• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal Hall effect and the Wiedemann-Franz law in Chern insulator

    2023-11-02 08:11:46AnxinWang王安新andTaoQin秦濤
    Chinese Physics B 2023年10期
    關(guān)鍵詞:王安

    Anxin Wang(王安新) and Tao Qin(秦濤)

    School of Physics and Optoelectronics Engineering,Anhui University,Hefei 230601,China

    Keywords: thermal Hall effect,quantum Hall effect,Chern insulator,Landauer-B¨uttike formula

    1.Introduction

    Topological properties of the quantum materials have been under extensive studies in the last decades.Thermal Hall effect is a versatile probe to investigate transport properties of quantum materials.The Wiedemann-Franz law states that in the low temperature limitκxy=L0σxyTwithL0=(π2/3)(kB/e)2the Lorentz number[1]andσxythe quantum Hall conductivity.Whether the Wiedemann-Franz law is valid in quantum materials is an interesting topic.Its validity has been verified theoretically,[2]where the key ingredient for the Wiedemann-Franz law to be valid is that there is a single non-interacting carrier for charge and thermal current,and experimentally[3]for anomalous Hall insulators.[4]Possible violations of the Wiedemann-Franz law has been explored in graphene,[5]where electrons and holes contribute differently to the quantum charge and thermal Hall transport due to special band structures of graphene in the magnetic field,and quasi-one dimensional conductor,[6]where an extra contribution of spinon to the thermal current has been identified.In high-temperature superconductors,huge thermal Hall conductivity and a violation of the Wiedemann-Franz law has been demonstrated[7]because of the contribution of chiral phonon to the thermal transport in the pseudogap phase of cuprates,[8]and opened a different avenue to rich physics.

    Recent experimental progress has made it possible to investigate transport properties of topological materials under effectively very strong magnetic fields.The Haldane model[9]and the Harper-Hofstadter(HH)model,[10,11]as two paradigmatic models of Chern insulators to introduce magnetic fluxes,have served as playgrounds for seminal ideas.However,for a long time, the interesting properties of materials in this scenario is elusive to be observed in laboratories because of the requirement of hugely strong magnetic fields.Recently,great breakthroughs have been achieved.The Haldane model is realized with the ultracold atoms in the shaken honeycomb optical lattices,[12,13]and the HH model is realized with Raman laser assisted tunneling in the optical lattice[14,15]and in the Moir′e superlattice.[16,17]These achievements afford us the possibility to investigate Chern insulators with large fluxes.

    In this work, we start with the HH model atφ=1/2,an interesting case with two Dirac cones in the first Brillouin zone, and with its generalization to introduce the complex next-nearest neighbor (NNN) hopping as the Harper-Hofstadter-Hatsugai (HHH) model.[18]For the HH model,the merging dynamics of Dirac cones resulting from uniaxial staggered potential in the first magnetic Brillouin zone (MBZ) has been investigated.[19]By combing the Bott index[20]and on-site disorders, the topological properties enhanced by onsite disorders and interactions has been detailed studied.[21,22]However,a detailed study of thermal Hall transport of the HHH model is still lacking.Using the Landauer-B¨uttiker formula,[5,23]we systematically investigate the quantum charge/thermal Hall transport in the HHH model with uniaxial staggered potentials presented,identify the validity of the Wiedemann-Franz law,and show that it is possible to characterize topological properties by the thermal Hall conductivity.Moreover, we introduce a small perturbation to the flux withφ=1/2+δφ,[19,24]equivalent to an effective magnetic field on top of the fluxφ=1/2,which brings about interesting transport physics.We need to point out that the defining property for the Chern insulator is the non-zero Chern invariant related to occupied Bloch bands, quite extensively discussed in the Haldane model,[25]and that the HHH model with a perturbation in the flux is still a Chern insulator because of non-trivial topological properties for occupied Bloch bands.Our work offers a different point of view to reveal topological properties of quantum materials.

    The remainder of the paper is organized as follows.In Section 2,we presented our model and methods.In Section 3,we show our results on the quantum charge/thermal Hall conductivity for three typical cases, and its possibility to be realized in experiments is also discussed.In Section 4, a short summary and outlook is given.Because of a pedagogical purpose,we present some technique details in the Appendix A.

    2.Model and methods

    Firstly,we introduce the HHH model with uni-axial staggered potential on a two-dimensional square lattice,

    wherem,nlabelsxandycoordinates of the sites.We consider a commensurate fluxφ=1/2.Δis the strength for the uniaxial staggered potential.Different from the usual HH model,the HHH model is featured in the NNN hopping with a complex phase.The staggered potentialΔbreaks the inversion symmetry, but keeps the reflection symmetry in thexdirection,therefore, a moderate strength ofΔshift positions of degenerate points,and strong enough one would open a gap.Whentc/=t'c, it breaks all symmetry operations in symmetry groupC4, so a non-zerotcort'cwould open a gap immediately.In this work,we focus on how to tune the topological properties with changes in parameters such astc,t'c,φ,andΔ.

