• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global simulation of plasma series resonance effect in radio frequency capacitively coupled Ar/O2 plasma

    2023-12-15 11:48:08XueBai白雪HaiWenXu徐海文ChongBiaoTian田崇彪WanDong董婉YuanHongSong宋遠(yuǎn)紅andYouNianWang王友年
    Chinese Physics B 2023年12期
    關(guān)鍵詞:王友徐海白雪

    Xue Bai(白雪), Hai-Wen Xu(徐海文), Chong-Biao Tian(田崇彪),Wan Dong(董婉), Yuan-Hong Song(宋遠(yuǎn)紅), and You-Nian Wang(王友年)

    Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),School of Physics,Dalian University of Technology,Dalian 116024,China

    Keywords: capacitively coupled Ar/O2 plasma,PSR effect,plasma equivalent circuit model,global model

    1.Introduction

    Radio frequency capacitively coupled plasmas (RF CCPs) have been widely used in plasma etching and deposition[1-4]in microelectronics industry in the last decades,because of their simple geometry and large-area processing structure with chemically active species, radicals, and energetical ions.The capacitively coupled plasmas(CCPs)are often geometrically asymmetric,and have unequal surface areas of the driving electrodes and grounded electrodes, especially when considering that the grounded surface usually includes the chamber wall.The geometric asymmetry effect(GAE)can significantly affect the power absorption dynamics and the distributions of charged particles,and thus influencing the quality and efficiency of etching or deposition.Moreover,for the electrical asymmetry effect(EAE),it was first proposed by driving a fundamental frequency and its second harmonic in a geometrically symmetric chamber,[5]and then was extended by applying peaks/valleys,sawtooth-up/-down,or Gaussian-type driving voltage waveforms even in geometrically asymmetric CCPs,[6,7]to have higher possibility of controlling not only ion properties but also electron power absorption and plasma density.At low-pressure CCPs,the RF sheath exhibits a similar charge-voltage characteristic of strong nonlinearity to an capacitance,while the bulk plasma has inductive and resistive properties, when taking into account the electron inertia and the power dissipation caused by collisions of electrons with neutrals and momentum transfer from the oscillating sheath edge, respectively.[8]The resonance between the two capacitive sheaths and the inductive bulk plasma comes into play owing to the GAE or EAE,and excites high harmonics of the discharge current,[9,10]which will affect the electron power absorption during rapid sheath expansion and generate multiple high-energy electron beams.In addition, the harmonics generated by the nonlinear PSR can significantly affect the local characteristics(electron or ion energy distribution)and the plasma uniformity.[11]

    In recent years, particle-in-cell (PIC) simulations and electrical circuit models have been widely used to study the PSR effect.Donk′oet al.[12]demonstrated by PIC simulations that high-frequency PSR oscillation can be excited in a geometrically symmetric discharge if the driving voltage waveform makes the discharge electrically asymmetric.Mussenbrocket al.[13]and Liebermanet al.[14]used a plasma equivalent circuit model and found that under geometrically asymmetric conditions, the nonlinear interaction between the plasma bulk and sheath will bring about the PSR effect and excite several harmonics of the fundamental frequency.In turn,the self-excitation of the PSR effect will enhance the electron heating mechanism in low pressure CCPs.In addition, using a plasma equivalent circuit model, Heiet al.[5]and Boraetal.[9]found that although the chamber structure is symmetric,the electrically asymmetric waveforms applied to the driving electrode will also excite the high-order harmonics of voltage and current, and thus significantly changing the plasma heating process.They also found that the PSR effect can be suppressed or enhanced by changing the phase angle of the electrically asymmetric waveforms.But, in their work, the electron density and temperature, as input values to the equivalent circuit model,are fixed.To achieve a more self-consistent study, Schmidtet al.[15,16]used an equivalent circuit/global model,by taking into consideration an external electric circuit composed of lumped elements in their study of capacitive Ar discharge,in which the plasma density and electron temperature are obtained somewhat self-consistently.Compared with the equivalent circuit and PIC/MCC models,the circuit/global model achieves a very self-consistent study and saves computational costs, which is beneficial to the understanding of the observed PSR phenomenon.

    Most of previous studies mentioned above focused on Ar plasmas, but in many plasma applications, especially in etching and deposition processes, electronegative gases or reactive mixture gases are more widely used.For example, Xuet al.deposited SiO2films in their SiH4/N2O discharges experiment.[17]Generally, gas properties can significantly affect the space-time dynamics of the high-energy electrons, ion flux/energy distribution function, and plasma heating mechanism.[18]Rare gas Ar is often used as the dilution gas in electronegative gases.Capacitively coupled Ar/O2discharge possesses essential advantages in the sputtering deposition of aluminum, etch photoresist and polymer films, tungsten, high-temperature superconducting films,and growth of silica dielectric films.[19,20]Gudmundsson and Thorsteinsson[21]found that the electron density decreases with the augment of volume ratio of O2molecule in their global studies of dissociation processes in a low-pressure highdensity Ar/O2discharge.They observed a growing electronegativity and attributed it to the intensification of the negative ion generation source,such as the dissociative electron attachment to O2.Honget al.[22]also found that the addition of electronegative O2reduces the electron density and increases the electronegativity in their capacitive Ar/O2experiments.However,the PSR effect in Ar/O2mixture plasmas has not yet been understood very clearly.Therefore,corresponding research efforts are of great significance.

