• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control?

    2021-12-22 06:51:28KarthikeyanRajagopalAnithaKarthikeyanandBalamuraliRamakrishnan
    Chinese Physics B 2021年12期

    Karthikeyan Rajagopal Anitha Karthikeyan and Balamurali Ramakrishnan

    1Centre for Nonlinear Systems,Chennai Institute of Technology,Chennai,India

    2Department of Electronics and Communication Engineering,Prathyusha Engineering College,Chennai,India

    Keywords: discrete Josephson junction,fractional order,chaos,impulse control,chimera

    1. Introduction

    The invention of phase-locked loops (PLLs) in the early 20thcentury[1]has paved the way for their applications in various communication devices,and PLLs have attracted interest in recent years due to their rich nonlinear properties.[2,3]The simplest form of a continuous-time PLL consists of a voltagecontrolled oscillator and a phase detector in the feedback,and the PLL gets locked to the frequency when the phase error becomes constant.[4]A low-pass filter is usually used to remove high-frequency oscillations,[5,6]and the PLL with the filter is represented by a simple jerk system usually referred to as a third-order PLL model. Bifurcation and chaotic oscillations in these third-order PLLs are discussed where the route to crisis,periodicity,coexistence and their control are discussed.[7,8]

    The analogue PLL has the drawback of DC drift and component precision problems, which limit their applications in sophisticated communication devices. Hence, discrete PLLs are preferred over analogue PLLs. In particular, the zero-crossing sampling discrete PLL (ZCSDPLL) is widely used. Nonlinear behavior of these ZCSDPLLs in their lower dimensions (first- and second-order) has been reported in Refs. [9,10] where the authors have also applied discrete PLLs for random number generation. Chaos and bifurcation phenomena in a third-order model of the ZCSDPLL was well reported in Ref.[11]where the authors have shown that ZCSDPLL exhibits periodic, quasi-periodic and chaotic oscillations for various parameter values. They have also shown that the ZCSDPLL a exhibits period-doubling route to chaos and disjoint chaotic attractors en route to chaos.

    While the authors in Ref.[11]have discussed the chaotic behavior of the ZCSDPLL,they have done the analysis using a non-fractional difference equation. However,many earlier papers have shown that nonlinear systems that exhibit memory can be better analyzed using fractional calculus.[12–15]Nevertheless,all the fractional-order analyses of these memory systems use differential equations whose numerical solutions and solvers are well established. Since the ZCSDPLL is a discrete type,we use discrete fractional difference equations for analysis. There are not many references that discuss the control or network behavior of these ZCSDPLL systems.

    In light of the above, we propose the fractional difference equation model of a ZCSDPLL.The bifurcation properties of the ZCSDPLL with respect to the fractional order and parameters are derived and presented to show the existence of periodic and chaotic regions. After proving the existence of chaos,we propose an impulse-based control algorithm and show efficient control regimes with respect to fractional order and impulse amplitude. To analyze the network behavior of the PLLs, we have construct a lattice network and study the synchronization of the PLLs in the network. Finally,we again use an impulse control method to suppress the chimera states and achieve complete synchronization of the nodes in the network.

    2. Fractional-order discrete PLL

    Since the invention of the phase-locked loop (PLL)in1932 by Bellescize,[1]PLL devices have found applications in many electronic and communication devices.[16]Even though the invention of PLL occurred as long ago as 1932, a mathematical model was only recently proposed.[17,18]Since then, there has been much interest in the investigation of the dynamics of PLLs. Many works have studied the nonlinear dynamics and existence of chaotic attractors in these PLLs.[19,20]However, most of these investigations have been on continuous-time PLLs, with far fewer on discrete-type PLLs, except for a few, as in Refs. [11,21]. The mathematical model of the discrete PLL (DPLL) proposed in Ref. [11]where the authors considered a zero-crossing digital phaselocked loop with a sampler,second-order loop digital filter and digitally controlled oscillator is given by

    whereXdenotes the phase angle of the signal from the digitally controlled oscillator, anda,b,c,d,K, andrare the system parameters taken from Refs. [11,21]. The authors in Ref.[11]have discussed the chaotic behavior in the DPLL and have shown various bifurcations occurring in the DPLLs.

    Much investigation has been dedicated to show that discrete fractional calculus is effective to analyze discrete nonlinear models,[22,23]and many methods have been proposed to solve the initial value problem of these discrete fractionalorder systems.[24]In this paper,we will derive the fractionalorder discrete PLL from Eq.(1)using the methods discussed in Ref.[25],whose general form may be expressed as

    To numerically simulate Eq.(5),we use the discrete form(4)for each state variable and derive the dimensionless form for numerical analysis as

    The 2D phase portraits of the FODPLL are shown in Fig.1 for initial conditions (x(0),y(0),z(0))=(0.1,0.1,0.1) and fractional orderq=0.01. The other parameters for the simulation area=3,b=?3,c=1,d=5.08,K=1, andr=2 and we use the definition in Eq. (5) to mathematically solve the FODPLL.

    Remarks 1 To have a better range of simulations,we use the following relation in Ref.[25]:

    Fig. 1. Phase portraits of the FODPLL for q=0.01. Other simulation parameters are considered as a=3,b=?3,c=1,d=5.08,K=1,r=2.