    Following the method in Refs.[18,19], we briefly outline how to obtain the quantum Hall conductivity of the HHH model atφ=1/2 with the uniaxial staggered potentials.Settingn=ql+jwithlthe cell index,q=2,andj=1,2,...,q,and using the Fourier transformation

    we have

    We then have a brief review of methods to calculate the quantum Hall conductivity and thermal Hall conductivity.Following the method of Ref.[18]Appendix A1,we have shown that the quantum Hall conductivity of the electron for the halffilling case is

    with the condition thattb>0,ta/=0,tc+t'c/=0,and|Δ|<2tb.Electrons, as charge carriers, can transport energy simultaneously, and lead to the thermal Hall effect.One can show that for this model the Wiedemann-Franz law is valid at the low temperature limit.[2,26]All these derivations are based on bulk formulas.

    In this work we focus on the quantum charge and thermal Hall transport in a nano-structure based on the Landauer-B¨uttiker formula,[5,23,27,28]explore the validity of the Wiedemann-Franz law, and demonstrate that the nontrivial topological properties can be revealed by the thermal Hall conductivity.As shown in Fig.1, the nano-structure consists of a central system described by the Hamiltonian in Eq.(1)and six simple leads.The charge current flowing to the terminalncan be described by the Landauer-B¨uttiker formula as

    Fig.1.A typical set-up for quantum thermal Hall and charge Hall conductivity measurement: six-terminal nano-structure consisting of system and six leads.The central region has N+2+2L columns of lattice sites with L=5 and N=4.

    3.Results and discussion

    In this section, we presented our results for three different typical cases in the low temperatureT= 0.001.Case(i):φ= 1/2 andtc=t'c= 0.3.As shown in Fig.2, we find quantum Hall plateau for different stagger potentials in Figs.2(a) and 2(c) in the low temperature limit.The width of the plateaus is consistent with the bulk gaps in Figs.2(b)and 2(d),indicating that the charge transport is carried by the chiral edge states, which is a manifestation of the bulk-edge correspondence.[29,30]WhenΔ ≥2,the gap is closed and the plateau would disappear (Figs.2(e) and 2(f)).In Figs.2(a)and 2(b)one can determine the quantum Hall conductivity by counting how many edge states have been cut by the Fermi energy in Fig.2(b), where the band structure on a cylinder periodic in thexdirection is shown.The real-space distribution of different states in theydirection is encoded by color in Figs.2(b)and 2(d),where the color value 0,and 1 indicate two ends of the cylinder.Therefore, the edge states can be clearly identified.The numerical results for the quantum Hall conductivity is also the same as predicted by the analytical formula in Eq.(5),and the consistence benchmarked our working codes.We recall that the Harper-Hofstadter model atφ=1/2 withΔ=0 is semi-metallic.[19]It demonstrates that the topological properties of this model can be tuned by introduction of the complex next-nearest neighbor hopping.The quantum thermal Hall conductivityκxynormalized byπ2k2BT/3his nearly in coincident withσxyasκxy=L0σxy,indicating that the Wiedemann-Franz law is valid in the low temperature limit.Moreover,it means that one can reveal topological properties of a system by exploring the thermal Hall effect.

    We need to point out the a couple of issues in the numerical results.(i) It is about the numerical stability beyond the plateau in Figs.2(a), 2(c), and 2(e), where very steep lines show up.In this energy region, the bulk is metallic.The apparent imperfect agreement between the two quantities in the metallic phase results from two main factors.Firstly,it is the physics reason.We carried our calculations atT=0.001 with the NN hopping as the energy unit,and the Wiedemann-Franz law is valid in the low temperature limit.While the finite temperature effect can be forbidden by large energy gap in the Chern insulator phase, it shows up when the system is in the metallic phase.We next turn to the technical reasons.The key part of our numerical calculations is to solve inhomogeneous linear equations.Indeed, in metallic phase the numerical stability is not perfect for some parameters, as introduces relatively large deviations between charge and thermal Hall conductivities.We tried different ways to solve linear equations and the method of least squares,which we implemented in the codes, turned out to be a better one.(ii)In Fig.2(d), there is clearly discontinuity in the color of the bands aroundkx=2,and it is a reflection of the fixed boundary condition in theydirection of the cylinder.

