• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser?

    2021-12-22 06:51:50TongZhao趙彤ZhiRuShen申志儒WenLiXie謝文麗
    Chinese Physics B 2021年12期
    關(guān)鍵詞:王安

    Tong Zhao(趙彤) Zhi-Ru Shen(申志儒) Wen-Li Xie(謝文麗)

    Yan-Qiang Guo(郭龑強(qiáng))1,2, An-Bang Wang(王安幫)1,2,3, and Yun-Cai Wang(王云才)3,4,?

    1Key Laboratory of Advanced Transducers and Intelligent Control System,Ministry of Education and Shanxi Province,Taiyuan University of Technology,Taiyuan 030024,China

    2College of Physics and Optoelectronics,Taiyuan University of Technology,Taiyuan 030024,China

    3Guangdong Provincial Key Laboratory of Photonics Information Technology,Guangzhou 510006,China

    4School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China

    Keywords: sensitivity,optical feedback,microcavity laser,nonlinear dynamic

    1. Introduction

    Optical feedback used to be considered as a nuisance at the beginning of laser development due to its undesirable and unpredictable effects on laser output.[1–3]After researchers analyzed the nonlinear dynamics of semiconductor laser subject to optical feedback in early 1980,[4]enormous research effort was initiated, especially when they realized these behaviors could be useful.[5–7]Among these behaviors, chaos has attracted much attention since the properties of random oscillation and wide bandwidth could be applied in random number generation,[8–10]secure communication,[11,12]key distribution,[13,14]high speed information processing,[15,16]ranging,[17–19]and so on.

    Optical feedback is the simplest and most widely used method to generate chaotic laser.[20,21]But the feedback delay time can be acquired which is named as “time delay signature (TDS)”.[22]The TDS seriously affects the security of chaotic laser in communication since it implies a periodicity and weakens the randomness of the chaotic laser. This inspired researchers interest on how to suppress or eliminate the TDS,[23–25]but they found it is hard to accomplish without additional elements or devices.[26,27]

    Our research group noticed that, the TDS is not totally adverse for chaotic laser application. In 2015, we took the advantage of the TDS to precise locate the fiber fault in time-division multiplexing passive-optical-network(TDMPON).[28]The fault reflection provides the feedback light to semiconductor laser for chaos generation, and the TDS reflects to the fault position. In this way, the fault reflection is detected by the semiconductor laser rather than the photodetector,avoiding the high sensitivity requirement for weak reflection power in other fault detection approaches. The dynamic range just depends on the sensitivity to the feedback level of the semiconductor laser. Moreover,the spatial resolution and detection accuracy of fiber fault are close to the technique of chaotic optical time domain reflectometer.[17]Therefore,higher sensitive to feedback will lead to excellent performance on fiber fault location with this TDS detection method.

    In this paper, we use circular-side hexagonal resonator(CSHR) microcavity laser which has smaller internal cavity round-trip time to improve the sensitivity on optical feedback strength. Using Lang–Kobayashi equations, the output dynamics are numerically simulated and the critical feedback strength value for each state transformation is analyzed in detail. We define the sensitivity to the optical feedback strength in two aspects for fault detection and compare the sensitivity of CSHR microcavity laser with traditional distributed feedback(DFB)laser.The CSHR microcavity laser can respond to 0.07%feedback level which means?63-dB feedback strength and 1.001 variation degree on 1%feedback level change. Furthermore,the influence of some internal parameters on the sensitivity of CSHR microcavity laser is also demonstrated.

    2. Theoretical model

    Figure 1 shows the schematic diagram of CSHR microcavity laser with optical feedback, whereRis the side length of the laser active region andτfis the round-trip time of the external cavity. The sensitivity of CSHR microcavity laser with optical feedback is numerically simulated based on modified Lang–Kobayashi equations,[4]which are shown as follows:[29,30]

    wherenandsare the carrier density and photon number density inside the microcavity,θ=ωτf+φ(t)?φ(t ?τf) is the feedback optical phase,Iis the bias current,Vis the volume of the active region (V=πR2d),vg=c/ngis the group velocity of the lasing mode.κis the feedback level which is defined as amplitude reflection coefficient, andτinis defined asτin=2πngR/c.

    Fig.1. Schematic diagram of CSHR microcavity laser with optical feedback.

    The gain coefficientg(n,s) is a logarithmic function related to three parameters(Ntr,Ns,g)to more accurately fit the gain of the quantum well material, and the nonlinear gain effect is taken into account. The expression of gain coefficient is presented as follows:

    whereg0is the material gain coefficient,εis the gain suppression factor,Ntris the transparency carrier density,andNsis the gain parameter.

    The rate equations (1)–(3) are calculated by the fourthorder Runge–Kutta method and parameter descriptions and values are shown in Table 1.

