• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generation of air discharge plasma in the cavities of porous catalysts: a modeling study

    2023-03-06 01:49:06MengjiFU符夢輯KefengSHANG商克峰BangfaPENG彭邦發(fā)NaLU魯娜NanJIANG姜楠andJieLI李杰
    Plasma Science and Technology 2023年2期
    關(guān)鍵詞:李杰

    Mengji FU(符夢輯),Kefeng SHANG(商克峰),2,*,Bangfa PENG(彭邦發(fā)),2,Na LU (魯娜),2,Nan JIANG (姜楠),2 and Jie LI (李杰),2

    1 School of Electrical Engineering,Dalian University of Technology,Dalian 116024,People’s Republic of China

    2 Key Laboratory of Industrial Ecology and Environmental Engineering,Ministry of Education of People’s Republic of China,Dalian 116024,People’s Republic of China

    Abstract A study of the behaviors of air discharge plasma inside a catalyst’s pores is important to understand the plasma catalysis mechanism; however,few articles have reported the generation characteristics of air plasma in the pores of catalysts.The production of air microdischarge in a pore was studied by a two-dimensional fluid model,mainly focusing on the effect of pore size and applied voltage.The results show that an increase in the pore size in the range of 20-100 μm facilitates the occurrence of microdischarge in the pore.In addition,at an applied voltage of 9 kV,the ionization of air mainly occurs near the topside of the pore when the pore diameter is less than 20 μm,leading to a low plasma density in the pore,but the time-averaged plasma density in the pore reaches a maximum value at a 70 μm pore diameter.Moreover,the applied voltage also has an important effect on the production of air microdischarge in the pore.The existence of a pore of 80 μm diameter on the dielectric has no obvious influence on the plasma density in the pore at 2 kV applied voltage,but the plasma density in the pore begins to sharply rise when the voltage exceeds 3 kV due to the enhanced air ionization at higher applied voltage.The study indicates that microdischarge can be generated in a pore with a size of tens of micrometers,and the microdischarge in porous catalysts will affect the catalytic degradation efficacy of gaseous pollutants.

    Keywords: microdischarge in pores,plasma catalysis,pore size,applied voltage

    1.Introduction

    Volatile organic compounds (VOCs),including more than 120 kinds of organic gases,are one of the key carriers of PM2.5 and photochemical smog,which induce severe air pollution [1].VOCs are mainly emitted from industries such as petrochemical industries,vehicle manufacturing,electronic manufacturing,furniture manufacturing and bio-pharming,etc.For waste gas containing VOCs of low concentration,various destruction methods,including discharge plasma treatment[2-10],are used for the removal of VOCs from the gas.During electric discharge in air or at an air/water interface,reactive oxygen species including O,OH and O3are generated,and these active species can react with organic pollutants to produce CO2,H2O,etc[11-13].The degradation of pollutants by electric discharge plasma is fast and nonselective.Therefore,various discharge plasma technologies,especially plasma catalysis processes including the in-plasma catalysis (IPC) and post-plasma catalysis (PPC) processes,have been extensively studied for treating contaminated gas[14].In the IPC process,a catalyst packed in the discharge zone will remarkably enhance plasma chemical reactions via the efficient use of short-lived and long-lived species and the synergy between catalyst and plasma,etc[15].Tuet alfound that there is a combination of surface discharge and microdischarge in the packed bed plasma reactor,and the filamentary microdischarge begins to expand and diffuse to form the surface discharge with the increase in discharge power[16].Wanget alreported that the packed bed DBD reactor in atmospheric dry air may appear in the form of forward restrike,filamentary microdischarge and surface discharge.Moreover,the streamlined propagation and the generation of reactive species are faster at a higher dielectric constant [17].

    The catalyst particles are usually porous.Recently,the microdischarge phenomenon in the pores of catalysts has been paid attention to.Holzeret alreported that reactive species could be generated in catalyst pores since the electric field in the pores of porous catalysts is stronger than that in the air gap [18-20].Henselet al[21-24]experimentally studied the generation of microdischarge in porous particles under a high DC voltage (2-10 kV) and found that electric discharge happens in pores of 15 μm diameter,and that the onset voltage of the microdischarge decreased with the increase in pore size.However,it is impossible to experimentally measure the plasma characteristics (e.g.the electron density and electron temperature,the ionization rate,etc) in pores.Zhanget alstudied the microdischarge characteristics in pores under a He atmosphere via numerical simulation[25-28]and found that microdischarge can occur in pores of specific sizes.Wanget alinvestigated the formation of microdischarge and the propagation of plasma flow in pores of different diameters and depths,and found that a larger voltage can make the plasma flow penetrate smaller pores,and the pore size and depth can lead to enhanced discharge in pores by influencing the surface charge of the side wall of porous catalysts [29].Zhanget alstudied the formation of microdischarge in micro- and nanocatalyst pores using a two-dimensional intracellular particle/Monte Carlo collision model and found that microdischarge can form in both microns and nanopores [30].However,the plasma catalysis process for gaseous pollutant treatment usually happens in air atmosphere,so these simulation studies on microdischarge in pores under He atmosphere [26-28]are inconsistent with the application background,or the simulation parameters are out of the actual electric discharge conditions [30].

