品永久| 黄网站色视频无遮挡免费观看| 亚洲av日韩精品久久久久久密 | 亚洲精品久久午夜乱码| 青春草视频在线免费观看| 日本vs欧美在线观看视频| 另类精品久久| 国产精品久久久久久人妻精品电影 | 亚洲第一av免费看| 99香蕉大伊视频| 亚洲精品第二区| 精品视频人人做人人爽| 国产淫语在线视频| 久久性视频一级片| 91精品国产国语对白视频| 巨乳人妻的诱惑在线观看| 男女边摸边吃奶| 一级毛片电影观看| 精品少妇一区二区三区视频日本电影| 国产精品九九99| 一本—道久久a久久精品蜜桃钙片| 国产亚洲一区二区精品| cao死你这个sao货| 色播在线永久视频| 19禁男女啪啪无遮挡网站| 色视频在线一区二区三区| av视频免费观看在线观看| 成人国语在线视频| 亚洲精品国产av蜜桃| 这个男人来自地球电影免费观看| av电影中文网址| 欧美激情极品国产一区二区三区| 欧美少妇被猛烈插入视频| 丁香六月天网| 69精品国产乱码久久久| 精品少妇一区二区三区视频日本电影| 国产免费福利视频在线观看| 亚洲欧美一区二区三区久久| 亚洲,欧美,日韩| 午夜久久久在线观看| 国产免费又黄又爽又色| 日韩制服骚丝袜av| 性色av一级| 日韩大码丰满熟妇| 9热在线视频观看99| 天堂中文最新版在线下载| av电影中文网址| 欧美日韩综合久久久久久| 亚洲av片天天在线观看| 国产亚洲欧美在线一区二区| 国产99久久九九免费精品| 亚洲久久久国产精品| 国产日韩一区二区三区精品不卡| 亚洲精品久久成人aⅴ小说| 母亲3免费完整高清在线观看| 一区二区日韩欧美中文字幕| 久久性视频一级片| 日韩 亚洲 欧美在线| 亚洲一码二码三码区别大吗| 美国免费a级毛片| 国产免费现黄频在线看| 久久久久久久精品精品| 熟女av电影| 国产人伦9x9x在线观看| 国产在线观看jvid| 性少妇av在线| 久久久久久久国产电影| 欧美日韩成人在线一区二区| 97人妻天天添夜夜摸| 国产伦人伦偷精品视频| 精品久久久精品久久久| 成人亚洲精品一区在线观看| 男男h啪啪无遮挡| 人体艺术视频欧美日本| 人妻人人澡人人爽人人| 老司机影院毛片| 久久精品国产综合久久久| 精品少妇黑人巨大在线播放| 成人影院久久| 国产午夜精品一二区理论片| 丁香六月欧美| 男女下面插进去视频免费观看| 一级黄色大片毛片| 女警被强在线播放| 美女中出高潮动态图| 国产精品一区二区免费欧美 | 国产精品 国内视频| 国产成人欧美| 狂野欧美激情性xxxx| 1024香蕉在线观看| 亚洲av片天天在线观看| 电影成人av| 少妇粗大呻吟视频| 精品欧美一区二区三区在线| 欧美黑人欧美精品刺激| 一本久久精品| 中国美女看黄片| 天天躁夜夜躁狠狠躁躁| 国产精品免费大片| 黄色视频不卡| 美女国产高潮福利片在线看| 免费观看a级毛片全部| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区 视频在线| 国产男女超爽视频在线观看| 久久久久国产精品人妻一区二区| 亚洲欧洲国产日韩| 日韩 欧美 亚洲 中文字幕| 青青草视频在线视频观看| 人体艺术视频欧美日本| 欧美成人午夜精品| 性少妇av在线| 亚洲精品一二三| 王馨瑶露胸无遮挡在线观看| a级毛片在线看网站| 久久久久久久国产电影| www.精华液| 黄色一级大片看看| 9热在线视频观看99| 99精品久久久久人妻精品| 国产免费又黄又爽又色| 久久青草综合色| 男女免费视频国产| 每晚都被弄得嗷嗷叫到高潮| 91麻豆av在线| 国产欧美亚洲国产| 9热在线视频观看99| 99香蕉大伊视频| 日韩 欧美 亚洲 中文字幕| 亚洲精品久久午夜乱码| 国产福利在线免费观看视频| 欧美日韩黄片免| 可以免费在线观看a视频的电影网站| 亚洲国产精品999| 精品国产国语对白av| 又大又爽又粗| 91成人精品电影| 国产一区二区 视频在线| 香蕉丝袜av| 妹子高潮喷水视频| 精品欧美一区二区三区在线| 日本黄色日本黄色录像| 亚洲国产精品成人久久小说| 免费在线观看黄色视频的| 在线观看免费视频网站a站| 久久 成人 亚洲| 老鸭窝网址在线观看| 自线自在国产av| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区在线观看99| www日本在线高清视频| 成人黄色视频免费在线看| av在线app专区| 欧美久久黑人一区二区| 欧美xxⅹ黑人| 久久久久久久大尺度免费视频| 国产男女内射视频| 国产精品九九99| 国产黄色视频一区二区在线观看| 国产一区二区在线观看av| kizo精华| 婷婷色综合www| 亚洲色图 男人天堂 中文字幕| 欧美在线黄色| 久久国产亚洲av麻豆专区| 亚洲激情五月婷婷啪啪| 男女午夜视频在线观看| svipshipincom国产片| 久久精品国产亚洲av涩爱| 精品少妇内射三级| 精品免费久久久久久久清纯 | 日本色播在线视频| 亚洲中文字幕日韩| 别揉我奶头~嗯~啊~动态视频 | 午夜影院在线不卡| 国产精品国产三级国产专区5o| 中国美女看黄片| 韩国高清视频一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 欧美变态另类bdsm刘玥| 精品一区二区三区av网在线观看 | xxxhd国产人妻xxx| 亚洲成色77777| 欧美精品啪啪一区二区三区 | 香蕉丝袜av| 下体分泌物呈黄色| 一级,二级,三级黄色视频| 热re99久久精品国产66热6| 精品久久久久久电影网| 午夜福利乱码中文字幕| 丁香六月欧美| 男女边摸边吃奶| 丝袜喷水一区| 日日摸夜夜添夜夜爱| 亚洲国产欧美一区二区综合| av天堂在线播放| 欧美大码av| 满18在线观看网站| 飞空精品影院首页| 男女高潮啪啪啪动态图| 肉色欧美久久久久久久蜜桃| 午夜精品国产一区二区电影| 国产高清国产精品国产三级| 久久精品国产亚洲av高清一级| 男人舔女人的私密视频| 日韩中文字幕视频在线看片| 1024香蕉在线观看| 99国产精品99久久久久| 欧美亚洲日本最大视频资源| 久久免费观看电影| 一边摸一边做爽爽视频免费| 一区在线观看完整版| 亚洲精品国产区一区二| 18禁黄网站禁片午夜丰满| 精品国产一区二区三区四区第35| 成人影院久久| 国产在线免费精品| 亚洲 欧美一区二区三区| 国产三级黄色录像| 高清不卡的av网站|