    In this work,the PSR effect in an Ar/O2mixture plasma caused by geometrical and electrical asymmetry is investigated, based on an equivalent circuit/global model.The rest of this paper is organized as follows.The simulation methods are described in Section 2,while the simulation results are presented and discussed in Section 3.A short summary is given in Section 4.

    2.Methods

    The schematic diagram of the plasma equivalent circuit model used in this study is shown in Fig.1, in which the plasma may be equivalently regarded as a series of LCR elements, in order to provide explicit explanations for the PSR effect.As indicated in previous studies,[15,23]the RF sheath is modeled as a parallel connection of a constant current source, a diode, and a nonlinear capacitor.For the driving sheath,the ion current flowing onto the surface is described asIi,d=eAdniuB,with the driving electrode areasAd,the positive ion densityniand the Bohm speeduB.Assuming that the electrons obey a Boltzmann distribution in the sheath,the electron current can then be expressed asIe,d=eAdneˉvee-eVs,d/kBTe,in whichneis the electron density, ˉveis the mean thermal speed of the electron,Vs,dis the driving sheath voltage,Teis the electron temperature, andkBis the Boltzmann constant.Meanwhile, according to the homogeneous model of Liberman,[14,15]the sheath capacitance is modeled as a nonlinear capacitorCs,d=(eniε0A2d/2Vs,d)1/2.Accordingly, for the grounded sheath,the ion current,the electron current,and the sheath capacitance can be expressed asIi,g=eAgniuB,Ie,g=eAgneˉvee-eVs,g/kBTe, andCs,g=(eniε0A2g/2Vs,g)1/2, respectively.Owing to the electron inertia and the electron power dissipation, the bulk plasma behaves like an inductance and a resistance, which can be represented asLp=me(L-ls)/e2neAdandRp=νeffLp,in whichmeis the electron mass,lsis the sheath width,Lis the electrode gap,andνeffis the effective collision frequency involving with the effect of ohmic and stochastic heating.[15,24]Therefore, the resonance frequency can be expressed as

    in whichωpeis the electron plasma frequency.By applying the Kirchhoff’s law to the model,[15,24]a set of four differential equations can be obtained, which describe the two sheath voltages, the DC self-bias, and the RF current, and the above-mentioned fundamental plasma parameters can be finally achieved.

    Fig.1.Schematic picture of equivalent circuit network.

    The global (volume-averaged) model in this paper is based on the model used by Schmidtet al.[15]and Liuet al.[25]Specific chemical reactions are shown in Table 1.In this table,only the important reactions of Ar/O2plasma are considered, and the reactions between ozone O3and negative O-2,and between ozone O3and O-3are ignored because O is dominant in the discharge compared with O-2and O-3.[25]The main charged particles, like Ar, Ar?, Ar+, O2, O?2, O3, O, O?, O+2,O+,O-,and e,are traced in this work.

    A flowchart of the simulation is shown in Fig.2.First,the estimated values of all circuit elements are given for a transient simulation of the entire system of interest.Then, a transient simulation of the circuit determines all currents and voltages at each branch and node.Therefore, the absorbed power of the plasma and the averaged voltages across the sheaths can be calculated from the circuit model (see Fig.1).The global model is then used to calculate the electron density, ion density, and electron temperature from these values, and the elements of the plasma model can be updated to obtain new values of all the circuit elements in Fig.1.Thus, the simulation is iterated until a steady state of the particle density and power has been reached.At this stage,for a specific circuit,the consistent values of the electron and ion density, the plasma absorbed power, and any other current, voltage, or power of interest are obtained.

    Fig.2.Algorithm flowchart of simulation.

    Table 1.Chemical reactions considered in global model.

    3.Result and discussion

    Before running the code to simulate the capacitively coupled Ar/O2discharge, a number of tests are conducted to repeat some of the results in Ref.[26]and the test results are in good agreement with the results in the literature.Generally,the side walls of the discharge chamber are usually grounded,resulting in a geometrically asymmetric discharge chamber with different driving and grounded electrode areas.Therefore,to more closely match the laboratory discharge with geometry asymmetry, firstly in the following discussion, a normal RF input voltageV= 100cos(2π ft) is applied, wheref= 13.56 MHz (see Fig.3(c)).We explore the Ar content on the PSR effect excited by the geometrically asymmetric discharges, with the gap distanceL=3 cm and pressurep=15 mTorr (1 Torr=1.33322×102Pa), while the driving and grounded electrode areas are 100 cm2and 300 cm2, respectively.

    Fig.3.Time evolution of (a) plasma current and (b) its fast Fourier transform(FFT)analysis(the fundamental frequency is not included in this plot)at different values of Ar content α, and (c) sinusoidal voltage waveform,under discharge conditions: V =100cos(2π ft), L=3 cm, Ad =100 cm2,Ag=300 cm2,and p=15 mTorr.

    Fig.4.Variations of(a)electron density, (b)bulk inductance Lp and sheath capacitance Cs with Ar content α under the same discharge conditions as those in Fig.3.