    Fig.2.Panels (a), (c), and (e) are the quantum thermal Hall conductivity κxy (normalized by π2k2BT/3h) and charge Hall conductivity σxy (normalized by e2/h)versus the Fermi energy E for different staggered potential Δ,and their corresponding band structure with color encoded y position versus kx on a cylinder structure with periodic boundary condition in the x direction and open boundary condition in the y direction with a width of 400 in panels(b), (d), and(f).Other parameters are ta =tb =1,tc =t'c =0.3, and φ=1/2.The temperature T =0.001,which is very low compared with typical gaps around E =0.The size of the six-terminal structure in numerical calculations is N=L=80.

    We go beyond the canonical case ofφ=1/2 and introduce a small perturbation to the integer flux.[19,24]It is equivalent to a small effective magnetic fluxδφ=0.05 on top ofφ=1/2.Similar to results for case(i)in Fig.2,we find the same coincidence between the quantum Hall conductivityσxyand thermal Hall conductivityκxyin Fig.3, indicating the validity of the Wiedemann-Franz law.Furthermore, we would like to point out that the picture of chiral edge states still works for this case.

    One new feature for case (ii) is the steep change of the charge/thermal Hall conductivity around the Fermi energyE0=0 (Figs.3(a) and 3(c)).It is due to the change in the direction of the chiral edge states.We take Fig.3(b)as an example.The edge state with positive velocity (green lines) in the gap just belowE0=0,change its direction in the gap just aboveE0=0.It is this motion direction reversal which brings about the sign change in the charge/thermal Hall conductivity aroundE0=0, because carriers tansport both charge and energy.Therefore,as we have claimed,the Wiedemann-Franz is still valid for this case.Furthermore, we need to point out that one can generally characterize the topological properties of a system with thermal Hall conductivity.

    Fig.3.The physical quantities shown are the same as those in Fig.2.Different parameters are tc==0,φ =1/2+δφ,and δφ =0.05.

    For case (ii),φ=11/20, so we find there are 20 energy bands in Fig.3(b)and 3(d),where some bands are nearly flat,a reflection of the Landau level.A zoom-in shown in Figs.4(a)and 4(b), corresponding to Figs.3(b) and 3(d) respectively,preseents the fine structures of the nearly flat bands.Moreover,we show the density of states(DOS)of the bulk bands in Fig.4,where we find that peaks show up for every bulk bands.

    Case(iii):φ=1/2+δφ,δφ=0.05, andtc=t'c=0.3.In Figs.5(a) and 5(c), we find the same steep change in the charge/thermal Hall conductivity, which can be explained by the direction change in the edge states.In this case we have introduced the NNN hopping, and it indicates that this kind of steep changes in conductivity are rather universal.Even though there is anisotropy brought about by the NNN hopping,the Wiedemann-Franz law is still valid.

    We finally discuss the possible experimental realization.In a real material,the NNN hopping amplitudestc,andcan be tuned by strain[31]and laser irradiation.[32]Onsite staggered potentialΔis usually induced by substrates.The fluxφcan certainly be adjusted by strength of external magnetic fields.

    Our numerical simulation involves an extremely strong magnetic field.We have an estimate of the strength of magnetic fields required to realize the 1/2 flux byBl2=(p/q)(h/e) where the lattice constantlis approximately 1 °A andp/q=1/2.It follows thatB ≈4×104T,far beyond the reach in the laboratory, where the world record for strongest steady magnetic field is as high as approximately 45.22 T achieved on August 12 2023, in Hefei China, which cannot be directly achieved in the laboratory.However, indirectly,one can realize it with the help of the moir′e superlattice,[16,17]topolectrical circuits,[33]or Raman laser assisted tunneling of ultracold atoms in the optical lattice.[14,15]So far all the three techniques are rather sophisticated.We also need to point out that the HHH model has been realized in the metamaterial of topoelectrical circuits.[34]The possible proposal for experiment realizations in real materials will be explored in the near future.

    4.Summary and outlook

    To sum up, we have investigated the quantum charge/thermal Hall effect in the HH model and its generalization.We have numerically studied the quantum charge/thermal Hall conductivity in a six-terminal nanostructure and understood it from the point of view of the bulkedge correspondence.We demonstrate that the Wiedemann-Franz law is valid in the Chern insulator,even though there is a steep change of the Hall conductivity aroundE0=0.Our calculations show that the non-trivial topological properties can be revealed by both the charge Hall conductivity and the thermal Hall conductivity.

    Appendix A: Energy spectrum of a cylinder structure

    To make the results in this work self-contained, we present some details in this section following the methods outlined in Refs.[5,18,23].