    Table 1. Parameter values for CSHR microcavity laser used in our simulations.[29,30]

    3. Simulation results

    3.1. Dynamic states

    The CSHR microcavity laser with different feedback levels shows five dynamic states,which are stable,period-1 oscillation(P1),switching between stable and period(S-P switching), quasi-period oscillation (QP), and chaotic state, respectively. Figure 2(a) demonstrates the feedback levelκboundaries of states diagram under 1.3Ithpump current with external cavity round-trip timeτfchanging from 2 ns to 20 ns. Very weak feedback bellowing 0.02%cannot disturb CSHR microcavity laser to transform into unstable state,shown as gray region. As shown in blue and green regions,when the feedback level increases above the boundary but still under 0.055%,the laser output will transform to period-1 state or switching between these two states. Quasi-period state emerges after S–P switching state with the feedback level increasing, which is followed by the chaotic state when the feedback level exceeds 0.08% boundary. Although higher feedback level will make output transfer to stable state again, this is beyond the scope of our sensitivity study. Moreover,theτfonly has a little impact on the boundary value except theτfis very small. As shown in Fig.2(a),the feedback level boundary fluctuates dramatically when the external cavity below 3.5 ns,and gradually becomes flat in long cavity length. In the application of TDMPON fault detection,the fiber length is far more than the short cavity definition for chaos generation.

    Fig.2. (a)The feedback level boundary of each state with different external cavity round-trip time τf in optical feedback CSHR microcavity laser biased at 1.3Ith. (b)–(e)The time series,power spectrum, and auto-correlation function(ACF)of each state with I=1.3Ith, τf =5 ns. P1: period-1 oscillation; S–P switching: switching between stable and period states;QP:quasi-periodic oscillation.

    Figures 2(b)–2(e)respectively show the four states of P1,S–P switching, QP, and chaotic state with 5-ns external cavity length and 1.3Ithpump current. The time series, power spectrum, and auto-correlation curve of each dynamic state are demonstrated in the figures, respectively. In the state of P1,the laser output with single period in 2.32 GHz which are shown in Figs.2(b1)–2(b2), and the auto-correlation curve is similar with time series(Fig.2(b3)). The power spectrum has a peak at the relaxation oscillation frequency(fR=2.32 GHz).Figure 2(c) shows the S–P switching state which is similar with the phenomenon reported by Chan.[31]In time series, it is shown as periodic switching between periodic and stable states(Fig.2(c1)). The repetition period is the external cavity round-trip time. Harmonics of the external cavity frequency appear in the power spectrum, as shown in Fig. 2(c2). The auto-correlation function curve appears as a slow modulation period ofτf(Fig.2(c3)).

    The period oscillation in the S–P switching state will be replaced by irregular fluctuation,named as QP state when the feedback level is further increased, as shown in Figs. 2(d1)–2(d3). In Fig. 2(d2), more frequencies appear in the power spectrum. Figures 2(e1)–2(e3) show the characteristics of the chaotic state. The time series waveform fluctuates in larger amplitude irregularly, the spectrum becomes broaden and flatten, and respectively represented in Figs. 2(e1) and 2(e2). Some sharp peaks appear in the auto-correlation function curve at the positions of 0 ns and±5 ns,corresponding to 0 and external cavity roundtrip time,as shown in Fig.2(e3).

    3.2. Critical feedback level

    We use the definition of the critical feedback levelκc,which is the boundary of the laser output transforming to unstable state,to explain the relationship between the sensitivity to feedback level and laser parameters. The critical feedback level proposed by Acketet al.in 1984,[32]and further simplified by Helms and Petermann in Ref.[33], is shown in the following expression:

    Only three parameters of the laser are involved in this equation: the linewidth enhancement factorα, the damping rateγ,and the internal cavity round-trip timeτin. We analyze the critical feedback level through characters of laser output by changing the parametersτinandα, and other parameters are still the same as before (I=1.3Ith,τf=5 ns). In Fig. 3,the red dots are the simulation results with red solid line fixed,and the dashed line represents prediction results of Eq. (5).As shown in Fig. 3(a), the simulation and calculation results are highly consistent, representing the linear relationship betweenκcandτin. Whenτindecreases to 0.25 ps, the critical feedback level can reach to 0.01%. Different from the linear relationship, whenαincreases,κcdecreases rapidly first and then tends to be flat,as shown in Fig.3(b). The simulation results gradually close to the results of Eq.(5)whenαincreases to 4. When the value ofαis above 4,the two results coincide with each other completely.

    The comparation between the simulation and prediction results indicates a good agreement for our following sensitivity analyzation based on this simulation.

    Fig. 3. Critical feedback level versus the internal cavity round-trip time τin(a) and linewidth enhancement factor α (b). Red solid curves: fixed simulation results (red dots) with τf =5 ns. I =1.3Ith; black dashed curves:prediction results calculated by Eq.(5).

    3.3. Time delay signature

    Fig.4. The ACF(a),the DMI(b),and the PE(c)as a function of κ for the optical feedback. I=1.3Ith,τf=5 ns. (I):κ=0.4%,(II):κ=0.8%,and(III):κ =1.6%.

