李元豐,吳天準(zhǔn),陳順琦,王玉婷,曾濤,李若凡,周鋼橋
綜 述
新冠肺炎遺傳易感基因的研究進(jìn)展
李元豐1,2,吳天準(zhǔn)3,陳順琦2,王玉婷2,曾濤4,5,李若凡4,5,周鋼橋1,6
1. 中國(guó)人民解放軍軍事科學(xué)院軍事醫(yī)學(xué)研究院輻射醫(yī)學(xué)研究所,醫(yī)學(xué)蛋白質(zhì)組全國(guó)重點(diǎn)實(shí)驗(yàn)室,國(guó)家蛋白質(zhì)科學(xué)中心,北京 100850 2. 河北大學(xué)化學(xué)與環(huán)境科學(xué)學(xué)院,保定 071002 3. 廣西醫(yī)科大學(xué)附屬腫瘤醫(yī)院,南寧 530021 4. 中國(guó)人民解放軍醫(yī)學(xué)院,北京 100853 5. 中國(guó)人民解放軍總醫(yī)院第一醫(yī)學(xué)中心肝膽胰外科醫(yī)學(xué)部,北京 100853 6. 南京醫(yī)科大學(xué)公共衛(wèi)生學(xué)院全球健康中心,南京 211166
新型冠狀病毒(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)感染人體后,個(gè)體間存在顯著不同的新冠肺炎(corona virus disease 2019,COVID-19)臨床癥狀。機(jī)體遺傳因素在新冠病毒感染后的臨床轉(zhuǎn)歸過(guò)程中發(fā)揮重要的作用。以全基因組關(guān)聯(lián)研究(genome-wide association studies, GWAS)為代表的遺傳關(guān)聯(lián)研究方法,已成功鑒定了多個(gè)與新冠肺炎相關(guān)的易感基因,為新冠肺炎防診治措施的研發(fā)提供了理論基礎(chǔ)。本文綜述了新冠肺炎遺傳易感基因的研究進(jìn)展,包括多種表型、多個(gè)人群、多種遺傳變異類型的新冠肺炎全基因組關(guān)聯(lián)研究以及易感基因區(qū)域的精細(xì)定位研究等,旨在為新冠肺炎遺傳易感基因的后續(xù)研究提供參考。
新冠病毒;新冠肺炎;遺傳易感基因;全基因組關(guān)聯(lián)研究
2019年12月以來(lái),新型冠狀病毒(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)導(dǎo)致的新型冠狀病毒肺炎(corona virus disease 2019,COVID-19;簡(jiǎn)稱新冠肺炎)疫情爆發(fā),嚴(yán)重威脅人類的生命健康。新冠病毒感染人體后,個(gè)體間存在顯著不同的病程轉(zhuǎn)歸,可表現(xiàn)為無(wú)癥狀感染、輕型肺炎、普通型肺炎、重型肺炎和危重型肺炎,甚至死亡[1,2]。機(jī)體感染新冠病毒后發(fā)生不同臨床轉(zhuǎn)歸的原因,可能是由于個(gè)體間的性別、年齡、基礎(chǔ)疾病等因素存在差異造成的[3]。此外,諸多遺傳學(xué)研究已顯示,機(jī)體的遺傳因素(即遺傳易感基因)在新冠病毒感染后的多樣化臨床轉(zhuǎn)歸過(guò)程中也發(fā)揮著重要的作用。新冠肺炎遺傳易感基因的鑒定,將為新冠肺炎防診治措施的研發(fā)提供理論基礎(chǔ),因而具有重要的科學(xué)意義和潛在的臨床應(yīng)用價(jià)值。本文旨在回顧和綜述近年來(lái)新冠肺炎遺傳易感基因的研究進(jìn)展,為未來(lái)新冠肺炎乃至其他傳染性疾病的致病機(jī)理研究和防控措施的研發(fā)提供參考。
全基因組關(guān)聯(lián)研究(genome-wide association study,GWAS)通過(guò)對(duì)全基因組范圍的單核苷酸多態(tài)性(single nucleotide polymorphism,SNP)進(jìn)行基因分型,不基于任何先驗(yàn)的生物學(xué)假設(shè)、無(wú)偏地篩選和鑒定與復(fù)雜疾病顯著關(guān)聯(lián)的遺傳變異?;贕WAS的研究策略,研究人員在近20余年的研究中已發(fā)現(xiàn)了復(fù)雜疾病的數(shù)以千計(jì)的遺傳易感基因[4]。截至目前,也已有數(shù)十項(xiàng)新冠肺炎的GWAS被報(bào)道,鑒定了超過(guò)100個(gè)與新冠肺炎相關(guān)的遺傳易感基因(圖1,表1)。在功能上,這些易感基因參與新冠病毒對(duì)人體細(xì)胞的侵襲和感染(如、和等)、抗病毒免疫反應(yīng)(、和等)和炎癥(如等)等多種生物學(xué)過(guò)程[5,6,8]。
機(jī)體遺傳因素與新冠病毒感染的易感性、是否產(chǎn)生新冠肺炎癥狀、新冠肺炎的重癥化、死亡、以及是否發(fā)生并發(fā)癥等密切相關(guān)。目前已有多項(xiàng)針對(duì)上述不同新冠表型的GWAS,并鑒定出多種新冠表型共有或某一表型特有的易感基因或區(qū)域。
危重型新冠肺炎是指出現(xiàn)呼吸衰竭、或出現(xiàn)休克、或合并其他器官功能衰竭需進(jìn)入重癥監(jiān)護(hù)室(intensive care unit,ICU)治療的新冠肺炎。因危重型新冠肺炎存在救治難度大、致死率高的特點(diǎn),針對(duì)此類新冠肺炎的研究受到廣泛關(guān)注。因此,早期的新冠肺炎GWAS主要關(guān)注危重型新冠肺炎。這些研究已鑒定了多個(gè)危重型新冠肺炎的易感基因區(qū)域[6~9],同時(shí)估算出危重型新冠肺炎的遺傳度約為6.5%[8]。
例如,2020年6月,首項(xiàng)有關(guān)新冠危重型肺炎的GWAS在新英格蘭醫(yī)學(xué)雜志在線發(fā)表[7]。該研究招募了來(lái)自意大利或西班牙的共計(jì)1980名出現(xiàn)呼吸衰竭的危重型新冠肺炎患者,以及2381名新冠病毒感染情況未知的對(duì)照個(gè)體。研究發(fā)現(xiàn)了與危重型新冠肺炎顯著關(guān)聯(lián)的2個(gè)基因組區(qū)域,分別位于3p21.31(標(biāo)簽SNP為rs11385942)和9q34.2(標(biāo)簽rs657152)。其中,3p21.31區(qū)域被后續(xù)多項(xiàng)獨(dú)立研究所證實(shí),而且該區(qū)域不僅與危重型新冠肺炎顯著相關(guān),也與新冠病毒的感染、需住院的新冠肺炎、重癥新冠肺炎等新冠肺炎進(jìn)程顯著相關(guān)(表1)。該區(qū)域的標(biāo)簽SNP rs11385942的風(fēng)險(xiǎn)等位型GA在肺臟細(xì)胞中與和基因的高表達(dá)、以及基因的低表達(dá)均顯著相關(guān)。因此,該區(qū)域確切的易感基因目前尚無(wú)法確認(rèn)。9q34.2區(qū)域與危重型新冠肺炎顯著相關(guān)的結(jié)論目前尚存在爭(zhēng)議。例如,GenOMICC研究計(jì)劃(Genetics Of Mortality In Critical Care)開展的基于英國(guó)人群的危重型新冠肺炎GWAS發(fā)現(xiàn),9q34.2區(qū)域與危重型新冠肺炎的相關(guān)性并未達(dá)到全基因組關(guān)聯(lián)研究的顯著性閾值[8]。有趣的是,9q34.2區(qū)域內(nèi)僅包含一個(gè)編碼基因,該基因編碼的蛋白決定了機(jī)體的ABO血型。該研究顯示,A型血新冠肺炎患者發(fā)生危重癥新冠肺炎的風(fēng)險(xiǎn)較高,而O型血新冠肺炎患者發(fā)生危重癥的風(fēng)險(xiǎn)則相對(duì)較低。該結(jié)論與當(dāng)年3月刊發(fā)在預(yù)印本平臺(tái)medRxiv的新冠流行病學(xué)研究相吻合[25]。
圖1 全基因組關(guān)聯(lián)研究發(fā)現(xiàn)的新冠肺炎相關(guān)易感基因區(qū)域
表1 新冠肺炎的全基因組關(guān)聯(lián)研究
