• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control?

    2021-12-22 06:51:28KarthikeyanRajagopalAnithaKarthikeyanandBalamuraliRamakrishnan
    Chinese Physics B 2021年12期

    Karthikeyan Rajagopal Anitha Karthikeyan and Balamurali Ramakrishnan

    1Centre for Nonlinear Systems,Chennai Institute of Technology,Chennai,India

    2Department of Electronics and Communication Engineering,Prathyusha Engineering College,Chennai,India

    Keywords: discrete Josephson junction,fractional order,chaos,impulse control,chimera

    1. Introduction

    The invention of phase-locked loops (PLLs) in the early 20thcentury[1]has paved the way for their applications in various communication devices,and PLLs have attracted interest in recent years due to their rich nonlinear properties.[2,3]The simplest form of a continuous-time PLL consists of a voltagecontrolled oscillator and a phase detector in the feedback,and the PLL gets locked to the frequency when the phase error becomes constant.[4]A low-pass filter is usually used to remove high-frequency oscillations,[5,6]and the PLL with the filter is represented by a simple jerk system usually referred to as a third-order PLL model. Bifurcation and chaotic oscillations in these third-order PLLs are discussed where the route to crisis,periodicity,coexistence and their control are discussed.[7,8]

    The analogue PLL has the drawback of DC drift and component precision problems, which limit their applications in sophisticated communication devices. Hence, discrete PLLs are preferred over analogue PLLs. In particular, the zero-crossing sampling discrete PLL (ZCSDPLL) is widely used. Nonlinear behavior of these ZCSDPLLs in their lower dimensions (first- and second-order) has been reported in Refs. [9,10] where the authors have also applied discrete PLLs for random number generation. Chaos and bifurcation phenomena in a third-order model of the ZCSDPLL was well reported in Ref.[11]where the authors have shown that ZCSDPLL exhibits periodic, quasi-periodic and chaotic oscillations for various parameter values. They have also shown that the ZCSDPLL a exhibits period-doubling route to chaos and disjoint chaotic attractors en route to chaos.

    While the authors in Ref.[11]have discussed the chaotic behavior of the ZCSDPLL,they have done the analysis using a non-fractional difference equation. However,many earlier papers have shown that nonlinear systems that exhibit memory can be better analyzed using fractional calculus.[12–15]Nevertheless,all the fractional-order analyses of these memory systems use differential equations whose numerical solutions and solvers are well established. Since the ZCSDPLL is a discrete type,we use discrete fractional difference equations for analysis. There are not many references that discuss the control or network behavior of these ZCSDPLL systems.

    In light of the above, we propose the fractional difference equation model of a ZCSDPLL.The bifurcation properties of the ZCSDPLL with respect to the fractional order and parameters are derived and presented to show the existence of periodic and chaotic regions. After proving the existence of chaos,we propose an impulse-based control algorithm and show efficient control regimes with respect to fractional order and impulse amplitude. To analyze the network behavior of the PLLs, we have construct a lattice network and study the synchronization of the PLLs in the network. Finally,we again use an impulse control method to suppress the chimera states and achieve complete synchronization of the nodes in the network.

    2. Fractional-order discrete PLL

    Since the invention of the phase-locked loop (PLL)in1932 by Bellescize,[1]PLL devices have found applications in many electronic and communication devices.[16]Even though the invention of PLL occurred as long ago as 1932, a mathematical model was only recently proposed.[17,18]Since then, there has been much interest in the investigation of the dynamics of PLLs. Many works have studied the nonlinear dynamics and existence of chaotic attractors in these PLLs.[19,20]However, most of these investigations have been on continuous-time PLLs, with far fewer on discrete-type PLLs, except for a few, as in Refs. [11,21]. The mathematical model of the discrete PLL (DPLL) proposed in Ref. [11]where the authors considered a zero-crossing digital phaselocked loop with a sampler,second-order loop digital filter and digitally controlled oscillator is given by

    whereXdenotes the phase angle of the signal from the digitally controlled oscillator, anda,b,c,d,K, andrare the system parameters taken from Refs. [11,21]. The authors in Ref.[11]have discussed the chaotic behavior in the DPLL and have shown various bifurcations occurring in the DPLLs.

    Much investigation has been dedicated to show that discrete fractional calculus is effective to analyze discrete nonlinear models,[22,23]and many methods have been proposed to solve the initial value problem of these discrete fractionalorder systems.[24]In this paper,we will derive the fractionalorder discrete PLL from Eq.(1)using the methods discussed in Ref.[25],whose general form may be expressed as

    To numerically simulate Eq.(5),we use the discrete form(4)for each state variable and derive the dimensionless form for numerical analysis as

    The 2D phase portraits of the FODPLL are shown in Fig.1 for initial conditions (x(0),y(0),z(0))=(0.1,0.1,0.1) and fractional orderq=0.01. The other parameters for the simulation area=3,b=?3,c=1,d=5.08,K=1, andr=2 and we use the definition in Eq. (5) to mathematically solve the FODPLL.

    Remarks 1 To have a better range of simulations,we use the following relation in Ref.[25]:

    Fig. 1. Phase portraits of the FODPLL for q=0.01. Other simulation parameters are considered as a=3,b=?3,c=1,d=5.08,K=1,r=2.