    In previous work on fiber fault location using TDS detection method,[28]the feedback level provided by fault reflection must reach a certain intensity to make the output of laser to be QP or chaotic state. Only in these two states, the TDS can be acquired. Here,we analyze the TDS variation in auto-correlation function (ACF), delayed mutual information(DMI) and permutation entropy (PE) with different feedback levels. In this section, the bias current of laser and the external cavity round-trip time are respectivelyI= 1.3Ithandτf=5 ns. Figures 4(a1)–4(a3) show the ACF curve of laser output under three different feedback levels: 0.4%,0.8%,and 1.6%. It is observed that,the TDS which corresponds toτfoccurs at position of 5 ns and the level of TDS increases withκ.Similar tendency, that is the peak level of TDS increasing as feedback level,also appears in DMI and PE curves,as shown in Figs.4(b1)–4(b3)and 4(c1)–4(c3).

    One obvious difference between ACF and DMI or PE is that the TDS hardly to observe by DMI or PE when the feedback level is weak(0.4%),as shown in Figs.4(b1)and 4(c1).Once the feedback level becomes strong,the peak level of TDS rises faster as presented in Fig.4(b2). In Figs.4(c2)and 4(c3),there are more peaks emerge before TDS (position of (1/2)τfand (1/3)τf) in PE curves, and these peaks will influence the judgment of TDS position. Thus, the TDS analyzation based on PE curves is not suitable for fiber fault location.

    The results shown in Figs. 4(a) and 4(b) also demonstrate the different change degrees of TDS in ACF and DMI methods. In the TDS analyzation-based ACF, the peak level increases from 0.24 to 0.84 when the variation of feedback level is 1.2%. But in DMI method, a growth of peak level of TDS ranges from 0.02 to 0.31 under the same feedback level change range. This variation degree reflects the sensitivity to the smallest change on feedback level of CSHR microcavity laser. Therefore,the sensitivity on this variation degree is also included in our sensitivity study.

    3.4. Sensitivity to feedback level

    In this section,we define the sensitivity criterion from two aspects.

    (i)Determining the minimum feedback level. Only when the laser enters into QP or chaotic state,can TDS be observed in ACF or DMI curve. In fiber fault location, this property will be helpful to detect the weak light, and has the potential to improve the dynamic range or detection distance.

    (ii)Finding the variation degree of TDS peak levelversusthe feedback level changing. The variation degree represents the laser responsivity on slight change in feedback level,which means the measurement accuracy of fault reflectivity.

    By measuring the TDS level in ACF and DMI curves to quantificationally investigate the sensitivity to feedback level of CSHR microcavity laser. The sensitivity of DFB laser is also studied as a comparison. The pump current and external cavity round-trip time of CSHR microcavity laser and DFB laser are same (I=1.3Ith,τf=5 ns) and the internal cavity round-trip time(τin)of these two lasers are different(CSHR:τin=0.55 fs, DFB:τin=7.4 fs). Other parameters of DFB laser refer to the reference paper.[23]

    Figure 5(a) demonstrates the peak level of TDS in ACFversusfeedback level of CSHR microcavity laser (red curve)and DFB laser(black curve),respectively. Similar to the previous research on TDS,[22,28]the curve looks like a well decreasing to the bottom and then rising as feedback level increases. One significant difference is that the TDS appears in ACF curve of CSHR microcavity laser much earlier than DFB laser with the feedback level increasing, due to the smallerτin. The inset plots the magnified view of the red curve. It shows that the minimum feedback level for CSHR microcavity laser reduces to 0.07% and at 0.27% when the TDS level decreases to the bottom. From this point on,the CSHR microcavity laser output transforms from QP state to chaotic state.The TDS level increases rapidly and is followed by a slowly rise to stable value. But in the result of DFB laser, the curve starts at feedback level of 0.7%, down to the lowest point at 2.8%,and then rise as the same trend with CSHR microcavity laser. Although the bottom value of these two curves is different,the existence of TDS satisfies the requirement for the fault location in our study, due to the high insertion loss in TDMPON.Similar phenomena also appear in the DMI analyzation curves, as shown in Fig. 5(b). The critical points (minimum and inflection points) of feedback level are the same as the points in Fig.5(a),because the laser output enters in the same state.

    According to the above illustration, the sensitivity to the minimum feedback level (criterion (i)) of CSHR microcavity laser is much higher than DFB laser.Similar as the analyzation of critical feedback level by Eq. (5), the huge improvement on sensitivity attributes to the shorter internal cavity roundtrip time of CSHR laser rather than DFB laser. Depending on the ‘20log’ calculation rule, the amplitude feedback level of 0.07%corresponds to the feedback strength of?63 dB,which improve about 20 dB for the optical feedback detection compared with DFB laser.

    Fig. 5. The influence of feedback level on the TDS of CSHR microcavity laser(red dot)and DFB laser(black square)subject to optical feedback. The TDS level in(a)ACF and(b)DMI with the changing of feedback level,and the curves are the data fitting. The curves of CSHR microcavity laser are magnified in the insets. CSHR: τin =0.55 fs, τf =5 ns, I =1.3Ith; DFB:τin=7.4 fs,τf=5 ns,I=1.3Ith. The unit a.u. is short for arb. units.