    Appendix A1: Quantum Hall conductivity of the HHH model with staggered potential

    Following the method in Ref.[18], we presented the derivation of the quantum Hall conductivity of the HHH model atφ=1/2 with a staggered potential.We choose the first MBZ askx ∈[-π,π] andky ∈[0,π].The Hamiltonian in Eq.(4)reads

    The eigenvector for the lower band is

    where we have chosen a gauge with the componentaas real and setb= ?be-iζk.The quantum Hall conductivity for the lower band can be calculated as[18,35]

    whereΔirefers to different parts for the first MBZ.Becauseais real,

    Appendix A2: Thermal Hall conductivity calculation based on the Landauer-B¨uttiker formula

    We adopt the method in Refs.[5,23,27,28] to calculate the thermal Hall conductivity.We firstly expand respectively the charge current

    and energy currentto the first order of voltageVnand temperatureTn(n=1,2,...,6)as follows:

    where we have definedPnm=dETnm(E)?E f0,Qnm=dETnm(E)?T f0, Rnm =dEETnm(E)?E f0, and Snm =∫dEETnm(E)?T f0.For all these newly defined quantities,n/=m.We have a short comment on the integration.Since the temperature is rather low,the integral interval can be limited to a fewkBTaround the Fermi energy.To obtain the thermal Hall effect,a temperature gradient is applied across terminal 1 and 4,and we setJn=0(n=2,3,5,6)andIn=0,(n=1,2,...,6).Due to thermal current conservation,J1=-J4.Therefore,we obtain a group of linear inhomogeneous equations for unknown quantitiesTn,(n=2,3,5,6)andVn=0,(n=1,2,...,6)as follows:

    wheren=2,3,5,6,andn'=1,2,...,6.Note in Eqs.(A4)and(A5), we have redefinedP11=-∑n/=1P1n, and similarly forQ11,R11,andS11.To solve the linear equations,a method of least square solutions is important to obtain a stable solution.The thermal Hall resistance and longitudinal resistance can be calculated as ?Rxy=(J2-J6)/T1and ?Rxx=(J2-J3)/T1, respectively.Finally, the quantum thermal Hall conductivity is defined asκxy= ?Rxy/(?R2xy+ ?R2xx).

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.U2032164 and 12174394)and the Start-up Fund from Anhui University in China.