    3. Numerical analysis

    The bifurcation analysis of a difference equation time discrete PLL was discussed in Ref. [8], where the authors have consideredKranddas the control parameters. When considering the FODPLL, we use fractional-orderqand parameterKas the control parameters and present the bifurcation diagrams. In Fig. 2, we show the bifurcation plot of the FODPLL with parameterKby keepingq= 0.05. ForK ≤1.523, the FODPLL exhibits a period-1 limit cycle oscillation and enters the first chaotic region for a small bandwidth of 1.523≤K ≤1.528. Then,the FODPLL enters three separate period-doubling routes and then the system enters a narrow period-1 oscillation region for 1.536≤K ≤1.54.When we compare this with Fig. 4 of Ref. [8], we see that the fractional-order discrete PLL exhibits a quasi-periodic region for 1.54≤K ≤1.545 and 1.55≤K ≤1.558. This quasiperiodic region was not seen in the original integer-order discrete PLL.[11]However,the quasi-periodic existence was well supported by Fig. 2 of Ref. [8], where the bifurcation of the discrete PLL withdexhibits regions of quasi-periodic oscillations. Hence, we confirm that fractional orders can enable us to investigate the unexplored behavior of complex systems. After the quasi-period region, the FODPLL goes into the second chaotic regime and exhibits chaotic oscillations tillK=1.62 and then goes unbounded.

    Fig. 2. Bifurcation of the FODPLL with K by fixing q=0.05. Other parameters are a=3, b=?3, c=1, d =5.08, r =2 and initial conditions[1,0,0].

    In the second bifurcation discussion,we consider the fractional orderqas the control parameter and have fixedK=1.The value ofqis varied between[0.001,0.15].

    To show the impact of the initial conditions,we have plotted the basins on thex–yplane where the red dots denote the chaotic regions and the white dots the periodic oscillations.For other values of initial conditions outside the regions covered by?0.5≤x(0)≤0.47 and?0.5≤y(0)≤0.5,the system goes unbounded.

    Fig.3. Bifurcation of the FODPLL with q by fixing K=1. Other parameters are a=3,b=?3,c=1,d=5.08,r=2 and initial conditions[1,0,0].

    Fig.4. Basin of attraction of the FODPLL for q=0.01 and a=3,b=?3,c=1,d=5.08,r=2,K=1.

    4. Chaos control of FODPLL

    Having shown that the fractional-order discrete PLL has chaotic oscillations for selected values of fractional order and parameters, our goal is to introduce a method of chaos suppression using impulse control[25]as defined by

    whereF(z)=az(k)+by(k)+cx(k)?dKsin(z(k))+K(1+r)sin(y(k))?Ksin(x(k)) fork=n+q ?1. Parameterδis the step where we apply the impulse algorithm(6)andγis the impulse function. To understand the effect of the impulse control algorithm and to know the range ofγwhich can suppress the chaotic oscillations,we derive the bifurcation diagrams of the FODPLL with the control(6)against the various values ofγ. For this analysis, we choose various values ofδand plot the maximum value ofzas shown in Figs. 5–7. For all the bifurcation diagrams, we use forward continuation where we change the initial conditions to end values of state trajectories for every parameter setting.

    In Fig.5,we consider that the control algorithm(6)is applied in every step andγis varied between [?0.2, 0.1]. We consider two fractional ordersq=0.01 shown in Fig.5(a)andq=0.05 shown in Fig.5(b). Forq=0.01,we can identify the effective control range ofγ ∈[?0.2,?0.12]shown in Fig.5(a)asγ1andγ2. Even though the control range can be considered for period-4 oscillation regions,we prefer period-1 oscillations as the other period oscillations have a smallerγrange and are also much closer to a quasi-periodic/chaotic region.Forq=0.05, the effective control range(period-1)of the algorithm shrinks toγ ∈[?0.2,?0.0713]and increasingqwill reduce the control range. We also note that there is no wider control window forγ>0 because when the impulse is applied to the present statez(n)the next state valuez(n+1)becomes(1+γ)z(n+1)thus making it higher than the actual value.[25]

    Fig.5.Bifurcation of the FODPLL against γ with the control applied in every step (δ =1) with (a) q=0.01 and (b) q=0.05 and a=3, b=?3, c=1,d=5.08,r=2,K=1.

    Fig.6. Bifurcation of the FODPLL against γ with the control applied in every step (δ =2) with (a) q=0.01, (b) q=0.05 and a=3, b=?3, c=1,d=5.08,r=2,K=1.

    Now,we consider that impulse control is applied at every two steps(δ=2),as shown in Figs.6(a)and 6(b)forq=0.01 andq=0.05 respectively. Forq=0.01, the control range isγ ∈[?0.2,?0.1387] and whenq=0.05, the control range isγ ∈[?0.4,?0.262]andγ ∈[?0.238,?0.226]. It is to be noted that forq=0.05,we can see two separate regions of period-1 oscillation one being wider and the second being a narrow one.