    3. Numerical analysis

    The bifurcation analysis of a difference equation time discrete PLL was discussed in Ref. [8], where the authors have consideredKranddas the control parameters. When considering the FODPLL, we use fractional-orderqand parameterKas the control parameters and present the bifurcation diagrams. In Fig. 2, we show the bifurcation plot of the FODPLL with parameterKby keepingq= 0.05. ForK ≤1.523, the FODPLL exhibits a period-1 limit cycle oscillation and enters the first chaotic region for a small bandwidth of 1.523≤K ≤1.528. Then,the FODPLL enters three separate period-doubling routes and then the system enters a narrow period-1 oscillation region for 1.536≤K ≤1.54.When we compare this with Fig. 4 of Ref. [8], we see that the fractional-order discrete PLL exhibits a quasi-periodic region for 1.54≤K ≤1.545 and 1.55≤K ≤1.558. This quasiperiodic region was not seen in the original integer-order discrete PLL.[11]However,the quasi-periodic existence was well supported by Fig. 2 of Ref. [8], where the bifurcation of the discrete PLL withdexhibits regions of quasi-periodic oscillations. Hence, we confirm that fractional orders can enable us to investigate the unexplored behavior of complex systems. After the quasi-period region, the FODPLL goes into the second chaotic regime and exhibits chaotic oscillations tillK=1.62 and then goes unbounded.

    Fig. 2. Bifurcation of the FODPLL with K by fixing q=0.05. Other parameters are a=3, b=?3, c=1, d =5.08, r =2 and initial conditions[1,0,0].

    In the second bifurcation discussion,we consider the fractional orderqas the control parameter and have fixedK=1.The value ofqis varied between[0.001,0.15].

    To show the impact of the initial conditions,we have plotted the basins on thex–yplane where the red dots denote the chaotic regions and the white dots the periodic oscillations.For other values of initial conditions outside the regions covered by?0.5≤x(0)≤0.47 and?0.5≤y(0)≤0.5,the system goes unbounded.

    Fig.3. Bifurcation of the FODPLL with q by fixing K=1. Other parameters are a=3,b=?3,c=1,d=5.08,r=2 and initial conditions[1,0,0].

    Fig.4. Basin of attraction of the FODPLL for q=0.01 and a=3,b=?3,c=1,d=5.08,r=2,K=1.

    4. Chaos control of FODPLL

    Having shown that the fractional-order discrete PLL has chaotic oscillations for selected values of fractional order and parameters, our goal is to introduce a method of chaos suppression using impulse control[25]as defined by

    whereF(z)=az(k)+by(k)+cx(k)?dKsin(z(k))+K(1+r)sin(y(k))?Ksin(x(k)) fork=n+q ?1. Parameterδis the step where we apply the impulse algorithm(6)andγis the impulse function. To understand the effect of the impulse control algorithm and to know the range ofγwhich can suppress the chaotic oscillations,we derive the bifurcation diagrams of the FODPLL with the control(6)against the various values ofγ. For this analysis, we choose various values ofδand plot the maximum value ofzas shown in Figs. 5–7. For all the bifurcation diagrams, we use forward continuation where we change the initial conditions to end values of state trajectories for every parameter setting.

    In Fig.5,we consider that the control algorithm(6)is applied in every step andγis varied between [?0.2, 0.1]. We consider two fractional ordersq=0.01 shown in Fig.5(a)andq=0.05 shown in Fig.5(b). Forq=0.01,we can identify the effective control range ofγ ∈[?0.2,?0.12]shown in Fig.5(a)asγ1andγ2. Even though the control range can be considered for period-4 oscillation regions,we prefer period-1 oscillations as the other period oscillations have a smallerγrange and are also much closer to a quasi-periodic/chaotic region.Forq=0.05, the effective control range(period-1)of the algorithm shrinks toγ ∈[?0.2,?0.0713]and increasingqwill reduce the control range. We also note that there is no wider control window forγ>0 because when the impulse is applied to the present statez(n)the next state valuez(n+1)becomes(1+γ)z(n+1)thus making it higher than the actual value.[25]

    Fig.5.Bifurcation of the FODPLL against γ with the control applied in every step (δ =1) with (a) q=0.01 and (b) q=0.05 and a=3, b=?3, c=1,d=5.08,r=2,K=1.

    Fig.6. Bifurcation of the FODPLL against γ with the control applied in every step (δ =2) with (a) q=0.01, (b) q=0.05 and a=3, b=?3, c=1,d=5.08,r=2,K=1.

    Now,we consider that impulse control is applied at every two steps(δ=2),as shown in Figs.6(a)and 6(b)forq=0.01 andq=0.05 respectively. Forq=0.01, the control range isγ ∈[?0.2,?0.1387] and whenq=0.05, the control range isγ ∈[?0.4,?0.262]andγ ∈[?0.238,?0.226]. It is to be noted that forq=0.05,we can see two separate regions of period-1 oscillation one being wider and the second being a narrow one.

    To further understand the impact of the step (δ) on the control ability, we have chosenδ=3,4,5 and plotted the bifurcation, as in Fig.7. In all the three cases, even though the system can be controlled to some periodic orbits, there is no period-1 limit cycle shown and hence, we can conclude that effective control can be achieved forδ=1,2.