隨后的多項(xiàng)更大規(guī)模的危重型新冠肺炎GWAS[6,8,9],鑒定了除3p21.31和9q34.2區(qū)域外的其他多個(gè)新的危重型新冠肺炎易感基因區(qū)域。例如,2020年11月,GenOMICC研究計(jì)劃在雜志在線發(fā)布的基于英國(guó)人群的危重型新冠肺炎GWAS[8]。該研究納入了招募自208家英國(guó)重癥監(jiān)護(hù)室的2244名危重型新冠肺炎患者。由此,該研究鑒定了與危重型新冠肺炎顯著相關(guān)的4個(gè)基因組區(qū)域,分別是位于第12號(hào)染色體的基因簇區(qū)域(標(biāo)簽 rs10735079)、第19號(hào)染色體的基因區(qū)域(標(biāo)簽rs74956615)、第19號(hào)染色體的基因附近的區(qū)域(標(biāo)簽rs2109069)和第21號(hào)染色體的基因區(qū)域(標(biāo)簽rs2236757)。近期,GenOMICC研究計(jì)劃將納入研究的危重型新冠肺炎患者數(shù)量增加至24,202名,并更新了危重型新冠肺炎GWAS的結(jié)果[9]該項(xiàng)研究共計(jì)發(fā)現(xiàn)了49個(gè)顯著關(guān)聯(lián)的基因組區(qū)域,其中16個(gè)區(qū)域是首次被報(bào)道。這些基因組區(qū)域內(nèi)的基因包括炎癥相關(guān)信號(hào)傳導(dǎo)通路基因(如)、單核巨噬細(xì)胞活化和內(nèi)皮通透性相關(guān)基因()、免疫代謝相關(guān)基因(和)以及病毒感染和復(fù)制所需的宿主因子(和)等。
綜上,危重型新冠肺炎易感基因的鑒定,有助于加深人們對(duì)危重型新冠肺炎發(fā)病機(jī)制的理解;同時(shí),部分易感基因可能是潛在的藥物靶點(diǎn),為危重型新冠肺炎的救治提供了新的思路。
最近已有多項(xiàng)全基因組關(guān)聯(lián)研究還關(guān)注了新冠的其他多種表型。例如,美國(guó)23andMe公司的Janie Shelton等公布了該團(tuán)隊(duì)的新冠肺炎GWAS結(jié)果[10],該研究探索了與新冠病毒感染和4種新冠肺炎嚴(yán)重程度(包括普通新冠肺炎、需住院治療的新冠肺炎、需呼吸支持治療的新冠肺炎和有嚴(yán)重呼吸癥狀的新冠肺炎)相關(guān)的易感基因?!癈OVID-19宿主遺傳學(xué)倡議計(jì)劃”(COVID-19 HGI)則關(guān)注了三種新冠肺炎表型,包括:(1)危重型新冠肺炎(包括需要呼吸支持的住院患者或因新冠病毒感染死亡的患者);(2)中度或重度新冠肺炎(包括因感染癥狀需要住院的患者);(3)新冠病毒感染陽(yáng)性患者[11]。在此基礎(chǔ)上,AncestryDNA研究計(jì)劃進(jìn)一步通過(guò)4種“擴(kuò)展”的新冠“表型”[13],研究了新冠肺炎的基因組關(guān)聯(lián)性,這4種“表型”分別是:(1)有確診病例接觸史的陽(yáng)性患者對(duì)比有接觸史的陰性患者;(2)未篩查群體對(duì)比有新冠確診病例接觸史的陰性個(gè)體;(3)新冠感染有癥狀患者對(duì)比無(wú)癥狀個(gè)體;(4)新冠肺炎嚴(yán)重程度評(píng)分。
通過(guò)上述新冠“表型”的GWAS,研究人員發(fā)現(xiàn)了多種新冠肺炎表型共有或特有的易感基因或區(qū)域。例如,3p21.31區(qū)域是新冠病毒感染、新冠肺炎發(fā)生、新冠肺炎發(fā)展為需住院治療、需進(jìn)行呼吸支持治療以及危重型新冠肺炎等新冠肺炎表型共有的易感基因區(qū)域[10]。值得注意的是,該基因區(qū)域與新冠肺炎嚴(yán)重程度的關(guān)聯(lián)性要顯著強(qiáng)于新冠病毒感染[10]。9q34.2區(qū)域(基因區(qū)域)僅與新冠病毒感染顯著相關(guān),但與新冠肺炎的嚴(yán)重程度的關(guān)聯(lián)程度未達(dá)到全基因組的顯著水平[8,10]。9p13.2區(qū)域(基因區(qū)域)是中度、重度和危重型新冠肺炎(即新冠肺炎進(jìn)展為需要住院治療)共同的易感基因區(qū)域[10]。有趣的是,該區(qū)域以往還被報(bào)道與自身免疫性疾病顯著相關(guān)[26]。
已知新冠病毒感染機(jī)體后還可能引發(fā)系列并發(fā)癥,例如嗅覺或味覺的喪失。美國(guó)23andMe公司的Janie Shelton等最近公布了新冠病毒感染致嗅覺或味覺喪失的GWAS結(jié)果[14]。該研究在69,841名感染新冠病毒的個(gè)體中,通過(guò)問卷調(diào)查,發(fā)現(xiàn)其中68%的個(gè)體存在嗅覺或味覺喪失的癥狀(定義為病例組),其余個(gè)體則不存在嗅覺或味覺喪失的癥狀(定義為對(duì)照組)。研究發(fā)現(xiàn),4號(hào)染色體的和基因區(qū)域(標(biāo)簽SNP rs7688383)與新冠病毒感染致嗅覺或味覺喪失顯著相關(guān),而且,標(biāo)簽rs7688383的基因型與的表達(dá)顯著相關(guān)。和基因編碼的蛋白屬于尿苷二磷酸糖基轉(zhuǎn)移酶家族,這些酶可通過(guò)與葡糖醛酸結(jié)合,從而代謝親脂性底物。在嗅覺產(chǎn)生過(guò)程中,這些酶參與消除進(jìn)入鼻腔并與嗅覺受體結(jié)合的氣味分子。因此,該研究為新冠病毒感染所致嗅覺或味覺喪失的生物學(xué)機(jī)制提供了新的線索。
目前已發(fā)表的新冠肺炎GWAS主要基于歐美裔人群。然而,歐美裔人群與非歐美裔人群在遺傳結(jié)構(gòu)上存在一定的差異。因此,在非歐美裔人群中開展新冠肺炎的GWAS,將為新冠肺炎的遺傳易感性研究提供重要的補(bǔ)充。
3.1.1 基于中國(guó)人群新冠肺炎的GWAS
在新冠疫情發(fā)生初期,深圳市第三人民醫(yī)院劉磊研究組聯(lián)合國(guó)內(nèi)多家研究單位開展了一項(xiàng)小型的針對(duì)中國(guó)人群新冠肺炎患者的全基因組測(cè)序研究[15]。該研究招募了332名COVID-19患者,分為無(wú)癥狀、輕、中、重、危重癥狀五種不同的表型。該研究采用序列核關(guān)聯(lián)檢驗(yàn)(sequence kernel association test,SKAT)方法開展了三種新冠肺炎表型的關(guān)聯(lián)分析,分別是:(1)重癥和危重癥患者組成的重癥組與無(wú)癥狀、輕癥和中度癥狀患者組成的輕癥組相比;(2)根據(jù)年齡、性別等人口統(tǒng)計(jì)學(xué)特征訓(xùn)練的疾病嚴(yán)重程度定量指標(biāo);(3)疾病持續(xù)時(shí)間。結(jié)果發(fā)現(xiàn),20q13.13區(qū)域(標(biāo)簽SNP rs6020298),以及基因上的錯(cuò)義變異p.Val197Met和等位基因HLA-A*11:01, B*51:01和C*14:02與新冠肺炎的嚴(yán)重程度顯著相關(guān)。
2021年5月,軍事醫(yī)學(xué)研究院周鋼橋團(tuán)隊(duì)聯(lián)合國(guó)內(nèi)多家單位,開展了基于中國(guó)人群新冠重癥肺炎的GWAS[16]。該研究招募了來(lái)自中國(guó)武漢市兩個(gè)醫(yī)院的1431例新冠肺炎住院患者,根據(jù)我國(guó)新冠肺炎診療方案(試行第七版)對(duì)這些患者進(jìn)行了臨床分型,其中的885例重型和危重型患者被定義為“病例”組,546例輕型和普通型患者被定義為“對(duì)照”組。通過(guò)全基因組關(guān)聯(lián)分析發(fā)現(xiàn),除了以往已知的新冠重癥易感基因和外,還鑒定出2個(gè)全新的新冠重癥肺炎易感基因區(qū)域11q23.3(標(biāo)簽SNP rs1712779)和11q14.2(標(biāo)簽SNP rs10831496)。其中,rs10831496位于11q14.2區(qū)域的基因內(nèi)含子區(qū),其風(fēng)險(xiǎn)等位型A與全血組織中的組織蛋白酶C(cathepsin C, CTSC)基因的高表達(dá)顯著相關(guān),提示該區(qū)域的易感基因是?;蚓幋a一種溶酶體半胱氨酸蛋白酶(也被稱為二肽基肽酶1,DPP1),其在調(diào)節(jié)炎癥反應(yīng)中的作用已得到廣泛研究。臨床上,已被認(rèn)為是某些炎癥性疾病的潛在治療靶點(diǎn)[27]。值得關(guān)注的是,來(lái)自歐洲的團(tuán)隊(duì)開展了三期臨床試驗(yàn)“STOP-COVID19”,以評(píng)估CTSC抑制劑Brensocatib是否對(duì)治療重型新冠肺炎患者有效[28]。