    Moreover, in order to study the TDS variation degree to the feedback level changing (criterion (ii)), we fix the curve slopeKwhen the laser output enters in chaotic state,shown as blue dashed line. Obviously, the slope of CSHR microcavity laser is greater than DFB laser whatever in ACF curve or DMI curve. In Fig. 5(a), the slope value of 1.001 means a 1.001 increasement with 1% feedback level changing in CSHR microcavity laser, and the slope of DFB laser is just 0.056. But in DMI curve, there is only one order of magnitude difference between these two values (0.26 and 0.017). Therefore,the ACF is more suitable for the analyzation on TDS variation sensitivity.

    Depending on Eq.(5),the laser sensitivity to feedback is mainly related to three critical parameters(τin,γ,andα). Figure 6 illustrates the influence of these critical parameters on the slopeK. In the structure of CSHR microcavity laser, the internal cavity round-trip time is determined by the active region side lengthR. We changeRinstead ofτinto analyze theKof TDS level variation with feedback level change,like the blue dashed line in Fig. 5. As shown in Fig. 6(a), the slope decreases withRincreasing from 3.5 μm to 8 μm as a linear relationship, which means the sensitivity to the feedback level variation of CSHR microcavity laser is higher in small volume.

    Fig. 6. The influence of (a) active region side length, (b) damping rate, (c) linewidth enhancement factor of CSHR microcavity laser on the feedback level variation sensitivity I=1.3Ith,τf=5 ns.

    The relationship betweenKandγis demonstrate in Fig. 6(b). After a rapid decline, the slope tends to be flat around 0.2 when the damping rate increases to 25 GHz. The higher damping rate means a faster response to transfer to one output state,and thus the laser sensitivity to feedback variation will maintain at a fixed level when this response speed reaches a threshold. The linewidth enhancement factorαplays an important role in the dynamic characteristics of the laser.A gradually decreasing curve illustrates the impact ofαon the slopeK, as shown in Fig. 6(c). Therefore, minor volume, slow response,and small linewidth enhancement factor of the CSHR microcavity laser can induce a higher sensitivity to the optical feedback.

    4. Conclusion and perspectives

    Higher sensitivity for optical reflection will play an important role in fiber fault detection,especially in the wide coverage TDM-PON with vast branch. In our previous research,the TDS,which is a unique property for chaotic laser,is used to realize fiber fault location. The high spatial-resolution performance is similar with chaotic optical time domain reflectometry, and the structure is simpler because the fault reflection is received by laser rather than photodetector. However, the sensitivity to the optical feedback of the laser is determined by some critical parameters, including internal cavity round-trip time.

    In this study, we numerically simulated the sensitivity to feedback level of CSHR microcavity laser which owns a smaller internal cavity round-trip time than DFB laser. We analyze the sensitivity from two aspects which are the minimum feedback level for TDS emerging and the variation degree of TDS level on feedback level changing. Compared to DFB laser,the sensitivity for the minimum feedback level of CSHR microcavity laser is improved at least one order of magnitude,corresponding to the increase of 20-dB feedback strength.The increasement of 1.001 on TDS level in auto-correlation function curve just requires 1%feedback level changing for CSHR microcavity laser. This variation degree is much higher than the value of 0.056 for DFB laser. In addition,we demonstrate the influence of active region side length, damping rate and linewidth enhancement factor on this variation degree,respectively.

    In fiber fault location, the improvement of 20-dB sensitivity corresponds to 20-dB dynamic range or 100-km fiber length, and this performance could change the present situation of weak light detection. Although the respond scope of CSHR microcavity laser is shrunk rather than DFB laser(Fig.5),it cannot affect the use in massive branch optical network due to the branch splitting. Furthermore,the large variation degree on feedback level changing could enhance the accuracy of fiber sensing system.