    In addition, figure 5 shows the harmonic amplitudes of the plasma current at pressures of 4 mTorr, 15 mTorr, and 60 mTorr, respectively, withα=30%, 50%, and 70%.It is easily seen that in the case of lower pressure,ωpsrgradually shifts towards the higher order with the pressure increasing owing to the increased electron density in a relatively electropositive discharge, except the case ofα=30%.When Ar content isα=30% with the discharge more electronegative,ωpsris observed at 6ωrfat pressures of 4 mTorr and 15 mTorr,suggesting that the PSR effect becomes weaker in an electronegativity discharge,and the FFT analyses do not show the variations of the resonance frequency with pressure clearly.At higher pressure of about 60 mTorr,these series resonances are all strongly damped by the more frequent collisions of electrons with the neutral particles in the background,so the PSR frequency can hardly be calculated and the PSR effect cannot be observed.

    For different gap distances,it can be observed from Fig.6 that for each of argon contentα=30%, 50%, and 70%, the degree of RF plasma current distortion mainly depends on the gap distance.The FFT analyses, which are conducted to obtain the harmonic components of the plasma current in Fig.6 show that in each of the cases ofL=3 cm,4 cm,and 7 cm,the PSR frequency gradually shifts towards the lower order with the increase of gap distance at fixed Ar content, specifically,forα=30% it shifts from 6ωrfto 4ωrf, forα=50% from 7ωrfto 5ωrf, and forα=70%,ωpsrcorresponds to the 8th,7th, and 6th harmonics of the current.As shown in Fig.7,with the increase of the gap distance, the inductance and the power deposition of the plasma are significantly enhanced because of larger valid discharge space, leading to the decrease ofωpsr, while the effect of the gap distance increase on the sheath capacitance is negligible.

    Fig.5.FFTs of plasma current(the fundamental frequency is not included in this plot)at(a1)4 mTorr and α =30%,(a2)15 mTorr and α =30%,(a3)60 mTorr and α=30%,(b1)4 mTorr and α=50%,(b2)15 mTorr and α=50%,(b3)60 mTorr and α=50%,(c1)4 mTorr and α=70%,(c2)15 mTorr and α =70%,(c3)60 mTorr and α =70%,with discharge conditions: RF voltage waveform V =100cos(2π ft),Ad =100 cm2,Ag =300 cm2,and L=3 cm.

    Fig.6.Time evolution of plasma current and its FFT analysis(with no fundamental frequency included in this plot)at three different gap distances(3 cm,4 cm,and 7 cm)and α =30%(a),50%(b),and 70%(c),with discharge conditions: RF voltage waveform identical to that in Fig.3(c),Ad=100 cm2,Ag=300 cm2,and p=15 mTorr.

    Fig.7.Variations of ciucuit elements (bulk inductance Lp and sheath capacitance Cs)with gap distance,under the same discharge conditions as those in Fig.6.

    First of all, our model has been verified by the following simulation results to some extent, which lays a foundation for further studying the physical mechanisms.For the discharge conditions presented here, the voltage amplitude isV0=250 V, pulse width ?τ=5 ns, gap distanceL=2 cm,pressurep=35 mTorr, and Ar contentα=25%.And the driving area and the grounded electrode area are both 400 cm2in the circuit/global model.Based on the equivalent circuit/global model and the PIC/MCC model,the time evolution of the plasma current and its FFTs are shown in Figs.8(a)and 8(b), in which it can be easily seen that the plasma current density presents an evident PSR oscillation under an applied Gaussian-type voltage waveform.The FFTs show that there exist high-order harmonics in the current waveform, which further indicates that there is PSR in this geometrically symmetric CCP.Since the Gaussian-type voltage with a pulse width of 5 ns exhibits a similar behavior to the waveform composed of 10 harmonics,it is easily approximated that the first 10 harmonic components are dominantly generated by the fundamental Gaussian frequency,while the other higher harmonic components are excited by the PSR effect due to the EAE.[27]In both models,we see a significant harmonic content for the current density,with the largest harmonics at 16,which corresponds to the resonance frequencyωpsr.

    Fig.8.Time evolution of current density and its FFT analysis obtained from(a)circuit/global model and(b)PIC/MCC model,and(c)Gaussiantype voltage waveform under discharge conditions: ?τ =5 ns,L=2 cm, p=35 mTorr,and α =25%.

    We also explored the effect of Ar contentαon PSR,which is excited by the Gaussian-type voltage waveform in a geometrically symmetric chamber.As shown in Fig.9, in the cases ofα=30%,50%,and 70%,the values of PSR frequencyωpsrare 13ωrf,15ωrf,and 17ωrf,respectively.Like the scenario of geometric asymmetry, in a relatively electropositive discharge,the PSR frequency becomes larger than that in a more electronegative discharge, which is also because the electron density increases and the bulk inductance decreases(see Fig.10).However, it is also important to note that,in this Gaussian-type voltage driven discharge, the PSR frequency becomes larger than that in the geometrically asymmetric discharge,with the plasma current oscillating violently(see Figs.3(a)and 9(a)).