同時(shí)期,華中科技大學(xué)王超龍團(tuán)隊(duì)聯(lián)合國(guó)內(nèi)多家單位,基于來(lái)自中國(guó)人群的1072名新冠肺炎重癥患者、1526名輕癥患者和2349名感染情況未知的對(duì)照個(gè)體開展了GWAS[17]。該研究還整合了來(lái)自COVID-19 HGI計(jì)劃中的3199名新冠肺炎住院患者和897,488名對(duì)照個(gè)體的關(guān)聯(lián)結(jié)果,開展了跨種族人群的薈萃分析。結(jié)果發(fā)現(xiàn),除了以往報(bào)道的兩個(gè)新冠重癥肺炎的遺傳易感基因區(qū)域3p21.31和9q34.2(基因)外,還發(fā)現(xiàn)了1個(gè)新的易感基因區(qū)域6p21.1(標(biāo)簽SNP rs1853837)。
最近,四川省人民醫(yī)院楊正林團(tuán)隊(duì)開展了中國(guó)人群危重癥新冠肺炎的GWAS[18]。該研究共納入了632名危重癥新冠肺炎患者和3021名健康對(duì)照個(gè)體,鑒定到了位于基因內(nèi)含子區(qū)域的SNP位點(diǎn)rs2069837與危重癥新冠肺炎顯著相關(guān),進(jìn)一步的功能研究顯示,該位點(diǎn)可能通過(guò)降低的表達(dá),抑制自身免疫反應(yīng)引起的細(xì)胞因子風(fēng)暴,從而保護(hù)個(gè)體免于罹患危重癥新冠肺炎。
3.1.2 基于日本人群新冠肺炎的GWAS
Namkoong等[19]開展了基于日本人群的新冠肺炎GWAS。該研究共招募了2393名新冠肺炎住院患者和3289名對(duì)照個(gè)體?;谒胁±?對(duì)照人群的GWAS并未發(fā)現(xiàn)全局層面顯著關(guān)聯(lián)的位點(diǎn)。然而,基于年齡分層后,在年輕組(<65歲)病例-對(duì)照人群的GWAS中成功鑒定了一個(gè)新的易感基因區(qū)域5q35(標(biāo)簽SNP rs60200309),該區(qū)域附近包含一個(gè)編碼基因?;诮M織和單細(xì)胞轉(zhuǎn)錄組測(cè)序數(shù)據(jù)的分析均顯示,在外周血非經(jīng)典單核細(xì)胞中rs60200309的風(fēng)險(xiǎn)等位A與基因的較低表達(dá)顯著相關(guān)。免疫組化分析發(fā)現(xiàn),在重癥肺炎患者的肺組織中表達(dá)被抑制。在敘利亞倉(cāng)鼠新冠病毒感染模型中顯示,采用抑制劑CPYPP抑制的敘利亞倉(cāng)鼠表現(xiàn)出更為嚴(yán)重的肺炎癥狀。這些結(jié)果提示,是與新冠病毒感染及新冠肺炎重癥化相關(guān)的易感基因。
3.1.3 基于阿拉伯人群新冠肺炎的GWAS
Mira等[29]開展了基于阿拉伯人群的新冠肺炎GWAS。該研究招募了482名新冠肺炎住院患者和164名非住院的新冠肺炎患者。由于樣本量較小,該研究未能發(fā)現(xiàn)全基因組層面顯著關(guān)聯(lián)的易感基因區(qū)域。但是,該研究發(fā)現(xiàn)了8個(gè)基因區(qū)域與新冠住院表型顯著相關(guān),包括13p14.11(包含基因)、5q13.3(基因)、11q14.2(基因)、2q22.1(基因)、2q24.3(基因)、14q22.3(基因)、18p11.31(基因)和13q33.1(基因)。
3.1.4 基于巴西人群新冠肺炎的GWAS
Alexandre等[30]開展了基于巴西人群的新冠肺炎GWAS。該研究招募了3533名新冠肺炎住院患者和1700名非住院的新冠肺炎患者。該研究驗(yàn)證了以往在歐洲人群中鑒定的與新冠肺炎重癥化相關(guān)的易感區(qū)域3p21.31和21q22.11。此外,該研究新發(fā)現(xiàn)了位于1號(hào)染色體的基因區(qū)域與新冠住院表型顯著相關(guān)。
通過(guò)上述基于歐美裔和非歐美裔人群的新冠相關(guān)表型的GWAS,研究人員鑒定了一系列新冠易感基因或區(qū)域。這些易感基因或區(qū)域有的在不同人群間共有,有的則具有人群特異性。例如,人群間共有的新冠易感基因包括和等,這些基因區(qū)域在全球主要人群(歐洲裔、非洲裔、美洲裔、東亞和南亞人群)中均與新冠肺炎顯著相關(guān)[7,8,19]。人群特異的易感基因區(qū)域包括3p21.31、19p13.2和5q35等。例如,在歐洲裔、南亞裔和美洲裔等多個(gè)人群中3p21.31基因座與新冠肺炎顯著相關(guān)[7,8,30];然而,該基因座在東亞裔和非洲裔人群中則不存在多態(tài)性。同樣,19p13.2基因座(基因)是歐洲裔人群的新冠肺炎易感基因區(qū)域[8],但該區(qū)域在東亞裔人群中則不存在多態(tài)性?;谌毡救巳喊l(fā)現(xiàn)的與新冠重癥肺炎相關(guān)的5q35基因座(基因)[19],在歐洲裔人群中則不存在多態(tài)性。此外,在中國(guó)人群和阿拉伯人群中,均發(fā)現(xiàn)11q14.2基因座(基因)與新冠重癥肺炎顯著相關(guān)[16,29];然而,該關(guān)聯(lián)信號(hào)并未在歐洲裔人群中得到重現(xiàn),提示可能存在人群特異性。
上述新冠肺炎GWAS主要關(guān)注常見遺傳變異(一般定義為次要等位頻率>1%)。常見遺傳變異常常無(wú)法解釋復(fù)雜疾病的全部遺傳度,這種現(xiàn)象被稱為“缺失的遺傳度”。尋找“缺失的遺傳度”,是后全基因組關(guān)聯(lián)研究時(shí)代關(guān)注的重要問題之一。其中,罕見遺傳變異(一般定義為次要等位頻率<1%)被認(rèn)為可能解釋部分“缺失的遺傳度”[31]。因此,罕見遺傳變異是否與新冠肺炎這一復(fù)雜疾病相關(guān)也是非常值得關(guān)注的科學(xué)問題。
2020年8月,荷蘭奈梅亨拉德布大學(xué)醫(yī)學(xué)中心的研究團(tuán)隊(duì)報(bào)道了2個(gè)家系4例新冠危重癥病例[31],這4例病例均為年齡小于35歲、無(wú)基礎(chǔ)疾病的男性個(gè)體。通過(guò)全外顯子組測(cè)序分析發(fā)現(xiàn),這4例病例的X染色體均攜帶Toll樣受體7()基因的功能喪失型罕見遺傳變異?;蚓幋a的TLR7蛋白是一種單鏈RNA病毒傳感器,可識(shí)別冠狀病毒,從而激活I(lǐng)型干擾素(IFN-I)通路。與其他家庭成員及其他對(duì)照個(gè)體相比,攜帶罕見遺傳變異的患者的外周血中,IFN-I信號(hào)通路下游分子的轉(zhuǎn)錄水平顯著下調(diào)??傊?,該病例報(bào)告初步證明了罕見遺傳變異可能與新冠重癥肺炎密切相關(guān)。
英國(guó)洛克菲勒大學(xué)的Jean-Laurent Casanova團(tuán)隊(duì)對(duì)來(lái)自多個(gè)種族的659名危重型新冠肺炎患者和534名無(wú)癥狀感染者進(jìn)行了全外顯子組或全基因組測(cè)序[20]。該研究重點(diǎn)關(guān)注了之前報(bào)道的與病毒感染相關(guān)的且調(diào)控IFN-I信號(hào)通路的13個(gè)候選基因,包括、和等。研究發(fā)現(xiàn),23名(3.5%)重癥患者攜帶上述基因的功能喪失型罕見變異。細(xì)胞學(xué)實(shí)驗(yàn)證實(shí),這些變異將減弱成纖維細(xì)胞對(duì)新冠病毒的免疫力。該團(tuán)隊(duì)進(jìn)一步開展了針對(duì)男性危重型新冠肺炎患者的全基因組測(cè)序或全外顯子組測(cè)序研究[21]。研究發(fā)現(xiàn),在1202名男性危重癥患者中,有16名患者攜帶基因的危害性罕見變異,而331名男性無(wú)癥狀感染或輕癥患者中則不攜帶此類變異。因此,基因的危害性罕見變異顯著富集于男性危重癥患者中。研究進(jìn)一步發(fā)現(xiàn),攜帶基因變異的患者外周血B細(xì)胞系和髓系細(xì)胞亞群對(duì)刺激無(wú)反應(yīng),該現(xiàn)象能夠通過(guò)過(guò)表達(dá)野生型挽救。攜帶基因變異的患者外周血漿細(xì)胞樣樹突狀細(xì)胞在新冠病毒感染后產(chǎn)生較低水平的I型干擾素。這些研究提示,缺陷可能導(dǎo)致男性患者更易發(fā)展為危重癥新冠肺炎。
