• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser?

    2021-12-22 06:51:50TongZhao趙彤ZhiRuShen申志儒WenLiXie謝文麗
    Chinese Physics B 2021年12期
    關(guān)鍵詞:王安

    Tong Zhao(趙彤) Zhi-Ru Shen(申志儒) Wen-Li Xie(謝文麗)

    Yan-Qiang Guo(郭龑強(qiáng))1,2, An-Bang Wang(王安幫)1,2,3, and Yun-Cai Wang(王云才)3,4,?

    1Key Laboratory of Advanced Transducers and Intelligent Control System,Ministry of Education and Shanxi Province,Taiyuan University of Technology,Taiyuan 030024,China

    2College of Physics and Optoelectronics,Taiyuan University of Technology,Taiyuan 030024,China

    3Guangdong Provincial Key Laboratory of Photonics Information Technology,Guangzhou 510006,China

    4School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China

    Keywords: sensitivity,optical feedback,microcavity laser,nonlinear dynamic

    1. Introduction

    Optical feedback used to be considered as a nuisance at the beginning of laser development due to its undesirable and unpredictable effects on laser output.[1–3]After researchers analyzed the nonlinear dynamics of semiconductor laser subject to optical feedback in early 1980,[4]enormous research effort was initiated, especially when they realized these behaviors could be useful.[5–7]Among these behaviors, chaos has attracted much attention since the properties of random oscillation and wide bandwidth could be applied in random number generation,[8–10]secure communication,[11,12]key distribution,[13,14]high speed information processing,[15,16]ranging,[17–19]and so on.

    Optical feedback is the simplest and most widely used method to generate chaotic laser.[20,21]But the feedback delay time can be acquired which is named as “time delay signature (TDS)”.[22]The TDS seriously affects the security of chaotic laser in communication since it implies a periodicity and weakens the randomness of the chaotic laser. This inspired researchers interest on how to suppress or eliminate the TDS,[23–25]but they found it is hard to accomplish without additional elements or devices.[26,27]

    Our research group noticed that, the TDS is not totally adverse for chaotic laser application. In 2015, we took the advantage of the TDS to precise locate the fiber fault in time-division multiplexing passive-optical-network(TDMPON).[28]The fault reflection provides the feedback light to semiconductor laser for chaos generation, and the TDS reflects to the fault position. In this way, the fault reflection is detected by the semiconductor laser rather than the photodetector,avoiding the high sensitivity requirement for weak reflection power in other fault detection approaches. The dynamic range just depends on the sensitivity to the feedback level of the semiconductor laser. Moreover,the spatial resolution and detection accuracy of fiber fault are close to the technique of chaotic optical time domain reflectometer.[17]Therefore,higher sensitive to feedback will lead to excellent performance on fiber fault location with this TDS detection method.

    In this paper, we use circular-side hexagonal resonator(CSHR) microcavity laser which has smaller internal cavity round-trip time to improve the sensitivity on optical feedback strength. Using Lang–Kobayashi equations, the output dynamics are numerically simulated and the critical feedback strength value for each state transformation is analyzed in detail. We define the sensitivity to the optical feedback strength in two aspects for fault detection and compare the sensitivity of CSHR microcavity laser with traditional distributed feedback(DFB)laser.The CSHR microcavity laser can respond to 0.07%feedback level which means?63-dB feedback strength and 1.001 variation degree on 1%feedback level change. Furthermore,the influence of some internal parameters on the sensitivity of CSHR microcavity laser is also demonstrated.

    2. Theoretical model

    Figure 1 shows the schematic diagram of CSHR microcavity laser with optical feedback, whereRis the side length of the laser active region andτfis the round-trip time of the external cavity. The sensitivity of CSHR microcavity laser with optical feedback is numerically simulated based on modified Lang–Kobayashi equations,[4]which are shown as follows:[29,30]

    wherenandsare the carrier density and photon number density inside the microcavity,θ=ωτf+φ(t)?φ(t ?τf) is the feedback optical phase,Iis the bias current,Vis the volume of the active region (V=πR2d),vg=c/ngis the group velocity of the lasing mode.κis the feedback level which is defined as amplitude reflection coefficient, andτinis defined asτin=2πngR/c.

    Fig.1. Schematic diagram of CSHR microcavity laser with optical feedback.

    The gain coefficientg(n,s) is a logarithmic function related to three parameters(Ntr,Ns,g)to more accurately fit the gain of the quantum well material, and the nonlinear gain effect is taken into account. The expression of gain coefficient is presented as follows:

    whereg0is the material gain coefficient,εis the gain suppression factor,Ntris the transparency carrier density,andNsis the gain parameter.

    The rate equations (1)–(3) are calculated by the fourthorder Runge–Kutta method and parameter descriptions and values are shown in Table 1.