    猜你喜歡
    王安
    Thermal Hall effect and the Wiedemann-Franz law in Chern insulator
    元日
    王安期不鞭書(shū)生
    王安期不鞭書(shū)生
    請(qǐng)客
    曲耶?戲耶?——王安祈《紅樓夢(mèng)》京劇論
    太原理工大學(xué)學(xué)者風(fēng)采
    ——王安幫教授
    緣何抒情,怎樣寫(xiě)意?——王安祈戲曲研究中傳統(tǒng)與現(xiàn)代的相互表述
    中華戲曲(2018年1期)2018-08-27 10:04:08
    做了才會(huì)知道結(jié)果
    王武龍會(huì)長(zhǎng)會(huì)見(jiàn)中咨公司王安總經(jīng)理一行
    av在线播放免费不卡| 91av网站免费观看| 日本一区二区免费在线视频| 丰满人妻熟妇乱又伦精品不卡| 欧美绝顶高潮抽搐喷水| 欧美日本亚洲视频在线播放| 久久久久久国产a免费观看| 又大又爽又粗| 亚洲第一电影网av| 又紧又爽又黄一区二区| avwww免费| 男女之事视频高清在线观看| 特大巨黑吊av在线直播 | 19禁男女啪啪无遮挡网站| 俺也久久电影网| 午夜老司机福利片| 久久久久久国产a免费观看| 日韩高清综合在线| 国产精品一区二区免费欧美| 成人特级黄色片久久久久久久| 丁香欧美五月| 夜夜爽天天搞| 色尼玛亚洲综合影院| 超碰成人久久| 国产不卡一卡二| 欧美日韩乱码在线| 国产亚洲欧美精品永久| 国产精品98久久久久久宅男小说| 国产91精品成人一区二区三区| 久久精品国产亚洲av高清一级| 亚洲成a人片在线一区二区| 国产99久久九九免费精品| 久久久久久免费高清国产稀缺| 免费av毛片视频| 啪啪无遮挡十八禁网站| 中文字幕最新亚洲高清| 不卡一级毛片| 亚洲中文av在线| 欧美人与性动交α欧美精品济南到| 成人18禁高潮啪啪吃奶动态图| 国产精品一区二区精品视频观看| 精品国产美女av久久久久小说| 久久亚洲真实| 日韩欧美在线二视频| 天天一区二区日本电影三级| 男女做爰动态图高潮gif福利片| 成人午夜高清在线视频 | 啦啦啦免费观看视频1| 免费观看人在逋| 在线av久久热| 亚洲av五月六月丁香网| 香蕉av资源在线| 中亚洲国语对白在线视频| www.精华液| 超碰成人久久| 午夜免费观看网址| 麻豆国产av国片精品| 淫妇啪啪啪对白视频| 一区二区三区激情视频| 亚洲久久久国产精品| 国产成人影院久久av| 高清在线国产一区| 国产一区二区三区视频了| 一进一出好大好爽视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产国语对白av| 亚洲精品在线观看二区| 亚洲七黄色美女视频| 精品久久蜜臀av无| 欧美乱色亚洲激情| 国产真人三级小视频在线观看| 满18在线观看网站| 精品久久久久久久久久久久久 | a级毛片a级免费在线| 免费在线观看黄色视频的| 一级毛片高清免费大全| 神马国产精品三级电影在线观看 | 高清毛片免费观看视频网站| 人妻丰满熟妇av一区二区三区| 亚洲国产高清在线一区二区三 | 欧美丝袜亚洲另类 | 国产又黄又爽又无遮挡在线| 777久久人妻少妇嫩草av网站| 亚洲精品久久成人aⅴ小说| 99久久无色码亚洲精品果冻| 午夜成年电影在线免费观看| 一级黄色大片毛片| 国产一卡二卡三卡精品| 一区二区三区精品91| 啦啦啦观看免费观看视频高清| 色哟哟哟哟哟哟| 在线天堂中文资源库| bbb黄色大片| 亚洲中文日韩欧美视频| 此物有八面人人有两片| 天天添夜夜摸| 亚洲成国产人片在线观看| 又黄又爽又免费观看的视频| 久久狼人影院| av超薄肉色丝袜交足视频| 天堂影院成人在线观看| 日韩中文字幕欧美一区二区| 欧美黑人欧美精品刺激| 国产熟女午夜一区二区三区| 啦啦啦观看免费观看视频高清| 亚洲专区中文字幕在线| 日韩视频一区二区在线观看| 国产亚洲欧美98| 无限看片的www在线观看| 一级a爱片免费观看的视频| 国产成人精品无人区| √禁漫天堂资源中文www| 国产视频一区二区在线看| 99精品欧美一区二区三区四区| av福利片在线| 热re99久久国产66热| 男女午夜视频在线观看| 亚洲av熟女| 成人18禁在线播放| 亚洲成人免费电影在线观看| 亚洲熟妇中文字幕五十中出| 非洲黑人性xxxx精品又粗又长| av电影中文网址| 亚洲国产看品久久| 1024视频免费在线观看| 黑人欧美特级aaaaaa片| 国产爱豆传媒在线观看 | 国产精品亚洲av一区麻豆| 欧美精品啪啪一区二区三区| 国产高清激情床上av| www.www免费av| 精品一区二区三区av网在线观看| 久久久久久人人人人人| 一个人免费在线观看的高清视频| 