    To further understand the impact of the step (δ) on the control ability, we have chosenδ=3,4,5 and plotted the bifurcation, as in Fig.7. In all the three cases, even though the system can be controlled to some periodic orbits, there is no period-1 limit cycle shown and hence, we can conclude that effective control can be achieved forδ=1,2.

    Fig.7.Bifurcation of the FODPLL against γ with the control applied in every step,(a)δ =3,(b)δ =3,(c)δ =5 with q=0.01 and a=3,b=?3,c=1,d=5.08,r=2,K=1.

    Fig.8. Various regions in a q–γ plane for q=0.01 and considering that the control is applied in every two steps(δ =2).

    In Fig.8,we show the effective regions of control in aq–γplane consideringq=0.01 and the control applied in every two stepsδ=2. The green regions show the effective control area,the red region show the unbounded region,and the blue and the magenta shows different chaotic regions. It should be noted that the control region here refers to the numerically stable periodic oscillations.

    Remark 1 In all the above discussion,we use the term periodic to mention the numerically stable periodic solutions.[25]As the fractional-order systems (continuous time) consider longer lengths of previous data (memory), there cannot be a constant periodic solution.[25,29]The same can be applied to fractional-order discrete systems too,and the periodic orbit referred to is a much closer trajectory to the periodic solution.

    5. Spatiotemporal dynamics of FODPLL

    Many kinds of electronic and communication equipment depend on discrete PLLs as they form their basic building blocks. Larger networks of FODPLLs are used in network applications, and the synchronization of the FODPLLs in these networks ensures efficient information processing.[26]The synchronization of these FODPLLs depends on the freerunning frequencies and each node phase detector gains.[27,28]Hence, our focus of interest is to study the behavior of the fractional-order discrete PLLs(FODPLL)in a non-locally lattice network,where we have assumed a ring connectivity with 2Pneighbours coupled as in

    wherei=1 toNis the number of FODPLLs in the network,and in this simulation,we have takenN=200. For our analysis,we consider fractional orderqas the control parameter.We choose random initial conditions for the nodes in the network.

    In our first discussion,we choose the fractional orders asq=0.01 and have captured snapshots of the network and final state of each node at the end of the simulation, as shown in Fig. 9. As can be seen from the figure, we can confirm that the nodes are in asynchronous states and do not show signs of synchrony. This is because the nodes are in chaotic states and since we use random initial conditions, the nodes never synchronize forq=0.01.

    To confirm the asynchronous behavior of the system,we use the method described in Ref.[30],where the mean phase velocity is calculated by identifying the number of times(positive slope) the state variable crosses a constant. Using this method, we define the mean phase velocity of theN-th node as?N=2πλ/T. Here,λdenotes the number of times the state variable crosses the constant with a positive slope andTdenotes the time interval.In Fig.10,we derive the mean phase velocity(MPV),and forq=0.01 shown in Fig.9 we confirm the asynchronous behavior in Fig.10 using the coherence circle plot and MPV plot. The number of coherent nodes(blue)is less than 0.5% of the total nodes, which confirms that the nodes are not synchronized.

    Fig. 9. Asynchronous behavior of the nodes in the network for q=0.01.State of each node at the end of the simulation is also shown.

    Fig.10. Mean phase velocity of the nodes for q=0.01;coherent circle plot where magenta denotes incoherent nodes,while blue denotes coherent nodes.

    Fig.11. Chimera states of the nodes in the network for various values of fractional order. States of each node at the end of the simulation are also shown.

    Fig.12. Chimera states of the nodes in the network for various values of fractional order. States of each node at the end of the simulation are also shown.

    We now investigate the exact range of fractional orderq,responsible for chimera states and hence,we select a small range 0.05≤q ≤0.053 and capture spatiotemporal snapshots, as shown in Figs. 11 and 12. Since the coupling strength and other parameters are fixed so that the nodes are in a chaotic bursting state, we consider that the fractional order can initiate both coherent and incoherent nodes in the network. By fixingq=0.05,we note that most of the nodes are in the coherent state,while a few nodes are still in the asynchronous state. This is because of the multiple coexisting attractors, and since we have used random initial conditions, some nodes are driven to attractors that are located much farther away compared to the other nodes.To be exact, the nodes aroundi ∈[75.170] exhibit complete incoherency, while the other nodes are in the coherent state. By increasingqfurther to 0.051, the already synchronized nodes enter a much stronger coherent state and the number of coherent nodes increases.

    Fig.13. Mean phase velocity and circular coherency plots for different values of q.

    Fig.14. Cluster synchronization of the nodes in the network for q=0.07. State of each node at the end of the simulation is also shown.

    Fig.15. Synchronous behavior of the nodes in the network for q=0.15. State of each node at the end of the simulation is also shown.

    By further increasing the fractional order toq=0.052,the coherent nodes increase in number compared to the incoherent nodes. Hence, the chimera states are preserved in the network. However, when the fractional order is kept atq=0.053,we can see that the number of incoherent nodes increases. This is because of the impact of fractional orderqfor which some nodes show coexisting behavior. These observations are clearly presented in Fig.12.