    Table 1. Parameter values for CSHR microcavity laser used in our simulations.[29,30]

    3. Simulation results

    3.1. Dynamic states

    The CSHR microcavity laser with different feedback levels shows five dynamic states,which are stable,period-1 oscillation(P1),switching between stable and period(S-P switching), quasi-period oscillation (QP), and chaotic state, respectively. Figure 2(a) demonstrates the feedback levelκboundaries of states diagram under 1.3Ithpump current with external cavity round-trip timeτfchanging from 2 ns to 20 ns. Very weak feedback bellowing 0.02%cannot disturb CSHR microcavity laser to transform into unstable state,shown as gray region. As shown in blue and green regions,when the feedback level increases above the boundary but still under 0.055%,the laser output will transform to period-1 state or switching between these two states. Quasi-period state emerges after S–P switching state with the feedback level increasing, which is followed by the chaotic state when the feedback level exceeds 0.08% boundary. Although higher feedback level will make output transfer to stable state again, this is beyond the scope of our sensitivity study. Moreover,theτfonly has a little impact on the boundary value except theτfis very small. As shown in Fig.2(a),the feedback level boundary fluctuates dramatically when the external cavity below 3.5 ns,and gradually becomes flat in long cavity length. In the application of TDMPON fault detection,the fiber length is far more than the short cavity definition for chaos generation.

    Fig.2. (a)The feedback level boundary of each state with different external cavity round-trip time τf in optical feedback CSHR microcavity laser biased at 1.3Ith. (b)–(e)The time series,power spectrum, and auto-correlation function(ACF)of each state with I=1.3Ith, τf =5 ns. P1: period-1 oscillation; S–P switching: switching between stable and period states;QP:quasi-periodic oscillation.

    Figures 2(b)–2(e)respectively show the four states of P1,S–P switching, QP, and chaotic state with 5-ns external cavity length and 1.3Ithpump current. The time series, power spectrum, and auto-correlation curve of each dynamic state are demonstrated in the figures, respectively. In the state of P1,the laser output with single period in 2.32 GHz which are shown in Figs.2(b1)–2(b2), and the auto-correlation curve is similar with time series(Fig.2(b3)). The power spectrum has a peak at the relaxation oscillation frequency(fR=2.32 GHz).Figure 2(c) shows the S–P switching state which is similar with the phenomenon reported by Chan.[31]In time series, it is shown as periodic switching between periodic and stable states(Fig.2(c1)). The repetition period is the external cavity round-trip time. Harmonics of the external cavity frequency appear in the power spectrum, as shown in Fig. 2(c2). The auto-correlation function curve appears as a slow modulation period ofτf(Fig.2(c3)).

    The period oscillation in the S–P switching state will be replaced by irregular fluctuation,named as QP state when the feedback level is further increased, as shown in Figs. 2(d1)–2(d3). In Fig. 2(d2), more frequencies appear in the power spectrum. Figures 2(e1)–2(e3) show the characteristics of the chaotic state. The time series waveform fluctuates in larger amplitude irregularly, the spectrum becomes broaden and flatten, and respectively represented in Figs. 2(e1) and 2(e2). Some sharp peaks appear in the auto-correlation function curve at the positions of 0 ns and±5 ns,corresponding to 0 and external cavity roundtrip time,as shown in Fig.2(e3).

    3.2. Critical feedback level

    We use the definition of the critical feedback levelκc,which is the boundary of the laser output transforming to unstable state,to explain the relationship between the sensitivity to feedback level and laser parameters. The critical feedback level proposed by Acketet al.in 1984,[32]and further simplified by Helms and Petermann in Ref.[33], is shown in the following expression:

    Only three parameters of the laser are involved in this equation: the linewidth enhancement factorα, the damping rateγ,and the internal cavity round-trip timeτin. We analyze the critical feedback level through characters of laser output by changing the parametersτinandα, and other parameters are still the same as before (I=1.3Ith,τf=5 ns). In Fig. 3,the red dots are the simulation results with red solid line fixed,and the dashed line represents prediction results of Eq. (5).As shown in Fig. 3(a), the simulation and calculation results are highly consistent, representing the linear relationship betweenκcandτin. Whenτindecreases to 0.25 ps, the critical feedback level can reach to 0.01%. Different from the linear relationship, whenαincreases,κcdecreases rapidly first and then tends to be flat,as shown in Fig.3(b). The simulation results gradually close to the results of Eq.(5)whenαincreases to 4. When the value ofαis above 4,the two results coincide with each other completely.

    The comparation between the simulation and prediction results indicates a good agreement for our following sensitivity analyzation based on this simulation.

    Fig. 3. Critical feedback level versus the internal cavity round-trip time τin(a) and linewidth enhancement factor α (b). Red solid curves: fixed simulation results (red dots) with τf =5 ns. I =1.3Ith; black dashed curves:prediction results calculated by Eq.(5).

    3.3. Time delay signature

    Fig.4. The ACF(a),the DMI(b),and the PE(c)as a function of κ for the optical feedback. I=1.3Ith,τf=5 ns. (I):κ=0.4%,(II):κ=0.8%,and(III):κ =1.6%.