    In this work,a two-dimensional fluid model was established to study the microdischarge in a pore in air atmosphere.This study is important to understand the air plasma behavior in a catalyst’s pores,which is helpful in the design of suitable porous catalysts of special pore size for gaseous pollutant treatment in the electric discharge process.

    2.Description of the model

    A two-dimensional fluid model is established by COMSOL software[31].The main steps include the establishment of the model,the setting of variables,the selection of collision response equation,the setting of boundaries and the division of the network.The model adopts the usual DBD configuration,which is extensively used for gaseous pollutant treatment,as shown in figure 1.From top to bottom,the ceramic with a thickness of 1 mm is connected to the highvoltage electrode,then there is an air gap with a thickness of 2 mm,and then the ceramic with a thickness of 0.5 mm is grounded.A positive pulse voltage is applied(the rise time is 400 ns and the fall time is 400 ns).Since the experiment is basically carried out in air,we choose N2(79%) and O2(21%) as the medium in the air gap and set the gas temperature to 300 K.The gas pressure is set to 1 atm.The relative dielectric constant of the selected material is 9.Twenty-six important plasma reactions (table A1) involving e,N2,O2,,O3and O-are included in the model,and the reaction rates of the first five formulas are calculated from the collision cross-section data by solving the electron Boltzmann equation (BE) with BOLSIG+ [32-34].The required average electron energy and its transport coefficient (R1-R5) are also calculated by BOLSIG+ [35].

    The required parameters are obtained through a set of coupled equations.The continuity equations of electron density and electron energy are given as equations (1) and (2),respectively.

    Here,ne,nε,μeandμεare the electron number density and electron energy density,electron mobility and electron energy mobility,respectively.DeandDεare the electron diffusion coefficient and electron energy diffusion coefficient,respectively.Eis the electric field vector.ReandRεare the source terms for the electron density and electron energy,respectively.

    Heavy species follow the continuity equation (3):

    Here,wk,Vkand Rkare the mass fraction,velocity and source term of the heavy species (k),respectively.Drift is only suitable for electrons and ions,and neutral species contain only diffusion terms.

    In addition,the Poisson equation (4) is used to solve the electric field.

    Here,V is the electric potential and ρchargeis the space charge density,which is zero inside the dielectric material.ε0is the vacuum dielectric constant and εris the relative dielectric constant.

    The boundary conditions of electron flux during surface scattering and absorption of electrons at the cathode and anode are as follows:

    Γeand n are the electron density flux and the electrode normal vector,respectively.γeis the reflection coefficient of electrons on the electrode surface,which is 1 when the direction of the electron flux is towards the electrode,and otherwise it is 0.ve,this the thermodynamic velocity of the electron.

    The boundary condition of the conservation equation for electron energy density on the electrode surface is as follows:

    Γεis the electron energy flux vector andis the average electron energy.

    The initial electron density is set as 1013m-3.The average electron energy follows Maxwellian distribution and the initial value of the average electron energy is 2 eV.The secondary electron emission coefficient in this model is set as 0.01 and the average energy of secondary electrons is 2 eV [36].Quadrilateral mesh is mainly used in the air gap bulk region,and the mesh size is about 12 μm.The size of the grid near the positive plate is 1-2 μm.For the grid near and in the pore,a triangular grid with a size of about 0.5-1 μm is adopted.In other areas,coarse grids are used under the condition that they will not affect the reliability of the calculation model.The nonlinear method is constant(Newtons),with a maximum number of iterations of 4 and a tolerance factor of 0.1.The solver uses PARDISO.The minimum out-of-core memory fraction is 0.99,the minimum in-core memory is 512 MB,the total memory usage ratio is 0.8,and the internal memory usage factor is 3.The selected time-stepping method is the backward difference formula.The initial step size adopted by the solver is 10-14s,the maximum backward difference formula (BDF) order is 2,and the minimum BDF order is 1.The event tolerance is 0.01,and the backward Euler method is used for uniform initialization.

    3.Results and discussion

    The microdischarge characteristics of a porous catalyst under different pore sizes and voltages are studied by calculating the distribution of plasma density,electron temperature,electric field,ionization rate and electric potential.During the study,the voltage amplitude is set as 9 kV,and the ratio of fixed aperture to depth is 0.51.

    3.1.Effect of pore size on microdischarge generation in a pore

    3.1.1.The onset microdischarge.Henselet alreported that the pore size has an important effect on the air microdischarge in pores,and the onset voltage of microdischarge in pores is lower at a larger pore aperture[22,23].However,it is difficult to directly observe the microdischarge phenomenon in pores.The ionization rate is studied as a direct basis to judge whether microdischarge occurs in pores.To understand the effect of pore size on onset microdischarge in pores,the ionization rate (figure 2) and electron density (figure A1) in and above the pore for different pore diameters (20-100 μm)at different times are numerically simulated.