然而,上述研究并沒有在全外顯子組或全基因組層面系統(tǒng)開展罕見變異研究。為此,美國(guó)Regeneron遺傳學(xué)中心的Manuel Ferreira團(tuán)隊(duì)開展了首項(xiàng)針對(duì)新冠肺炎的全外顯子組水平的罕見變異研究[22]。該研究包含了來(lái)自五個(gè)人群(非洲、美洲、歐洲、東亞和南亞人群)的586,157名個(gè)體,其中包括20,952名新冠肺炎患者。該研究重點(diǎn)關(guān)注7種新冠表型(具體見文獻(xiàn)[22]原文附表3)。最終,該研究共鑒定到8個(gè)基因與新冠的某一表型顯著相關(guān)。其中,基因上的功能喪失型罕見變異和錯(cuò)義變異與新冠重癥肺炎的發(fā)生風(fēng)險(xiǎn)顯著相關(guān)。此外,基因上的超罕見變異(ultra-rare variant) rs769102632與新冠病毒感染顯著相關(guān),該基因編碼一種鋅指抗病毒蛋白,可抑制新冠病毒的復(fù)制。然而,rs769102632與新冠病毒感染的這一關(guān)聯(lián)結(jié)果并沒有在GenOMICC等計(jì)劃中重復(fù)出來(lái),仍然有待后續(xù)研究證實(shí)。
中國(guó)科學(xué)院北京基因組研究所金鑫團(tuán)隊(duì)聯(lián)合多家單位分析了來(lái)自中國(guó)人群451名新冠肺炎患者(159名非重癥患者和292名重癥患者)的罕見變異[23]。該研究主要分析了可能有害錯(cuò)義變異(likely delete-rious missense mutation,LDM)和高置信度預(yù)測(cè)的功能喪失變異(high-confidence predicted loss-of-function mutation,HC-pLoF)與新冠肺炎的遺傳相關(guān)性,遺憾的是,該研究未能發(fā)現(xiàn)與新冠重癥肺炎顯著相關(guān)的候選基因。
總之,上述研究提示,罕見遺傳變異在新冠肺炎的發(fā)生發(fā)展中也發(fā)揮重要的作用。
GWAS已成功發(fā)現(xiàn)了數(shù)以千計(jì)的與復(fù)雜疾病相關(guān)的易感SNP位點(diǎn),然而,絕大部分SNP位于非編碼區(qū),因而無(wú)法直接定位其影響的易感基因,阻礙了復(fù)雜疾病機(jī)制的研究及遺傳關(guān)聯(lián)結(jié)果在臨床防診治措施研發(fā)中的應(yīng)用[32,33]。此外,同一易感基因座內(nèi)往往存在多個(gè)SNP,且相互之間具有較強(qiáng)的連鎖不平衡(linkage disequilibrium,LD),因此GWAS無(wú)法直接從中定位出真正的致病性SNP。精細(xì)定位研究的任務(wù)即是確定復(fù)雜疾病易感基因區(qū)域的致病性SNP,并進(jìn)一步識(shí)別其影響的易感基因,最終解析致病性SNP和基因的生物學(xué)機(jī)制[34]。迄今為止,新冠重癥肺炎的GWAS已發(fā)現(xiàn)了超過(guò)100個(gè)易感基因區(qū)域。其中,3p21.31區(qū)域在所有基于歐洲人群和南亞人群的研究中被重復(fù)出來(lái),是最為顯著的新冠肺炎易感基因區(qū)域。本文以3p21.31區(qū)域?yàn)槔攸c(diǎn)介紹其精細(xì)定位研究進(jìn)展。
美國(guó)哈佛醫(yī)學(xué)院的研究團(tuán)隊(duì)首次報(bào)道了針對(duì)3p21.31區(qū)域的精細(xì)定位研究[35]。該研究首先通過(guò)貝葉斯精細(xì)定位分析,將3p21.31區(qū)域的致病性SNP的范圍縮小至22個(gè)SNP位點(diǎn),這些SNP位于一個(gè)長(zhǎng)約67.8 kb的基因組區(qū)域。進(jìn)一步在THP-1 (單核細(xì)胞)和Jurkat(T淋巴細(xì)胞)中采用CRISPR/ Cas9基因編輯技術(shù)敲除該67.8 kb區(qū)域后發(fā)現(xiàn),和基因表達(dá)被顯著抑制,提示和可能是3p21.31區(qū)域的易感基因。進(jìn)一步基于來(lái)源于免疫細(xì)胞的表觀基因組數(shù)據(jù),預(yù)測(cè)出6個(gè)SNP位點(diǎn)(rs34326463、rs76374459、rs73064425、rs13081482、rs35652899和rs35044562)位于T細(xì)胞特有的增強(qiáng)子區(qū)域,提示這6個(gè)SNP可能是該區(qū)域的致病性變異。
美國(guó)紐約基因組中心的研究團(tuán)隊(duì)近日也發(fā)布了該團(tuán)隊(duì)針對(duì)3p21.31區(qū)域的精細(xì)定位研究[36]。該研究采用CRISPR篩查[37]分析發(fā)現(xiàn),3p21.31區(qū)域中的和基因在CRISPR篩查中有較高的排序,提示這兩個(gè)基因可能是新冠重癥肺炎的候選易感基因。進(jìn)一步發(fā)現(xiàn)在特定的組織或細(xì)胞中,和的GWAS和eQTL信號(hào)存在共定位。此外,和在生物學(xué)功能上也可能與新冠重癥肺炎密切相關(guān)。例如,能夠與新冠病毒受體ACE2相互作用;能夠調(diào)節(jié)肺組織中駐留記憶T(TRM)細(xì)胞的定位,并維持氣道TRM細(xì)胞的細(xì)胞免疫功能。因此在對(duì)抗呼吸道病原體的侵襲和感染上發(fā)揮至關(guān)重要的作用。綜上,該研究提示和是3p21.31區(qū)域的易感基因。
英國(guó)牛津大學(xué)的研究團(tuán)隊(duì)通過(guò)多組學(xué)整合分析和機(jī)器學(xué)習(xí)等方法[38],鑒定到rs17713054可能是3p21.31區(qū)域的致病性變異。通過(guò)染色體構(gòu)象捕獲技術(shù)(chromosome conformation capture,3C)和基因表達(dá)分析發(fā)現(xiàn),rs17713054位于增強(qiáng)子區(qū)域,其A等位能夠?qū)е罗D(zhuǎn)錄因子CEBPB該增強(qiáng)子的結(jié)合能力增強(qiáng),并由此通過(guò)遠(yuǎn)程調(diào)控上調(diào)基因的表達(dá)。以往報(bào)道LZTFL1能夠通過(guò)Wnt通路調(diào)控上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)[39,40],而EMT過(guò)程是宿主響應(yīng)病毒入侵的重要生物學(xué)過(guò)程。進(jìn)一步采用空間轉(zhuǎn)錄組學(xué)技術(shù)分析新冠肺炎患者的肺組織,證實(shí)存在EMT信號(hào)。因此,3p21.31區(qū)域的致病性變異rs17713054可調(diào)控基因的表達(dá),從而影響肺上皮細(xì)胞的EMT,最終影響新冠肺炎的嚴(yán)重程度。
新冠病毒感染機(jī)體后存在多階段、多樣化的臨床轉(zhuǎn)歸,遺傳因素在此過(guò)程中發(fā)揮著重要作用?;谌蚪M關(guān)聯(lián)研究,研究人員已成功定位了超過(guò)100個(gè)各類新冠表型的易感基因或區(qū)域。這些發(fā)現(xiàn)為新冠病毒感染以及重癥肺炎發(fā)生發(fā)展的生物學(xué)機(jī)制提供了線索,也為新冠肺炎防診治措施的研發(fā)提供了理論基礎(chǔ)。然而,目前絕大部分的新冠全基因組關(guān)聯(lián)研究主要基于歐洲人群或美洲人群開展。與基于歐美人群的研究相比,基于其他人群新冠肺炎的全基因組關(guān)聯(lián)研究存在樣本量較小、新冠表型單一的缺陷。因此,需開展更大規(guī)模的基于非歐美人群的各類新冠肺炎表型的全基因組關(guān)聯(lián)研究,從而更全面地解析新冠肺炎的遺傳易感基因圖譜。
[1] Huang CL, Wang YM, Li XW, Ren LL, Zhao JP, Hu Y, Zhang L, Fan GH, Xu JY, Gu XY, Cheng ZS, Yu T, Xia JA, Wei Y, Wu WJ, Xie XL, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie JG, Wang GF, Jiang RM, Gao ZC, Jin Q, Wang JW, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China., 2020, 395(10223): 497–506.