    In previous work on fiber fault location using TDS detection method,[28]the feedback level provided by fault reflection must reach a certain intensity to make the output of laser to be QP or chaotic state. Only in these two states, the TDS can be acquired. Here,we analyze the TDS variation in auto-correlation function (ACF), delayed mutual information(DMI) and permutation entropy (PE) with different feedback levels. In this section, the bias current of laser and the external cavity round-trip time are respectivelyI= 1.3Ithandτf=5 ns. Figures 4(a1)–4(a3) show the ACF curve of laser output under three different feedback levels: 0.4%,0.8%,and 1.6%. It is observed that,the TDS which corresponds toτfoccurs at position of 5 ns and the level of TDS increases withκ.Similar tendency, that is the peak level of TDS increasing as feedback level,also appears in DMI and PE curves,as shown in Figs.4(b1)–4(b3)and 4(c1)–4(c3).

    One obvious difference between ACF and DMI or PE is that the TDS hardly to observe by DMI or PE when the feedback level is weak(0.4%),as shown in Figs.4(b1)and 4(c1).Once the feedback level becomes strong,the peak level of TDS rises faster as presented in Fig.4(b2). In Figs.4(c2)and 4(c3),there are more peaks emerge before TDS (position of (1/2)τfand (1/3)τf) in PE curves, and these peaks will influence the judgment of TDS position. Thus, the TDS analyzation based on PE curves is not suitable for fiber fault location.

    The results shown in Figs. 4(a) and 4(b) also demonstrate the different change degrees of TDS in ACF and DMI methods. In the TDS analyzation-based ACF, the peak level increases from 0.24 to 0.84 when the variation of feedback level is 1.2%. But in DMI method, a growth of peak level of TDS ranges from 0.02 to 0.31 under the same feedback level change range. This variation degree reflects the sensitivity to the smallest change on feedback level of CSHR microcavity laser. Therefore,the sensitivity on this variation degree is also included in our sensitivity study.

    3.4. Sensitivity to feedback level

    In this section,we define the sensitivity criterion from two aspects.

    (i)Determining the minimum feedback level. Only when the laser enters into QP or chaotic state,can TDS be observed in ACF or DMI curve. In fiber fault location, this property will be helpful to detect the weak light, and has the potential to improve the dynamic range or detection distance.

    (ii)Finding the variation degree of TDS peak levelversusthe feedback level changing. The variation degree represents the laser responsivity on slight change in feedback level,which means the measurement accuracy of fault reflectivity.

    By measuring the TDS level in ACF and DMI curves to quantificationally investigate the sensitivity to feedback level of CSHR microcavity laser. The sensitivity of DFB laser is also studied as a comparison. The pump current and external cavity round-trip time of CSHR microcavity laser and DFB laser are same (I=1.3Ith,τf=5 ns) and the internal cavity round-trip time(τin)of these two lasers are different(CSHR:τin=0.55 fs, DFB:τin=7.4 fs). Other parameters of DFB laser refer to the reference paper.[23]

    Figure 5(a) demonstrates the peak level of TDS in ACFversusfeedback level of CSHR microcavity laser (red curve)and DFB laser(black curve),respectively. Similar to the previous research on TDS,[22,28]the curve looks like a well decreasing to the bottom and then rising as feedback level increases. One significant difference is that the TDS appears in ACF curve of CSHR microcavity laser much earlier than DFB laser with the feedback level increasing, due to the smallerτin. The inset plots the magnified view of the red curve. It shows that the minimum feedback level for CSHR microcavity laser reduces to 0.07% and at 0.27% when the TDS level decreases to the bottom. From this point on,the CSHR microcavity laser output transforms from QP state to chaotic state.The TDS level increases rapidly and is followed by a slowly rise to stable value. But in the result of DFB laser, the curve starts at feedback level of 0.7%, down to the lowest point at 2.8%,and then rise as the same trend with CSHR microcavity laser. Although the bottom value of these two curves is different,the existence of TDS satisfies the requirement for the fault location in our study, due to the high insertion loss in TDMPON.Similar phenomena also appear in the DMI analyzation curves, as shown in Fig. 5(b). The critical points (minimum and inflection points) of feedback level are the same as the points in Fig.5(a),because the laser output enters in the same state.

    According to the above illustration, the sensitivity to the minimum feedback level (criterion (i)) of CSHR microcavity laser is much higher than DFB laser.Similar as the analyzation of critical feedback level by Eq. (5), the huge improvement on sensitivity attributes to the shorter internal cavity roundtrip time of CSHR laser rather than DFB laser. Depending on the ‘20log’ calculation rule, the amplitude feedback level of 0.07%corresponds to the feedback strength of?63 dB,which improve about 20 dB for the optical feedback detection compared with DFB laser.

    Fig. 5. The influence of feedback level on the TDS of CSHR microcavity laser(red dot)and DFB laser(black square)subject to optical feedback. The TDS level in(a)ACF and(b)DMI with the changing of feedback level,and the curves are the data fitting. The curves of CSHR microcavity laser are magnified in the insets. CSHR: τin =0.55 fs, τf =5 ns, I =1.3Ith; DFB:τin=7.4 fs,τf=5 ns,I=1.3Ith. The unit a.u. is short for arb. units.

