余愛勇,彭亮
·論 著·
葉酸缺乏對腦梗死責(zé)任病灶分布特征影響
余愛勇1,彭亮2
1.上海市松江區(qū)中心醫(yī)院[上海交通大學(xué)醫(yī)學(xué)院附屬松江醫(yī)院(籌)]神經(jīng)內(nèi)科,上海 201699;2.上海市松江區(qū)中心醫(yī)院[上海交通大學(xué)醫(yī)學(xué)院附屬松江醫(yī)院(籌)]檢驗(yàn)科,上海 201699
研究葉酸水平降低合并腦梗死患者顱內(nèi)梗死灶分布特征。選取2018年10月至2022年7月在上海市松江區(qū)中心醫(yī)院住院的腦梗死患者336例作為研究對象,根據(jù)葉酸水平分為葉酸降低組(=165)和葉酸正常組(=171)。比較兩組患者實(shí)驗(yàn)室檢查指標(biāo)水平和腦梗死病灶分布的特點(diǎn)。與葉酸正常組相比,葉酸降低組的同型半胱氨酸(homocysteine,Hcy)和游離甲狀腺素(free thyroxine,F(xiàn)T4)水平均顯著升高(<0.05),分布于島葉和放射冠的腦梗死病灶數(shù)量均顯著增加(<0.05)。兩組分布于其他部位的腦梗死病灶數(shù)量比較,差異均無統(tǒng)計(jì)學(xué)意義(>0.05)。經(jīng)二元非條件Logistic回歸分析,分布于島葉和放射冠的梗死灶是葉酸降低的影響因素(<0.05)。葉酸水平降低對腦梗死病灶的分布可能存在影響,責(zé)任病灶主要集中在島葉和放射冠。
葉酸;腦梗死;島葉;放射冠;病變部位
葉酸通過葉酸轉(zhuǎn)運(yùn)系統(tǒng)運(yùn)送至腦組織發(fā)揮作用[1]。腦部葉酸缺乏與癲癇、發(fā)育遲緩、進(jìn)行性共濟(jì)失調(diào)、舞蹈手足徐動癥有關(guān)[2]。有研究從線粒體角度證實(shí)葉酸缺乏會對急性缺血性卒中產(chǎn)生有害影響[3]。但目前對于葉酸缺乏的研究大多數(shù)集中在補(bǔ)充葉酸治療或基因方面,以及葉酸與癌癥、精神疾病的關(guān)系等,被研究群體集中于孕婦和兒童,與成人腦梗死關(guān)聯(lián)的臨床研究較少。本研究旨在揭示葉酸水平降低合并腦梗死患者的梗死灶分布部位是否具有特征。
選取2018年10月至2022年7月在上海市松江區(qū)中心醫(yī)院住院的腦梗死患者336例作為研究對象,根據(jù)葉酸水平(正常參考值:3.10~34.00ng/ml)分為葉酸降低組(<3.10ng/ml,=165)和葉酸正常組(≥3.10ng/ml,=171)。納入標(biāo)準(zhǔn):①患者均同時合并有腦梗死急性期入院;②符合《中國急性缺血性腦卒中診治指南2018》[4]中的腦血管病診斷;③首次罹患腦梗死;④平時未服用抗血小板藥物和降脂類藥物;⑤年齡>18歲。排除標(biāo)準(zhǔn):①正在服用葉酸者;②合并貧血、炎性腸病、惡性腫瘤或血液腫瘤指標(biāo)顯著升高者;③彌散加權(quán)成像(diffusion weighted imaging,DWI)陰性的腦梗死患者;④接受血管內(nèi)治療(溶栓或取栓)者。脫落標(biāo)準(zhǔn):①意識障礙或失語,無法簽訂知情同意書者;②各種原因?qū)е聼o法完成頭顱磁共振者。葉酸降低組中,男94例,女71例,平均年齡(71.30±11.72)歲。平均葉酸水平(2.19±0.62)ng/ml。葉酸正常組中,男99例,女72例,平均年齡(75.30±13.01)歲,平均葉酸水平(10.25±6.24)ng/ml。本研究經(jīng)上海市松江區(qū)中心醫(yī)院倫理委員會批準(zhǔn)同意(倫理審批號:2018審085),所有患者簽署知情同意書。