[2] Wu ZY, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese center for disease control and prevention., 2020, 323(13): 1239–1242.
[3] Zhang XN, Tan Y, Ling Y, Lu G, Liu F, Yi ZG, Jia XF, Wu M, Shi BS, Xu SB, Chen J, Wang W, Chen B, Jiang L, Yu ST, Lu J, Wang JZ, Xu MZ, Yuan ZH, Zhang Q, Zhang XX, Zhao GP, Wang SY, Chen SJ, Lu HZ. Viral and host factors related to the clinical outcome of COVID-19., 2020, 583(7816): 437–440.
[4] Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, McMahon A, Morales J, Mountjoy E, Sollis E, Suveges D, Vrousgou O, Whetzel PL, Amode R, Guillen JA, Riat HS, Trevanion SJ, Hall P, Junkins H, Flicek P, Burdett T, Hindorff LA, Cunningham F, Parkinson H. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019., 2019, 47(D1): D1005–D1012.
[5] Velavan TP, Pallerla SR, Rüter J, Augustin Y, Kremsner PG, Krishna S, Meyer CG. Host genetic factors determining COVID-19 susceptibility and severity., 2021, 72: 103629.
[6] Kousathanas A, Pairo-Castineira E, Rawlik K, Stuckey A, Odhams CA, Walker S, Russell CD, Malinauskas T, Wu Y, Millar J, Shen X, Elliott KS, Griffiths F, Oosthuyzen W, Morrice K, Keating S, Wang B, Rhodes D, Klaric L, Zechner M, Parkinson N, Siddiq A, Goddard P, Donovan S, Maslove D, Nichol A, Semple MG, Zainy T, Maleady-Crowe F, Todd L, Salehi S, Knight J, Elgar G, Chan G, Arumugam P, Patch C, Rendon A, Bentley D, Kingsley C, Kosmicki JA, Horowitz JE, Baras A, Abecasis GR, Ferreira MAR, Justice A, Mirshahi T, Oetjens M, Rader DJ, Ritchie MD, Verma A, Fowler TA, Shankar-Hari M, Summers C, Hinds C, Horby P, Ling L, McAuley D, Montgomery H, Openshaw PJM, Elliott P, Walsh T, Tenesa A, GenOMICC investigators, 23andMe investigators, COVID-19 Human Genetics Initiativ, Fawkes A, Murphy L, Rowan K, Ponting CP, Vitart V, Wilson JF, Yang J, Bretherick AD, Scott RH, Hendry SC, Moutsianas L, Law A, Caulfield MJ, Baillie JK. Whole- genome sequencing reveals host factors underlying critical COVID-19., 2022, 607(7917): 97–103.
[7] Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, Fernández J, Prati D, Baselli G, Asselta R, Grimsrud MM, Milani C, Aziz F, K?ssens J, May S, Wendorff M, Wienbrandt L, Uellendahl-Werth F, Zheng TH, Yi XL, de Pablo R, Chercoles AG, Palom A, Garcia-Fernandez AE, Rodriguez-Frias F, Zanella A, Bandera A, Protti A, Aghemo A, Lleo A, Biondi A, Caballero-Garralda A, Gori A, Tanck A, Carreras Nolla A, Latiano A, Fracanzani AL, Peschuck A, Julià A, Pesenti A, Voza A, Jiménez D, Mateos B, Nafria Jimenez B, Quereda C, Paccapelo C, Gassner C, Angelini C, Cea C, Solier A, Pesta?a D, Mu?iz-Diaz E, Sandoval E, Paraboschi EM, Navas E, García Sánchez F, Ceriotti F, Martinelli-Boneschi F, Peyvandi F, Blasi F, Téllez L, Blanco-Grau A, Hemmrich-Stanisak G, Grasselli G, Costantino G, Cardamone G, Foti G, Aneli S, Kurihara H, ElAbd H, My I, Gálvan-Femenia I, Martín J, Erdmann J, Ferrusquía- Acosta J, Garcia-Etxebarria K, Izquierdo-Sanchez L, Bettini LR, Sumoy L, Terranova L, Moreira L, Santoro L, Scudeller L, Mesonero F, Roade L, Rühlemann MC, Schaefer M, Carrabba M, Riveiro-Barciela M, Figuera Basso ME, Valsecchi MG, Hernandez-Tejero M, Acosta-Herrera M, D'Angiò M, Baldini M, Cazzaniga M, Schulzky M, Cecconi M, Wittig M, Ciccarelli M, Rodríguez-Gandía M, Bocciolone M, Miozzo M, Montano N, Braun N, Sacchi N, Martínez N, ?zer O, Palmieri O, Faverio P, Preatoni P, Bonfanti P, Omodei P, Tentorio P, Castro P, Rodrigues PM, Blandino Ortiz AB, de Cid R, Ferrer R, Gualtierotti R, Nieto R, Goerg S, Badalamenti S, Marsal S, Matullo G, Pelusi S, Juzenas S, Aliberti S, Monzani V, Moreno V, Wesse T, Lenz TL, Pumarola T, Rimoldi V, Bosari S, Albrecht W, Peter W, Romero-Gómez M, D'Amato M, Duga S, Banales JM, Hov JR, Folseraas T, Valenti L, Franke A, Karlsen TH. Genomewide association study of severe Covid-19 with respiratory failure., 2020, 383(16): 1522–1534.
[8] Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, Walker S, Parkinson N, Fourman MH, Russell CD, Furniss J, Richmond A, Gountouna E, Wrobel N, Harrison D, Wang B, Wu Y, Meynert A, Griffiths F, Oosthuyzen W, Kousathanas A, Moutsianas L, Yang ZJ, Zhai RR, Zheng CQ, Grimes G, Beale R, Millar J, Shih B, Keating S, Zechner M, Haley C, Porteous DJ, Hayward C, Yang J, Knight J, Summers C, Shankar-Hari M, Klenerman P, Turtle L, Ho A, Moore SC, Hinds C, Horby P, Nichol A, Maslove D, Ling L, McAuley D, Montgomery H, Walsh T, Pereira AC, Renieri A, GenOMICC Investigators, ISARIC4C Investigators, COVID-19 Human Genetics Initiative, 23andMe Investigators, BRACOVID Investigators, Gen-COVID Investigators, Shen X, Ponting CP, Fawkes A, Tenesa A, Caulfield M, Scott R, Rowan K, Murphy L, Openshaw PJM, Semple MG, Law A, Vitart V, Wilson JF, Baillie JK. Genetic mechanisms of critical illness in COVID-19., 2021, 591(7848): 92–98.
[9] Pairo-Castineira E, Rawlik K, Bretherick AD, Qi T, Wu Y, Nassiri I, McConkey GA, Zechner M, Klaric L, Griffiths F, Oosthuyzen W, Kousathanas A, Richmond A, Millar J, Russell CD, Malinauskas T, Thwaites R, Morrice K, Keating S, Maslove D, Nichol A, Semple MG, Knight J, Shankar-Hari M, Summers C, Hinds C, Horby P, Ling L, McAuley D, Montgomery H, Openshaw PJM, Begg C, Walsh T, Tenesa A, Flores C, Riancho JA, Rojas-Martinez A, Lapunzina P, GenOMICC Investigators, SCOURGE Consortium, ISARICC Investigators, 23andMe COVID-19 Team, Yang J, Ponting CP, Wilson JF, Vitart V, Abedalthagafi M, Luchessi AD, Parra EJ, Cruz R, Carracedo A, Fawkes A, Murphy L, Rowan K, Pereira AC, Law A, Fairfax B, Hendry SC, Baillie JK. GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19., 2023, 617(7962): 764–768.
[10] Shelton JF, Shastri AJ, Ye C, Weldon CH, Filshtein- Sonmez T, Coker D, Symons A, Esparza-Gordillo J, 23andMe COVID-19 Team, Aslibekyan S, Auton A. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity., 2021, 53(6): 801–808.