    猜你喜歡
    王安
    Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser?
    元日
    王安期不鞭書生
    王安期不鞭書生
    請(qǐng)客
    曲耶?戲耶?——王安祈《紅樓夢(mèng)》京劇論
    太原理工大學(xué)學(xué)者風(fēng)采
    ——王安幫教授
    緣何抒情,怎樣寫意?——王安祈戲曲研究中傳統(tǒng)與現(xiàn)代的相互表述
    中華戲曲(2018年1期)2018-08-27 10:04:08
    做了才會(huì)知道結(jié)果
    王武龍會(huì)長(zhǎng)會(huì)見中咨公司王安總經(jīng)理一行
    欧美日本视频| 嫩草影院新地址| 免费不卡的大黄色大毛片视频在线观看 | 美女xxoo啪啪120秒动态图| 亚洲狠狠婷婷综合久久图片| 18禁在线播放成人免费| 亚洲国产精品成人综合色| 午夜福利在线观看吧| 亚洲精品久久国产高清桃花| 熟女人妻精品中文字幕| 亚洲自拍偷在线| 国产精品一区二区性色av| 亚洲成人久久性| 精品人妻视频免费看| 国产不卡一卡二| 国产91精品成人一区二区三区| 国产成人福利小说| 一级毛片久久久久久久久女| 中亚洲国语对白在线视频| 久久久国产成人免费| 欧美色欧美亚洲另类二区| 九九爱精品视频在线观看| 精品久久久噜噜| 尾随美女入室| av专区在线播放| 老师上课跳d突然被开到最大视频| 日韩大尺度精品在线看网址| 午夜视频国产福利| 久久久久免费精品人妻一区二区| 搞女人的毛片| 久久精品国产亚洲av涩爱 | 亚洲国产色片| 很黄的视频免费| 欧美另类亚洲清纯唯美| 国产真实乱freesex| 久久精品国产亚洲av香蕉五月| 在线观看一区二区三区| 亚洲综合色惰| 国产欧美日韩精品亚洲av| or卡值多少钱| 日本免费a在线| 精品久久久久久久末码| 毛片女人毛片| 国产伦人伦偷精品视频| 欧美色欧美亚洲另类二区| 欧美国产日韩亚洲一区| 两性午夜刺激爽爽歪歪视频在线观看| avwww免费| 女人十人毛片免费观看3o分钟| 一级av片app| 久久久久久久久久成人| 狂野欧美白嫩少妇大欣赏| 99热精品在线国产| 国产男靠女视频免费网站| 狂野欧美激情性xxxx在线观看| bbb黄色大片| 国产激情偷乱视频一区二区| 日韩精品青青久久久久久| 国产一区二区亚洲精品在线观看| 久久99热6这里只有精品| 在线国产一区二区在线| 一级a爱片免费观看的视频| 99在线人妻在线中文字幕| 国产欧美日韩精品亚洲av| 日日摸夜夜添夜夜添av毛片 | 男女啪啪激烈高潮av片| 美女黄网站色视频| 午夜亚洲福利在线播放| 欧美xxxx性猛交bbbb| 亚洲欧美激情综合另类| 观看免费一级毛片| 日本熟妇午夜| 我的老师免费观看完整版| 日韩欧美精品v在线| 99久久精品热视频| 哪里可以看免费的av片| 欧美日韩乱码在线| 欧美黑人巨大hd| 亚洲成人久久爱视频| 国产v大片淫在线免费观看| 人妻丰满熟妇av一区二区三区| 日日摸夜夜添夜夜添av毛片 | 搡老妇女老女人老熟妇| eeuss影院久久| 午夜福利在线在线| 国产精品人妻久久久影院| 免费大片18禁| 一级毛片久久久久久久久女| 亚洲精品影视一区二区三区av| 午夜免费激情av| 中文字幕精品亚洲无线码一区| 亚洲不卡免费看| 欧美最黄视频在线播放免费| 久久欧美精品欧美久久欧美| 91久久精品国产一区二区成人| 欧美高清性xxxxhd video| 网址你懂的国产日韩在线| 久久婷婷人人爽人人干人人爱| 日韩欧美精品免费久久| 99久国产av精品| 欧美另类亚洲清纯唯美| 最近中文字幕高清免费大全6 | 国产欧美日韩一区二区精品| 久久草成人影院| 国产成人a区在线观看| 日韩欧美在线乱码| 国产午夜精品论理片| 欧美激情久久久久久爽电影| 1000部很黄的大片| 久久人人精品亚洲av| 他把我摸到了高潮在线观看| 国产国拍精品亚洲av在线观看| 国产高清有码在线观看视频| 我要搜黄色片| 69av精品久久久久久| 国产精华一区二区三区| 国产美女午夜福利| 色视频www国产| 日本一本二区三区精品| 国产伦一二天堂av在线观看| 国产视频一区二区在线看| 美女大奶头视频| a级毛片免费高清观看在线播放| 97超级碰碰碰精品色视频在线观看| 国产精品亚洲美女久久久| 成人国产麻豆网| 成人无遮挡网站| 午夜精品一区二区三区免费看| 日本免费一区二区三区高清不卡| 一个人免费在线观看电影| 中出人妻视频一区二区| 999久久久精品免费观看国产| 精品久久国产蜜桃| 