• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magneto-hydrodynamic simulation study of direct current multi-contact circuit breaker for equalizing breaking arc

    2023-03-06 01:49:38BowenJIA賈博文JianwenWU武建文ShuLI李樞HaoWU吳昊XiangjunPENG彭向軍JianDAI戴健andRuangCHEN陳儒盎
    Plasma Science and Technology 2023年2期
    關(guān)鍵詞:吳昊建文博文

    Bowen JIA(賈博文),Jianwen WU(武建文),Shu LI(李樞),Hao WU(吳昊),Xiangjun PENG (彭向軍),Jian DAI (戴健) and Ruang CHEN (陳儒盎)

    1 Systems Engineering Institute,Academy of Military Sciences,Beijing 100071,People’s Republic of China

    2 School of Automation Science and Electrical Engineering,Beihang University,Beijing 100083,People’s Republic of China

    Abstract This work is based on a direct current (DC) natural current commutation topology,which uses load-carrying branch contacts carrying rated current and multiple sets of series arcing branch contacts in parallel to achieve circuit breaking.The proposed topology can meet the new requirements of higher voltage DC switches in aviation,aerospace,energy and other fields.First,a magneto-hydrodynamic arc model is built using COMSOL Multiphysics,and the different arc breaking characteristics of the arcing branch contacts in different gas environments are simulated.Then,a voltage uniformity coefficient is used to measure the voltage sharing effect in the process of dynamic interruption.In order to solve the dispersion of arcing contact action,a structural control method is adopted to improve the voltage uniformity coefficient.The uniform voltage distribution can improve the breaking capacity and electrical life of the series connection structure.

    Keywords:DC circuit breaker,voltage uniformity coefficient,MHD modelling,uniform-voltage regulation method

    1.Introduction

    Direct current (DC) power supply systems have been widely used in the aerospace,urban rail traction,ship power system and new energy industries due to their outstanding advantages such as good system stability,good load characteristics and simple control [1-3].However,the further development of medium and low voltage DC power supply systems to a higher voltage level needs a breakthrough in DC breaking technology and the development of environment-resistant and lightweight DC switchgear.In recent years,high voltage DC power supply systems with a rated voltage of 270 V have been used in modern multi-electric and all-electric aircraft.Similarly,in the field of aerospace,solar power stations have been demonstrated to provide the largest power supply for spacecraft [4].In the future,the power supply of commercial power stations will reach GW level,and adopting high voltage power supply systems will become an important direction of future space technology development [5,6].In the fields of urban rail traction,new energy vehicles and the new generation of ship power distribution systems,the trend is for developing the voltage level of DC systems to several kV and above,and medium voltage DC power supply systems at kV level have become the focus for development.It can be predicted that high voltage and large capacity DC power supply systems will be fully applied in military and civil fields in the future[7,8].

    For the protection of DC high voltage levels,the large capacity DC contactor is a key device that plays the role of connecting,carrying and breaking the normal circuit,and its breaking characteristics are important factors restricting the performance of its system.In principle,the high voltage DC circuit breaker is generally composed of three branches: the load-carrying branch (main branch),the transfer (breaking)branch and the energy absorbing branch[9].Because there is no current zero crossing point in the DC arc,a special method is needed to extinguish the arc [10,11].The following methods can be adopted [12,13]: increasing the arc voltage by using multiple groups of near-pole voltage drop,increasing the electric field intensity of the arc column and lengthening the arc,and forcing the current to cross zero by using a forced branch,etc.

    Therefore,on the premise of meeting the demand for high voltage and large current DC breaking,this paper firstly proposes a DC natural commutation contactor topology and designs a prototype,which can maintain a low on-state voltage drop when carrying rated current.When breaking the circuit,the asynchronous contact realizes the natural transfer of current,and the arcing contact with high voltage breaking ability completes the breaking of the circuit.Then,based on the Gas Discharge Plasma Database (GPLAS,www.plasmadata.net/index),a two-dimensional magneto-hydrodynamic(MHD) arc model is built by using COMSOL Multiphysics software to simulate the breaking characteristics of multicontact arcs in series under different background atmospheres.Considering a 1 atm hydrogen environment[14],the dynamic voltage sharing characteristics of arcs under different mechanical action dispersions are studied by designing different initial arc temperature values.Finally,a structural control method is adopted to make the arc voltage of each contact achieve dynamic uniformity in the breaking process,which improved the breaking capacity and switching electrical life.

    2.Principle and modeling of the current commutation voltage sharing breaking

    The contact structure of a DC natural commutation contactor consists of two parts: the load-carrying branch carries rated current,and the arcing branch breaks the circuit.The loadcarrying branch and arcing branch are parallel in structure.The assembled contactor prototype and internal current distribution are shown in figure 1.Under the rated condition,a large proportion of the current flows through the load-carrying branch,which limits the improvement of the contact voltage drop and solves the problem of rated temperature rise under large DC current.On contact structure,the moving contacts of the load-carrying branch and the arcing branch are installed on the same electromagnetic operating mechanism,but the design of contacts overtravel is different.The contact overtravel of the load-carrying branch is smaller than that of the arcing branch,so that the main contacts are first opened during the breaking process,and the arcing contacts can still maintain a good circuit conduction state.When breaking the circuit,the internal circuit current will naturally commutate in the contactor.Under certain conditions,the main contact does not ignite an arc during the commutation process.After commutation,the arc voltage can be improved by the sealed gas environment.