[11] COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19., 2021, 600(7889): 472–477.
[12] COVID-19 Host Genetics Initiative. A first update on mapping the human genetic architecture of COVID-19., 2022, 608(7921): E1–E10.
[13] Roberts GHL, Partha R, Rhead B, Knight SC, Park DS, Coignet MV, Zhang M, Berkowitz N, Turrisini DA, Gaddis M, McCurdy SR, Pavlovic M, Ruiz L, Sass C, AncestryDNA Science Team, Haug Baltzell AK, Guturu H, Girshick AR, Ball CA, Hong EL, Rand KA. Expanded COVID-19 phenotype definitions reveal distinct patterns of genetic association and protective effects., 2022, 54(4): 374–381.
[14] Shelton JF, Shastri AJ, Fletez-Brant K, 23andMe COVID- 19 Team, Aslibekyan S, Auton A. The UGT2A1/UGT2A2 locus is associated with COVID-19-related loss of smell or taste., 2022, 54(2): 121–124.
[15] Wang F, Huang SJ, Gao RS, Zhou YW, Lai CX, Li ZC, Xian WJ, Qian XB, Li ZY, Huang YS, Tang QY, Liu PH, Chen RK, Liu R, Li X, Tong X, Zhou X, Bai Y, Duan G, Zhang T, Xu X, Wang J, Yang HM, Liu SY, He Q, Jin X, Liu L. Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility., 2020, 6(1): 83.
[16] Li YF, Ke YH, Xia XY, Wang YH, Cheng FJ, Liu XY, Jin X, Li BA, Xie CY, Liu SY, Chen WJ, Yang CN, Niu YG, Jia RZ, Chen Y, Liu X, Wang ZH, Zheng F, Jin Y, Li Z, Yang N, Cao PB, Chen HX, Ping J, He FC, Wang CJ, Zhou GQ. Genome-wide association study of COVID-19 severity among the Chinese population., 2021, 7(1): 76.
[17] Wu P, Ding L, Li XD, Liu SY, Cheng FJ, He Q, Xiao MZ, Wu P, Hou HY, Jiang MH, Long PP, Wang H, Liu LL, Qu MH, Shi X, Jiang Q, Mo TT, Ding WC, Fu Y, Han S, Huo XX, Zeng YC, Zhou YN, Zhang Q, Ke J, Xu X, Ni W, Shao ZY, Wang JZ, Liu PH, Li ZL, Jin Y, Zheng F, Wang F, Liu L, Li WD, Liu K, Peng R, Xu XD, Lin YH, Gao H, Shi LM, Geng ZY, Mu XW, Yan Y, Wang K, Wu DG, Hao XJ, Cheng SS, Qiu GK, Guo H, Li KZ, Chen G, Sun ZY, Lin XH, Jin X, Wang F, Sun CY, Wang CL. Trans-ethnic genome-wide association study of severe COVID-19., 2021, 4(1): 1034.
[18] Gong B, Huang LL, He YQ, Xie W, Yin Y, Shi Y, Xiao JL, Zhong L, Zhang Y, Jiang ZL, Hao F, Zhou Y, Li H, Jiang L, Yang XX, Song XR, Kang Y, Tuo L, Huang Y, Shuai P, Liu YP, Zheng F, Yang ZL. A genetic variant in IL-6 lowering its expression is protective for critical patients with COVID-19., 2022, 7(1): 112.
[19] Namkoong H, Edahiro R, Takano T, Nishihara H, Shirai Y, Sonehara K, Tanaka H, Azekawa S, Mikami Y, Lee H, Hasegawa T, Okudela K, Okuzaki D, Motooka D, Kanai M, Naito T, Yamamoto K, Wang QS, Saiki R, Ishihara R, Matsubara Y, Hamamoto J, Hayashi H, Yoshimura Y, Tachikawa N, Yanagita E, Hyugaji T, Shimizu E, Katayama K, Kato Y, Morita T, Takahashi K, Harada N, Naito T, Hiki M, Matsushita Y, Takagi H, Aoki R, Nakamura A, Harada S, Sasano H, Kabata H, Masaki K, Kamata H, Ikemura S, Chubachi S, Okamori S, Terai H, Morita A, Asakura T, Sasaki J, Morisaki H, Uwamino Y, Nanki K, Uchida S, Uno S, Nishimura T, Ishiguro T, Isono T, Shibata S, Matsui Y, Hosoda C, Takano K, Nishida T, Kobayashi Y, Takaku Y, Takayanagi N, Ueda S, Tada A, Miyawaki M, Yamamoto M, Yoshida E, Hayashi R, Nagasaka T, Arai S, Kaneko Y, Sasaki K, Tagaya E, Kawana M, Arimura K, Takahashi K, Anzai T, Ito S, Endo A, Uchimura Y, Miyazaki Y, Honda T, Tateishi T, Tohda S, Ichimura N, Sonobe K, Sassa CT, Nakajima J, Nakano Y, Nakajima Y, Anan R, Arai R, Kurihara Y, Harada Y, Nishio K, Ueda T, Azuma M, Saito R, Sado T, Miyazaki Y, Sato R, Haruta Y, Nagasaki T, Yasui Y, Hasegawa Y, Mutoh Y, Kimura T, Sato T, Takei R, Hagimoto S, Noguchi Y, Yamano Y, Sasano H, Ota S, Nakamori Y, Yoshiya K, Saito F, Yoshihara T, Wada D, Iwamura H, Kanayama S, Maruyama S, Yoshiyama T, Ohta K, Kokuto H, Ogata H, Tanaka Y, Arakawa K, Shimoda M, Osawa T, Tateno H, Hase I, Yoshida S, Suzuki S, Kawada M, Horinouchi H, Saito F, Mitamura K, Hagihara M, Ochi J, Uchida T, Baba R, Arai D, Ogura T, Takahashi H, Hagiwara S, Nagao G, Konishi S, Nakachi I, Murakami K, Yamada M, Sugiura H, Sano H, Matsumoto S, Kimura N, Ono Y, Baba H, Suzuki Y, Nakayama S, Masuzawa K, Namba S, Suzuki K, Naito Y, Liu YC, Takuwa A, Sugihara F, Wing JB, Sakakibara S, Hizawa N, Shiroyama T, Miyawaki S, Kawamura Y, Nakayama A, Matsuo H, Maeda Y, Nii T, Noda Y, Niitsu T, Adachi Y, Enomoto T, Amiya S, Hara R, Yamaguchi Y, Murakami T, Kuge T, Matsumoto K, Yamamoto Y, Yamamoto M, Yoneda M, Kishikawa T, Yamada S, Kawabata S, Kijima N, Takagaki M, Sasa N, Ueno Y, Suzuki M, Takemoto N, Eguchi H, Fukusumi T, Imai T, Fukushima M, Kishima H, Inohara H, Tomono K, Kato K, Takahashi M, Matsuda F, Hirata H, Takeda Y, Koh H, Manabe T, Funatsu Y, Ito F, Fukui T, Shinozuka K, Kohashi S, Miyazaki M, Shoko T, Kojima M, Adachi T, Ishikawa M, Takahashi K, Inoue T, Hirano T, Kobayashi K, Takaoka H, Watanabe K, Miyazawa N, Kimura Y, Sado R, Sugimoto H, Kamiya A, Kuwahara N, Fujiwara A, Matsunaga T, Sato Y, Okada T, Hirai Y, Kawashima H, Narita A, Niwa K, Sekikawa Y, Nishi K, Nishitsuji M, Tani M, Suzuki J, Nakatsumi H, Ogura T, Kitamura H, Hagiwara E, Murohashi K, Okabayashi H, Mochimaru T, Nukaga S, Satomi R, Oyamada Y, Mori N, Baba T, Fukui Y, Odate M, Mashimo S, Makino Y, Yagi K, Hashiguchi M, Kagyo J, Shiomi T, Fuke S, Saito H, Tsuchida T, Fujitani S, Takita M, Morikawa D, Yoshida T, Izumo T, Inomata M, Kuse N, Awano N, Tone M, Ito A, Nakamura Y, Hoshino K, Maruyama J, Ishikura H, Takata T, Odani T, Amishima M, Hattori T, Shichinohe Y, Kagaya T, Kita T, Ohta K, Sakagami S, Koshida K, Hayashi K, Shimizu T, Kozu Y, Hiranuma H, Gon Y, Izumi N, Nagata K, Ueda K, Taki R, Hanada S, Kawamura K, Ichikado K, Nishiyama K, Muranaka H, Nakamura K, Hashimoto N, Wakahara K, Sakamoto K, Omote N, Ando A, Kodama N, Kaneyama Y, Maeda S, Kuraki T, Matsumoto T, Yokote K, Nakada TA, Abe R, Oshima T, Shimada T, Harada M, Takahashi T, Ono H, Sakurai T, Shibusawa T, Kimizuka Y, Kawana A, Sano T, Watanabe C, Suematsu R, Sageshima H, Yoshifuji A, Ito K, Takahashi S, Ishioka K, Nakamura M, Masuda M, Wakabayashi A, Watanabe H, Ueda S, Nishikawa