    Moreover, in order to study the TDS variation degree to the feedback level changing (criterion (ii)), we fix the curve slopeKwhen the laser output enters in chaotic state,shown as blue dashed line. Obviously, the slope of CSHR microcavity laser is greater than DFB laser whatever in ACF curve or DMI curve. In Fig. 5(a), the slope value of 1.001 means a 1.001 increasement with 1% feedback level changing in CSHR microcavity laser, and the slope of DFB laser is just 0.056. But in DMI curve, there is only one order of magnitude difference between these two values (0.26 and 0.017). Therefore,the ACF is more suitable for the analyzation on TDS variation sensitivity.

    Depending on Eq.(5),the laser sensitivity to feedback is mainly related to three critical parameters(τin,γ,andα). Figure 6 illustrates the influence of these critical parameters on the slopeK. In the structure of CSHR microcavity laser, the internal cavity round-trip time is determined by the active region side lengthR. We changeRinstead ofτinto analyze theKof TDS level variation with feedback level change,like the blue dashed line in Fig. 5. As shown in Fig. 6(a), the slope decreases withRincreasing from 3.5 μm to 8 μm as a linear relationship, which means the sensitivity to the feedback level variation of CSHR microcavity laser is higher in small volume.

    Fig. 6. The influence of (a) active region side length, (b) damping rate, (c) linewidth enhancement factor of CSHR microcavity laser on the feedback level variation sensitivity I=1.3Ith,τf=5 ns.

    The relationship betweenKandγis demonstrate in Fig. 6(b). After a rapid decline, the slope tends to be flat around 0.2 when the damping rate increases to 25 GHz. The higher damping rate means a faster response to transfer to one output state,and thus the laser sensitivity to feedback variation will maintain at a fixed level when this response speed reaches a threshold. The linewidth enhancement factorαplays an important role in the dynamic characteristics of the laser.A gradually decreasing curve illustrates the impact ofαon the slopeK, as shown in Fig. 6(c). Therefore, minor volume, slow response,and small linewidth enhancement factor of the CSHR microcavity laser can induce a higher sensitivity to the optical feedback.

    4. Conclusion and perspectives

    Higher sensitivity for optical reflection will play an important role in fiber fault detection,especially in the wide coverage TDM-PON with vast branch. In our previous research,the TDS,which is a unique property for chaotic laser,is used to realize fiber fault location. The high spatial-resolution performance is similar with chaotic optical time domain reflectometry, and the structure is simpler because the fault reflection is received by laser rather than photodetector. However, the sensitivity to the optical feedback of the laser is determined by some critical parameters, including internal cavity round-trip time.

    In this study, we numerically simulated the sensitivity to feedback level of CSHR microcavity laser which owns a smaller internal cavity round-trip time than DFB laser. We analyze the sensitivity from two aspects which are the minimum feedback level for TDS emerging and the variation degree of TDS level on feedback level changing. Compared to DFB laser,the sensitivity for the minimum feedback level of CSHR microcavity laser is improved at least one order of magnitude,corresponding to the increase of 20-dB feedback strength.The increasement of 1.001 on TDS level in auto-correlation function curve just requires 1%feedback level changing for CSHR microcavity laser. This variation degree is much higher than the value of 0.056 for DFB laser. In addition,we demonstrate the influence of active region side length, damping rate and linewidth enhancement factor on this variation degree,respectively.

    In fiber fault location, the improvement of 20-dB sensitivity corresponds to 20-dB dynamic range or 100-km fiber length, and this performance could change the present situation of weak light detection. Although the respond scope of CSHR microcavity laser is shrunk rather than DFB laser(Fig.5),it cannot affect the use in massive branch optical network due to the branch splitting. Furthermore,the large variation degree on feedback level changing could enhance the accuracy of fiber sensing system.