    The coupling of the EAE and GAE and its effect on the PSR effect are also interesting and worth investigating,in this Ar/O2capacitive discharge.In the following, by driving and modulating the Gaussian-type voltage waveform with positive amplitude and negative amplitude,the PSR effect will be studied in a geometrically asymmetric discharge withAd

    As shown in Fig.11,the extent of the plasma current distortion mainly depends on the driving electrode area.With the Gaussian waveformV=250exp(-β(t-t0))driven here,values ofωpsrare easily observed to be 14ωrf, 15ωrf, and 16ωrfin the cases ofAd=400 cm2,300 cm2,and 200 cm2,respectively.So,ωpsrgradually shifts towards the higher order with the increase of geometric asymmetry extent.Thus, with the superposition effects of the increasing difference between the two electrode areas and the Gaussian waveform with a positive amplitude,the asymmetry of the discharge increases with the formation of a higher negative DC self bias.Wanget al.[7]found from their particle simulation results that a thicker sheath would be formed at the powered electrode due to the strong negative DC self-bias,which can lead to fast sheath expansion and excitation of strong PSR oscillations.From our results, with the enhancement of the superposition of electrical and geometrical asymmetry,the absolute value of the negative DC self-bias voltage really becomes larger, as shown in Fig.12(a), which can result in the excitation of stronger PSR oscillation and the increase ofωpsr.In this case, the significant decrease of the sheath capacitance with the driving electrode area lessening plays a major role in determining the PSR frequency shift,compared with that of the bulk inductance as shown in Fig.12(b).To further understand the PSR effect by imposing both EAE and GAE,we now set the voltage source amplitude to-200 V,but keep other discharge parameters unchanged.As shown in Fig.13, by changing the sign of the applied voltage amplitude, the capacitive plasma still keeps asymmetric with high-order harmonics observed in the plasma current waveform,but the PSR frequencyωpsrgradually shifts towards the lower order with the decrease of the driving electrode area,specifically,from 13ωrfto 10ωrf.

    Fig.9.(a)Time evolution of plasma current and(b)its FFT analysis at different values of Ar content α under discharge conditions: Gaussiantype voltage waveform V =250exp(-β(t-t0)),?τ =6 ns,L=3 cm,Ad=Ag=400 cm2,and p=15 mTorr.

    Fig.10.(a) Electron density versus Ar content α and (b) bulk inductance Lp and sheath capacitance Cs versus Ar content α,under the same discharge conditions as those in Fig.9.

    Fig.11.(a) Time evolution of plasma current and (b) its FFT analysis,for different values of driving electrode area Ad under discharge conditions:Gaussian-type voltage waveform V =250exp(-β(t-t0)),?τ=6 ns,L=3 cm,Ag=400 cm2, p=15 mTorr,and Ar content α =50%.

    Fig.12.(a)DC self-bias versus Ad,and(b)bulk inductance Lp,sheath capacitance Cs, and CsLp versus Ad, under the same discharge conditions as those in Fig.11.

    Fig.13.(a)Time evolution of plasma current and(b)its FFT analysis, for different values of driving electrode area Ad, under discharge conditions:Gaussian-type voltage waveform V = -200exp(-β(t-t0)), ?τ = 6 ns,L=3 cm,Ag=400 cm2, p=15 mTorr,and Ar content α =50%.

    As shown in Fig.14(a), owing to the destructive superposition between the electrical asymmetry and geometrical asymmetry,the DC self bias is positive[7]and decreases asAddecreases,so the sheath becomes thinner and expands slowly,leading to the weakening of PSR oscillation and the decreasing of the resonance frequency.Figure 14(b)shows that with the decrease of the driving electrode area, the sheath capacitance lessens very slightly, but the bulk inductance increases a lot and gradually becomes the main reason for the resonance frequency decreasing, while the electrical asymmetry and geometrical asymmetry suppress each other.Therefore,we demonstrate that by tuning the positive amplitude and negative amplitude of the Gaussian-type voltage waveform, the asymmetry generated by the reactor geometry can be enhanced or suppressed by the electrical asymmetry.

    Fig.14.(a)DC self-bias versus Ad,and(b)bulk inductance Lp,sheath capacitance Cs, and CsLp versus Ad under the same discharge conditions as those in Fig.13.

    4.Conclusions

    In the present work, we have studied the PSR effect of a CCP in Ar/O2mixed gas, under EAE and GAE, based on a plasma equivalent circuit/global model.By varying the Ar contentαand the gap distance, the bulk inductance mainly determines the variation of resonance frequency.The PSR frequency gradually shifts towards the higher order in more electropositive Ar and less electronegative O2owing to the decrease of the bulk inductance.And because of the larger effective discharge space, the bulk inductance is significantly enhanced by increasing the gap distance, resulting in the decrease ofωpsr.It is also observed that the resonance frequency gradually shifts towards the higher order, which is attributed to the significant enhancement of the electron density with the increase of the pressure.And meanwhile,the PSR oscillation can be strongly damped by the electron-neutral collisions at higher pressure.In addition, the geometrical asymmetry can be enhanced or suppressed by tuning the positive amplitude or negative amplitude of the Gaussian-type voltage waveform,respectively.We believe that regarding the Ar/O2capacitive discharge,specifically,the influence of Ar content on the plasma absorb power and heating mechanisms, there remains much room to be explored.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.12020101005 and 11975067).