成年免费大片在线观看| 欧美日韩瑟瑟在线播放| 少妇被粗大的猛进出69影院| 成人手机av| 黄色毛片三级朝国网站| 国产av在哪里看| 黄频高清免费视频| 国产久久久一区二区三区| 日本黄色视频三级网站网址| 国产精品九九99| av片东京热男人的天堂| 曰老女人黄片| 亚洲精品色激情综合| 免费观看精品视频网站| 嫩草影视91久久| 欧美激情高清一区二区三区| 日本三级黄在线观看| 老汉色∧v一级毛片| 成在线人永久免费视频| 精品久久久久久成人av| 亚洲国产高清在线一区二区三 | 黄色a级毛片大全视频| 大型黄色视频在线免费观看| 欧美日韩亚洲综合一区二区三区_| 亚洲avbb在线观看| 久久精品91蜜桃| 久久久久久大精品| 91麻豆av在线| 国产精品亚洲一级av第二区| av有码第一页| www国产在线视频色| 一级黄色大片毛片| 国产精品九九99| 欧美一级毛片孕妇| 午夜两性在线视频| 精品乱码久久久久久99久播| 一进一出抽搐动态| 少妇熟女aⅴ在线视频| 精品国产美女av久久久久小说| 精品熟女少妇八av免费久了| 欧美乱色亚洲激情| 1024香蕉在线观看| 午夜激情福利司机影院| 欧美国产精品va在线观看不卡| 91麻豆精品激情在线观看国产| 在线观看日韩欧美| 中文字幕精品免费在线观看视频| 国产私拍福利视频在线观看| 黄色片一级片一级黄色片| 日韩精品中文字幕看吧| 久久中文看片网| 人人妻人人澡人人看| 色婷婷久久久亚洲欧美| 日韩欧美三级三区| 国内精品久久久久久久电影| 白带黄色成豆腐渣| 亚洲国产欧洲综合997久久, | 国产免费av片在线观看野外av| 99精品久久久久人妻精品| 99国产精品一区二区三区| 欧美激情 高清一区二区三区| 午夜激情福利司机影院| 国产精品99久久99久久久不卡| 亚洲熟妇熟女久久| 成人亚洲精品av一区二区| 欧美日韩黄片免| 99国产综合亚洲精品| 精品久久久久久久久久久久久 | 国产成人影院久久av| 久久久久精品国产欧美久久久| 国产99久久九九免费精品| 首页视频小说图片口味搜索| 久久精品国产综合久久久| 国内少妇人妻偷人精品xxx网站 | 久久午夜亚洲精品久久| 国产不卡一卡二| 90打野战视频偷拍视频| 亚洲欧美激情综合另类| 中文字幕久久专区| 动漫黄色视频在线观看| 久久婷婷人人爽人人干人人爱| 欧美成人性av电影在线观看| 成年免费大片在线观看| 熟妇人妻久久中文字幕3abv| 91字幕亚洲| 久久久水蜜桃国产精品网| www.www免费av| 国产高清videossex| 一二三四在线观看免费中文在| 精华霜和精华液先用哪个| 美女高潮到喷水免费观看| 欧美日韩一级在线毛片| 波多野结衣巨乳人妻| 男女下面进入的视频免费午夜 | 久久精品国产综合久久久| 久久精品国产清高在天天线| 很黄的视频免费| 中文亚洲av片在线观看爽| 国产精品av久久久久免费| 制服人妻中文乱码| 亚洲美女黄片视频| 精品欧美国产一区二区三| 色老头精品视频在线观看| 黄色视频不卡| 日本三级黄在线观看| 亚洲精品在线观看二区| 久久性视频一级片| 超碰成人久久| 亚洲精品国产精品久久久不卡| 午夜福利成人在线免费观看| 国内少妇人妻偷人精品xxx网站 | 狠狠狠狠99中文字幕| 亚洲 欧美一区二区三区| 一区福利在线观看| 国产日本99.免费观看| 亚洲成人免费电影在线观看| 51午夜福利影视在线观看| 脱女人内裤的视频| 久久婷婷人人爽人人干人人爱| 97超级碰碰碰精品色视频在线观看| 成人特级黄色片久久久久久久| 男女之事视频高清在线观看| 日日摸夜夜添夜夜添小说| 一区二区日韩欧美中文字幕| 非洲黑人性xxxx精品又粗又长| 亚洲成人免费电影在线观看| 日日干狠狠操夜夜爽| 日日爽夜夜爽网站| 国产欧美日韩一区二区三| 少妇的丰满在线观看| 亚洲全国av大片| www.www免费av| 少妇熟女aⅴ在线视频| 色综合站精品国产| 午夜久久久久精精品| 波多野结衣av一区二区av| 久久性视频一级片| 欧美日韩精品网址| 精品久久久久久久毛片微露脸| 久久午夜综合久久蜜桃| 中文字幕人成人乱码亚洲影| 日韩一卡2卡3卡4卡2021年| 亚洲精品国产区一区二| 中亚洲国语对白在线视频| 国产精品亚洲美女久久久| 男女床上黄色一级片免费看| svipshipincom国产片| 男女午夜视频在线观看| 中文字幕人妻熟女乱码| 少妇 在线观看| 制服丝袜大香蕉在线| 看片在线看免费视频| 国产私拍福利视频在线观看| 校园春色视频在线观看| 久久久久亚洲av毛片大全| 两性夫妻黄色片| 欧美日韩精品网址| 男女之事视频高清在线观看| 在线国产一区二区在线| www.999成人在线观看| 中文亚洲av片在线观看爽| 久久久久久久午夜电影| 精品第一国产精品| 国产主播在线观看一区二区| 亚洲一区高清亚洲精品| 