M, Chihara Y, Takeuchi M, Onoi K, Shinozuka J, Sueyoshi A, Nagasaki Y, Okamoto M, Ishihara S, Shimo M, Tokunaga Y, Kusaka Y, Ohba T, Isogai S, Ogawa A, Inoue T, Fukuyama S, Eriguchi Y, Yonekawa A, Kan-O K, Matsumoto K, Kanaoka K, Ihara S, Komuta K, Inoue Y, Chiba S, Yamagata K, Hiramatsu Y, Kai H, Asano K, Oguma T, Ito Y, Hashimoto S, Yamasaki M, Kasamatsu Y, Komase Y, Hida N, Tsuburai T, Oyama B, Takada M, Kanda H, Kitagawa Y, Fukuta T, Miyake T, Yoshida S, Ogura S, Abe S, Kono Y, Togashi Y, Takoi H, Kikuchi R, Ogawa S, Ogata T, Ishihara S, Kanehiro A, Ozaki S, Fuchimoto Y, Wada S, Fujimoto N, Nishiyama K, Terashima M, Beppu S, Yoshida K, Narumoto O, Nagai H, Ooshima N, Motegi M, Umeda A, Miyagawa K, Shimada H, Endo M, Ohira Y, Watanabe M, Inoue S, Igarashi A, Sato M, Sagara H, Tanaka A, Ohta S, Kimura T, Shibata Y, Tanino Y, Nikaido T, Minemura H, Sato Y, Yamada Y, Hashino T, Shinoki M, Iwagoe H, Takahashi H, Fujii K, Kishi H, Kanai M, Imamura T, Yamashita T, Yatomi M, Maeno T, Hayashi S, Takahashi M, Kuramochi M, Kamimaki I, Tominaga Y, Ishii T, Utsugi M, Ono A, Tanaka T, Kashiwada T, Fujita K, Saito Y, Seike M, Watanabe H, Matsuse H, Kodaka N, Nakano C, Oshio T, Hirouchi T, Makino S, Egi M, Biobank Japan P, Omae Y, Nannya Y, Ueno T, Katayama K, Ai M, Fukui Y, Kumanogoh A, Sato T, Hasegawa N, Tokunaga K, Ishii M, Koike R, Kitagawa Y, Kimura A, Imoto S, Miyano S, Ogawa S, Kanai T, Fukunaga K, Okada Y. DOCK2 is involved in the host genetics and biology of severe COVID-19., 2022, 609(7928): 754–760.
[20] Zhang Q, Bastard P, Liu ZY, Le Pen J, Moncada-Velez M, Chen J, Ogishi M, Sabli IKD, Hodeib S, Korol C, Rosain J, Bilguvar K, Ye JQ, Bolze A, Bigio B, Yang R, Arias AA, Zhou QH, Zhang Y, Onodi F, Korniotis S, Karpf L, Philippot Q, Chbihi M, Bonnet-Madin L, Dorgham K, Smith N, Schneider WM, Razooky BS, Hoffmann HH, Michailidis E, Moens L, Han JE, Lorenzo L, Bizien L, Meade P, Neehus AL, Ugurbil AC, Corneau A, Kerner G, Zhang P, Rapaport F, Seeleuthner Y, Manry J, Masson C, Schmitt Y, Schlüter A, Le Voyer T, Khan T, Li J, Fellay J, Roussel L, Shahrooei M, Alosaimi MF, Mansouri D, Al-Saud H, Al-Mulla F, Almourfi F, Al-Muhsen SZ, Alsohime F, Al Turki S, Hasanato R, van de Beek D, Biondi A, Bettini LR, D'Angio M, Bonfanti P, Imberti L, Sottini A, Paghera S, Quiros-Roldan E, Rossi C, Oler AJ, Tompkins MF, Alba C, Vandernoot I, Goffard JC, Smits G, Migeotte I, Haerynck F, Soler-Palacin P, Martin-Nalda A, Colobran R, Morange PE, Keles S, ??lkesen F, Ozcelik T, Yasar KK, Senoglu S, Karabela ?N, Rodríguez-Gallego C, Novelli G, Hraiech S, Tandjaoui-Lambiotte Y, Duval X, Laouénan C, COVID-STORM Clinicians, COVID Clinicians, Imagine COVID Group, French COVID Cohort Study Group, CoV-Contact Cohort, Amsterdam UMC Covid-19 Biobank, COVID Human Genetic Effort, NIAID-USUHS/TAGC COVID Immunity Group, Snow AL, Dalgard CL, Milner JD, Vinh DC, Mogensen TH, Marr N, Spaan AN, Boisson B, Boisson-Dupuis S, Bustamante J, Puel A, Ciancanelli MJ, Meyts I, Maniatis T, Soumelis V, Amara A, Nussenzweig M, García-Sastre A, Krammer F, Pujol A, Duffy D, Lifton RP, Zhang SY, Gorochov G, Béziat V, Jouanguy E, Sancho-Shimizu V, Rice CM, Abel L, Notarangelo LD, Cobat A, Su HC, Casanova JL. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19., 2020, 370(6515): eabd4570.
[21] Asano T, Boisson B, Onodi F, Matuozzo D, Moncada- Velez M, Maglorius Renkilaraj MRL, Zhang P, Meertens L, Bolze A, Materna M, Korniotis S, Gervais A, Talouarn E, Bigio B, Seeleuthner Y, Bilguvar K, Zhang Y, Neehus AL, Ogishi M, Pelham SJ, Le Voyer T, Rosain J, Philippot Q, Soler-Palacín P, Colobran R, Martin-Nalda A, Rivière JG, Tandjaoui-Lambiotte Y, Cha?bi K, Shahrooei M, Darazam IA, Olyaei NA, Mansouri D, Hatipo?lu N, Palabiyik F, Ozcelik T, Novelli G, Novelli A, Casari G, Aiuti A, Carrera P, Bondesan S, Barzaghi F, Rovere-Querini P, Tresoldi C, Franco JL, Rojas J, Reyes LF, Bustos IG, Arias AA, Morelle G, Christèle K, Troya J, Planas-Serra L, Schlüter A, Gut M, Pujol A, Allende LM, Rodriguez- Gallego C, Flores C, Cabrera-Marante O, Pleguezuelo DE, de Diego RP, Keles S, Aytekin G, Akcan OM, Bryceson YT, Bergman P, Brodin P, Smole D, Smith CIE, Norlin AC, Campbell TM, Covill LE, Hammarstr?m L, Pan- Hammarstr?m Q, Abolhassani H, Mane S, Marr N, Ata M, Al Ali F, Khan T, Spaan AN, Dalgard CL, Bonfanti P, Biondi A, Tubiana S, Burdet C, Nussbaum R, Kahn- Kirby A, Snow AL, COVID Human Genetic Effort, COVID- STORM Clinicians, COVID Clinicians, Imagine COVID Group, French COVID Cohort Study Group, CoV-Contact Cohort, Amsterdam UMC Covid-, Biobank, NIAID- USUHS COVID Study Group, Bustamante J, Puel A, Boisson-Dupuis S, Zhang SY, Béziat V, Lifton RP, Bastard P, Notarangelo LD, Abel L, Su HC, Jouanguy E, Amara A, Soumelis V, Cobat A, Zhang Q, Casanova JL. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19., 2021, 6(62): eabl4348.
[22] Kosmicki JA, Horowitz JE, Banerjee N, Lanche R, Marcketta A, Maxwell E, Bai XD, Sun D, Backman JD, Sharma D, Kury FSP, Kang HM, O'Dushlaine C, Yadav A, Mansfield AJ, Li AH, Watanabe K, Gurski L, McCarthy SE, Locke AE, Khalid S, O'Keeffe S, Mbatchou J, Chazara O, Huang YF, Kvikstad E, O'Neill A, Nioi P, Parker MM, Petrovski S, Runz H, Szustakowski JD, Wang QL, Wong E, Cordova-Palomera A, Smith EN, Szalma S, Zheng XW, Esmaeeli S, Davis JW, Lai YP, Chen X, Justice AE, Leader JB, Mirshahi T, Carey DJ, Verma A, Sirugo G, Ritchie MD, Rader DJ, Povysil G, Goldstein DB, Kiryluk K, Pairo-Castineira E, Rawlik K, Pasko D, Walker S, Meynert A, Kousathanas A, Moutsianas L, Tenesa A, Caulfield M, Scott R, Wilson JF, Baillie JK, Butler-Laporte G, Nakanishi T, Lathrop M, Richards JB, Regeneron Genetics Center, UKB Exome Sequencing Consortium, Jones M, Balasubramanian S, Salerno W, Shuldiner AR, Marchini J, Overton JD, Habegger L, Cantor MN, Reid JG, Baras A, Abecasis GR, Ferreira MAR. Pan-ancestry exome-wide association analyses of COVID-19 outcomes in 586,157 individuals., 2021, 108(7): 1350–1355.