    猜你喜歡
    王安
    Thermal Hall effect and the Wiedemann-Franz law in Chern insulator
    元日
    王安期不鞭書(shū)生
    王安期不鞭書(shū)生
    請(qǐng)客
    曲耶?戲耶?——王安祈《紅樓夢(mèng)》京劇論
    太原理工大學(xué)學(xué)者風(fēng)采
    ——王安幫教授
    緣何抒情,怎樣寫(xiě)意?——王安祈戲曲研究中傳統(tǒng)與現(xiàn)代的相互表述
    中華戲曲(2018年1期)2018-08-27 10:04:08
    做了才會(huì)知道結(jié)果
    王武龍會(huì)長(zhǎng)會(huì)見(jiàn)中咨公司王安總經(jīng)理一行
    制服人妻中文乱码| 91字幕亚洲| 最近最新中文字幕大全电影3 | 天天添夜夜摸| 视频区欧美日本亚洲| 国产三级黄色录像| 十八禁网站免费在线| 手机成人av网站| 欧美日韩av久久| 亚洲自偷自拍图片 自拍| 成人永久免费在线观看视频| 色综合婷婷激情| av电影中文网址| 看片在线看免费视频| 91大片在线观看| 久久影院123| 在线播放国产精品三级| √禁漫天堂资源中文www| 久久久久久亚洲精品国产蜜桃av| aaaaa片日本免费| 一个人免费在线观看的高清视频| 亚洲片人在线观看| 亚洲国产看品久久| 亚洲精品久久成人aⅴ小说| 国产av一区二区精品久久| 国产精品香港三级国产av潘金莲| 天天影视国产精品| 亚洲精品一区av在线观看| 自线自在国产av| 欧美+亚洲+日韩+国产| 韩国精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 12—13女人毛片做爰片一| 每晚都被弄得嗷嗷叫到高潮| 亚洲一区二区三区色噜噜 | 免费少妇av软件| 日本撒尿小便嘘嘘汇集6| 99国产综合亚洲精品| 90打野战视频偷拍视频| 日韩视频一区二区在线观看| 午夜福利,免费看| 国产成年人精品一区二区 | 高清av免费在线| 久久久国产成人精品二区 | 不卡av一区二区三区| 母亲3免费完整高清在线观看| 国产精品久久久久久人妻精品电影| av网站免费在线观看视频| 人成视频在线观看免费观看| 99国产精品一区二区蜜桃av| 51午夜福利影视在线观看| 美女国产高潮福利片在线看| 午夜福利在线观看吧| 日韩视频一区二区在线观看| 中文字幕人妻丝袜一区二区| 久久精品国产亚洲av香蕉五月| 国产av一区二区精品久久| 99国产极品粉嫩在线观看| 老熟妇仑乱视频hdxx| 亚洲精品在线观看二区| 欧美+亚洲+日韩+国产| 每晚都被弄得嗷嗷叫到高潮| 国产精品1区2区在线观看.| 亚洲色图av天堂| 国产精品免费视频内射| 欧美激情久久久久久爽电影 | 免费搜索国产男女视频| 中亚洲国语对白在线视频| 亚洲国产精品一区二区三区在线| 三上悠亚av全集在线观看| 欧美成人午夜精品| 一级a爱视频在线免费观看| 国产精品电影一区二区三区| 黄色怎么调成土黄色| 日本三级黄在线观看| 9色porny在线观看| 国产av一区在线观看免费| 老司机福利观看| 狂野欧美激情性xxxx| 欧美日韩福利视频一区二区| a在线观看视频网站| 18禁美女被吸乳视频| 日韩大码丰满熟妇| 欧美日韩一级在线毛片| 久99久视频精品免费| 中文字幕色久视频| 丰满人妻熟妇乱又伦精品不卡| 麻豆一二三区av精品| www日本在线高清视频| 女同久久另类99精品国产91| 亚洲熟女毛片儿| 日韩精品青青久久久久久| 色在线成人网| 国产高清激情床上av| 亚洲片人在线观看| 午夜福利,免费看| 1024香蕉在线观看| 啦啦啦 在线观看视频| 人人妻,人人澡人人爽秒播| 日本一区二区免费在线视频| 国产亚洲精品久久久久5区| 午夜福利欧美成人| 在线十欧美十亚洲十日本专区| 日韩高清综合在线| 亚洲五月婷婷丁香| av超薄肉色丝袜交足视频| 成年人黄色毛片网站| 免费在线观看黄色视频的| 国产区一区二久久| 精品欧美一区二区三区在线| 免费在线观看亚洲国产| 精品欧美一区二区三区在线| 多毛熟女@视频| 国产aⅴ精品一区二区三区波| 免费观看精品视频网站| 亚洲av成人一区二区三| 成人永久免费在线观看视频| 老司机深夜福利视频在线观看| 又黄又爽又免费观看的视频| 九色亚洲精品在线播放| 精品一区二区三区视频在线观看免费 | 日韩人妻精品一区2区三区| 国产精华一区二区三区| 一进一出抽搐动态| 免费在线观看亚洲国产| 国产单亲对白刺激| 最新美女视频免费是黄的| 日日爽夜夜爽网站| 无限看片的www在线观看| 国产精品1区2区在线观看.