1.2.1 資料收集 記錄患者的性別、年齡,測量患者身高、體質(zhì)量,計(jì)算體質(zhì)量指數(shù)(body mass index,BMI)。入院后連續(xù)3d測量血壓3次,計(jì)算收縮壓和舒張壓的平均值。通過問卷調(diào)查形式獲得患者嗜煙史,必須符合以下條件:一生中吸煙>400支。根據(jù)目前是否吸煙分為兩種情況:①對“你現(xiàn)在抽煙嗎?”的問題給出了肯定的回答,被歸類為“當(dāng)前吸煙者”。②不再吸煙者,被歸類為“前吸煙者”[5]。以健康訪談問卷形式獲得飲酒史,輕度飲酒者:3杯/周;適度飲酒者:女性4~7杯/周,男性4~14杯/周;酗酒者:女性8~27杯/周,男性15~34杯/周。嚴(yán)重酗酒者:女性超過28杯/周,男性超過35杯/周。一生不飲酒或<20次飲酒為戒酒者[6]。
1.2.2 實(shí)驗(yàn)室檢查 采用全自動生化分析儀(日本日立公司,型號:7600-020)測定兩組患者的血糖(blood glucose,BG)、總膽固醇(total cholesterol,TC)、三酰甘油(triglyceride,TG)、高密度脂蛋白膽固醇(high density lipoprotein-cholesterol,HDL-C)、低密度脂蛋白膽固醇(low density lipoprotein-cholesterol,LDL-C)。采用離子交換高效液相色譜法,全自動糖化血紅蛋白分析儀(深圳市希萊恒醫(yī)用電子有限公司,型號:H600)測定糖化血紅蛋白(glycated hemoglobin,HbA1c)。使用邁瑞B(yǎng)S-2000M全自動生化分析,應(yīng)用循環(huán)酶法測定同型半胱氨酸(homocysteine,Hcy)。應(yīng)用羅氏cobas生化免疫分析儀,采用電化學(xué)發(fā)光法檢測游離三碘甲腺原氨酸(free triiodothyronine,F(xiàn)T3)、游離甲狀腺素(free thyroxine,F(xiàn)T4)、促甲狀腺激素(thyroid- stimulating hormone,TSH)。采用電化學(xué)發(fā)光法,應(yīng)用羅氏cobas e602免疫分析儀測定葉酸水平。采用全自動生化分析儀(山東博科生物產(chǎn)業(yè)有限公司,型號:BK600)檢測尿素氮(urea,UN)、肌酐(creatinine,Cr)和尿酸(uric acid,UA)。
1.2.3 影像學(xué)檢查 所有患者仰臥位,采用頭頸聯(lián)合線圈,行頭顱磁共振掃描。1.5T雙梯度磁共振(美國通用電氣公司,型號:GE-SIGNA EXCITE-HD 1.5T)。矢狀面掃描行FRFSE序列T1WI成像,設(shè)置層厚為6mm,間隔1mm。橫斷面掃描行SE序列T1WI,F(xiàn)RFSE序列T2WI、FRFSE序列T2FLAIR及DWI成像,設(shè)置層厚為7mm、間隔1mm。
與葉酸正常組相比,葉酸降低組的Hcy和FT4水平顯著升高(<0.05)。兩組患者的人口學(xué)資料、嗜煙史、嗜酒史、血壓、其余血液學(xué)指標(biāo)相比,差異均無統(tǒng)計(jì)學(xué)意義(>0.05),見表1。
與葉酸正常組相比,葉酸降低組患者分布于島葉和放射冠的腦梗死病灶數(shù)量均顯著增加(<0.05)。兩組分布于其他部位的腦梗死病灶數(shù)量比較,差異均無統(tǒng)計(jì)學(xué)意義(>0.05),見表2。
將葉酸降低設(shè)為因變量,將FT4、Hcy、分布于島葉的腦梗死灶和放射冠的腦梗死灶設(shè)為自變量(“無”賦值為0,“有”賦值為1;正常參考值范圍內(nèi)賦值為0,高于正常參考值賦值為1)。二分類非條件Logistic回歸分析顯示,分布于腦葉和放射冠的梗死灶是葉酸降低的影響因素(<0.05),見表3。
表1 兩組患者臨床基線資料比較
注:1mmHg=0.133kPa
表2 兩組患者腦梗死發(fā)生部位病灶數(shù)量比較[n(%)]
表3 葉酸降低合并腦梗死患者影響因素分析