    Fig.7.Bifurcation of the FODPLL against γ with the control applied in every step,(a)δ =3,(b)δ =3,(c)δ =5 with q=0.01 and a=3,b=?3,c=1,d=5.08,r=2,K=1.

    Fig.8. Various regions in a q–γ plane for q=0.01 and considering that the control is applied in every two steps(δ =2).

    In Fig.8,we show the effective regions of control in aq–γplane consideringq=0.01 and the control applied in every two stepsδ=2. The green regions show the effective control area,the red region show the unbounded region,and the blue and the magenta shows different chaotic regions. It should be noted that the control region here refers to the numerically stable periodic oscillations.

    Remark 1 In all the above discussion,we use the term periodic to mention the numerically stable periodic solutions.[25]As the fractional-order systems (continuous time) consider longer lengths of previous data (memory), there cannot be a constant periodic solution.[25,29]The same can be applied to fractional-order discrete systems too,and the periodic orbit referred to is a much closer trajectory to the periodic solution.

    5. Spatiotemporal dynamics of FODPLL

    Many kinds of electronic and communication equipment depend on discrete PLLs as they form their basic building blocks. Larger networks of FODPLLs are used in network applications, and the synchronization of the FODPLLs in these networks ensures efficient information processing.[26]The synchronization of these FODPLLs depends on the freerunning frequencies and each node phase detector gains.[27,28]Hence, our focus of interest is to study the behavior of the fractional-order discrete PLLs(FODPLL)in a non-locally lattice network,where we have assumed a ring connectivity with 2Pneighbours coupled as in

    wherei=1 toNis the number of FODPLLs in the network,and in this simulation,we have takenN=200. For our analysis,we consider fractional orderqas the control parameter.We choose random initial conditions for the nodes in the network.

    In our first discussion,we choose the fractional orders asq=0.01 and have captured snapshots of the network and final state of each node at the end of the simulation, as shown in Fig. 9. As can be seen from the figure, we can confirm that the nodes are in asynchronous states and do not show signs of synchrony. This is because the nodes are in chaotic states and since we use random initial conditions, the nodes never synchronize forq=0.01.

    To confirm the asynchronous behavior of the system,we use the method described in Ref.[30],where the mean phase velocity is calculated by identifying the number of times(positive slope) the state variable crosses a constant. Using this method, we define the mean phase velocity of theN-th node as?N=2πλ/T. Here,λdenotes the number of times the state variable crosses the constant with a positive slope andTdenotes the time interval.In Fig.10,we derive the mean phase velocity(MPV),and forq=0.01 shown in Fig.9 we confirm the asynchronous behavior in Fig.10 using the coherence circle plot and MPV plot. The number of coherent nodes(blue)is less than 0.5% of the total nodes, which confirms that the nodes are not synchronized.

    Fig. 9. Asynchronous behavior of the nodes in the network for q=0.01.State of each node at the end of the simulation is also shown.

    Fig.10. Mean phase velocity of the nodes for q=0.01;coherent circle plot where magenta denotes incoherent nodes,while blue denotes coherent nodes.

    Fig.11. Chimera states of the nodes in the network for various values of fractional order. States of each node at the end of the simulation are also shown.

    Fig.12. Chimera states of the nodes in the network for various values of fractional order. States of each node at the end of the simulation are also shown.

    We now investigate the exact range of fractional orderq,responsible for chimera states and hence,we select a small range 0.05≤q ≤0.053 and capture spatiotemporal snapshots, as shown in Figs. 11 and 12. Since the coupling strength and other parameters are fixed so that the nodes are in a chaotic bursting state, we consider that the fractional order can initiate both coherent and incoherent nodes in the network. By fixingq=0.05,we note that most of the nodes are in the coherent state,while a few nodes are still in the asynchronous state. This is because of the multiple coexisting attractors, and since we have used random initial conditions, some nodes are driven to attractors that are located much farther away compared to the other nodes.To be exact, the nodes aroundi ∈[75.170] exhibit complete incoherency, while the other nodes are in the coherent state. By increasingqfurther to 0.051, the already synchronized nodes enter a much stronger coherent state and the number of coherent nodes increases.

    Fig.13. Mean phase velocity and circular coherency plots for different values of q.

    Fig.14. Cluster synchronization of the nodes in the network for q=0.07. State of each node at the end of the simulation is also shown.

    Fig.15. Synchronous behavior of the nodes in the network for q=0.15. State of each node at the end of the simulation is also shown.

    By further increasing the fractional order toq=0.052,the coherent nodes increase in number compared to the incoherent nodes. Hence, the chimera states are preserved in the network. However, when the fractional order is kept atq=0.053,we can see that the number of incoherent nodes increases. This is because of the impact of fractional orderqfor which some nodes show coexisting behavior. These observations are clearly presented in Fig.12.

    The MPV plots shown in Fig. 13 confirm the existence of chimeras in the network. Forq=0.051, the mean phase velocity of certain nodes is similar,which shows that they are in coherent states,while the incoherent nodes exhibit different MPVs. We use a circular coherence plot to show the coherent states(blue)and incoherent states(magenta). Around 70%of the nodes show coherent behavior,while 30%exhibit incoherency.Thus,we can confirm the existence of chimera states.