| 国产欧美日韩一区二区三区在线| 女人高潮潮喷娇喘18禁视频| 国产精品久久久人人做人人爽| 老汉色av国产亚洲站长工具| 午夜福利在线观看吧| 欧美成人性av电影在线观看| 国产精品久久视频播放| 国产av又大| 久久久精品国产亚洲av高清涩受| 中出人妻视频一区二区| 久久人人爽av亚洲精品天堂| 91在线观看av| 国产乱人伦免费视频| 欧美日韩黄片免| 国产精品久久久av美女十八| 一进一出好大好爽视频| 久久久久久大精品| 不卡av一区二区三区| 男女高潮啪啪啪动态图| 亚洲在线自拍视频| 中文字幕精品免费在线观看视频| 一二三四在线观看免费中文在| 纯流量卡能插随身wifi吗| 精品国产一区二区三区四区第35| 日韩欧美三级三区| 男女之事视频高清在线观看| 亚洲七黄色美女视频| 久久久久九九精品影院| 两人在一起打扑克的视频| 级片在线观看| 精品卡一卡二卡四卡免费| 又紧又爽又黄一区二区| 成人国产一区最新在线观看| 在线观看一区二区三区| 一二三四社区在线视频社区8| 成在线人永久免费视频| 18禁裸乳无遮挡免费网站照片 | 一级毛片女人18水好多| 好看av亚洲va欧美ⅴa在| 精品国产超薄肉色丝袜足j| 久久人人精品亚洲av| 黄片小视频在线播放| 国产精品av久久久久免费| 大型av网站在线播放| 午夜精品久久久久久毛片777| 精品日产1卡2卡| 怎么达到女性高潮| 欧美精品啪啪一区二区三区| 国产成人欧美| 在线观看一区二区三区| 天天添夜夜摸| 久久久国产成人免费| 久久久国产一区二区| 欧美日韩国产mv在线观看视频| 动漫黄色视频在线观看| 日本欧美视频一区| 欧美日本中文国产一区发布| 99国产精品一区二区蜜桃av| 国产欧美日韩一区二区精品| 精品欧美一区二区三区在线| 日日摸夜夜添夜夜添小说| 色老头精品视频在线观看| 妹子高潮喷水视频| 国产又爽黄色视频| 天堂√8在线中文| 一边摸一边抽搐一进一小说| 十分钟在线观看高清视频www| 成人影院久久| 无限看片的www在线观看| 老汉色∧v一级毛片| 另类亚洲欧美激情| 日本免费a在线| 日韩有码中文字幕| 我的亚洲天堂| 美女国产高潮福利片在线看| www.自偷自拍.com| 国产欧美日韩精品亚洲av| 中国美女看黄片| 成人亚洲精品av一区二区 | 黑丝袜美女国产一区| 免费看十八禁软件| 婷婷丁香在线五月| 欧美最黄视频在线播放免费 | 亚洲精品在线观看二区| 精品人妻在线不人妻| 亚洲视频免费观看视频| 亚洲精品粉嫩美女一区| 久久天躁狠狠躁夜夜2o2o| 性少妇av在线| 窝窝影院91人妻| 日本黄色视频三级网站网址| 国产蜜桃级精品一区二区三区| 免费搜索国产男女视频| 欧美中文日本在线观看视频| 真人做人爱边吃奶动态| 激情视频va一区二区三区| 他把我摸到了高潮在线观看| cao死你这个sao货| 久久久久久亚洲精品国产蜜桃av| 欧美最黄视频在线播放免费 | 久久精品aⅴ一区二区三区四区| 亚洲av第一区精品v没综合| 亚洲成a人片在线一区二区| 一级毛片精品| 精品国产超薄肉色丝袜足j| 久久亚洲精品不卡| 久久中文字幕一级| 99久久国产精品久久久| 一级毛片精品| 午夜精品国产一区二区电影| www.999成人在线观看| 超色免费av| 亚洲精品国产色婷婷电影| 精品福利观看| 午夜福利欧美成人| 免费女性裸体啪啪无遮挡网站| 一进一出抽搐动态| 欧美最黄视频在线播放免费 | 新久久久久国产一级毛片| 久久天堂一区二区三区四区| 99国产综合亚洲精品| e午夜精品久久久久久久| 日日摸夜夜添夜夜添小说| 午夜精品国产一区二区电影| 日本精品一区二区三区蜜桃| 嫁个100分男人电影在线观看| av天堂久久9| 国产精品98久久久久久宅男小说| 在线观看一区二区三区激情| 香蕉丝袜av| 国产亚洲欧美98| 亚洲成av片中文字幕在线观看| 国产精品日韩av在线免费观看 | 亚洲九九香蕉| 精品一区二区三区四区五区乱码| 精品高清国产在线一区| 91字幕亚洲| 成人亚洲精品一区在线观看| 99热国产这里只有精品6| 怎么达到女性高潮| 妹子高潮喷水视频| 婷婷六月久久综合丁香| 中文字幕人妻丝袜制服| 日本撒尿小便嘘嘘汇集6| 久久久久久久久中文| 侵犯人妻中文字幕一二三四区| 新久久久久国产一级毛片| 国产三级黄色录像| 麻豆av在线久日| 法律面前人人平等表现在哪些方面| 美国免费a级毛片| 在线观看66精品国产| 午夜免费观看网址| 午夜亚洲福利在线播放| 精品熟女少妇八av免费久了| 中文字幕av电影在线播放| 亚洲全国av大片| 亚洲成av片中文字幕在线观看| 91国产中文字幕| 黑人欧美特级aaaaaa片| 精品一区二区三区视频在线观看免费 | 