葉酸能夠激活一碳單元,用于嘌呤和蛋氨酸的生物合成。相關(guān)研究顯示,葉酸缺乏與缺血性卒中有密切關(guān)聯(lián),在體外可發(fā)揮缺血后神經(jīng)保護(hù)作用[7],γ-氨基丁酸、賴氨酸、谷氨酸、核糖、纈氨酸等代謝均受葉酸調(diào)控,可能是葉酸對抗缺血性卒中的靶點(diǎn)[8],加用葉酸治療可提高高血壓患者終生無卒中生存率[9]。葉酸降低會導(dǎo)致視網(wǎng)膜靜脈阻塞[10],葉酸代謝酶缺乏會影響大鼠腦梗死后恢復(fù)[11]。
本研究結(jié)果顯示,葉酸降低組的Hcy水平顯著高于葉酸正常組,Lydia等[12]研究顯示葉酸與Hcy水平呈顯著負(fù)相關(guān),本研究結(jié)果與其相符。究其原因,葉酸缺乏時,蛋氨酸循環(huán)途徑受損,引起高同型半胱氨酸血癥,后者誘導(dǎo)血管內(nèi)皮細(xì)胞功能障礙,促進(jìn)了葉酸降低腦梗死的發(fā)生和發(fā)展。本研究中葉酸降低組患者的腦梗死責(zé)任病灶多分布于島葉和放射冠,即病灶大部分集中在大腦皮質(zhì)或皮質(zhì)下。Zhao等[13]發(fā)現(xiàn),葉酸缺乏可加重大鼠缺血再灌注損傷、升高DNA氧化應(yīng)激標(biāo)志物水平,這些均是發(fā)生在大腦皮質(zhì)中。Kobayashi等[14]報(bào)道了1例腦葉酸缺乏癥嬰兒出現(xiàn)了皮質(zhì)髓鞘不足,大腦皮質(zhì)萎縮。Sato等[15]隨訪1名低葉酸血癥女性患者,分別發(fā)現(xiàn)了右枕葉皮質(zhì)腦梗死、右頂枕皮質(zhì)腦梗死、術(shù)中額葉皮質(zhì)腦梗死。孕期補(bǔ)充葉酸者的額葉和顳葉皮質(zhì)厚度增加,顳頂葉皮質(zhì)延遲變薄[16]。Abd-Ellah等[17]發(fā)現(xiàn)葉酸對大鼠大腦皮質(zhì)神經(jīng)毒性有保護(hù)作用,可以保護(hù)乙醇誘導(dǎo)的大鼠腦皮質(zhì)神經(jīng)元凋亡[18]。上述研究均認(rèn)為葉酸缺乏可對大腦皮質(zhì)、皮質(zhì)下造成顯著影響,與本研究結(jié)果一致。但目前其發(fā)生機(jī)制仍然不明,推測可能與皮質(zhì)神經(jīng)元代謝活躍有關(guān)。
本研究結(jié)果顯示,葉酸降低組患者分布在基底節(jié)、腦干、小腦的病灶數(shù)目與葉酸正常組相比,差異無統(tǒng)計(jì)學(xué)意義。但是有研究在腦葉酸缺乏癥嬰兒和男孩病例中均發(fā)現(xiàn)了小腦萎縮[14,19]。Koohpeyma等[20]發(fā)現(xiàn)在新生大鼠中提高葉酸水平可以降低小腦谷胱甘肽過氧化物酶活性,減緩小腦脂質(zhì)過氧化,減輕共濟(jì)失調(diào)。本次被研究對象是成年人,而前文的研究對象是處于腦發(fā)育期的嬰兒、兒童和新生大鼠,這可能是導(dǎo)致研究結(jié)果不一的原因之一。本研究結(jié)果顯示,葉酸降低組患者的Hcy和FT4水平均顯著高于葉酸正常組。Barjaktarovic等[21]發(fā)現(xiàn),新生兒和母親體內(nèi)FT4與Hcy水平呈正相關(guān),推測甲狀腺激素可能通過刺激維生素B12和葉酸來干擾Hcy代謝,還有研究發(fā)現(xiàn)高同型半胱氨酸血癥和輕度葉酸降低的狗可伴隨著甲狀腺功能減退[22],提示甲狀腺激素可能與葉酸代謝有關(guān)。
綜合上述,葉酸缺乏可導(dǎo)致FT4、Hcy水平升高,參與腦梗死的發(fā)生、發(fā)展,對腦梗死病灶的分布可能存在影響,責(zé)任病灶主要集中在島葉和放射冠區(qū)。但本研究尚存在局限性,有研究顯示葉酸缺乏可引起海馬部位的神經(jīng)元凋亡[23],但本研究未對海馬病變展開探討,未來應(yīng)進(jìn)一步深入。
[1] ALAM C, KONDO M, O’CONNOR D L, et al. Clinical implications of folate transport in the central nervous system[J]. Trends Pharmacol Sci, 2020, 41(5): 349–361.