    猜你喜歡
    王友徐海白雪
    Path Planning of UAV by Combing Improved Ant Colony System and Dynamic Window Algorithm
    Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas
    Multi-layer structure formation of relativistic electron beams in plasmas
    白雪和紅玫(一)
    Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge?
    Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma?
    徐海根(徐海)藝術(shù)作品欣賞
    等待白雪的龍門(mén)山(外一章)
    The Ways of Creating “Information Gap Activities” in the Communicative Language Teaching
    韋白雪,我負(fù)責(zé)給你好日子
    91精品一卡2卡3卡4卡| 国产一区二区在线观看日韩| 大香蕉97超碰在线| 天堂中文最新版在线下载 | 亚洲天堂国产精品一区在线| 精品国产三级普通话版| 不卡视频在线观看欧美| 国产一级毛片在线| 亚洲欧美中文字幕日韩二区| 亚洲内射少妇av| 国产精品国产三级国产av玫瑰| 边亲边吃奶的免费视频| 亚洲av二区三区四区| 一级av片app| 五月天丁香电影| 美女xxoo啪啪120秒动态图| 日本黄大片高清| 欧美不卡视频在线免费观看| 在线播放无遮挡| 免费少妇av软件| 欧美日韩国产mv在线观看视频 | 国产精品日韩av在线免费观看| 国产av在哪里看| 国产高清不卡午夜福利| 日韩国内少妇激情av| 中文字幕人妻熟人妻熟丝袜美| 欧美丝袜亚洲另类| 亚洲国产精品成人久久小说| 啦啦啦中文免费视频观看日本| 在线免费观看的www视频| 在线观看av片永久免费下载| 伦精品一区二区三区| 联通29元200g的流量卡| 性插视频无遮挡在线免费观看| av又黄又爽大尺度在线免费看| 亚洲成人精品中文字幕电影| 五月伊人婷婷丁香| 久久精品国产自在天天线| 99热网站在线观看| 欧美性猛交╳xxx乱大交人| 麻豆国产97在线/欧美| 午夜亚洲福利在线播放| 禁无遮挡网站| 亚洲美女搞黄在线观看| 国产探花在线观看一区二区| 国产精品99久久久久久久久| 欧美激情国产日韩精品一区| 国产视频内射| 亚洲av一区综合| 欧美zozozo另类| 亚洲精品影视一区二区三区av| 国产精品熟女久久久久浪| 99久国产av精品| 日韩欧美国产在线观看| 免费观看精品视频网站| 久久亚洲国产成人精品v| 少妇熟女aⅴ在线视频| 大香蕉久久网| 亚洲欧美精品自产自拍| av播播在线观看一区| 国产伦精品一区二区三区视频9| 精品一区二区免费观看| 搡老乐熟女国产| 亚洲综合精品二区| 男人和女人高潮做爰伦理| 久久久精品欧美日韩精品| 少妇丰满av| 亚洲av国产av综合av卡| 白带黄色成豆腐渣| 精品不卡国产一区二区三区| 国产亚洲av片在线观看秒播厂 | 欧美日韩精品成人综合77777| 欧美人与善性xxx| 少妇人妻精品综合一区二区| 美女主播在线视频| 亚洲精品久久久久久婷婷小说| 99热这里只有精品一区| 一边亲一边摸免费视频| 老司机影院毛片| 国模一区二区三区四区视频| 欧美日韩视频高清一区二区三区二| 国产不卡一卡二| 国产精品福利在线免费观看| 国产成人91sexporn| 身体一侧抽搐| av专区在线播放| 亚洲人成网站高清观看| 在线免费十八禁| 国产成人91sexporn| 久久久久国产网址| 精品久久久精品久久久| 五月玫瑰六月丁香| 亚洲成人精品中文字幕电影| 亚洲性久久影院| 卡戴珊不雅视频在线播放| 免费观看a级毛片全部| 纵有疾风起免费观看全集完整版 | 在线免费十八禁| 国产精品无大码| 色尼玛亚洲综合影院| 看非洲黑人一级黄片| 一级毛片aaaaaa免费看小| 91精品伊人久久大香线蕉| 国产免费一级a男人的天堂| 中文乱码字字幕精品一区二区三区 | 欧美成人一区二区免费高清观看| 国产精品久久久久久久久免| 国产真实伦视频高清在线观看| 欧美一级a爱片免费观看看| 观看美女的网站| 久久久久精品久久久久真实原创| 免费黄频网站在线观看国产| 国产成人精品婷婷| 午夜福利网站1000一区二区三区| 成年av动漫网址| 性色avwww在线观看| 又大又黄又爽视频免费| 你懂的网址亚洲精品在线观看| 中文字幕免费在线视频6| 