亚洲三区欧美一区| 久热这里只有精品99| 色精品久久人妻99蜜桃| 成熟少妇高潮喷水视频| 成人影院久久| 亚洲欧美激情在线| 国产精品国产av在线观看| 日韩人妻精品一区2区三区| 精品欧美一区二区三区在线| a级毛片黄视频| 欧美日本亚洲视频在线播放| 中文字幕人妻丝袜一区二区| 91国产中文字幕| 黄色怎么调成土黄色| 欧美日本亚洲视频在线播放| 90打野战视频偷拍视频| 亚洲人成伊人成综合网2020| 91在线观看av| 天天影视国产精品| 一个人观看的视频www高清免费观看 | 欧美精品一区二区免费开放| 黄色a级毛片大全视频| 亚洲国产欧美日韩在线播放| 欧美日本中文国产一区发布| 欧美日韩视频精品一区| 久久青草综合色| 黑人巨大精品欧美一区二区蜜桃| 成人亚洲精品一区在线观看| 免费在线观看亚洲国产| 欧美日韩瑟瑟在线播放| 午夜a级毛片| 欧美乱妇无乱码| 亚洲中文日韩欧美视频| 日韩成人在线观看一区二区三区| 亚洲七黄色美女视频| 成人18禁在线播放| 激情视频va一区二区三区| 色综合站精品国产| av网站在线播放免费| 少妇 在线观看| 日韩欧美三级三区| 免费在线观看黄色视频的| 久久精品国产综合久久久| 久久国产精品男人的天堂亚洲| 在线看a的网站| 伦理电影免费视频| 亚洲一区二区三区色噜噜 | 在线观看日韩欧美| 脱女人内裤的视频| 黄色 视频免费看| 淫秽高清视频在线观看| 免费不卡黄色视频| 欧美日韩瑟瑟在线播放| 欧美午夜高清在线| 久99久视频精品免费| 女性被躁到高潮视频| av视频免费观看在线观看| 波多野结衣一区麻豆| 日韩大尺度精品在线看网址 | 国产男靠女视频免费网站| 日日干狠狠操夜夜爽| 亚洲精品国产一区二区精华液| 欧美日韩av久久| 中文字幕人妻丝袜一区二区| 在线观看日韩欧美| 美国免费a级毛片| 久热这里只有精品99| 18美女黄网站色大片免费观看| 久久久久久久久免费视频了| 又紧又爽又黄一区二区| 久久精品aⅴ一区二区三区四区| 国产色视频综合| 国产成人免费无遮挡视频| 亚洲国产精品sss在线观看 | 婷婷丁香在线五月| 动漫黄色视频在线观看| 琪琪午夜伦伦电影理论片6080| 欧美中文日本在线观看视频| 757午夜福利合集在线观看| 久久久国产欧美日韩av| 母亲3免费完整高清在线观看| 日韩大尺度精品在线看网址 | 纯流量卡能插随身wifi吗| 香蕉丝袜av| 国产日韩一区二区三区精品不卡| 黑人巨大精品欧美一区二区蜜桃| 久久人妻熟女aⅴ| 91老司机精品| 乱人伦中国视频| 亚洲欧美一区二区三区黑人| 国产精品一区二区免费欧美| 韩国精品一区二区三区| 欧美在线一区亚洲| 亚洲人成网站在线播放欧美日韩| 精品人妻1区二区| 露出奶头的视频| 大码成人一级视频| 麻豆成人av在线观看| 国产精品久久久av美女十八| 免费搜索国产男女视频| 精品日产1卡2卡| 一边摸一边抽搐一进一出视频| 99国产精品免费福利视频| 国产亚洲欧美98| 亚洲一区二区三区色噜噜 | 国产单亲对白刺激| 亚洲人成网站在线播放欧美日韩| 国产伦人伦偷精品视频| 成人精品一区二区免费| 久久狼人影院| 国产精品美女特级片免费视频播放器 | 91成人精品电影| 18美女黄网站色大片免费观看| 日日摸夜夜添夜夜添小说| 国产一区在线观看成人免费| 99在线视频只有这里精品首页| 日韩免费高清中文字幕av| 国产精品国产av在线观看| 一进一出抽搐动态| 亚洲色图av天堂| 日韩视频一区二区在线观看| 国产精品永久免费网站| 国产高清视频在线播放一区| 国产亚洲精品久久久久5区| 国产成人av激情在线播放| 国产男靠女视频免费网站| 日韩高清综合在线| 亚洲av成人一区二区三| 国产一区在线观看成人免费| 久久香蕉激情| 国产精品国产高清国产av| 91精品三级在线观看| 狂野欧美激情性xxxx| 欧美日韩黄片免| 亚洲七黄色美女视频| 男男h啪啪无遮挡| 国产av一区二区精品久久| 无人区码免费观看不卡| 亚洲欧美精品综合一区二区三区| 五月开心婷婷网| 伦理电影免费视频| 久久国产乱子伦精品免费另类| 十八禁人妻一区二区| 无限看片的www在线观看| 欧美日本中文国产一区发布| 久久伊人香网站| 男女午夜视频在线观看| 亚洲五月天丁香| 久久国产亚洲av麻豆专区| 91老司机精品| 亚洲精品在线观看二区| 最近最新免费中文字幕在线| 欧美日韩国产mv在线观看视频| 他把我摸到了高潮在线观看| 精品国产一区二区久久| 丝袜在线中文字幕| 90打野战视频偷拍视频| 欧美大码av| 亚洲成人精品中文字幕电影 | 亚洲精品久久午夜乱码| 久久欧美精品欧美久久欧美| 亚洲一区二区三区欧美精品| 亚洲欧美一区二区三区久久| 午夜福利,免费看| 