[2] POPE S, ARTUCH R, HEALES S, et al. Cerebral folate deficiency: analytical tests and differential diagnosis[J]. J Inherit Metab Dis, 2019, 42(4): 655–672.
[3] DONG Z, LIANG X, ZHANG Q, et al. Folic acid deficiency enhances the Tyr705 and Ser727 phosphorylation of mitochondrial STAT3 in in vivo and in vitro models of ischemic stroke[J]. Transl Stroke Res, 2021, 12(5): 829–843.
[4] 中華醫(yī)學(xué)會神經(jīng)病學(xué)分會, 中華醫(yī)學(xué)會神經(jīng)病學(xué)分會腦血管病學(xué)組. 中國急性缺血性腦卒中診治指南2018[J]. 中華神經(jīng)科雜志, 2018, 51(9): 666–682.
[5] KAMIMURA D, CAIN L R, MENTZ R J, et al. Cigarette smoking and incident heart failure: insights from the jackson heart study[J]. Circulation, 2018, 137(24): 2572–2582.
[6] JEON C Y, WHITCOMB D C, SLIVKA A, et al. Lifetime drinking history of persons with chronic pancreatitis[J]. Alcohol Alcohol, 2019, 54(6): 615–624.
[7] DAVIS C K, NAMPOOTHIRI S S, RAJANIKANT G K. Folic acid exerts post-ischemic neuroprotection in vitro through HIF-1α stabilization[J]. Mol Neurobiol, 2018, 55(11): 8328–8345.
[8] YANG Y H, LEI L, BAO Y P, et al. An integrated metabolomic screening platform discovers the potential biomarkers of ischemic stroke and reveals the protective effect and mechanism of folic acid[J]. Front Mol Biosci, 2022, 9(5): 783793.
[9] ZHANG T, LIN T, WANG Y, et al. Estimated stroke-free survival of folic acid therapy for hypertensive adults: projection based on the CSPPT[J]. Hypertension, 2020, 75(2): 339–346.
[10] KAZANTZIS D, THEODOSSIADIS P, KROUPIS C, et al. Vitamin B12 and folate as risk factors for retinal vein occlusion: a meta-analysis[J]. Klin Monbl Augenheilkd, 2022, 239(5): 709–716.
[11] JADAVJI N M, EMMERSON J T, SHANMUGALINGAM U, et al. A genetic deficiency in folic acid metabolism impairs recovery after ischemic stroke[J]. Exp Neurol, 2018, 309(11): 14–22.
[12] LYDIA A, PRIANTONO D, HARIMURTI K, et al. The relationship between folic acid and vitamin B12 serum levels with high sensitivity C-reactive protein and homocysteine in chronic hemodialysis patients: a cross-sectional study[J]. Acta Med Indones, 2021, 53(3): 282–290.
[13] ZHAO Y, HUANG G, CHEN S, et al. Folic acid deficiency increases brain cell injury via autophagy enhancement after focal cerebral ischemia[J]. J Nutr Biochem, 2016, 38(12): 41–49.
[14] KOBAYASHI Y, TOHYAMA J, AKIYAMA T, et al. Severe leukoencephalopathy with cortical involvement and peripheral neuropathy due to FOLR1 deficiency[J]. Brain Dev, 2017, 39(3): 266–270.