欧美日韩亚洲国产一区二区在线观看| 国产老妇女一区| 十八禁网站免费在线| 日韩 亚洲 欧美在线| 亚洲性久久影院| 久久精品夜夜夜夜夜久久蜜豆| 午夜免费激情av| 国产伦精品一区二区三区四那| 人人妻,人人澡人人爽秒播| 免费观看人在逋| 亚洲图色成人| 亚洲av中文av极速乱 | 精品福利观看| a级毛片免费高清观看在线播放| 91精品国产九色| 国产精品亚洲一级av第二区| 国产精品自产拍在线观看55亚洲| 精品久久久久久久久久久久久| 亚洲成人久久性| 亚洲性夜色夜夜综合| 久久草成人影院| 九九在线视频观看精品| 制服丝袜大香蕉在线| 蜜桃久久精品国产亚洲av| 在线a可以看的网站| av国产免费在线观看| 天天躁日日操中文字幕| 91av网一区二区| 亚洲国产欧美人成| 美女cb高潮喷水在线观看| 欧美中文日本在线观看视频| 麻豆一二三区av精品| 在线播放无遮挡| 亚洲成人免费电影在线观看| 村上凉子中文字幕在线| a级毛片免费高清观看在线播放| 亚洲欧美日韩高清专用| 麻豆av噜噜一区二区三区| 免费人成在线观看视频色| 在线观看66精品国产| 久久亚洲精品不卡| 夜夜爽天天搞| 欧美国产日韩亚洲一区| 日日夜夜操网爽| 久久精品人妻少妇| 波多野结衣高清作品| 简卡轻食公司| 国产色婷婷99| 夜夜看夜夜爽夜夜摸| 亚洲18禁久久av| 亚洲成人久久爱视频| 国产av麻豆久久久久久久| av福利片在线观看| 亚洲综合色惰| videossex国产| 日本一本二区三区精品| 日韩一本色道免费dvd| 亚洲最大成人av| 99在线视频只有这里精品首页| 日韩欧美在线二视频| 又黄又爽又免费观看的视频| ponron亚洲| 男女做爰动态图高潮gif福利片| 久久久久久国产a免费观看| 国产精品嫩草影院av在线观看 | 精品久久久久久久久久免费视频| 欧美激情久久久久久爽电影| 欧美日韩精品成人综合77777| 日本一二三区视频观看| av在线亚洲专区| 久久婷婷人人爽人人干人人爱| 国产麻豆成人av免费视频| 国产精品国产高清国产av| 天堂√8在线中文| 男人狂女人下面高潮的视频| 成人av一区二区三区在线看| 一个人观看的视频www高清免费观看| 99热精品在线国产| 男女做爰动态图高潮gif福利片| 在线免费十八禁| 黄色配什么色好看| 嫩草影院精品99| 国产久久久一区二区三区| 亚洲专区中文字幕在线| 嫩草影院精品99| 亚洲天堂国产精品一区在线| 亚洲成人精品中文字幕电影| 亚洲欧美日韩高清专用| 在线a可以看的网站| 免费不卡的大黄色大毛片视频在线观看 | 在线看三级毛片| 亚洲专区国产一区二区| 一级毛片久久久久久久久女| 联通29元200g的流量卡| 日韩精品有码人妻一区| 色视频www国产| 欧美日韩黄片免| 国产伦人伦偷精品视频| 日韩欧美在线乱码| 99在线人妻在线中文字幕| 精品久久久久久成人av| 精品久久久久久,| 日韩亚洲欧美综合| 看黄色毛片网站| 久久久久久久精品吃奶| 长腿黑丝高跟| 午夜福利欧美成人| 亚洲最大成人av| 三级毛片av免费| 久久国产精品人妻蜜桃| 国产精品98久久久久久宅男小说| 日本 av在线| 亚洲av第一区精品v没综合| 成熟少妇高潮喷水视频| 亚洲欧美日韩东京热| 美女高潮喷水抽搐中文字幕| 简卡轻食公司| 搞女人的毛片| 久久久午夜欧美精品| 日韩精品中文字幕看吧| 村上凉子中文字幕在线| 亚洲无线在线观看| 国产精品一区www在线观看 | 3wmmmm亚洲av在线观看| 听说在线观看完整版免费高清| 亚洲成人久久爱视频| 亚洲av中文字字幕乱码综合| 久久久午夜欧美精品| 少妇裸体淫交视频免费看高清| 九九爱精品视频在线观看| 日韩人妻高清精品专区| 在线观看美女被高潮喷水网站| 日韩欧美国产在线观看| 91av网一区二区| 午夜免费激情av| 国内精品一区二区在线观看| 超碰av人人做人人爽久久| 免费人成在线观看视频色| 精品久久久久久久末码| 国产精品一区二区免费欧美| 国内揄拍国产精品人妻在线| 久久草成人影院| 国内少妇人妻偷人精品xxx网站| 久久天躁狠狠躁夜夜2o2o| 中国美白少妇内射xxxbb| 长腿黑丝高跟| 国产色婷婷99| 亚洲自偷自拍三级| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品sss在线观看| bbb黄色大片| 日韩中文字幕欧美一区二区| www.www免费av| 成人高潮视频无遮挡免费网站| 国产黄a三级三级三级人| 直男gayav资源| 精品久久久久久,| 无人区码免费观看不卡| 一进一出抽搐gif免费好疼| 一边摸一边抽搐一进一小说| 