亚洲专区中文字幕在线| 精品欧美国产一区二区三| 精品不卡国产一区二区三区| 成人午夜高清在线视频 | 18美女黄网站色大片免费观看| 99国产精品一区二区三区| or卡值多少钱| 日日摸夜夜添夜夜添小说| 深夜精品福利| 色尼玛亚洲综合影院| 国产真人三级小视频在线观看| 97超级碰碰碰精品色视频在线观看| 成人av一区二区三区在线看| 99riav亚洲国产免费| 亚洲色图av天堂| 听说在线观看完整版免费高清| 男女那种视频在线观看| 两个人免费观看高清视频| 国产单亲对白刺激| 嫩草影视91久久| 69av精品久久久久久| 亚洲 欧美一区二区三区| 久久久久久久久久黄片| svipshipincom国产片| 精品国产一区二区三区四区第35| 国产精品亚洲av一区麻豆| 国产精品美女特级片免费视频播放器 | 天天添夜夜摸| www.熟女人妻精品国产| 99国产极品粉嫩在线观看| 亚洲欧美一区二区三区黑人| 精品久久久久久久久久免费视频| 久久久国产欧美日韩av| 亚洲五月天丁香| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久久久精品电影 | 真人做人爱边吃奶动态| 久久婷婷人人爽人人干人人爱| 国产日本99.免费观看| 国产99白浆流出| 男女视频在线观看网站免费 | 色老头精品视频在线观看| 变态另类丝袜制服| 精品午夜福利视频在线观看一区| 国语自产精品视频在线第100页| 国产精品免费一区二区三区在线| 精品无人区乱码1区二区| 午夜激情av网站| 19禁男女啪啪无遮挡网站| 特大巨黑吊av在线直播 | 别揉我奶头~嗯~啊~动态视频| 精品卡一卡二卡四卡免费| 久久亚洲精品不卡| 一级作爱视频免费观看| 欧美激情久久久久久爽电影| 亚洲精品色激情综合| x7x7x7水蜜桃| 在线观看66精品国产| 国产三级黄色录像| 久久久久久亚洲精品国产蜜桃av| 国产精品亚洲一级av第二区| 精品久久久久久久末码| 亚洲欧美精品综合一区二区三区| cao死你这个sao货| 女性被躁到高潮视频| 成人午夜高清在线视频 | 男人操女人黄网站| 亚洲一区二区三区色噜噜| 欧美成狂野欧美在线观看| 亚洲电影在线观看av| 亚洲五月婷婷丁香| 日韩中文字幕欧美一区二区| 在线观看免费日韩欧美大片| 在线观看免费视频日本深夜| 亚洲精品久久国产高清桃花| 一级a爱视频在线免费观看| 夜夜爽天天搞| 黄色成人免费大全| 最近最新免费中文字幕在线| 一级a爱视频在线免费观看| 1024视频免费在线观看| 欧美成人午夜精品| 18禁裸乳无遮挡免费网站照片 | 欧美zozozo另类| 不卡av一区二区三区| 亚洲精品中文字幕一二三四区| 少妇熟女aⅴ在线视频| 欧美性猛交黑人性爽| 国产人伦9x9x在线观看| 村上凉子中文字幕在线| 大香蕉久久成人网| 国产亚洲精品一区二区www| 欧美日韩中文字幕国产精品一区二区三区| 正在播放国产对白刺激| 久久国产乱子伦精品免费另类| 国产极品粉嫩免费观看在线| 国产精品98久久久久久宅男小说| 久久中文字幕一级| 午夜日韩欧美国产| 琪琪午夜伦伦电影理论片6080| 精品第一国产精品| 两个人免费观看高清视频| 午夜福利成人在线免费观看| 午夜影院日韩av| 中文字幕精品亚洲无线码一区 | 亚洲狠狠婷婷综合久久图片| 免费观看精品视频网站| 欧美黄色片欧美黄色片| 国产久久久一区二区三区| 美女大奶头视频| 真人一进一出gif抽搐免费| 日韩精品中文字幕看吧| 午夜福利免费观看在线| 夜夜躁狠狠躁天天躁| 国产一卡二卡三卡精品| 午夜久久久在线观看| 亚洲真实伦在线观看| 好男人在线观看高清免费视频 | 麻豆av在线久日| 中文字幕精品免费在线观看视频| 免费高清视频大片| 黄色丝袜av网址大全| 久热这里只有精品99| 精品日产1卡2卡| 成人国产一区最新在线观看| 又大又爽又粗| 99国产精品一区二区三区| 岛国视频午夜一区免费看| svipshipincom国产片| 丁香欧美五月| 一进一出抽搐动态| 国产午夜福利久久久久久| 中亚洲国语对白在线视频| 欧美乱色亚洲激情| 国产一区二区在线av高清观看| 国产精品永久免费网站| 亚洲国产精品sss在线观看| 欧美日韩福利视频一区二区| 国内精品久久久久精免费| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 精品少妇一区二区三区视频日本电影| 国产精品爽爽va在线观看网站 | 精品国产美女av久久久久小说| 久久热在线av| 亚洲精品国产精品久久久不卡| 亚洲午夜理论影院| 两个人视频免费观看高清| 国产精品98久久久久久宅男小说| 午夜精品在线福利| 女人高潮潮喷娇喘18禁视频| 法律面前人人平等表现在哪些方面| 久久中文看片网| 桃色一区二区三区在线观看| 久久狼人影院| 