    The MPV plots shown in Fig. 13 confirm the existence of chimeras in the network. Forq=0.051, the mean phase velocity of certain nodes is similar,which shows that they are in coherent states,while the incoherent nodes exhibit different MPVs. We use a circular coherence plot to show the coherent states(blue)and incoherent states(magenta). Around 70%of the nodes show coherent behavior,while 30%exhibit incoherency.Thus,we can confirm the existence of chimera states.

    By further increasing the fractional order toq=0.07,the nodes start to synchronize and form local clusters with two on the positive amplitudes and two on the negative amplitudes,as in Fig. 14. This is because of the nodes entering a periodic region with period four limit cycles (refer Fig. 4) and hence,they cluster around four different amplitudes.

    Complete synchronization of the nodes is achieved for fractional ordersq ≥0.1 as shown in Fig.15. The nodes synchronize to periodic positive and negative amplitudes depending on the initial conditions under which each node started. In this case, we consider random initial conditions ranging between[?0.1,0.1]so that we can have both positive and negative amplitude oscillations in the nodes.

    6. Suppressing chimera using impulses

    We show the existence of chimera states in the FODPLL network described by Eq.(7),and we now propose a technique to control the chimera states and achieve synchronization.The proposed control algorithm is like the one discussed in Eq.(8).The impulses of amplitudeγare applied to the nodes in the network whenn=δand the mathematical model used for the simulation is described as

    We consider the same network setting as used in Section 5, and a fixed fractional order ofq=0.05 is considered for the entire analysis. In the first discussion, we consider a fixed control step (δ=2) and choose two values of the impulse function,as in Fig.16.

    We start our investigation by selecting a positive value ofγclose toγ=0 and the nodes remain in asynchronous states,as can be seen in Fig. 16. We also showγ=0 to confirm that without control the network exhibits chimera states. We choose the negative values ofγsince its positive values cannot control the FODPLL(refer to Section 4). Forγ=?0.05,the nodes try to come towards synchronization(from complete asynchronous state refer Fig.9)and when we increase the impulse amplitude toγ=?0.1, the nodes are in an intermediate cluster synchronized form. Forγ=?0.2 a completely synchronized network exhibits that the proposed control algorithm is effective enough to bring to nodes from a complete asynchronous state to a complete synchronous state, as in Fig.17.

    In the second discussion, we now fix the impulse amplitude toγ=?0.2 for which we have shown in Fig. 17 that complete synchronization is achieved and consider the control step as the parameter of discussion. For the values ofδ=1,2 the network remains in complete synchronized states, which corroborates our discussion in Section 4,as in Fig.18. When we consider higher steps,the nodes go into chaotic states and the network exhibits chimera-like behavior. Thus,we confirm that the control-step size plays a significant role in achieving local control and global synchronization.

    Fig. 16. Spatiotemporal behavior of the network (8) for various values of the impulse function γ. We consider that the impulse is applied every two steps. Value of the fractional order is considered as q=0.05.

    Fig.17. Spatiotemporal behavior of the network(8)for various values of the impulse function γ. We consider that the impulse is applied in every two steps. Value of the fractional order is considered as q=0.05.

    Fig.18. Spatiotemporal behavior of the network(8)for various values of the control step δ. We consider that the impulse amplitude is γ=?0.2. Values of the fractional order are considered as q=0.05.

    7. Conclusion

    In this paper,we model a fractional-order discrete phaselocked loop using a Caputo delta fractional operator, and we investigate the various dynamical properties of the FODPLL.Considering the loop gain (K) as the bifurcation parameter,we show the existence of a quasi-periodic region, which was not originally discussed in the integer-order ZCSDPLL model.Thus, by proving the existence of quasi-periodic and chaotic regions we now use the impulse control technique to suppress the chaotic oscillations. The lower control steps can suppress the chaotic oscillations better that the higher control steps. Furthermore, the positive impulse amplitudes cannot suppress the chaotic oscillations. The interdependence of the impulse amplitude (γ) and the fractional order (q) is investigated using a 2D plot on theγ–qplane. Investigating the network behavior of the FODPLL is of significance because of its applications in large-scale networks. For the analysis,we constructed a network of 200 FODPLLs and consider it as a ring network withPneighboring FODPLL. The network exhibits asynchronous behavior for lower fractional orders (q ≤0.03) and goes into complete synchronization forq ≥0.07. En route from asynchronous states to synchronous states, we see chimera-like behavior, especially in the range 0.049≤q ≤0.053. These chimera-like states are considered more hazardous in any physical circuits, and hence, we propose a simple control scheme to suppress these chimeras and achieve synchronization.An impulse function is applied to the individual nodes in the network everyδsteps,and forδ=1,2,we show effective suppression of chimera states. However,increasing the control steps further will strengthen the chimera states instead of controlling them. Hence,control steps play a vital role in achieving complete synchronization.