国产精品98久久久久久宅男小说| 少妇猛男粗大的猛烈进出视频 | 欧美高清性xxxxhd video| 欧美又色又爽又黄视频| 少妇人妻精品综合一区二区 | 国产色爽女视频免费观看| 无遮挡黄片免费观看| 能在线免费观看的黄片| 成人毛片a级毛片在线播放| 午夜免费激情av| 人妻制服诱惑在线中文字幕| 深爱激情五月婷婷| 日本一本二区三区精品| 88av欧美| 国产大屁股一区二区在线视频| 精品久久久久久久久亚洲 | 男人舔女人下体高潮全视频| 性欧美人与动物交配| 一进一出抽搐gif免费好疼| a在线观看视频网站| 国产毛片a区久久久久| 国产一区二区在线av高清观看| 久久精品国产鲁丝片午夜精品 | 日本三级黄在线观看| 美女免费视频网站| 久久精品国产99精品国产亚洲性色| 欧美区成人在线视频| 美女高潮喷水抽搐中文字幕| 亚洲va在线va天堂va国产| 亚洲人成网站高清观看| 免费在线观看影片大全网站| 国产男人的电影天堂91| www.www免费av| 最近最新中文字幕大全电影3| 网址你懂的国产日韩在线| 久久中文看片网| 又爽又黄无遮挡网站| 午夜福利在线在线| 国产视频内射| 村上凉子中文字幕在线| 一级av片app| 欧美日本亚洲视频在线播放| 欧美中文日本在线观看视频| av国产免费在线观看| 亚洲一区高清亚洲精品| 成人三级黄色视频| 国产精品久久久久久久久免| 日韩中字成人| 精品99又大又爽又粗少妇毛片 | 热99re8久久精品国产| 国产免费一级a男人的天堂| 嫁个100分男人电影在线观看| 看十八女毛片水多多多| 亚洲五月天丁香| 精品福利观看| 最后的刺客免费高清国语| 色5月婷婷丁香| 久久久久久大精品| 在线播放无遮挡| 国产黄a三级三级三级人| 真实男女啪啪啪动态图| 国产精品不卡视频一区二区| 黄片wwwwww| 中国美女看黄片| 国产成人a区在线观看| 久久久午夜欧美精品| 亚洲欧美日韩卡通动漫| 午夜精品一区二区三区免费看| av在线观看视频网站免费| 午夜老司机福利剧场| 91在线观看av| 日韩欧美三级三区| 亚洲黑人精品在线| 国产淫片久久久久久久久| 啦啦啦啦在线视频资源| 国产亚洲精品久久久久久毛片| 日韩强制内射视频| 免费看日本二区| 久久久久久九九精品二区国产| 一区二区三区四区激情视频 | 在线观看av片永久免费下载| 日日干狠狠操夜夜爽| 久久精品国产自在天天线| 国产真实乱freesex| 伊人久久精品亚洲午夜| 精品人妻视频免费看| 午夜福利欧美成人| 欧美成人a在线观看| 亚洲欧美日韩高清在线视频| 久久久午夜欧美精品| 69人妻影院| 九九爱精品视频在线观看| 夜夜看夜夜爽夜夜摸| 中文字幕熟女人妻在线| 日韩欧美在线二视频| 人人妻人人澡欧美一区二区| 免费看日本二区| 黄片wwwwww| 欧洲精品卡2卡3卡4卡5卡区| 香蕉av资源在线| 又黄又爽又刺激的免费视频.| 亚洲18禁久久av| 99精品在免费线老司机午夜| 九九热线精品视视频播放| 麻豆一二三区av精品| 亚洲内射少妇av| 亚洲欧美日韩高清在线视频| 成人特级av手机在线观看| 国产精品人妻久久久久久| 久久久精品欧美日韩精品| 国产精品不卡视频一区二区| 狂野欧美激情性xxxx在线观看| 亚洲无线观看免费| 搡老妇女老女人老熟妇| 天天一区二区日本电影三级| 中亚洲国语对白在线视频| 熟女电影av网| 精品人妻熟女av久视频| av中文乱码字幕在线| 最新在线观看一区二区三区| 18禁黄网站禁片免费观看直播| 亚洲av不卡在线观看| 草草在线视频免费看| 欧洲精品卡2卡3卡4卡5卡区| 热99在线观看视频| 国产精品永久免费网站| 长腿黑丝高跟| 国产精品人妻久久久久久| 欧美日韩乱码在线| 一级黄色大片毛片| 亚洲欧美日韩高清专用| 国产爱豆传媒在线观看| 一级黄片播放器| 国产精品无大码| 亚洲男人的天堂狠狠| 一进一出好大好爽视频| 成人欧美大片| 观看美女的网站| 看免费成人av毛片| 亚洲欧美清纯卡通| 日本免费一区二区三区高清不卡| 又爽又黄无遮挡网站| 精品国产三级普通话版| 国产色爽女视频免费观看| 床上黄色一级片| 韩国av一区二区三区四区| 在线观看美女被高潮喷水网站| 亚洲,欧美,日韩| 99国产精品一区二区蜜桃av| 在线观看66精品国产| 久久国内精品自在自线图片| 在线观看av片永久免费下载| 成年女人毛片免费观看观看9| 男女下面进入的视频免费午夜| 久久久久精品国产欧美久久久| 97超视频在线观看视频| 淫妇啪啪啪对白视频| 久久人人爽人人爽人人片va| 午夜视频国产福利| 成人午夜高清在线视频| 全区人妻精品视频| 午夜激情欧美在线| 黄片wwwwww| 