美女扒开内裤让男人捅视频| 神马国产精品三级电影在线观看 | 最新在线观看一区二区三区| 亚洲精品成人av观看孕妇| 在线看a的网站| 国产1区2区3区精品| 久久精品国产亚洲av香蕉五月| 成年人黄色毛片网站| 亚洲一区中文字幕在线| av有码第一页| 久久影院123| 亚洲国产精品999在线| 久久精品亚洲av国产电影网| 午夜福利影视在线免费观看| 欧美黄色片欧美黄色片| 国产精品永久免费网站| 涩涩av久久男人的天堂| 久久久国产成人免费| 国产乱人伦免费视频| 少妇裸体淫交视频免费看高清 | 精品午夜福利视频在线观看一区| 亚洲三区欧美一区| 男女之事视频高清在线观看| 中文字幕av电影在线播放| 国产精品国产av在线观看| 熟女少妇亚洲综合色aaa.| 国产男靠女视频免费网站| 欧美色视频一区免费| 在线观看66精品国产| 亚洲精品中文字幕一二三四区| 午夜91福利影院| 免费高清视频大片| 国产精品亚洲av一区麻豆| 三上悠亚av全集在线观看| 日韩高清综合在线| 亚洲一区中文字幕在线| 99精国产麻豆久久婷婷| 精品一区二区三区av网在线观看| 亚洲国产看品久久| 国产精品美女特级片免费视频播放器 | 日韩成人在线观看一区二区三区| 午夜免费激情av| 9热在线视频观看99| 精品国产乱码久久久久久男人| 怎么达到女性高潮| 亚洲成人国产一区在线观看| 少妇的丰满在线观看| 涩涩av久久男人的天堂| 在线观看日韩欧美| 欧美日韩黄片免| 日韩高清综合在线| 少妇 在线观看| 男女之事视频高清在线观看| 在线观看免费高清a一片| 国产一区二区在线av高清观看| 久久国产精品人妻蜜桃| 久久精品aⅴ一区二区三区四区| 国产单亲对白刺激| 久久国产乱子伦精品免费另类| 亚洲人成伊人成综合网2020| 三上悠亚av全集在线观看| 后天国语完整版免费观看| 中文亚洲av片在线观看爽| 一个人观看的视频www高清免费观看 | 亚洲专区国产一区二区| 99国产精品一区二区蜜桃av| 欧美 亚洲 国产 日韩一| 久久久精品欧美日韩精品| 欧美最黄视频在线播放免费 | 国产色视频综合| 动漫黄色视频在线观看| 国产精华一区二区三区| 黄网站色视频无遮挡免费观看| 一边摸一边抽搐一进一小说| 欧美不卡视频在线免费观看 | 国产精品成人在线| 亚洲精品成人av观看孕妇| av超薄肉色丝袜交足视频| 亚洲国产精品合色在线| 天堂中文最新版在线下载| 久久精品国产综合久久久| 亚洲熟妇熟女久久| av国产精品久久久久影院| 国产一区二区在线av高清观看| 免费观看精品视频网站| 亚洲av成人av| 啦啦啦在线免费观看视频4| 亚洲男人天堂网一区| 久久久久精品国产欧美久久久| avwww免费| www.熟女人妻精品国产| 国产精品国产av在线观看| 国产精品 欧美亚洲| 美女午夜性视频免费| 国产精品久久电影中文字幕| av在线播放免费不卡| 一级片'在线观看视频| 一a级毛片在线观看| 精品日产1卡2卡| 国产又色又爽无遮挡免费看| 校园春色视频在线观看| 久久狼人影院| 91麻豆av在线| 午夜a级毛片| 中文字幕最新亚洲高清| 国产精品免费一区二区三区在线| 91大片在线观看| 99精品欧美一区二区三区四区| 人人澡人人妻人| 欧美激情 高清一区二区三区| 欧美大码av| 亚洲成av片中文字幕在线观看| 国产99久久九九免费精品| 天堂√8在线中文| 精品国产乱子伦一区二区三区| 国产高清激情床上av| 很黄的视频免费| 高清欧美精品videossex| 大型黄色视频在线免费观看| 亚洲精品一二三| 69精品国产乱码久久久| 精品高清国产在线一区| 黑人巨大精品欧美一区二区蜜桃| 十八禁网站免费在线| 黄片大片在线免费观看| 亚洲国产中文字幕在线视频| av天堂在线播放| 麻豆国产av国片精品| 三上悠亚av全集在线观看| 女警被强在线播放| 国产男靠女视频免费网站| 亚洲一区高清亚洲精品| 精品一品国产午夜福利视频| 亚洲精品国产色婷婷电影| 亚洲精品美女久久久久99蜜臀| 亚洲精品av麻豆狂野| 大陆偷拍与自拍| 欧美日韩瑟瑟在线播放| 麻豆av在线久日| 丝袜在线中文字幕| x7x7x7水蜜桃| 一级a爱片免费观看的视频| 亚洲avbb在线观看| 少妇被粗大的猛进出69影院| 制服人妻中文乱码| 国产一区二区三区综合在线观看| 国产成人免费无遮挡视频| 精品国产乱码久久久久久男人| a级毛片黄视频| 黄片大片在线免费观看| 日本免费一区二区三区高清不卡 | 久久久久国产一级毛片高清牌| 男女做爰动态图高潮gif福利片 | 欧美日韩一级在线毛片| 免费看a级黄色片| www.精华液| 亚洲熟妇中文字幕五十中出 | 久久香蕉国产精品| 高清欧美精品videossex| cao死你这个sao货|