    自线自在国产av| 蜜桃在线观看..| 最近中文字幕2019免费版| 这个男人来自地球电影免费观看 | 中文欧美无线码| 欧美日韩一区二区视频在线观看视频在线| 久久女婷五月综合色啪小说| 精品国产一区二区三区久久久樱花| 国产伦人伦偷精品视频| 另类亚洲欧美激情| 久久毛片免费看一区二区三区| 久久av网站| 十八禁网站网址无遮挡| 1024香蕉在线观看| 精品人妻在线不人妻| 午夜福利乱码中文字幕| 不卡视频在线观看欧美| 免费女性裸体啪啪无遮挡网站| 最近中文字幕2019免费版| 婷婷色麻豆天堂久久| 国产97色在线日韩免费| 午夜激情久久久久久久| 免费av中文字幕在线| 国产99久久九九免费精品| 毛片一级片免费看久久久久| 免费日韩欧美在线观看| 久久久久网色| 精品少妇一区二区三区视频日本电影 | 国产精品国产三级专区第一集| 精品福利永久在线观看| 日韩一本色道免费dvd| 免费女性裸体啪啪无遮挡网站| 91国产中文字幕| 国产精品成人在线| 在线观看免费午夜福利视频| 最新在线观看一区二区三区 | 狠狠婷婷综合久久久久久88av| 肉色欧美久久久久久久蜜桃| 亚洲av日韩在线播放| 国产精品 国内视频| 亚洲人成电影观看| 在线看a的网站| 午夜日本视频在线| 久久久久久久久久久久大奶| 欧美日韩视频精品一区| 精品国产一区二区久久| 免费观看a级毛片全部| 亚洲国产av新网站| 亚洲一卡2卡3卡4卡5卡精品中文| 美女主播在线视频| 国产精品亚洲av一区麻豆 | 97在线人人人人妻| 一区福利在线观看| 亚洲,欧美精品.| 看十八女毛片水多多多| 久久精品国产亚洲av高清一级| 国产成人精品久久久久久| 日韩av不卡免费在线播放| 十八禁人妻一区二区| 纵有疾风起免费观看全集完整版| 亚洲人成电影观看| 免费不卡黄色视频| 国产亚洲欧美精品永久| 午夜免费鲁丝| 观看美女的网站| 国产免费视频播放在线视频| a 毛片基地| 韩国精品一区二区三区| 亚洲,欧美精品.| 国产探花极品一区二区| 亚洲久久久国产精品| 国产成人精品在线电影| 久久天躁狠狠躁夜夜2o2o | 18禁裸乳无遮挡动漫免费视频| 国产成人av激情在线播放| 亚洲成人一二三区av| 国产一区二区三区综合在线观看| e午夜精品久久久久久久| 亚洲欧美清纯卡通| 美女中出高潮动态图| 欧美在线一区亚洲| 91老司机精品| 18禁观看日本| 在线看a的网站| 午夜久久久在线观看| 水蜜桃什么品种好| 80岁老熟妇乱子伦牲交| 99精国产麻豆久久婷婷| 国产精品女同一区二区软件| 久久综合国产亚洲精品| 老司机亚洲免费影院| 蜜桃国产av成人99| a级片在线免费高清观看视频| 国产熟女欧美一区二区| 国产黄频视频在线观看| 亚洲精品国产一区二区精华液| 卡戴珊不雅视频在线播放| 18禁观看日本| 国产一区二区激情短视频 | 亚洲av成人不卡在线观看播放网 | 看免费av毛片| 久久 成人 亚洲| 免费日韩欧美在线观看| 男女床上黄色一级片免费看| 精品视频人人做人人爽| 九草在线视频观看| e午夜精品久久久久久久| 女人爽到高潮嗷嗷叫在线视频| 少妇精品久久久久久久| 老鸭窝网址在线观看| 亚洲av电影在线观看一区二区三区| 久久久久精品性色| 精品亚洲成a人片在线观看| 男人舔女人的私密视频| 日本色播在线视频| 波野结衣二区三区在线| 大陆偷拍与自拍| 国产精品一区二区在线观看99| 亚洲精品一二三| 人体艺术视频欧美日本| 久久精品人人爽人人爽视色| 国产免费现黄频在线看| 亚洲第一区二区三区不卡| 亚洲熟女精品中文字幕| 久久久久国产一级毛片高清牌| 丁香六月欧美| 一区二区三区激情视频| 欧美av亚洲av综合av国产av | 亚洲美女黄色视频免费看| 搡老岳熟女国产| 亚洲第一av免费看| 国产在线免费精品| 国产伦人伦偷精品视频| 久久久久久免费高清国产稀缺| 亚洲第一青青草原| 欧美日韩成人在线一区二区| 欧美国产精品一级二级三级| 少妇猛男粗大的猛烈进出视频| 悠悠久久av| 国产毛片在线视频| 日韩av不卡免费在线播放| xxx大片免费视频| 丰满少妇做爰视频| 韩国精品一区二区三区| 国产欧美亚洲国产| 免费人妻精品一区二区三区视频| 伦理电影免费视频| 欧美日韩精品网址| 无遮挡黄片免费观看| 成人亚洲精品一区在线观看| 波多野结衣一区麻豆| 成人影院久久| 欧美 亚洲 国产 日韩一| 嫩草影视91久久| 亚洲在久久综合| 欧美日韩成人在线一区二区| www.