精品久久久久久久久久免费视频| 亚洲av电影在线进入| 757午夜福利合集在线观看| 亚洲精品久久国产高清桃花| 日本免费一区二区三区高清不卡| 免费看日本二区| 久热这里只有精品99| 夜夜躁狠狠躁天天躁| 亚洲人成77777在线视频| 国产成+人综合+亚洲专区| 日韩av在线大香蕉| 亚洲一区二区三区色噜噜| 亚洲一卡2卡3卡4卡5卡精品中文| 婷婷精品国产亚洲av在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品色激情综合| 亚洲国产欧美网| 久久精品国产亚洲av高清一级| 国产精品亚洲一级av第二区| 黄色片一级片一级黄色片| 美女大奶头视频| 日本三级黄在线观看| 日韩欧美三级三区| 欧美日本视频| 成人午夜高清在线视频 | 日韩一卡2卡3卡4卡2021年| 91字幕亚洲| 91麻豆av在线| 天堂动漫精品| 一本大道久久a久久精品| 欧美黑人巨大hd| 免费在线观看影片大全网站| 可以免费在线观看a视频的电影网站| 国产精品久久久久久精品电影 | 大型av网站在线播放| 亚洲精品在线美女| 欧美黄色淫秽网站| 黄片小视频在线播放| 国产激情偷乱视频一区二区| 国产成人精品久久二区二区91| 欧美三级亚洲精品| 国产亚洲欧美98| 日韩欧美一区视频在线观看| 国产99久久九九免费精品| 日本免费a在线| 亚洲成人免费电影在线观看| 亚洲欧美激情综合另类| 日韩欧美一区二区三区在线观看| 成人精品一区二区免费| 老鸭窝网址在线观看| 欧美亚洲日本最大视频资源| 久久久国产成人精品二区| 国产私拍福利视频在线观看| 9191精品国产免费久久| 亚洲一码二码三码区别大吗| 免费在线观看影片大全网站| 久久久久国产一级毛片高清牌| 日韩欧美三级三区| 成人永久免费在线观看视频| 亚洲五月天丁香| 亚洲专区中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| av有码第一页| 欧美精品亚洲一区二区| 日本一区二区免费在线视频| 日本 av在线| 日日摸夜夜添夜夜添小说| 国产成人精品久久二区二区91| 亚洲精品中文字幕在线视频| 亚洲第一欧美日韩一区二区三区| www.999成人在线观看| 亚洲自偷自拍图片 自拍| 丝袜人妻中文字幕| 午夜福利在线在线| 一本精品99久久精品77| 丝袜美腿诱惑在线| 动漫黄色视频在线观看| 老司机午夜福利在线观看视频| 深夜精品福利| 亚洲va日本ⅴa欧美va伊人久久| 成年人黄色毛片网站| 亚洲自拍偷在线| 国产精品一区二区免费欧美| 亚洲九九香蕉| 亚洲三区欧美一区| 亚洲欧美激情综合另类| 18禁国产床啪视频网站| 女人爽到高潮嗷嗷叫在线视频| 18禁裸乳无遮挡免费网站照片 | av福利片在线| 日本 av在线| 热re99久久国产66热| 18美女黄网站色大片免费观看| 国产精品久久久久久亚洲av鲁大| 色尼玛亚洲综合影院| 亚洲人成77777在线视频| 黑人巨大精品欧美一区二区mp4| 99久久精品国产亚洲精品| 国产精品,欧美在线| 欧美乱码精品一区二区三区| 国产精华一区二区三区| 丁香欧美五月| 日日爽夜夜爽网站| 精品久久久久久久末码| 国产av在哪里看| 精品第一国产精品| а√天堂www在线а√下载| 一区二区三区高清视频在线| √禁漫天堂资源中文www| 亚洲人成77777在线视频| 中文亚洲av片在线观看爽| 性欧美人与动物交配| 99精品欧美一区二区三区四区| 日本熟妇午夜| 香蕉国产在线看| 国产不卡一卡二| 国内精品久久久久精免费| 亚洲aⅴ乱码一区二区在线播放 | 女生性感内裤真人,穿戴方法视频| 欧美精品亚洲一区二区| 日本撒尿小便嘘嘘汇集6| 美女高潮喷水抽搐中文字幕| 久久久久国产精品人妻aⅴ院| 亚洲人成电影免费在线| 在线永久观看黄色视频| 久久精品亚洲精品国产色婷小说| 国产欧美日韩一区二区精品| 久久精品aⅴ一区二区三区四区| 亚洲av成人一区二区三| 久久九九热精品免费| 亚洲第一av免费看| 精品久久久久久久人妻蜜臀av| 中国美女看黄片| 村上凉子中文字幕在线| 欧美最黄视频在线播放免费| 欧美黑人巨大hd| 国产野战对白在线观看| 淫妇啪啪啪对白视频| 色播亚洲综合网| 99国产极品粉嫩在线观看| 我的亚洲天堂| 人成视频在线观看免费观看| 欧美+亚洲+日韩+国产| xxx96com| 免费人成视频x8x8入口观看| 亚洲av成人不卡在线观看播放网| 观看免费一级毛片| 大型av网站在线播放| 午夜福利在线在线| 午夜免费鲁丝| 色精品久久人妻99蜜桃| 日本免费一区二区三区高清不卡| 性欧美人与动物交配| 在线永久观看黄色视频| 看免费av毛片| 叶爱在线成人免费视频播放| 少妇 在线观看| www国产在线视频色| 色综合站精品国产| 亚洲精品在线美女| 亚洲国产精品久久男人天堂|