    Figures 2 and A1 indicate that strong ionization occurs preferentially in the pores of larger size.When the pore diameter is 20 μm,strong ionization mainly appears in the bulk region and near the pore opening,and the ionization in the pore is low(1024m-3s-1),so that the electron density in the pore is the lowest in the whole air gap.However,ionization occurs in the pore of 60 μm at 155 ns,and even at 120 ns,strong ionization occurs near the opening of the 80 μm pore and in the 100 μm pore.Moreover,strong ionization (1026m-3s-1)occurs in the bottom of the pore of 100 μm diameter,and the electron density in the pore also reaches a maximum value.

    Figure 1.(a) Calculation model and (b) enlarged view of the pore.

    Figure 2. Ionization rate in gas gap at different times and pore sizes.

    Figure 3.Distribution of the time-averaged (a) electron density,(b) total ion density and (c) electron temperature along the vertical centerline in air discharge of 9 kV for different pore sizes.

    Figure 4.Distribution of the time-averaged electric potential and electric field for different pore sizes:(a)20 μm,(b)60 μm,(c)100 μm,for an air discharge sustained at 9 kV.

    3.1.2.The plasma characteristics.To further understand the effect of pore size on the plasma characteristics in the air gap,the time-averaged electron density,total ion density and electron temperature are calculated,and their distribution curves along the vertical centerline from the pore bottom to the top dielectric plate (y= 0 mm) are given in figure 3.Figure 3(a) clearly shows that the distribution of electron density in the air gap is relatively uniform when there is no pore at the bottom,and the maximum value of electron density appears at the bottom of the air gap.When there is a small pore of 20 μm on the dielectric,the strong electric field in the pore(see figure 4(a))causes a large loss of particles on the wall and pushes electrons out of the pore,leading to low electron density in the pore,but the electron density in the bulk region(air gap)is hardly affected by the existence of the pore.However,the electron density in and near the pore begins to rise sharply when the pore diameter exceeds 30 μm,and the electron density in the pore with 70 μm diameter reaches a peak value of 3.7 × 1018m-3,which is about one order of magnitude higher than in the bulk region.

    Figure 5. Distribution of the time-averaged (a) electron density,(b) electron temperature and (c) total ion density along the vertical centerline in air discharge with 80 μm pore at different voltages.

    As indicated in figure 3(b),the distribution of total ion density in the pore is similar to that of the electron density,and the total ion density in the pore of 70 μm is also the largest(3.5 × 1020m-3),which is five times higher than that without a pore.The effect of the pore size on the total ion density is different from the effect on the ionization rate,which reaches the largest value in the pore of 30 μm diameter (figure A3).The results can be explained as follows: although the ionization rate in the pore tends to decrease when the pore size is bigger than 30 μm,a large pore size is helpful for accommodating more electrons and ions,which resulted from the ionization of air in the pore,leading to a higher total ion density in the pore of 70 μm.

    Figure 3(c) shows that the electron temperature in and near the pore is higher,therefore a higher energy of electrons enhances the ionization process and produces more electrons,which explains the effect of the pore on the distribution of electron density and total ion density.However,we observed that the electron density at the pore bottom decreases to a low value.The result is attributed to the special electric potential distribution in the pore(see figure(4)).Figures 4(a)-(c)show the distribution of time-averaged electric potential and electricinside and above the pore at three typical pore sizes.Figure 4 indicates that the electric potential at the bottom of the pore is low,and the strong reverse electric field pushes the electrons from the bottom to the middle of the pore and to the bulk region,resulting in a low electron density at the pore bottom [27].In addition,we can observe that the distribution of electric potential lines in and near the pore is relatively flat and dense when the pore is small (20 μm).As the pore grows larger (60 μm and 100 μm),the electric potential lines begin to bend toward the bottom medium(especially inside the pore) and are sparsely distributed in most areas of the pore,which explains the distribution of the electric field.

    3.2.Effect of applied voltage

    Zhanget alreported that the plasma Debye length decreased when the voltage was increased under certain conditions,making it easier to generate electric discharge in smaller pores[30].Henselet alalso found that the luminous intensity increases with the increase in discharge power when the fixed aperture is 80 μm [24].These studies show that the applied voltage notably affects the microdischarge in pores.Figure 5 shows the distribution of time-averaged electron density,electron temperature and total ion density along the vertical centerline of the pore at different voltages.As shown in figure 5(a),when the voltage is 2 kV,the electron density in the pore (y= -2.03 mm) and near the pore (y= -1.7 mm)shows two peak values,which are higher than those in the bulk region and near the top dielectric plate,but the electron density is low (1017m-3),especially at the pore bottom.When the voltage increases to 6 kV,the maximum electron density in the pore(2.1 × 1018m-3)is noticeably higher than that at the pore opening (1.2 × 1018m-3) and in the bulk region (2.5 × 1017m-3).Moreover,the electron density in and near the pore differs from that in the bulk region,and the difference is more apparent when the voltage further rises.Figure 5(b) shows that the electron temperature in the pore,near the pore and near the top dielectric plate is higher at higher applied voltage,which leads to a higher electron collision ionization rate (figure A4) and total ion density(figure 5(c)).Figure 5(c) shows that the total ion density decreases to a low value at the bottom of the pore and near the positive polar plate,and the distribution of total ion density in the whole air gap is relatively uniform (1019m-3) when the voltage is low(2 kV).The total ion density in the pore and in the bulk region begins to differ by one order of magnitude when the voltage increases (9 kV),indicating that the ionization in the pore is greatly improved at higher voltage.The stronger electric field at higher applied voltage facilitates the production of electrons of higher energy,leading to a more efficient collision of electrons with air to generate more ions.The results also prove that the generation of plasma in the pore increases significantly at higher voltage,therefore leading to different discharge behaviors.