    By further increasing the fractional order toq=0.07,the nodes start to synchronize and form local clusters with two on the positive amplitudes and two on the negative amplitudes,as in Fig. 14. This is because of the nodes entering a periodic region with period four limit cycles (refer Fig. 4) and hence,they cluster around four different amplitudes.

    Complete synchronization of the nodes is achieved for fractional ordersq ≥0.1 as shown in Fig.15. The nodes synchronize to periodic positive and negative amplitudes depending on the initial conditions under which each node started. In this case, we consider random initial conditions ranging between[?0.1,0.1]so that we can have both positive and negative amplitude oscillations in the nodes.

    6. Suppressing chimera using impulses

    We show the existence of chimera states in the FODPLL network described by Eq.(7),and we now propose a technique to control the chimera states and achieve synchronization.The proposed control algorithm is like the one discussed in Eq.(8).The impulses of amplitudeγare applied to the nodes in the network whenn=δand the mathematical model used for the simulation is described as

    We consider the same network setting as used in Section 5, and a fixed fractional order ofq=0.05 is considered for the entire analysis. In the first discussion, we consider a fixed control step (δ=2) and choose two values of the impulse function,as in Fig.16.

    We start our investigation by selecting a positive value ofγclose toγ=0 and the nodes remain in asynchronous states,as can be seen in Fig. 16. We also showγ=0 to confirm that without control the network exhibits chimera states. We choose the negative values ofγsince its positive values cannot control the FODPLL(refer to Section 4). Forγ=?0.05,the nodes try to come towards synchronization(from complete asynchronous state refer Fig.9)and when we increase the impulse amplitude toγ=?0.1, the nodes are in an intermediate cluster synchronized form. Forγ=?0.2 a completely synchronized network exhibits that the proposed control algorithm is effective enough to bring to nodes from a complete asynchronous state to a complete synchronous state, as in Fig.17.

    In the second discussion, we now fix the impulse amplitude toγ=?0.2 for which we have shown in Fig. 17 that complete synchronization is achieved and consider the control step as the parameter of discussion. For the values ofδ=1,2 the network remains in complete synchronized states, which corroborates our discussion in Section 4,as in Fig.18. When we consider higher steps,the nodes go into chaotic states and the network exhibits chimera-like behavior. Thus,we confirm that the control-step size plays a significant role in achieving local control and global synchronization.

    Fig. 16. Spatiotemporal behavior of the network (8) for various values of the impulse function γ. We consider that the impulse is applied every two steps. Value of the fractional order is considered as q=0.05.

    Fig.17. Spatiotemporal behavior of the network(8)for various values of the impulse function γ. We consider that the impulse is applied in every two steps. Value of the fractional order is considered as q=0.05.

    Fig.18. Spatiotemporal behavior of the network(8)for various values of the control step δ. We consider that the impulse amplitude is γ=?0.2. Values of the fractional order are considered as q=0.05.

    7. Conclusion

    In this paper,we model a fractional-order discrete phaselocked loop using a Caputo delta fractional operator, and we investigate the various dynamical properties of the FODPLL.Considering the loop gain (K) as the bifurcation parameter,we show the existence of a quasi-periodic region, which was not originally discussed in the integer-order ZCSDPLL model.Thus, by proving the existence of quasi-periodic and chaotic regions we now use the impulse control technique to suppress the chaotic oscillations. The lower control steps can suppress the chaotic oscillations better that the higher control steps. Furthermore, the positive impulse amplitudes cannot suppress the chaotic oscillations. The interdependence of the impulse amplitude (γ) and the fractional order (q) is investigated using a 2D plot on theγ–qplane. Investigating the network behavior of the FODPLL is of significance because of its applications in large-scale networks. For the analysis,we constructed a network of 200 FODPLLs and consider it as a ring network withPneighboring FODPLL. The network exhibits asynchronous behavior for lower fractional orders (q ≤0.03) and goes into complete synchronization forq ≥0.07. En route from asynchronous states to synchronous states, we see chimera-like behavior, especially in the range 0.049≤q ≤0.053. These chimera-like states are considered more hazardous in any physical circuits, and hence, we propose a simple control scheme to suppress these chimeras and achieve synchronization.An impulse function is applied to the individual nodes in the network everyδsteps,and forδ=1,2,we show effective suppression of chimera states. However,increasing the control steps further will strengthen the chimera states instead of controlling them. Hence,control steps play a vital role in achieving complete synchronization.