熟女人妻精品国产| 9热在线视频观看99| 精品国产一区二区三区四区第35| 99国产综合亚洲精品| 国产国语露脸激情在线看| 我的亚洲天堂| 天堂俺去俺来也www色官网| 国产精品久久久人人做人人爽| 永久免费av网站大全| 日韩大片免费观看网站| 好男人视频免费观看在线| 人人妻,人人澡人人爽秒播 | 婷婷色av中文字幕| 日韩 欧美 亚洲 中文字幕| 欧美日韩一区二区视频在线观看视频在线| 1024视频免费在线观看| 又大又黄又爽视频免费| 国产亚洲最大av| 成年人午夜在线观看视频| 新久久久久国产一级毛片| 岛国毛片在线播放| 亚洲天堂av无毛| av国产精品久久久久影院| 午夜影院在线不卡| 两性夫妻黄色片| 国产免费一区二区三区四区乱码| 午夜福利一区二区在线看| 精品国产乱码久久久久久小说| www日本在线高清视频| 尾随美女入室| 亚洲精品国产一区二区精华液| 亚洲精品中文字幕在线视频| 欧美精品一区二区大全| av国产久精品久网站免费入址| 久久久精品免费免费高清| 欧美日韩福利视频一区二区| 侵犯人妻中文字幕一二三四区| 岛国毛片在线播放| 熟女少妇亚洲综合色aaa.| 婷婷色av中文字幕| 国产精品av久久久久免费| 18在线观看网站| 亚洲美女搞黄在线观看| www.自偷自拍.com| 日韩一区二区视频免费看| 国产伦人伦偷精品视频| av又黄又爽大尺度在线免费看| 夜夜骑夜夜射夜夜干| 十八禁高潮呻吟视频| 亚洲久久久国产精品| 99精品久久久久人妻精品| 9色porny在线观看| 免费在线观看视频国产中文字幕亚洲 | a级毛片黄视频| 亚洲美女搞黄在线观看| videosex国产| 欧美精品一区二区大全| 综合色丁香网| 欧美人与善性xxx| 欧美黑人精品巨大| 欧美日韩亚洲高清精品| 国产成人免费无遮挡视频| 一区二区三区四区激情视频| 国产精品一区二区在线不卡| 亚洲国产欧美在线一区| 一级片'在线观看视频| 日本vs欧美在线观看视频| 免费在线观看黄色视频的| 欧美日韩视频精品一区| 亚洲精品乱久久久久久| 精品一区二区三区四区五区乱码 | 精品国产一区二区久久| 中文欧美无线码| 日韩av在线免费看完整版不卡| 大香蕉久久网| 中文字幕人妻丝袜一区二区 | 99香蕉大伊视频| 看非洲黑人一级黄片| 国产极品天堂在线| 国产精品av久久久久免费| 九草在线视频观看| 久久av网站| 午夜免费男女啪啪视频观看| 亚洲欧美色中文字幕在线| 激情视频va一区二区三区| 久热爱精品视频在线9| 黄色视频在线播放观看不卡| 亚洲成人一二三区av| 国产色婷婷99| 精品人妻一区二区三区麻豆| 不卡av一区二区三区| 精品第一国产精品| 男女国产视频网站| 国产男人的电影天堂91| 精品一区二区三区四区五区乱码 | 久久精品亚洲熟妇少妇任你| 国产在视频线精品| 日韩欧美精品免费久久| 日韩成人av中文字幕在线观看| 大码成人一级视频| 国产女主播在线喷水免费视频网站| 乱人伦中国视频| 女人被躁到高潮嗷嗷叫费观| 超碰成人久久| 日韩欧美精品免费久久| 国精品久久久久久国模美| 看免费av毛片| 观看美女的网站| 欧美日韩视频高清一区二区三区二| 国产亚洲最大av| 伦理电影免费视频| 校园人妻丝袜中文字幕| 亚洲国产av影院在线观看| 国产av码专区亚洲av| 啦啦啦 在线观看视频| 亚洲久久久国产精品| 亚洲成色77777| 成人亚洲精品一区在线观看| 国产成人精品久久久久久| 国产精品国产三级专区第一集| 99精品久久久久人妻精品| 日本wwww免费看| 国产成人欧美在线观看 | 99久久99久久久精品蜜桃| 久久久久网色| 日韩中文字幕欧美一区二区 | 男人爽女人下面视频在线观看| 伊人久久大香线蕉亚洲五| 国产乱来视频区| 亚洲第一av免费看| 夫妻性生交免费视频一级片| 汤姆久久久久久久影院中文字幕| 色吧在线观看| 亚洲,一卡二卡三卡| 97人妻天天添夜夜摸| 亚洲欧美色中文字幕在线| 国产精品.久久久| 只有这里有精品99| 久久久国产一区二区| 一本久久精品| 亚洲av在线观看美女高潮| av有码第一页| 亚洲精品久久久久久婷婷小说| 精品午夜福利在线看| 亚洲自偷自拍图片 自拍| 女的被弄到高潮叫床怎么办| 熟女av电影| 色精品久久人妻99蜜桃| 亚洲成国产人片在线观看| 国产99久久九九免费精品| 黄色 视频免费看| av视频免费观看在线观看| 亚洲第一区二区三区不卡| 爱豆传媒免费全集在线观看| 精品少妇内射三级| 狠狠精品人妻久久久久久综合| 久久av网站| 在线观看免费日韩欧美大片| www.