    Figure 6.Distribution of the time-averaged electric potential and electric field for applied voltages of(a)2 kV,(b)6 kV and(c)12 kV,for an air discharge with an 80 μm pore.

    Although it was observed that the electric field in the pore is significantly enhanced at 2 kV,the discharge behavior is still different from that at higher voltage.Figure 6 shows the distribution of time-averaged electric potential and electric fieldinside and above the pore with different voltage amplitudes and a pore size of 80 μm.It can be seen that the electric field in and near the pore is significantly greater than that in the bulk region at a voltage of 2 kV,but the electric potential lines away from the pore are flat.However,when the voltage exceeds 6 kV,the electric potential lines in the bulk region begin to bend,and they are very dense at the pore bottom (especially at 12 kV).Moreover,the influence of the pore on the electric potential in the air gap is greater at higher applied voltage,and a strong electric field can be seen at the pore bottom,which explains the low electron density at the pore bottom.Holzeret al[18]proposed that the electric field in the pore must be higher than the electric field in the body if short-lived species are produced in the pore.The simulation results agree well with the experiment.The results show that the applied voltage and aperture have important effects on the characteristics of microdischarge in the pore.

    Figure A1.Electron density along the centerline of the pore,inside and above the pore,at three different times(90 ns,120 ns and 155 ns),for four different pore sizes: (a) 20 μm,(b) 60 μm,(c) 80 μm,(d) 100 μm.

    Figure A2.Electric field along the centerline of the pore,inside and above the pore,at three different times (90 ns,120 ns and 155 ns),for four different pore sizes: (a) 20 μm,(b) 60 μm,(c) 80 μm,(d) 100 μm.

    Figure A3. Distribution of the time-averaged ionization rate along the vertical centerline in air discharge of 9 kV for different pore sizes.

    Figure A4.Distribution of the time-averaged ionization rate along the vertical centerline in air discharge with 80 μm diameter pore at different voltages.

    4.Conclusions

    In this study,a two-dimensional fluid model is established to examine the discharge behavior in a pore under air dielectric barrier discharge.The pore size notably affects the microdischarge in the pore,and strong ionization and microdischarge occur in the pore with large diameter.When the pore size is less than 20 μm,the ionization in the pore does not increase significantly at 9 kV voltage,but the timeaveraged ionization rate in the pore of 30 μm diameter is the largest.However,the time-averaged plasma density in the pore of 70 μm diameter is the largest.The applied voltage also remarkably affects the microdischarge in the pore.When the voltage is greater than 2 kV,the plasma density and ionization rate in the pore of 80 μm diameter begin to change significantly,but the plasma density in the bulk region changes little with the voltage.This study is helpful to understand the air microdischarge mechanism in porous catalysts,and helps in the design of porous catalysts for plasma catalysis processes.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.51977024 and 21577011).

    Appendix

    Table A1. The chemical equations included in the calculation model.

    Table A1. (Continued.)