    日本精品一区二区三区蜜桃| 女警被强在线播放| 精品国产美女av久久久久小说| 国产三级在线视频| av欧美777| 亚洲国产看品久久| 亚洲久久久国产精品| 国产三级黄色录像| 久久久精品欧美日韩精品| 精品久久久久久久末码| 亚洲国产欧美一区二区综合| 亚洲av第一区精品v没综合| 啪啪无遮挡十八禁网站| 两个人视频免费观看高清| 国产高清有码在线观看视频 | 精品乱码久久久久久99久播| 国产精品精品国产色婷婷| 国产精品日韩av在线免费观看| 欧美激情 高清一区二区三区| 黑丝袜美女国产一区| 久久精品国产亚洲av高清一级| 亚洲五月婷婷丁香| 在线观看免费午夜福利视频| 99久久国产精品久久久| 国产亚洲欧美精品永久| 久久久国产成人免费| 久99久视频精品免费| 中文字幕精品亚洲无线码一区 | 亚洲av电影不卡..在线观看| 天堂影院成人在线观看| 亚洲精品av麻豆狂野| 日韩精品中文字幕看吧| 精品国产超薄肉色丝袜足j| 欧美又色又爽又黄视频| 亚洲国产看品久久| 日韩欧美三级三区| 嫩草影院精品99| 亚洲五月天丁香| 99在线视频只有这里精品首页| 久久精品国产99精品国产亚洲性色| 国产精品永久免费网站| 中文字幕高清在线视频| 91在线观看av| 女人高潮潮喷娇喘18禁视频| 午夜亚洲福利在线播放| 国产单亲对白刺激| 激情在线观看视频在线高清| 国内揄拍国产精品人妻在线 | 国产熟女xx| 午夜免费成人在线视频| 制服丝袜大香蕉在线| e午夜精品久久久久久久| 一级毛片女人18水好多| 亚洲欧美精品综合久久99| 亚洲一区二区三区色噜噜| 中文资源天堂在线| 久久精品亚洲精品国产色婷小说| 麻豆成人av在线观看| 欧美亚洲日本最大视频资源| ponron亚洲| 国产精品98久久久久久宅男小说| 国产精品99久久99久久久不卡| 香蕉久久夜色| 亚洲欧美精品综合一区二区三区| 好男人电影高清在线观看| 亚洲欧美日韩无卡精品| 在线免费观看的www视频| 叶爱在线成人免费视频播放| 禁无遮挡网站| 三级毛片av免费| 久久人妻av系列| 亚洲自偷自拍图片 自拍| 999精品在线视频| 精华霜和精华液先用哪个| 两个人免费观看高清视频| 男人舔女人下体高潮全视频| 亚洲国产精品999在线| 国产免费av片在线观看野外av| 99在线人妻在线中文字幕| 麻豆av在线久日| 亚洲色图 男人天堂 中文字幕| 伦理电影免费视频| 50天的宝宝边吃奶边哭怎么回事| 色婷婷久久久亚洲欧美| 亚洲精品在线观看二区| 深夜精品福利| 嫁个100分男人电影在线观看| 亚洲一区高清亚洲精品| 欧美久久黑人一区二区| 国产成人啪精品午夜网站| 亚洲在线自拍视频| 国产精品野战在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 免费看a级黄色片| 国产成年人精品一区二区| 国产黄色小视频在线观看| 欧美成狂野欧美在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美最黄视频在线播放免费| 老熟妇乱子伦视频在线观看| 999精品在线视频| 国产蜜桃级精品一区二区三区| av在线天堂中文字幕| 亚洲五月婷婷丁香| 精品久久久久久成人av| 久久久久久久久中文| 精品国产乱子伦一区二区三区| 好看av亚洲va欧美ⅴa在| 国产午夜福利久久久久久| 18禁黄网站禁片免费观看直播| 国产av不卡久久| 在线观看免费日韩欧美大片| 精品久久蜜臀av无| 一区二区三区国产精品乱码| 精品少妇一区二区三区视频日本电影| 男人舔奶头视频| 欧美黑人欧美精品刺激| 99国产精品一区二区蜜桃av| 久久久精品国产亚洲av高清涩受| 欧美大码av| 精品福利观看| 村上凉子中文字幕在线| 亚洲精品粉嫩美女一区| 久久精品国产99精品国产亚洲性色| 日韩精品中文字幕看吧| 国内少妇人妻偷人精品xxx网站 | 亚洲精品美女久久久久99蜜臀| 久久久国产成人免费| 99久久99久久久精品蜜桃| 久久国产精品男人的天堂亚洲| 母亲3免费完整高清在线观看| 午夜久久久在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲熟妇中文字幕五十中出| 国产单亲对白刺激| 亚洲精品国产区一区二| 国产伦人伦偷精品视频| 色尼玛亚洲综合影院| 老司机靠b影院| 亚洲狠狠婷婷综合久久图片| 可以免费在线观看a视频的电影网站| 又黄又爽又免费观看的视频| 国产黄a三级三级三级人| x7x7x7水蜜桃| 侵犯人妻中文字幕一二三四区| 日韩欧美三级三区| xxxwww97欧美| 久久香蕉精品热| 国产av不卡久久| 国产亚洲欧美98| 老熟妇乱子伦视频在线观看| 