熟女人妻精品国产| 五月天丁香电影| 久久婷婷青草| 成人亚洲欧美一区二区av| 亚洲国产av新网站| 好男人视频免费观看在线| 丝瓜视频免费看黄片| 久久久久精品人妻al黑| 国产国语露脸激情在线看| 国产av国产精品国产| 国产在线一区二区三区精| 美女脱内裤让男人舔精品视频| 日韩一卡2卡3卡4卡2021年| 99九九在线精品视频| 九九爱精品视频在线观看| 国产一区二区激情短视频 | 一边摸一边做爽爽视频免费| 久久精品aⅴ一区二区三区四区| 中文天堂在线官网| 欧美日韩亚洲国产一区二区在线观看 | 久久午夜综合久久蜜桃| 亚洲一区中文字幕在线| 国产免费又黄又爽又色| 欧美精品一区二区大全| 9色porny在线观看| 一级黄片播放器| 欧美激情 高清一区二区三区| 如日韩欧美国产精品一区二区三区| 天堂8中文在线网| 国产成人欧美| 五月开心婷婷网| 日本vs欧美在线观看视频| 美国免费a级毛片| 男人添女人高潮全过程视频| 国产成人精品久久二区二区91 | 一本大道久久a久久精品| 国产又爽黄色视频| 免费高清在线观看日韩| 少妇人妻 视频| 丰满少妇做爰视频| 搡老岳熟女国产| 汤姆久久久久久久影院中文字幕| 青春草亚洲视频在线观看| 亚洲三区欧美一区| 蜜桃在线观看..| 国产成人系列免费观看| 制服丝袜香蕉在线| 夫妻午夜视频| 久久精品久久久久久久性| 国产在线免费精品| 国产熟女午夜一区二区三区| 热re99久久国产66热| 男女午夜视频在线观看| 在线看a的网站| 在线观看国产h片| 建设人人有责人人尽责人人享有的| 欧美人与善性xxx| 菩萨蛮人人尽说江南好唐韦庄| 老司机深夜福利视频在线观看 | 可以免费在线观看a视频的电影网站 | 三上悠亚av全集在线观看| 免费高清在线观看日韩| 少妇的丰满在线观看| 久久人人爽人人片av| 国产一级毛片在线| 精品国产国语对白av| 男的添女的下面高潮视频| 婷婷成人精品国产| 亚洲精品国产一区二区精华液| 啦啦啦 在线观看视频| 亚洲欧美一区二区三区国产| 黄色毛片三级朝国网站| 人妻人人澡人人爽人人| 国产乱人偷精品视频| 51午夜福利影视在线观看| 国产视频首页在线观看| 在线亚洲精品国产二区图片欧美| 国产精品av久久久久免费| 精品一区在线观看国产| 亚洲av成人不卡在线观看播放网 | 一边摸一边抽搐一进一出视频| 久久毛片免费看一区二区三区| 国产熟女午夜一区二区三区| 热99国产精品久久久久久7| 欧美人与善性xxx| 久久久久国产一级毛片高清牌| 亚洲五月色婷婷综合| 亚洲久久久国产精品| av片东京热男人的天堂| 侵犯人妻中文字幕一二三四区| 老汉色av国产亚洲站长工具| 中文精品一卡2卡3卡4更新| 国产成人欧美| 精品免费久久久久久久清纯 | 亚洲国产成人一精品久久久| 久久久精品免费免费高清| 美女主播在线视频| 欧美国产精品va在线观看不卡| a级片在线免费高清观看视频| 性少妇av在线| 少妇 在线观看| videosex国产| 成人影院久久| 亚洲精品一区蜜桃| 中文欧美无线码| 高清欧美精品videossex| 人人妻人人爽人人添夜夜欢视频| 性少妇av在线| 亚洲精品在线美女| 黄频高清免费视频| 色视频在线一区二区三区| 少妇精品久久久久久久| 制服诱惑二区| 老司机在亚洲福利影院| 日韩,欧美,国产一区二区三区| av网站在线播放免费| 国产成人欧美| 亚洲av日韩在线播放| 啦啦啦中文免费视频观看日本| 美女午夜性视频免费| 青草久久国产| 中文乱码字字幕精品一区二区三区| 国产一区二区三区综合在线观看| 高清av免费在线| 涩涩av久久男人的天堂| 十八禁人妻一区二区| 五月天丁香电影| 国产免费现黄频在线看| 国产精品女同一区二区软件| 国产免费又黄又爽又色| 如日韩欧美国产精品一区二区三区| 国产片特级美女逼逼视频| 成人免费观看视频高清| 久久久久精品国产欧美久久久 | 亚洲第一区二区三区不卡| 久久韩国三级中文字幕| 18禁国产床啪视频网站| 日韩中文字幕视频在线看片| 狠狠精品人妻久久久久久综合| 日韩av不卡免费在线播放| 国产精品久久久久成人av| 国产极品天堂在线| 久久久久国产一级毛片高清牌| 麻豆精品久久久久久蜜桃| av.