    ORCID iDs

    猜你喜歡
    李杰
    Memristor’s characteristics: From non-ideal to ideal
    A spintronic memristive circuit on the optimized RBF-MLP neural network
    基于SPSS軟件建立ARIMA模型
    客聯(lián)(2022年3期)2022-05-31 04:28:08
    Effect of megapore particles packing on dielectric barrier discharge, O3 generation and benzene degradation
    Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial*
    人民海軍首次海戰(zhàn)
    源流(2021年11期)2021-03-25 10:32:07
    小胖熊半夜歷險記
    Zero-Sequence Current Suppression Strategy for Open-End Winding Permanent Magnet Synchronous Motor Based on Model Predictive Control
    小xiǎo雪xuě人rén 多duō 多duo
    Numerical investigation of the time-resolved bubble cluster dynamics by using the interface capturing method of multiphase flow approach*
    国产精品免费一区二区三区在线| 妹子高潮喷水视频| 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产区一区二| 一级a爱片免费观看的视频| 精品人妻在线不人妻| 国产一卡二卡三卡精品| 亚洲性夜色夜夜综合| 最近最新中文字幕大全免费视频| 久久香蕉激情| svipshipincom国产片| 黑人欧美特级aaaaaa片| 欧美一级a爱片免费观看看 | 老司机午夜福利在线观看视频| 国产成人啪精品午夜网站| 国产精品一区二区免费欧美| 女性被躁到高潮视频| 夜夜看夜夜爽夜夜摸| 嫩草影视91久久| 精品一品国产午夜福利视频| 黄色视频,在线免费观看| 狠狠狠狠99中文字幕| 欧美乱妇无乱码| 97超级碰碰碰精品色视频在线观看| 级片在线观看| 欧美激情久久久久久爽电影 | 精品熟女少妇八av免费久了| 国产精品久久久av美女十八| 亚洲av日韩精品久久久久久密| 亚洲av电影不卡..在线观看| 热re99久久国产66热| 国语自产精品视频在线第100页| 国产欧美日韩一区二区三区在线| 十八禁网站免费在线| 久久中文字幕一级| bbb黄色大片| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕精品免费在线观看视频| 久久久久亚洲av毛片大全| 男女做爰动态图高潮gif福利片 | 制服人妻中文乱码| av免费在线观看网站| 亚洲伊人色综图| 国产欧美日韩一区二区三| 国产av精品麻豆| 午夜精品在线福利| 午夜久久久久精精品| 国产免费男女视频| 97碰自拍视频| 女生性感内裤真人,穿戴方法视频| 一边摸一边抽搐一进一小说| 亚洲男人的天堂狠狠| 91九色精品人成在线观看| 亚洲国产高清在线一区二区三 | 国产av一区二区精品久久| av在线天堂中文字幕| 青草久久国产| 黑人欧美特级aaaaaa片| 亚洲中文字幕日韩| 久久中文看片网| 日日干狠狠操夜夜爽| 在线观看午夜福利视频| 成年女人毛片免费观看观看9| 日日爽夜夜爽网站| 亚洲国产欧美日韩在线播放| 亚洲av美国av| www.www免费av| 亚洲av电影不卡..在线观看| 亚洲国产精品合色在线| 国产又爽黄色视频| 亚洲欧美一区二区三区黑人| 久久久久国产一级毛片高清牌| 热re99久久国产66热| 亚洲精品一卡2卡三卡4卡5卡| 91成人精品电影| 亚洲熟妇熟女久久| 久久香蕉激情| 可以在线观看毛片的网站| 国产亚洲精品久久久久久毛片| 男人舔女人下体高潮全视频| 两个人视频免费观看高清| 一进一出抽搐动态| 一级毛片高清免费大全| 少妇粗大呻吟视频| 久久久久久国产a免费观看| 香蕉国产在线看| 久久人妻av系列| 国产乱人伦免费视频| 午夜福利18| 久久久国产精品麻豆| 99在线视频只有这里精品首页| 成人18禁高潮啪啪吃奶动态图| 9热在线视频观看99| 午夜福利18| 淫秽高清视频在线观看| e午夜精品久久久久久久| 久久 成人 亚洲| 动漫黄色视频在线观看| 中文字幕人妻丝袜一区二区| 99在线视频只有这里精品首页| 成人18禁高潮啪啪吃奶动态图| 国产精品一区二区精品视频观看| 美女大奶头视频| 久久人妻福利社区极品人妻图片| 性欧美人与动物交配| 91九色精品人成在线观看| www.