美女高潮到喷水免费观看| 亚洲免费av在线视频| 白带黄色成豆腐渣| 亚洲精品国产精品久久久不卡| 国产视频内射| 午夜两性在线视频| 搡老妇女老女人老熟妇| 两个人看的免费小视频| 亚洲美女黄片视频| 亚洲精华国产精华精| 亚洲在线自拍视频| 亚洲第一av免费看| 成人手机av| 中文字幕高清在线视频| 亚洲国产看品久久| 国产成人一区二区三区免费视频网站| 在线观看66精品国产| 国产一区二区在线av高清观看| 成年免费大片在线观看| 国产精品一区二区精品视频观看| 女人高潮潮喷娇喘18禁视频| 99精品欧美一区二区三区四区| 日本五十路高清| 国产成人一区二区三区免费视频网站| 9191精品国产免费久久| 成人国产一区最新在线观看| 91成年电影在线观看| 免费在线观看黄色视频的| 精品一区二区三区av网在线观看| 国产成人av激情在线播放| 久久国产精品影院| 亚洲激情在线av| 这个男人来自地球电影免费观看| 国产av一区在线观看免费| 欧美国产精品va在线观看不卡| 精品电影一区二区在线| 十八禁网站免费在线| 久久香蕉激情| 人妻丰满熟妇av一区二区三区| 悠悠久久av| 国产亚洲精品久久久久5区| 日韩欧美在线二视频| 成人av一区二区三区在线看| 人成视频在线观看免费观看| 成人欧美大片| 男人舔女人下体高潮全视频| 国内精品久久久久久久电影| 动漫黄色视频在线观看| 久久精品国产亚洲av高清一级| 国产在线精品亚洲第一网站| 欧美黑人精品巨大| 97超级碰碰碰精品色视频在线观看| 欧美日韩精品网址| 欧美激情极品国产一区二区三区| 日韩欧美国产在线观看| 搡老岳熟女国产| 1024手机看黄色片| 国产精品一区二区精品视频观看| 成人免费观看视频高清| 亚洲人成网站高清观看| 午夜福利欧美成人| 在线观看免费午夜福利视频| 一区二区三区激情视频| 亚洲一码二码三码区别大吗| 日日夜夜操网爽| 国产一区在线观看成人免费| 国产真实乱freesex| 久久久久国产精品人妻aⅴ院| 免费高清视频大片| 色av中文字幕| av中文乱码字幕在线| 久久精品成人免费网站| 亚洲最大成人中文| 成在线人永久免费视频| 中文字幕av电影在线播放| 男人舔女人下体高潮全视频| 欧美丝袜亚洲另类 | 国产亚洲精品一区二区www| 久久天堂一区二区三区四区| 99久久综合精品五月天人人| 国产精品久久久久久亚洲av鲁大| 亚洲五月婷婷丁香| av免费在线观看网站| 久久久久久久午夜电影| 国产精品一区二区免费欧美| 欧美一区二区精品小视频在线| 国内毛片毛片毛片毛片毛片| 国产精品永久免费网站| 国产精品久久电影中文字幕| 欧美一级a爱片免费观看看 | 亚洲精品在线美女| 国产精品爽爽va在线观看网站 | 亚洲中文字幕一区二区三区有码在线看 | av片东京热男人的天堂| 无限看片的www在线观看| 美女午夜性视频免费| 亚洲黑人精品在线| 免费在线观看日本一区| 一级a爱片免费观看的视频| 亚洲五月天丁香| 一级毛片精品| 巨乳人妻的诱惑在线观看| 两性夫妻黄色片| 美国免费a级毛片| 午夜福利一区二区在线看| 中国美女看黄片| 精品无人区乱码1区二区| 国语自产精品视频在线第100页| 亚洲男人天堂网一区| 国产日本99.免费观看| 老司机在亚洲福利影院| 丰满的人妻完整版| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品av在线| 久久精品aⅴ一区二区三区四区| 香蕉国产在线看| 99久久99久久久精品蜜桃| 一区二区日韩欧美中文字幕| 成人手机av| 国产激情偷乱视频一区二区| 国产精品久久久久久亚洲av鲁大| 日本免费a在线| 欧美久久黑人一区二区| 亚洲av成人不卡在线观看播放网| av在线天堂中文字幕| 婷婷丁香在线五月| 一边摸一边做爽爽视频免费| 哪里可以看免费的av片| 国产精华一区二区三区| 亚洲精品久久国产高清桃花| 午夜成年电影在线免费观看| 国产高清视频在线播放一区| 久久中文字幕人妻熟女| 天堂影院成人在线观看| 国内少妇人妻偷人精品xxx网站 | 日韩精品中文字幕看吧| 欧美激情 高清一区二区三区| 人人妻人人澡人人看| 国产精品乱码一区二三区的特点| 国产欧美日韩一区二区三| 最近在线观看免费完整版| 国产亚洲精品综合一区在线观看 | 国产精品一区二区三区四区久久 | 亚洲va日本ⅴa欧美va伊人久久| 身体一侧抽搐| 国产精品爽爽va在线观看网站 | 亚洲自偷自拍图片 自拍| 他把我摸到了高潮在线观看| 一级作爱视频免费观看| 香蕉久久夜色| 少妇被粗大的猛进出69影院| 操出白浆在线播放| 欧美国产精品va在线观看不卡| 美女高潮喷水抽搐中文字幕| 国产精品美女特级片免费视频播放器 | 亚洲国产欧洲综合997久久, | 午夜免费成人在线视频| 日本a在线网址| 国产又黄又爽又无遮挡在线| 一区二区三区高清视频在线| 黄频高清免费视频| 欧美大码av| 精品电影一区二区在线| 精品国产乱码久久久久久男人| 成熟少妇高潮喷水视频| 麻豆久久精品国产亚洲av| 日韩欧美免费精品| 无人区码免费观看不卡| 欧美激情久久久久久爽电影| 美女高潮喷水抽搐中文字幕| 美女 人体艺术 gogo| 日本熟妇午夜| 精品乱码久久久久久99久播| av片东京热男人的天堂| 黑人巨大精品欧美一区二区mp4| 女生性感内裤真人,穿戴方法视频| 欧美成人免费av一区二区三区| 精品一区二区三区视频在线观看免费| 美女高潮到喷水免费观看| 国产单亲对白刺激| 国产视频一区二区在线看| 听说在线观看完整版免费高清| www.精华液| 久久精品人妻少妇| 啪啪无遮挡十八禁网站| 黄色毛片三级朝国网站| 日韩精品免费视频一区二区三区| 欧美乱妇无乱码| 天天一区二区日本电影三级| 亚洲,欧美精品.| 老司机午夜十八禁免费视频| 不卡av一区二区三区| 亚洲,欧美精品.| 国产极品粉嫩免费观看在线| 国产亚洲精品一区二区www| 精品人妻1区二区| 久久久久国内视频| 国产亚洲精品av在线| 草草在线视频免费看| 国产av又大| 一本大道久久a久久精品| 婷婷六月久久综合丁香| 国产真实乱freesex| 欧美性长视频在线观看| 亚洲成人国产一区在线观看| 男人操女人黄网站| 精品国产国语对白av| 日韩欧美一区二区三区在线观看| 国产熟女午夜一区二区三区| 熟妇人妻久久中文字幕3abv| 日韩欧美一区二区三区在线观看| 操出白浆在线播放| 精品不卡国产一区二区三区| 亚洲人成77777在线视频| svipshipincom国产片| 免费在线观看日本一区| 丁香欧美五月| 亚洲一卡2卡3卡4卡5卡精品中文| 色婷婷久久久亚洲欧美| 亚洲熟妇熟女久久| 亚洲国产精品久久男人天堂| 欧美三级亚洲精品| 黄频高清免费视频| 脱女人内裤的视频| 国产又爽黄色视频| 好男人在线观看高清免费视频 | av在线天堂中文字幕| 国产aⅴ精品一区二区三区波| 亚洲国产毛片av蜜桃av| 香蕉国产在线看| 国产乱人伦免费视频| 90打野战视频偷拍视频| 国产人伦9x9x在线观看| 亚洲精品一区av在线观看| www.www免费av| 欧美国产精品va在线观看不卡| 99热只有精品国产| 97超级碰碰碰精品色视频在线观看| 亚洲欧美精品综合一区二区三区| 欧美性猛交黑人性爽| 法律面前人人平等表现在哪些方面| 欧美+亚洲+日韩+国产| 国产精品久久视频播放| 亚洲午夜理论影院| 国产精品一区二区三区四区久久 | 国产视频内射| 少妇 在线观看| 免费女性裸体啪啪无遮挡网站| 啦啦啦观看免费观看视频高清| 18禁黄网站禁片免费观看直播| 一级作爱视频免费观看| 欧美精品亚洲一区二区| 欧美日韩中文字幕国产精品一区二区三区| 国产精品永久免费网站| 亚洲精品一区av在线观看| 好男人在线观看高清免费视频 | 精品免费久久久久久久清纯| 国产成人精品久久二区二区免费| 宅男免费午夜| 中出人妻视频一区二区| 亚洲av成人不卡在线观看播放网| 中国美女看黄片| 熟妇人妻久久中文字幕3abv| 国产精品一区二区三区四区久久 | 亚洲熟女毛片儿| 好男人电影高清在线观看| 亚洲一区中文字幕在线| 1024香蕉在线观看| e午夜精品久久久久久久| 亚洲电影在线观看av| 亚洲人成77777在线视频| 亚洲国产中文字幕在线视频| 亚洲一区二区三区色噜噜| 亚洲精品美女久久久久99蜜臀| 亚洲精华国产精华精| 欧美国产日韩亚洲一区| 中文字幕精品免费在线观看视频| 亚洲成人精品中文字幕电影| 国产爱豆传媒在线观看 | 黄频高清免费视频| 精品卡一卡二卡四卡免费| 搡老岳熟女国产| 中亚洲国语对白在线视频| 欧美 亚洲 国产 日韩一| 日本 av在线| 亚洲成av人片免费观看| 曰老女人黄片| 久久久精品欧美日韩精品| 亚洲av中文字字幕乱码综合 | 我的亚洲天堂| 国产精品久久久久久精品电影 | 国产精品香港三级国产av潘金莲| 午夜激情福利司机影院| 国产一区二区三区视频了| 免费看十八禁软件| 成人精品一区二区免费| 亚洲精品色激情综合| 欧美另类亚洲清纯唯美| 日韩成人在线观看一区二区三区| 99精品久久久久人妻精品| 国产亚洲av高清不卡| 国产成人精品久久二区二区91| 香蕉久久夜色| 女性生殖器流出的白浆| 久久午夜综合久久蜜桃| 午夜福利欧美成人| 欧美中文日本在线观看视频| 久久精品人妻少妇| 后天国语完整版免费观看| 侵犯人妻中文字幕一二三四区| 一个人观看的视频www高清免费观看 | 黄色 视频免费看| 