[15] SATO K, MOROFUJI Y, HORIE N, et al. Hyperhomocysteinemia causes severe intraoperative thrombotic tendency in superficial temporal artery- middle cerebral artery bypass[J]. J Stroke Cerebrovasc Dis, 2020, 29(5): 104633.
[16] ERYILMAZ H, DOWLING K F, HUNTINGTON F C, et al. Association of prenatal exposure to population- wide folic acid fortification with altered cerebral cortex maturation in youths[J]. JAMA Psychiatry, 2018, 75(9): 918–928.
[17] ABD-ELLAH H F, ABOU-ZEID N R A, NASR N M, et al. The possible protective effect of N-acetyl-L-cysteine and folic acid in combination against aspartame-induced cerebral cortex neurotoxicity in adult male rats: a light and transmission electron microscopic study[J]. Ultrastruct Pathol, 2018, 42(3): 228–245.
[18] SOGUT I, UYSAL O, OGLAKCI A, et al. Prenatal alcohol-induced neuroapoptosis in rat brain cerebral cortex: protective effect of folic acid and betaine[J]. Childs Nerv Syst, 2017, 33(3): 407–417.
[19] TOELLE S P, WILLE D, SCHMITT B, et al. Sensory stimulus-sensitive drop attacks and basal ganglia calcification: new findings in a patient with FOLR1 deficiency[J]. Epileptic Disord, 2014, 16(1): 88–92.
[20] KOOHPEYMA H, GOUDARZI I, ELAHDADI S M, et al. Postnatal administration of homocysteine induces cerebellar damage in rats: protective effect of folic acid[J]. Neurotox Res, 2019, 35(3): 724–738.
[21] BARJAKTAROVIC M, STEEGERS E A P, JADDOE V W V, et al. The association of thyroid function with maternal and neonatal homocysteine concentrations[J]. J Clin Endocrinol Metab, 2017, 102(12): 4548–4556.
[22] GO?Y?SKI M, LUTNICKI K, KRUMRYCH W, et al. Relationship between total homocysteine, folic acid, and thyroid hormones in hypothyroid dogs[J]. J Vet Intern Med, 2017, 31(5): 1403–1405.
[23] YANG Y, LI X, SUN Q W, et al. Folate deprivation induces cell cycle arrest at G0/G1 phase and apoptosis in hippocampal neuron cells through down-regulation of IGF-1 signaling pathway[J]. Int J Biochem Cell Biol, 2016, 79(10): 222–230.
Effect of folic acid deficiency on the distribution of responsible lesions in cerebral infarction
YU Aiyong, PENG Liang
1.Department of Neurology, Shanghai Songjiang District Central Hospital[Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage)], Shanghai 201699,China; 2.Department of Laboratory, Shanghai Songjiang District Central Hospital[Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage)], Shanghai 201699, China
To study the characteristics of intracranial lesions in patients with reduced folic acid levels and cerebral infarction.A total of 336 patients with cerebral infarction who were hospitalized at Shanghai Songjiang District Central Hospital from October 2018 to July 2022 were selected and divided into a reduced folic acid group (=165), and a normal folic acid group (=171) based on their folic acid levels. The characteristics of laboratory examination and distribution of cerebral infarction lesions were compared between the two groups.Compared with the folic acid normal group, the folic acid reduced group had significantly higher homocysteine (Hcy) and free thyroxine (FT4) levels (<0.05), and the number of cerebral infarct foci distributed in the insula and radiocorona were significantly increased (<0.05). Compared with the number of cerebral infarction lesions distributed in other parts of the brain in both groups, the difference was not statistically significant (>0.05). According to binary unconditional Logistic regression analysis, the infarct foci distributed in the insula and corona radiata were the influencing factors for folic acid reduction (<0.05).The decrease in folic acid levels may have an impact on the distribution of cerebral infarction lesions, with the responsible lesions mainly concentrated in the insula and coronal radiation.
Folic acid; Cerebral infarction; Insula; Coronal radiation; Lesion
R587.1
A
10.3969/j.issn.1673-9701.2023.23.005
上海市松江區(qū)科學(xué)技術(shù)攻關(guān)項(xiàng)目(22SJKJGG74)
彭亮,電子信箱:jykmianyi@163.com
(2022–09–05)
(2023–07–13)