午夜福利视频1000在线观看| 国产黄色小视频在线观看| 免费观看无遮挡的男女| 久久99热这里只频精品6学生| 一级毛片久久久久久久久女| 嫩草影院精品99| 一个人免费在线观看电影| 男人爽女人下面视频在线观看| 久久久久网色| 亚洲精品成人av观看孕妇| 女人被狂操c到高潮| 国产一区有黄有色的免费视频 | 一级二级三级毛片免费看| 搡女人真爽免费视频火全软件| 日韩不卡一区二区三区视频在线| 嫩草影院精品99| 午夜老司机福利剧场| 丰满乱子伦码专区| 六月丁香七月| 又爽又黄无遮挡网站| 真实男女啪啪啪动态图| 国产在线男女| 精品少妇黑人巨大在线播放| 久久久久国产网址| 日韩人妻高清精品专区| 成年版毛片免费区| h日本视频在线播放| 日韩一区二区视频免费看| 亚洲av在线观看美女高潮| 亚洲精品一区蜜桃| 国产精品麻豆人妻色哟哟久久 | 国产一区有黄有色的免费视频 | 国产在视频线在精品| 欧美一级a爱片免费观看看| 亚洲三级黄色毛片| 欧美激情国产日韩精品一区| .国产精品久久| 日日啪夜夜爽| 欧美高清成人免费视频www| 国产高清不卡午夜福利| 亚洲av中文av极速乱| 成人毛片a级毛片在线播放| 亚洲精品成人久久久久久| 国产成人福利小说| 在线观看免费高清a一片| 日日啪夜夜爽| 国产成人午夜福利电影在线观看| 伦精品一区二区三区| 国产高清不卡午夜福利| 亚洲精品成人久久久久久| 嫩草影院新地址| 国内精品宾馆在线| 18禁裸乳无遮挡免费网站照片| 观看美女的网站| 最近2019中文字幕mv第一页| 久久久欧美国产精品| 亚洲精品自拍成人| 18禁在线播放成人免费| 亚洲欧美清纯卡通| 国产免费又黄又爽又色| 边亲边吃奶的免费视频| 色哟哟·www| 在线免费十八禁| 欧美变态另类bdsm刘玥| av网站免费在线观看视频 | 91久久精品国产一区二区成人| 中文字幕制服av| 网址你懂的国产日韩在线| 久久久久久伊人网av| 五月天丁香电影| 可以在线观看毛片的网站| 国产精品国产三级专区第一集| 国产亚洲最大av| 欧美3d第一页| 人人妻人人看人人澡| 美女大奶头视频| 日韩成人av中文字幕在线观看| 久久久久久久国产电影| 国产熟女欧美一区二区| 亚洲自偷自拍三级| 亚洲国产最新在线播放| 在线观看人妻少妇| 午夜福利网站1000一区二区三区| 青春草亚洲视频在线观看| 国产69精品久久久久777片| 午夜老司机福利剧场| 国语对白做爰xxxⅹ性视频网站| 国产精品蜜桃在线观看| www.av在线官网国产| 蜜臀久久99精品久久宅男| 天堂√8在线中文| 国产淫片久久久久久久久| videos熟女内射| 午夜福利在线观看免费完整高清在| 最新中文字幕久久久久| 成人漫画全彩无遮挡| 一区二区三区免费毛片| 男人狂女人下面高潮的视频| 女的被弄到高潮叫床怎么办| 国产激情偷乱视频一区二区| 亚洲色图av天堂| 只有这里有精品99| 舔av片在线| 人妻系列 视频| 中文资源天堂在线| 国产亚洲5aaaaa淫片| 色吧在线观看| 精品久久国产蜜桃| 欧美zozozo另类| 亚洲精品影视一区二区三区av| 国产精品美女特级片免费视频播放器| 国产v大片淫在线免费观看| 成年女人在线观看亚洲视频 | 麻豆乱淫一区二区| 婷婷色av中文字幕| 亚洲国产精品国产精品| 国产免费视频播放在线视频 | 最近最新中文字幕大全电影3| 精品久久久噜噜| 欧美日本视频| 你懂的网址亚洲精品在线观看| 高清日韩中文字幕在线| 午夜福利视频精品| 国产美女午夜福利| 亚洲成人一二三区av| av黄色大香蕉| 欧美日本视频| 亚洲欧美一区二区三区黑人 | 麻豆乱淫一区二区| 精品人妻一区二区三区麻豆| 午夜免费观看性视频| h日本视频在线播放| 男女啪啪激烈高潮av片| 97人妻精品一区二区三区麻豆| 亚洲一级一片aⅴ在线观看| 99九九线精品视频在线观看视频| 亚洲综合精品二区| 国产精品伦人一区二区| 亚洲在线自拍视频| 国产成人freesex在线| 欧美最新免费一区二区三区| 日韩不卡一区二区三区视频在线| 女人十人毛片免费观看3o分钟| 国产老妇伦熟女老妇高清| 国产久久久一区二区三区| 岛国毛片在线播放| 欧美日韩精品成人综合77777| 国产精品女同一区二区软件| a级毛色黄片| 免费看不卡的av| 亚洲精品视频女| or卡值多少钱| 秋霞在线观看毛片| 看黄色毛片网站| 欧美+日韩+精品| 亚洲经典国产精华液单| 日本wwww免费看| 日本爱情动作片www.