自偷自拍.com| 俄罗斯特黄特色一大片| 久久草成人影院| 女人爽到高潮嗷嗷叫在线视频| 国产高清视频在线播放一区| 午夜福利免费观看在线| av片东京热男人的天堂| 99国产精品99久久久久| 精品电影一区二区在线| 国产精品自产拍在线观看55亚洲| 亚洲免费av在线视频| 亚洲午夜理论影院| 国产精品久久久av美女十八| 电影成人av| 精品久久久久久成人av| 黑人巨大精品欧美一区二区mp4| 国产蜜桃级精品一区二区三区| 日本a在线网址| 十分钟在线观看高清视频www| 色播在线永久视频| 男女午夜视频在线观看| 两个人视频免费观看高清| 久久久精品国产亚洲av高清涩受| 丝袜美足系列| 午夜影院日韩av| 久久人妻福利社区极品人妻图片| 亚洲avbb在线观看| 欧美日韩精品网址| 人人妻人人澡欧美一区二区 | 两性午夜刺激爽爽歪歪视频在线观看 | 十分钟在线观看高清视频www| 亚洲国产欧美网| 亚洲av成人不卡在线观看播放网| 少妇裸体淫交视频免费看高清 | 欧美日韩乱码在线| 精品久久久久久久人妻蜜臀av | 亚洲狠狠婷婷综合久久图片| bbb黄色大片| 成人精品一区二区免费| 亚洲国产精品999在线| 欧美日韩亚洲综合一区二区三区_| aaaaa片日本免费| 女人爽到高潮嗷嗷叫在线视频| 男女午夜视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av电影不卡..在线观看| 夜夜看夜夜爽夜夜摸| 国产精品,欧美在线| 国产亚洲av嫩草精品影院| 国产成人av激情在线播放| 久久久久久免费高清国产稀缺| 亚洲男人天堂网一区| 久久亚洲真实| 黑人欧美特级aaaaaa片| 欧美日韩黄片免| 一二三四社区在线视频社区8| 久久精品人人爽人人爽视色| 久久久国产成人精品二区| 国产伦一二天堂av在线观看| 啦啦啦免费观看视频1| 亚洲成人国产一区在线观看| 视频在线观看一区二区三区| 中文字幕久久专区| 国产男靠女视频免费网站| 亚洲人成77777在线视频| 性少妇av在线| 国产精品98久久久久久宅男小说| 免费高清视频大片| 女人被狂操c到高潮| 又黄又爽又免费观看的视频| 亚洲精品久久成人aⅴ小说| 老鸭窝网址在线观看| 国产高清videossex| 麻豆成人av在线观看| 黄片小视频在线播放| 99精品久久久久人妻精品| 在线国产一区二区在线| 国产xxxxx性猛交| 人成视频在线观看免费观看| 久久青草综合色| 韩国精品一区二区三区| 一个人观看的视频www高清免费观看 | 一卡2卡三卡四卡精品乱码亚洲| 9热在线视频观看99| 91麻豆精品激情在线观看国产| 十八禁人妻一区二区| 免费在线观看日本一区| 久久人人精品亚洲av| 99国产精品一区二区蜜桃av| 夜夜躁狠狠躁天天躁| 国产高清视频在线播放一区| 亚洲七黄色美女视频| 精品欧美一区二区三区在线| 欧美日韩黄片免| 90打野战视频偷拍视频| 久久伊人香网站| 国产午夜福利久久久久久| 久久久水蜜桃国产精品网| 免费在线观看亚洲国产| 岛国在线观看网站| 天堂√8在线中文| x7x7x7水蜜桃| 国产乱人伦免费视频| 欧美黑人欧美精品刺激| 夜夜夜夜夜久久久久| 亚洲av五月六月丁香网| 亚洲精品粉嫩美女一区| 成熟少妇高潮喷水视频| 亚洲精品在线美女| 成在线人永久免费视频| 国产av一区在线观看免费| 动漫黄色视频在线观看| 欧美日韩亚洲综合一区二区三区_| 欧美另类亚洲清纯唯美| 老熟妇仑乱视频hdxx| 91av网站免费观看| 精品久久久久久久久久免费视频| 久久人人精品亚洲av| 电影成人av| 怎么达到女性高潮| 成人三级黄色视频| 如日韩欧美国产精品一区二区三区| 亚洲中文日韩欧美视频| 国产精品久久久人人做人人爽| 真人一进一出gif抽搐免费| 亚洲午夜理论影院| 久久精品国产清高在天天线| 亚洲成a人片在线一区二区| 亚洲色图av天堂| 日韩欧美三级三区| 成年女人毛片免费观看观看9| 一级黄色大片毛片| 午夜福利在线观看吧| 首页视频小说图片口味搜索| 久久国产精品影院| 久久中文字幕一级| 黑人欧美特级aaaaaa片| 亚洲自拍偷在线| 一边摸一边抽搐一进一小说| 亚洲国产欧美网| 欧美黑人精品巨大| 国产国语露脸激情在线看| 国产精品国产高清国产av| 日本精品一区二区三区蜜桃| 久久久久国产一级毛片高清牌| 成人特级黄色片久久久久久久| 精品久久久久久久毛片微露脸| 亚洲男人的天堂狠狠| 欧美亚洲日本最大视频资源| 亚洲黑人精品在线| 午夜日韩欧美国产| 日韩欧美三级三区| 精品久久蜜臀av无| 午夜视频精品福利| 一级,二级,三级黄色视频| 免费在线观看日本一区| 男女做爰动态图高潮gif福利片 | 亚洲中文日韩欧美视频| 亚洲第一青青草原| 亚洲av电影不卡..