午夜免费激情av| 黄色成人免费大全| 18禁美女被吸乳视频| 人人妻人人看人人澡| 天堂√8在线中文| 最近最新中文字幕大全电影3 | 久久精品成人免费网站| 日本熟妇午夜| 国产精品自产拍在线观看55亚洲| 人妻丰满熟妇av一区二区三区| 久久精品国产清高在天天线| 国产激情久久老熟女| 国产成人系列免费观看| 黄色片一级片一级黄色片| 身体一侧抽搐| 国产av又大| 欧美成人午夜精品| 男女视频在线观看网站免费 | 国产亚洲精品久久久久久毛片| 亚洲七黄色美女视频| 国产伦一二天堂av在线观看| 亚洲av电影在线进入| 亚洲国产欧美网| videosex国产| 免费一级毛片在线播放高清视频| 亚洲精品美女久久久久99蜜臀| 免费在线观看日本一区| 亚洲精品色激情综合| 亚洲人成网站高清观看| 宅男免费午夜| 久久热在线av| 亚洲成av片中文字幕在线观看| 九色国产91popny在线| 宅男免费午夜| 成人18禁高潮啪啪吃奶动态图| 日韩精品免费视频一区二区三区| 亚洲第一欧美日韩一区二区三区| 嫩草影视91久久| 女警被强在线播放| 老熟妇仑乱视频hdxx| 欧美色视频一区免费| 亚洲精品中文字幕在线视频| 精品久久久久久久末码| 精品福利观看| 亚洲一码二码三码区别大吗| 亚洲最大成人中文| 欧美成人性av电影在线观看| 无限看片的www在线观看| 欧美日韩亚洲综合一区二区三区_| 一级毛片高清免费大全| 亚洲中文av在线| 免费一级毛片在线播放高清视频| 久久久水蜜桃国产精品网| 国产aⅴ精品一区二区三区波| 久久精品国产亚洲av香蕉五月| 一卡2卡三卡四卡精品乱码亚洲| 99re在线观看精品视频| √禁漫天堂资源中文www| 亚洲片人在线观看| 99精品在免费线老司机午夜| 欧美激情 高清一区二区三区| 国产又黄又爽又无遮挡在线| 宅男免费午夜| 精品一区二区三区av网在线观看| 亚洲精品色激情综合| 啦啦啦韩国在线观看视频| 波多野结衣高清作品| 成人一区二区视频在线观看| videosex国产| 久久久久免费精品人妻一区二区 | 国产单亲对白刺激| 18禁黄网站禁片免费观看直播| 亚洲欧美精品综合久久99| 一a级毛片在线观看| 国产久久久一区二区三区| 国产91精品成人一区二区三区| 成人18禁高潮啪啪吃奶动态图| 国产一卡二卡三卡精品| 黑人欧美特级aaaaaa片| 深夜精品福利| 亚洲 欧美一区二区三区| 亚洲中文av在线| 黑人操中国人逼视频| 久久中文字幕人妻熟女| 香蕉久久夜色| 亚洲一码二码三码区别大吗| 国产精品免费视频内射| 国产精品久久视频播放| 亚洲 欧美 日韩 在线 免费| 大香蕉久久成人网| 欧美性长视频在线观看| 亚洲一码二码三码区别大吗| 手机成人av网站| 丝袜人妻中文字幕| 亚洲精品国产区一区二| 一级作爱视频免费观看| 国内少妇人妻偷人精品xxx网站 | 亚洲,欧美精品.| 色尼玛亚洲综合影院| 美女高潮喷水抽搐中文字幕| 精品一区二区三区av网在线观看| 亚洲熟妇中文字幕五十中出| 99精品在免费线老司机午夜| 精品久久久久久久毛片微露脸| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲激情在线av| 两个人看的免费小视频| 亚洲精品美女久久av网站| 亚洲中文日韩欧美视频| 国产精品av久久久久免费| 欧美精品啪啪一区二区三区| 1024视频免费在线观看| 国产午夜福利久久久久久| 91国产中文字幕| 女性被躁到高潮视频| 夜夜爽天天搞| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩一区二区精品| 99国产极品粉嫩在线观看| 亚洲成国产人片在线观看| 国产高清激情床上av| √禁漫天堂资源中文www| 啦啦啦免费观看视频1| 免费看日本二区| 日韩欧美一区二区三区在线观看| 精品国产乱子伦一区二区三区| 俄罗斯特黄特色一大片| 国产精品99久久99久久久不卡| 欧美乱妇无乱码| 欧美又色又爽又黄视频| 婷婷丁香在线五月| 在线免费观看的www视频| 热re99久久国产66热| 国产成人精品久久二区二区91| 亚洲中文字幕日韩| 久久久精品国产亚洲av高清涩受| 亚洲欧美日韩无卡精品| 正在播放国产对白刺激| 女生性感内裤真人,穿戴方法视频| 女人爽到高潮嗷嗷叫在线视频| 色播亚洲综合网| 亚洲精品中文字幕在线视频| 日韩一卡2卡3卡4卡2021年| 久久国产乱子伦精品免费另类| 亚洲avbb在线观看| 亚洲,欧美精品.| 热re99久久国产66热| 69av精品久久久久久| 精品一区二区三区视频在线观看免费| 无人区码免费观看不卡| 97人妻精品一区二区三区麻豆 | 国产视频一区二区在线看|