在线观看| 国产亚洲一区二区精品| 久久久久免费精品人妻一区二区| 午夜福利网站1000一区二区三区| 有码 亚洲区| 国产黄色视频一区二区在线观看| 成年女人在线观看亚洲视频 | 老司机影院毛片| 少妇人妻一区二区三区视频| 乱人视频在线观看| 一级黄片播放器| 日韩电影二区| 亚洲欧美精品自产自拍| 国产亚洲5aaaaa淫片| 精品久久国产蜜桃| 日本一二三区视频观看| 精品欧美国产一区二区三| 最近最新中文字幕大全电影3| 美女脱内裤让男人舔精品视频| 国产成人精品婷婷| 大香蕉97超碰在线| 精品人妻一区二区三区麻豆| 白带黄色成豆腐渣| 黑人高潮一二区| 激情五月婷婷亚洲| 嫩草影院新地址| 成人av在线播放网站| 大香蕉97超碰在线| 99热这里只有精品一区| kizo精华| ponron亚洲| ponron亚洲| 日韩av免费高清视频| 久久综合国产亚洲精品| 国产69精品久久久久777片| 美女被艹到高潮喷水动态| 我的老师免费观看完整版| 国产精品人妻久久久影院| 好男人视频免费观看在线| 欧美日韩亚洲高清精品| 熟妇人妻久久中文字幕3abv| 国产午夜福利久久久久久| 插逼视频在线观看| 免费播放大片免费观看视频在线观看| 青春草亚洲视频在线观看| 在线免费十八禁| 中文字幕久久专区| 99久久精品一区二区三区| 国产精品久久久久久久电影| 美女国产视频在线观看| 搡老妇女老女人老熟妇| 啦啦啦啦在线视频资源| 成人一区二区视频在线观看| 亚洲av日韩在线播放| 3wmmmm亚洲av在线观看| 免费观看性生交大片5| 国产单亲对白刺激| 国产熟女欧美一区二区| 少妇裸体淫交视频免费看高清| 色尼玛亚洲综合影院| 三级国产精品欧美在线观看| 亚洲欧洲日产国产| 成年人午夜在线观看视频 | 久久这里有精品视频免费| 蜜臀久久99精品久久宅男| 一个人免费在线观看电影| 亚洲图色成人| 边亲边吃奶的免费视频| 啦啦啦中文免费视频观看日本| 亚洲精品456在线播放app| 国产老妇女一区| av又黄又爽大尺度在线免费看| 美女脱内裤让男人舔精品视频| 男的添女的下面高潮视频| 国产亚洲最大av| 国产单亲对白刺激| 91精品一卡2卡3卡4卡| 国产精品国产三级专区第一集| 一级毛片 在线播放| 成人二区视频| 亚洲无线观看免费| av在线蜜桃| 少妇被粗大猛烈的视频| videossex国产| 99热这里只有是精品50| 蜜臀久久99精品久久宅男| 女人十人毛片免费观看3o分钟| 色视频www国产| 精品少妇黑人巨大在线播放| 搡女人真爽免费视频火全软件| 99九九线精品视频在线观看视频| 国产乱来视频区| 97超碰精品成人国产| 久久精品国产自在天天线| 国产成人a∨麻豆精品| 久久草成人影院| 久久久久国产网址| 国产乱人视频| 久久精品久久久久久噜噜老黄| 亚洲av一区综合| 成人午夜高清在线视频| 春色校园在线视频观看| 国产69精品久久久久777片| 日本av手机在线免费观看| 国产黄色小视频在线观看| av在线播放精品| 婷婷色综合www| 干丝袜人妻中文字幕| 天堂网av新在线| 一个人看视频在线观看www免费| 久久久久久久久久人人人人人人| 国产欧美日韩精品一区二区| 亚洲丝袜综合中文字幕| 99热这里只有精品一区| 午夜福利成人在线免费观看| 美女高潮的动态| 亚洲精品乱码久久久v下载方式| 美女被艹到高潮喷水动态| 精品一区二区三区人妻视频| 日韩精品有码人妻一区| 美女xxoo啪啪120秒动态图| 最近的中文字幕免费完整| 亚洲丝袜综合中文字幕| 日韩伦理黄色片| 国产中年淑女户外野战色| 亚洲经典国产精华液单| 搡老乐熟女国产| 国产亚洲av片在线观看秒播厂 | 国内揄拍国产精品人妻在线| 免费在线观看成人毛片| 夜夜看夜夜爽夜夜摸| 听说在线观看完整版免费高清| 99热这里只有是精品50| 少妇人妻一区二区三区视频| 最近的中文字幕免费完整| 伦理电影大哥的女人| 五月玫瑰六月丁香| 成年av动漫网址| 日韩人妻高清精品专区| 国产黄片视频在线免费观看| 干丝袜人妻中文字幕| 亚洲最大成人中文| 国产av在哪里看| or卡值多少钱| 成人亚洲精品av一区二区| 99re6热这里在线精品视频| av国产免费在线观看| 国内揄拍国产精品人妻在线| 又粗又硬又长又爽又黄的视频| 久久久久网色| 99re6热这里在线精品视频| 黑人高潮一二区| 一个人免费在线观看电影| av黄色大香蕉| 亚洲国产高清在线一区二区三| 国产精品爽爽va在线观看网站| av黄色大香蕉| 亚洲成人av在线免费| 性色avwww在线观看| 亚洲国产成人一精品久久久| 国产精品一区二区三区四区免费观看| 七月丁香在线播放| 亚洲国产色片| 欧美变态另类bdsm刘玥| 街头女战士在线观看网站| 亚洲婷婷狠狠爱综合网| 免费观看精品视频网站| 久久久午夜欧美精品| 女人十人毛片免费观看3o分钟| 国产综合懂色| ponron亚洲| 日日摸夜夜添夜夜爱| 在线观看人妻少妇| 中文字幕av成人在线电影| 日日干狠狠操夜夜爽| 大又大粗又爽又黄少妇毛片口| 日韩欧美精品v在线| 国产老妇伦熟女老妇高清| 