在线观看| 成人av一区二区三区在线看| 满18在线观看网站| 一区二区三区国产精品乱码| 久久中文看片网| 国产成人欧美在线观看| 不卡一级毛片| 色播亚洲综合网| 真人做人爱边吃奶动态| 免费在线观看完整版高清| 最新在线观看一区二区三区| ponron亚洲| 亚洲aⅴ乱码一区二区在线播放 | 9色porny在线观看| av在线播放免费不卡| 香蕉国产在线看| 一区二区三区国产精品乱码| 亚洲男人天堂网一区| 少妇裸体淫交视频免费看高清 | 夜夜爽天天搞| 窝窝影院91人妻| 久久亚洲精品不卡| 亚洲欧美激情综合另类| 丝袜在线中文字幕| 69av精品久久久久久| 国产精品一区二区在线不卡| 18禁观看日本| 十八禁人妻一区二区| 咕卡用的链子| 亚洲熟妇熟女久久| 亚洲欧洲精品一区二区精品久久久| 亚洲 欧美 日韩 在线 免费| 在线天堂中文资源库| 欧美中文综合在线视频| www.自偷自拍.com| 后天国语完整版免费观看| 亚洲最大成人中文| 丝袜美腿诱惑在线| 最新美女视频免费是黄的| 亚洲欧美日韩无卡精品| 麻豆国产av国片精品| 亚洲国产精品合色在线| 91成年电影在线观看| 制服人妻中文乱码| 国产主播在线观看一区二区| 女人精品久久久久毛片| 亚洲精品中文字幕在线视频| 99riav亚洲国产免费| 老司机深夜福利视频在线观看| 精品乱码久久久久久99久播| 亚洲精品国产一区二区精华液| 97碰自拍视频| 国产欧美日韩一区二区精品| 亚洲欧美日韩另类电影网站| 性色av乱码一区二区三区2| 99在线人妻在线中文字幕| 欧美中文综合在线视频| 美女免费视频网站| 亚洲成a人片在线一区二区| 亚洲电影在线观看av| 亚洲七黄色美女视频| 日日摸夜夜添夜夜添小说| 少妇被粗大的猛进出69影院| 亚洲欧美精品综合久久99| 韩国精品一区二区三区| 99香蕉大伊视频| 精品少妇一区二区三区视频日本电影| 午夜福利免费观看在线| 午夜久久久久精精品| 成人三级黄色视频| 精品熟女少妇八av免费久了| 国产亚洲精品久久久久久毛片| 亚洲九九香蕉| 国产亚洲精品综合一区在线观看 | 日韩 欧美 亚洲 中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久国产精品人妻aⅴ院| 久久久精品欧美日韩精品| 人妻丰满熟妇av一区二区三区| 精品一品国产午夜福利视频| 欧美一级毛片孕妇| 亚洲伊人色综图| 亚洲人成电影观看| 亚洲一区中文字幕在线| 亚洲av第一区精品v没综合| 国产成人免费无遮挡视频| 日韩精品免费视频一区二区三区| www国产在线视频色| 自线自在国产av| 欧美乱妇无乱码| 无限看片的www在线观看| av有码第一页| 欧美最黄视频在线播放免费| 欧美老熟妇乱子伦牲交| 亚洲欧洲精品一区二区精品久久久| 村上凉子中文字幕在线| 性少妇av在线| 神马国产精品三级电影在线观看 | 国产高清有码在线观看视频 | 免费在线观看亚洲国产| 亚洲精品国产区一区二| 视频在线观看一区二区三区| 国产精品99久久99久久久不卡| 久久人妻福利社区极品人妻图片| 精品久久久久久久人妻蜜臀av | 国产精品永久免费网站| av在线播放免费不卡| 中文字幕色久视频| 国产精品久久久av美女十八| 精品久久蜜臀av无| 亚洲国产精品999在线| 国产麻豆69| 午夜福利高清视频| 日本一区二区免费在线视频| 18禁观看日本| 黄色片一级片一级黄色片| 亚洲国产欧美日韩在线播放| 99在线视频只有这里精品首页| 日本黄色视频三级网站网址| 久久性视频一级片| 国产一级毛片七仙女欲春2 | 一级毛片精品| 欧美激情极品国产一区二区三区| 成人欧美大片| 琪琪午夜伦伦电影理论片6080| 脱女人内裤的视频| 亚洲精品粉嫩美女一区| 欧美最黄视频在线播放免费| 19禁男女啪啪无遮挡网站| 级片在线观看| 男女做爰动态图高潮gif福利片 | 亚洲成人精品中文字幕电影| 国产亚洲欧美98| 日本五十路高清| 国产极品粉嫩免费观看在线| 少妇粗大呻吟视频| 国产欧美日韩一区二区精品| 亚洲成人久久性| 成人手机av| 午夜激情av网站| 久久人妻熟女aⅴ| 亚洲一区二区三区不卡视频| 制服丝袜大香蕉在线| 国产亚洲精品综合一区在线观看 | 国产精品免费一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 精品一品国产午夜福利视频| 精品久久久久久成人av| 男人舔女人下体高潮全视频| 欧美成人免费av一区二区三区| 国产成人系列免费观看| 国产单亲对白刺激| 啦啦啦免费观看视频1| 国产精品亚洲av一区麻豆| 免费看a级黄色片| 99久久精品国产亚洲精品| 国产精品久久久久久亚洲av鲁大| 老司机午夜十八禁免费视频| 日韩欧美国产一区二区入口| 国产精品秋霞免费鲁丝片| 自线自在国产av| 久久久精品国产亚洲av高清涩受| 午夜免费成人在线视频| 女人被狂操c到高潮| 亚洲少妇的诱惑av| 亚洲成国产人片在线观看| 免费看a级黄色片| 1024视频免费在线观看| 精品高清国产在线一区| 久久久精品欧美日韩精品| 真人做人爱边吃奶动态| 午夜福利免费观看在线| 亚洲中文日韩欧美视频| 极品教师在线免费播放| 中文字幕精品免费在线观看视频| 日日干狠狠操夜夜爽| 