在线天堂| av卡一久久| 亚洲成av片中文字幕在线观看| 男女边吃奶边做爰视频| 亚洲av在线观看美女高潮| 黄片无遮挡物在线观看| 黄色视频在线播放观看不卡| 精品国产露脸久久av麻豆| 日本爱情动作片www.在线观看| 国产午夜精品一二区理论片| 中国三级夫妇交换| 天天躁夜夜躁狠狠躁躁| 日韩大码丰满熟妇| 老司机影院成人| 黄色视频不卡| 午夜久久久在线观看| 一级爰片在线观看| bbb黄色大片| 黄色 视频免费看| 伊人亚洲综合成人网| av女优亚洲男人天堂| 国产av精品麻豆| 99久久综合免费| 91精品三级在线观看| 国产视频首页在线观看| 国产色婷婷99| 女人精品久久久久毛片| 黄色 视频免费看| 在线观看免费日韩欧美大片| 欧美精品亚洲一区二区| 亚洲第一区二区三区不卡| 亚洲成人手机| 久久精品国产亚洲av涩爱| 免费av中文字幕在线| 久久国产精品男人的天堂亚洲| 99热网站在线观看| 欧美亚洲日本最大视频资源| 欧美日韩成人在线一区二区| 国产精品免费视频内射| 男女下面插进去视频免费观看| 亚洲自偷自拍图片 自拍| 国产av精品麻豆| 91精品伊人久久大香线蕉| 99国产精品免费福利视频| av天堂久久9| 考比视频在线观看| 国产亚洲欧美精品永久| 国产日韩欧美在线精品| 各种免费的搞黄视频| 久久久国产欧美日韩av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲专区中文字幕在线 | 久热爱精品视频在线9| 欧美精品人与动牲交sv欧美| 老司机影院成人| 男女免费视频国产| 又黄又粗又硬又大视频| 黑丝袜美女国产一区| 99久久99久久久精品蜜桃| 大香蕉久久网| 啦啦啦在线免费观看视频4| 91精品三级在线观看| 日本av手机在线免费观看| 免费看不卡的av| 久久久精品94久久精品| 日韩电影二区| 一边亲一边摸免费视频| 国产精品久久久av美女十八| 99热网站在线观看| 女人高潮潮喷娇喘18禁视频| 成人国产麻豆网| 三上悠亚av全集在线观看| 日韩伦理黄色片| 狠狠精品人妻久久久久久综合| 亚洲一卡2卡3卡4卡5卡精品中文| 韩国高清视频一区二区三区| 只有这里有精品99| 激情视频va一区二区三区| 汤姆久久久久久久影院中文字幕| 侵犯人妻中文字幕一二三四区| 一级片免费观看大全| 水蜜桃什么品种好| 欧美精品一区二区大全| 9热在线视频观看99| 老鸭窝网址在线观看| 侵犯人妻中文字幕一二三四区| 亚洲av国产av综合av卡| 一二三四在线观看免费中文在| 欧美在线一区亚洲| 老司机亚洲免费影院| 成人毛片60女人毛片免费| 在现免费观看毛片| 免费女性裸体啪啪无遮挡网站| av电影中文网址| av.在线天堂| 日本欧美国产在线视频| 国产成人精品久久久久久| 国产片特级美女逼逼视频| 纵有疾风起免费观看全集完整版| 777久久人妻少妇嫩草av网站| 纵有疾风起免费观看全集完整版| 成年人午夜在线观看视频| 电影成人av| 少妇 在线观看| 只有这里有精品99| 秋霞在线观看毛片| 亚洲av中文av极速乱| 久久久久国产精品人妻一区二区| 日韩人妻精品一区2区三区| 国产 精品1| 色精品久久人妻99蜜桃| 亚洲精品成人av观看孕妇| 久久性视频一级片| 韩国高清视频一区二区三区| 日韩大码丰满熟妇| 激情视频va一区二区三区| 成人黄色视频免费在线看| 亚洲成人一二三区av| 亚洲欧洲国产日韩| 亚洲伊人色综图| 精品一区二区免费观看| 涩涩av久久男人的天堂| 狂野欧美激情性xxxx| 男女无遮挡免费网站观看| 男女国产视频网站| 亚洲,欧美,日韩| 精品一区二区三区av网在线观看 | 日本91视频免费播放| 亚洲综合色网址| 久久久精品免费免费高清| 国产高清国产精品国产三级| 99re6热这里在线精品视频| 一区二区三区四区激情视频| 人人妻人人澡人人爽人人夜夜| 人妻人人澡人人爽人人| 欧美激情高清一区二区三区 | 成年美女黄网站色视频大全免费| 老司机亚洲免费影院| 久久久亚洲精品成人影院| 精品国产超薄肉色丝袜足j| 99香蕉大伊视频| 99久久人妻综合| 爱豆传媒免费全集在线观看| 日本欧美视频一区| √禁漫天堂资源中文www| 熟女av电影| 久久97久久精品| 成人亚洲精品一区在线观看| 婷婷色综合www| 美女大奶头黄色视频| 一区二区三区激情视频| av福利片在线| 在线观看人妻少妇| 国产激情久久老熟女| 18禁国产床啪视频网站| 久久97久久精品| 中文字幕另类日韩欧美亚洲嫩草|