一个人看的www免费观看视频| 国产视频首页在线观看| 亚洲av在线观看美女高潮| 免费高清在线观看视频在线观看| av卡一久久| av专区在线播放| 国产亚洲91精品色在线| 一边亲一边摸免费视频| 男插女下体视频免费在线播放| 精品人妻一区二区三区麻豆| 全区人妻精品视频| 精品久久久久久电影网| 国语对白做爰xxxⅹ性视频网站| 亚洲精品乱码久久久v下载方式| 久久久久久久久久成人| 少妇丰满av| 久久99热6这里只有精品| 亚洲欧美精品自产自拍| 卡戴珊不雅视频在线播放| 午夜视频国产福利| 久久久久久久久大av| a级毛色黄片| 国产女主播在线喷水免费视频网站 | 少妇丰满av| 乱系列少妇在线播放| 日韩,欧美,国产一区二区三区| 黑人高潮一二区| 国产精品伦人一区二区| 特级一级黄色大片| 26uuu在线亚洲综合色| 一本久久精品| 国产亚洲精品av在线| 日日撸夜夜添| 成年免费大片在线观看| 亚洲成人av在线免费| 乱人视频在线观看| 丝瓜视频免费看黄片| 免费高清在线观看视频在线观看| 欧美成人a在线观看| 国产探花极品一区二区| av一本久久久久| 美女被艹到高潮喷水动态| 亚洲av.av天堂| 午夜福利视频1000在线观看| 99久久九九国产精品国产免费| 亚洲自偷自拍三级| 免费黄网站久久成人精品| 亚洲成人精品中文字幕电影| 国产精品熟女久久久久浪| 亚洲欧美日韩东京热| 一级a做视频免费观看| 午夜久久久久精精品| 国产精品久久久久久精品电影| 如何舔出高潮| 2022亚洲国产成人精品| 国产片特级美女逼逼视频| 网址你懂的国产日韩在线| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲网站| 永久网站在线| 性插视频无遮挡在线免费观看| 日日摸夜夜添夜夜添av毛片| 777米奇影视久久| 日本三级黄在线观看| 国产精品无大码| 久99久视频精品免费| 国产成人午夜福利电影在线观看| 亚洲av免费在线观看| 狠狠精品人妻久久久久久综合| 午夜福利网站1000一区二区三区| 亚洲精品国产av成人精品| 欧美+日韩+精品| 久久精品综合一区二区三区| 国产综合懂色| 成人国产麻豆网| 91精品国产九色| 蜜臀久久99精品久久宅男| 好男人在线观看高清免费视频| 熟女电影av网| 男女视频在线观看网站免费| av在线亚洲专区| 色综合站精品国产| 免费黄频网站在线观看国产| 久久久久精品久久久久真实原创| 日本黄色片子视频| 亚洲激情五月婷婷啪啪| 性插视频无遮挡在线免费观看| 国产探花极品一区二区| av一本久久久久| 国产色婷婷99| 国产男人的电影天堂91| av在线老鸭窝| av免费在线看不卡| 亚洲美女搞黄在线观看| 91av网一区二区| 成人二区视频| 亚洲熟女精品中文字幕| 建设人人有责人人尽责人人享有的 | 内射极品少妇av片p| 舔av片在线| 国产午夜精品一二区理论片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av成人精品一二三区| 国产精品蜜桃在线观看| 91av网一区二区| 国产v大片淫在线免费观看| 亚洲成人精品中文字幕电影| 成人av在线播放网站| 成年女人看的毛片在线观看| videossex国产| 插逼视频在线观看| 春色校园在线视频观看| 你懂的网址亚洲精品在线观看| 一区二区三区乱码不卡18| 日韩,欧美,国产一区二区三区| 日本免费a在线| 欧美激情久久久久久爽电影| 日本爱情动作片www.在线观看| 国产毛片a区久久久久| 嫩草影院新地址| 精品少妇黑人巨大在线播放| 深爱激情五月婷婷| 久久精品国产亚洲av涩爱| 99九九线精品视频在线观看视频| 人人妻人人看人人澡| 狂野欧美激情性xxxx在线观看| 青春草视频在线免费观看| 国产亚洲91精品色在线| 成人一区二区视频在线观看| 男女国产视频网站| 国产成人一区二区在线| 亚洲av电影在线观看一区二区三区 | 亚洲精品影视一区二区三区av| 精品酒店卫生间| 能在线免费看毛片的网站| 亚洲色图av天堂| 男女视频在线观看网站免费| 三级经典国产精品| 亚洲精品影视一区二区三区av| 色综合色国产| 国产黄色小视频在线观看| 国产午夜福利久久久久久| 国产亚洲av嫩草精品影院| 精品国产一区二区三区久久久樱花 | 午夜亚洲福利在线播放| 伦精品一区二区三区| 日韩av在线大香蕉| www.av在线官网国产| 亚洲四区av| 亚洲色图av天堂| 五月天丁香电影| 日韩精品青青久久久久久| 99热这里只有是精品在线观看| 亚洲欧美精品专区久久| 99久国产av精品| 在线观看一区二区三区| 成年av动漫网址| 欧美日韩精品成人综合77777| 亚洲精品456在线播放app| 91av网一区二区| 午夜福利成人在线免费观看|