欧美精品啪啪一区二区三区| 色播亚洲综合网| 97人妻天天添夜夜摸| 大型av网站在线播放| 欧美激情久久久久久爽电影 | 久热爱精品视频在线9| 1024视频免费在线观看| 国产精品99久久99久久久不卡| 亚洲黑人精品在线| 久久香蕉激情| 黑人巨大精品欧美一区二区mp4| 十八禁人妻一区二区| 一级a爱视频在线免费观看| 亚洲国产欧美一区二区综合| 欧美精品亚洲一区二区| 性色av乱码一区二区三区2| 国产免费男女视频| 大型av网站在线播放| 777久久人妻少妇嫩草av网站| 69av精品久久久久久| 精品福利观看| 嫁个100分男人电影在线观看| 国产精品免费视频内射| 久久久久国内视频| 国产精品亚洲一级av第二区| 国产成人影院久久av| 欧美成人午夜精品| 丝袜人妻中文字幕| 丝袜在线中文字幕| 国产精品秋霞免费鲁丝片| 人人妻,人人澡人人爽秒播| 最新在线观看一区二区三区| 一a级毛片在线观看| 欧美日韩亚洲国产一区二区在线观看| 在线永久观看黄色视频| 欧美一级a爱片免费观看看 | 黄片小视频在线播放| 精品国产乱子伦一区二区三区| 国产一区二区在线av高清观看| 午夜日韩欧美国产| 欧美日韩乱码在线| 757午夜福利合集在线观看| 老鸭窝网址在线观看| 老司机在亚洲福利影院| 国产精品久久视频播放| 亚洲精品中文字幕在线视频| 美女 人体艺术 gogo| 最好的美女福利视频网| 欧美日韩亚洲国产一区二区在线观看| 国产欧美日韩一区二区三| 制服人妻中文乱码| 久久香蕉国产精品| 国产精品亚洲美女久久久| 国产成人精品无人区| 一级黄色大片毛片| 波多野结衣一区麻豆| 亚洲专区中文字幕在线| 免费在线观看亚洲国产| 在线视频色国产色| 多毛熟女@视频| 久久中文看片网| 亚洲欧美日韩高清在线视频| 精品久久久久久久毛片微露脸| 国产免费男女视频| 18美女黄网站色大片免费观看| 国产99白浆流出| 黄色片一级片一级黄色片| 亚洲精品一区av在线观看| 人妻久久中文字幕网| 精品国产美女av久久久久小说| 欧美久久黑人一区二区| 国产一区二区三区综合在线观看| 中文字幕av电影在线播放| 嫩草影院精品99| 久久久久国产精品人妻aⅴ院| 亚洲精品久久国产高清桃花| 悠悠久久av| 很黄的视频免费| 中文字幕人成人乱码亚洲影| 制服人妻中文乱码| 欧美日本中文国产一区发布| 亚洲国产日韩欧美精品在线观看 | 国产亚洲欧美98| 一区福利在线观看| 淫妇啪啪啪对白视频| 欧美日韩中文字幕国产精品一区二区三区 | 欧美不卡视频在线免费观看 | 一夜夜www| 9热在线视频观看99| 国产色视频综合| 日韩欧美国产一区二区入口| 国产亚洲欧美精品永久| 亚洲,欧美精品.| 中文字幕高清在线视频| 国产成人精品久久二区二区91| 日韩中文字幕欧美一区二区| 三级毛片av免费| 中文字幕人成人乱码亚洲影| 国产在线精品亚洲第一网站| 亚洲av电影在线进入| 女性被躁到高潮视频| 午夜福利视频1000在线观看 | 婷婷丁香在线五月| 18禁国产床啪视频网站| 热re99久久国产66热| 亚洲一码二码三码区别大吗| 精品一区二区三区视频在线观看免费| 日本一区二区免费在线视频| 午夜影院日韩av| 亚洲第一电影网av| av有码第一页| 亚洲最大成人中文| 国产精华一区二区三区| 久久久久亚洲av毛片大全| 亚洲男人的天堂狠狠| www.999成人在线观看| 香蕉久久夜色| 久久天躁狠狠躁夜夜2o2o| 国产高清视频在线播放一区| 国产精品亚洲av一区麻豆| 午夜免费观看网址| 麻豆一二三区av精品| 亚洲一码二码三码区别大吗| 亚洲精品中文字幕在线视频| 久久久久久亚洲精品国产蜜桃av| 亚洲视频免费观看视频| 亚洲午夜理论影院| 18美女黄网站色大片免费观看| 自线自在国产av| 午夜久久久在线观看| 日韩三级视频一区二区三区| 不卡av一区二区三区| 青草久久国产| 人人妻,人人澡人人爽秒播| 法律面前人人平等表现在哪些方面| 长腿黑丝高跟| 亚洲va日本ⅴa欧美va伊人久久| 一区二区三区精品91| av天堂在线播放| 欧美国产日韩亚洲一区| 国产精品日韩av在线免费观看 | 这个男人来自地球电影免费观看| 大型黄色视频在线免费观看| 欧美另类亚洲清纯唯美| www.999成人在线观看| 一本综合久久免费| 日韩高清综合在线| 国产精品久久久久久亚洲av鲁大| 日韩欧美在线二视频| 国产精品九九99| 激情在线观看视频在线高清| 99香蕉大伊视频| 日韩 欧美 亚洲 中文字幕| 淫妇啪啪啪对白视频| 午夜亚洲福利在线播放| 精品国产亚洲在线| 成人国语在线视频| 亚洲,欧美精品.| 国产精品亚洲美女久久久| 大香蕉久久成人网| 久久久国产欧美日韩av| 日韩欧美国产在线观看| 色综合站精品国产| 黄色成人免费大全| 非洲黑人性xxxx精品又粗又长| 午夜福利一区二区在线看| 中文字幕高清在线视频| 1024视频免费在线观看| 纯流量卡能插随身wifi吗| 老司机福利观看| 国产一区二区在线av高清观看| 曰老女人黄片| 人人妻人人澡人人看| 精品人妻在线不人妻|