[23] Liu PH, Fang MY, Luo YX, Zheng F, Jin Y, Cheng FJ, Zhu HH, Jin X. Rare variants in inborn errors of immunity genes associated with COVID-19 severity., 2022, 12: 888582.
[24] Horowitz JE, Kosmicki JA, Damask A, Sharma D, Roberts GHL, Justice AE, Banerjee N, Coignet MV, Yadav A, Leader JB, Marcketta A, Park DS, Lanche R, Maxwell E, Knight SC, Bai XD, Guturu H, Sun D, Baltzell A, Kury FSP, Backman JD, Girshick AR, O'Dushlaine C, McCurdy SR, Partha R, Mansfield AJ, Turissini DA, Li AH, Zhang M, Mbatchou J, Watanabe K, Gurski L, McCarthy SE, Kang HM, Dobbyn L, Stahl E, Verma A, Sirugo G, Regeneron Genetics Center, Ritchie MD, Jones M, Balasubramanian S, Siminovitch K, Salerno WJ, Shuldiner AR, Rader DJ, Mirshahi T, Locke AE, Marchini J, Overton JD, Carey DJ, Habegger L, Cantor MN, Rand KA, Hong EL, Reid JG, Ball CA, Baras A, Abecasis GR, Ferreira MAR. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease., 2022, 54(4): 382–392.
[25] Zhao J, Yang Y, Huang HP, Li D, Gu DF, Lu XF, Zhang Z, Liu L, Liu T, Liu YK, He YJ, Sun B, Wei ML, Yang GY, Wang XH, Zhang L, Zhou XY, Xing MZ, Wang PG. Relationship between the ABO blood group and the coronavirus disease 2019 (COVID-19) susceptibility., 2021, 73(2): 328–331.
[26] Dendrou CA, Cortes A, Shipman L, Evans HG, Attfield KE, Jostins L, Barber T, Kaur G, Kuttikkatte SB, Leach OA, Desel C, Faergeman SL, Cheeseman J, Neville MJ, Sawcer S, Compston A, Johnson AR, Everett C, Bell JI, Karpe F, Ultsch M, Eigenbrot C, McVean G, Fugger L. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity., 2016, 8(363): 363ra149.
[27] Mallen-St Clair J, Pham CTN, Villalta SA, Caughey GH, Wolters PJ. Mast cell dipeptidyl peptidase I mediates survival from sepsis., 2004, 113(4): 628–634.
[28] Korkmaz B, Lesner A, Marchand-Adam S, Moss C, Jenne DE. Lung protection by cathepsin C inhibition: a new hope for COVID-19 and ARDS?, 2020, 63(22): 13258–13265.
[29] Mousa M, Vurivi H, Kannout H, Uddin M, Alkaabi N, Mahboub B, Tay GK, Alsafar HS, UAE COVID-19 Collaborative Partnership. Genome-wide association study of hospitalized COVID-19 patients in the United Arab Emirates., 2021, 74: 103695.
[30] Pereira AC, Bes TM, Velho M, Marques E, Jannes CE, Valino KR, Dinardo CL, Costa SF, Duarte AJS, Santos AR, Mitne-Neto M, Medina-Pestana J, Krieger JE. Genetic risk factors and COVID-19 severity in Brazil: results from BRACOVID study., 2022, 31(18): 3021– 3031.
[31] van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S, van Deuren RC, Steehouwer M, van Reijmersdal SV, Jaeger M, Hofste T, Astuti G, Corominas Galbany J, van der Schoot V, van der Hoeven H, Hagmolen Of Ten Have W, Klijn E, van den Meer C, Fiddelaers J, de Mast Q, Bleeker-Rovers CP, Joosten LAB, Yntema HG, Gilissen C, Nelen M, van der Meer JWM, Brunner HG, Netea MG, van de Veerdonk FL, Hoischen A. Presence of genetic variants among young men with severe COVID-19., 2020, 324(7): 663–673.
[32] Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, Ermel R, Ruusalepp A, Quertermous T, Hao K, Bj?rkegren JLM, Im HK, Pasaniuc B, Rivas MA, Kundaje A. Opportunities and challenges for transcriptome-wide association studies., 2019, 51(4): 592–599.
[33] Li BL, Ritchie MD. From GWAS to gene: transcriptome- wide association studies and other methods to functionally understand GWAS discoveries., 2021, 12: 713230.
[34] Broekema RV, Bakker OB, Jonkers IH. A practical view of fine-mapping and gene prioritization in the post-genome- wide association era., 2020, 10(1): 190221.
[35] Yao Y, Ye F, Li KL, Xu P, Tan WJ, Feng QS, Rao SQ. Genome and epigenome editing identify CCR9 and SLC6A20 as target genes at the 3p21.31 locus associated with severe COVID-19., 2021, 6(1): 85.
[36] Kasela S, Daniloski Z, Bollepalli S, Jordan TX, tenOever BR, Sanjana NE, Lappalainen T. Integrative approach identifies SLC6A20 and CXCR6 as putative causal genes for the COVID-19 GWAS signal in the 3p21.31 locus., 2021, 22(1): 242.
[37] Daniloski Z, Jordan TX, Wessels HH, Hoagland DA, Kasela S, Legut M, Maniatis S, Mimitou EP, Lu L, Geller E, Danziger O, Rosenberg BR, Phatnani H, Smibert P, Lappalainen T, tenOever BR, Sanjana NE. Identification of required host factors for SARS-CoV-2 infection in human cells., 2021, 184(1): 92–105.e16.
[38] Downes DJ, Cross AR, Hua P, Roberts N, Schwessinger R, Cutler AJ, Munis AM, Brown J, Mielczarek O, de Andrea CE, Melero I, COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium, Gill DR, Hyde SC, Knight JC, Todd JA, Sansom SN, Issa F, Davies JOJ, Hughes JR. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus., 2021, 53(11): 1606–1615.
[39] Wei Q, Chen ZH, Wang L, Zhang T, Duan L, Behrens C, Wistuba, II, Minna JD, Gao B, Luo JH, Liu ZP. LZTFL1 suppresses lung tumorigenesis by maintaining differen-tiation of lung epithelial cells., 2016, 35(20): 2655–2663.
[40] Wang LB, Guo JF, Wang QC, Zhou JC, Xu CP, Teng RY, Chen YX, Wei Q, Liu ZP. LZTFL1 suppresses gastric cancer cell migration and invasion through regulating nuclear translocation of beta-catenin., 2014; 140(12): 1997–2008.
Progresses on genetic susceptibility of COVID-19
Yuanfeng Li1,2, Tianzhun Wu3, Shunqi Chen2, Yuting Wang2, Tao Zeng4,5, Ruofan Li4,5, Gangqiao Zhou1,6
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a broad clinical spectrum of coronavirus disease 2019 (COVID-19). Genetic factors might influence susceptibility to the SARS-CoV-2 infection or disease severity. Genome-wide association studies (GWASs) have identified multiple susceptible genes related to COVID-19 phenotypes, providing the scientific basis for the COVID-19 prevention and treatment. In this review, we summarize the recent progresses of COVID-19 susceptible genes, including the GWASs on multiple phenotypes of COVID-19, GWASs of COVID-19 in multiple ethnic populations, GWASs of COVID-19 based on multiple types of genetic variations, and the fine-mapping of theregions surrounding the susceptible genes.
SARS-CoV-2; COVID-19; Susceptibility gene; Genome-wide association study
2023-08-07;
2023-09-21;
2023-10-12
廣州實(shí)驗(yàn)室應(yīng)急攻關(guān)項(xiàng)目(編號(hào):EKPG21-19),南京醫(yī)科大學(xué)全球健康中心開放合作項(xiàng)目(編號(hào):JX103SYL202200313)資助[Supported by the Emergency Key Program of Guangzhou Laboratory (No. EKPG21-19), and the Open Cooperation Project of Nanjing Medical University Global Health Center (No. JX103SYL202200313)]
李元豐,博士,副研究員,研究方向:醫(yī)學(xué)遺傳與基因組學(xué)。E-mail: liyf_snp@163.com
吳天準(zhǔn),碩士研究生,專業(yè)方向:臨床醫(yī)學(xué)。E-mail: wutianzhun@stu.gxmu.edu.cn
李元豐和吳天準(zhǔn)并列第一作者。
周鋼橋,博士,研究員,研究方向:醫(yī)學(xué)遺傳學(xué)與基因組學(xué)。E-mail: zhougq114@126.com
10.16288/j.yczz.23-215
(責(zé)任編委: 岑山)