国产精品永久免费网站| 国产精品一区二区三区四区久久| 免费人成在线观看视频色| 亚洲精品国产成人久久av| av在线亚洲专区| 欧美zozozo另类| 国产精品98久久久久久宅男小说| 午夜精品在线福利| 亚洲性久久影院| 露出奶头的视频| 亚洲精华国产精华液的使用体验 | 美女免费视频网站| 直男gayav资源| 亚洲熟妇熟女久久| 欧美绝顶高潮抽搐喷水| 嫁个100分男人电影在线观看| 国产乱人视频| 欧美成人免费av一区二区三区| 亚洲综合色惰| 精品国内亚洲2022精品成人| 亚洲最大成人av| 99久久九九国产精品国产免费| 午夜福利视频1000在线观看| 国产三级中文精品| 婷婷丁香在线五月| 久久精品国产清高在天天线| 99精品在免费线老司机午夜| 日本a在线网址| 久久香蕉精品热| 国产麻豆成人av免费视频| www日本黄色视频网| 老女人水多毛片| 久久精品综合一区二区三区| 黄色配什么色好看| 99在线视频只有这里精品首页| 午夜影院日韩av| 直男gayav资源| 久久久久久国产a免费观看| 日韩,欧美,国产一区二区三区 | ponron亚洲| 久久精品国产99精品国产亚洲性色| 色综合亚洲欧美另类图片| 国产激情偷乱视频一区二区| 91久久精品国产一区二区成人| 国产一区二区三区视频了| 美女高潮的动态| 国产精品久久久久久精品电影| a级一级毛片免费在线观看| av视频在线观看入口| 日本黄色视频三级网站网址| 久久久久性生活片| 他把我摸到了高潮在线观看| 国产精品人妻久久久久久| 天天躁日日操中文字幕| 国产爱豆传媒在线观看| 中文字幕精品亚洲无线码一区| 最好的美女福利视频网| 国产精品久久电影中文字幕| 国产一区二区在线av高清观看| 欧美精品啪啪一区二区三区| 精品一区二区三区视频在线| 日本色播在线视频| 中文字幕久久专区| а√天堂www在线а√下载| 亚洲中文字幕一区二区三区有码在线看| 韩国av在线不卡| 日韩欧美精品v在线| 国产精品伦人一区二区| 久久精品91蜜桃| 午夜福利18| 人妻少妇偷人精品九色| 大型黄色视频在线免费观看| 国产麻豆成人av免费视频| 亚洲精品在线观看二区| 97超级碰碰碰精品色视频在线观看| 欧美成人免费av一区二区三区| 国产精品久久电影中文字幕| 免费av毛片视频| 日本在线视频免费播放| 国产蜜桃级精品一区二区三区| 亚洲精品乱码久久久v下载方式| 欧美bdsm另类| 久久精品国产99精品国产亚洲性色| 国产真实伦视频高清在线观看 | 国产极品精品免费视频能看的| 久久久久九九精品影院| 免费观看在线日韩| 能在线免费观看的黄片| 日韩精品青青久久久久久| xxxwww97欧美| 一级a爱片免费观看的视频| 亚洲美女搞黄在线观看 | 亚洲内射少妇av| 午夜免费男女啪啪视频观看 | 亚洲精品久久国产高清桃花| 久久精品91蜜桃| 乱系列少妇在线播放| av在线观看视频网站免费| 极品教师在线视频| 99久久精品热视频| av在线老鸭窝| 亚洲精品粉嫩美女一区| 欧美日本视频| 国产精品女同一区二区软件 | 午夜日韩欧美国产| 日韩一区二区视频免费看| 国产精品一区二区三区四区久久| 人妻丰满熟妇av一区二区三区| 丰满乱子伦码专区| 日日摸夜夜添夜夜添av毛片 | 成人综合一区亚洲| 亚洲无线在线观看| 成人永久免费在线观看视频| 亚洲国产精品成人综合色| 亚洲精品亚洲一区二区| 中文在线观看免费www的网站| 亚洲av一区综合| 悠悠久久av| 亚洲图色成人| 深爱激情五月婷婷| 免费在线观看影片大全网站| 日韩欧美在线二视频| 噜噜噜噜噜久久久久久91| 日本黄色视频三级网站网址| 欧美成人免费av一区二区三区| 国国产精品蜜臀av免费| 国产高清不卡午夜福利| 欧美中文日本在线观看视频| 亚洲精品粉嫩美女一区| 麻豆成人av在线观看| 中文字幕精品亚洲无线码一区| 少妇被粗大猛烈的视频| 观看免费一级毛片| 美女大奶头视频| 男女之事视频高清在线观看| 人妻制服诱惑在线中文字幕| 女人十人毛片免费观看3o分钟| av福利片在线观看| 最后的刺客免费高清国语| 12—13女人毛片做爰片一| 国产精品美女特级片免费视频播放器| 亚洲av中文av极速乱 | 男女啪啪激烈高潮av片| 国产综合懂色| 亚洲av熟女| 成人国产一区最新在线观看| 国产色爽女视频免费观看| 女人十人毛片免费观看3o分钟| 久久欧美精品欧美久久欧美| 99热这里只有是精品50| 亚洲黑人精品在线| 人人妻人人澡欧美一区二区| 免费在线观看日本一区| 国模一区二区三区四区视频| 91av网一区二区| 午夜视频国产福利| 久久九九热精品免费| 久久这里只有精品中国| 欧美激情国产日韩精品一区|