    2.1.Hypotheses

    As a kind of high temperature plasma which is in a state close to thermodynamic equilibrium,the movement process of an arc can be described by an MHD model during arc extinction.In this paper,the arc MHD model includes the following assumptions.(1)The arc ignition and electrode opening process are ignored,that is,the process of arc extinguishing is simulated under the condition that the opening distance and the initial temperature of the arc are determined.(2)The research object is a macro-neutral Newtonian fluid,and the flow property is weakly compressible.(3) The viscous dissipation and isobaric expansion in the energy equation are neglected.(4) The magnetic field produced by displacement current and arc current is ignored.The movement of the arc depends on the magnetic field generated by the permanent magnet.

    2.2.Geometry of the MHD model

    Figure 2 shows the geometry of the arc MHD model built using COMSOL Multiphysics and the equivalent process of the model.The voltage,current,derivative of current over time,electrical potential,velocity field,pressure and temperature are calculated by using the electrical circuit,electrical current,laminar flow and heat transfer in fluids interface nodes.The thermal flow and the heat transfer in fluids are coupled through the non-isothermal flow interface,and the electrical current and heat transfer in fluids are coupled through the equilibrium discharge head source interface,where the heat source components consider enthalpy transport and Joule heating.

    Figure 1. The assembled contactor prototype and internal current distribution.

    Figure 2. Geometry and equivalent process of the MHD model.

    Figure 3. Simulation results for arc temperature in H2.

    Figure 4.Dynamic voltage sharing coefficients of multi-contact arcs under different gas pressures in H2.

    Figure 5. Simulation results for arc temperature in N2.

    Figure 6.Dynamic voltage sharing coefficients of multi-contact arcs under different gas pressures in N2.

    Figure 7. Simulation results for arc temperature in H7N3.

    Figure 8.Dynamic voltage sharing coefficients of multi-contact arcs under different gas pressures in H7N3.

    Figure 9.The simulation results for dynamic voltage sharing under structural control.

    Figure 10.Voltage sharing breaking effect under magnetic field regulation.

    Due to the symmetry of the structure,the arcs between B1,C1and D1contacts are mirror antisymmetric to those between B2,C2and D2contacts,so the model can be further simplified.The equivalent process of the cathode and anode terminals is as follows.The static and moving contacts of B2,C1and D2in figure 1 are regarded as equipotential,that is,the contacts are kept in contact and no arc is generated.Anode1 and Cathode1 are equivalent to the static and moving contacts of B1respectively,Anode2 and Cathode2 are equivalent to the static and moving contacts of C2respectively,Anode3 and Cathode3 are equivalent to the static and moving contacts of D1respectively,and the equipotential part can be considered to be equivalent to a cylindrical conductor.Since the simplified simulation model corresponds to half of the supply voltage,the external circuit is equivalent to a 1500 V DC power supply,10 μH equivalent line inductance,and 1.1 Ω load resistance.

    The MHD geometric model contains three independent discharge gas regions separated by nylon.The physical parameters of the discharge gas are determined using GPLAS.A magnetic field perpendicular to the plane direction is applied to the three discharge areas,and the magnetic induction intensity is expressed asBz1,Bz2andBz3.In order to realize the reverse motion of the adjacent arc,Bz2is opposite to the other two magnetic fields.At the initial time of the simulation,the geometric dimension of the arc is set as 2 mm in diameter and 3 mm in length.The initial temperature isT0_arc1,T0_arc2andT0_arc3.In the MHD model,the magnetic induction intensity is set to 50 mT.The arc initial temperature is set to 13 000 K.In the simulation model,an auxiliary switch is connected at both ends of the contact at different positions,as shown in figure 2(a).Auxiliary switches are used to form different arc motion conditions.In the simulation model,these auxiliary switches are connected in parallel to the gaps at different positions through the‘terminal’interface in the ‘electric circuit’ module.When the auxiliary switch is closed,since the on-state resistance of the auxiliary switch is much smaller than that of the arc,the current in the circuit will flow through the auxiliary switch,and the arc between the electrodes will not move because there is nearly no current.As shown in figure 2(b),Auxiliary Switch 1 is opened and the currentiin the circuit will flow through arc1,resulting in a movement trend under the magnetic field.The time when large current flows into the arc is changed by setting the opening time of the auxiliary switch.The opening sequence of the three auxiliary switches is set respectively to make the arc move at different times under the action of the Lorentz force,resulting in unbalanced voltage.In the simulation model,the opening times of the auxiliary switches are set as 100 μs and 200 μs.Subsequently,the cooled gas gradually recovers its insulation characteristics to complete the circuit disconnection.

    2.3.Governing equations

    The evolution of an arc plasma is the result of the interaction of gas dynamics and an electromagnetic field.According to MHD theory,the Navier-Stokes equation and energy conservation equation can be used to calculate the flow characteristics of the arc extinction process[15,16].According to the mass conservation equation,the arc plasma should satisfy the mass continuity theorem,as shown in equation (1).

    where ρ is the plasma mass density,kg m-3;u is the velocity vector,m s-1.

    The velocity distribution of the arc plasma is obtained by solving the momentum equation(Navier-Stokes equation),as shown in equations (2) and (3)

    wherepis the plasma pressure,Pa; μ is the viscosity,kg(m·s)-1; J is the current density,A m-2; B is the magnetic induction intensity of arc blowing,T.I in equation (2) is a unit matrix of order 3.

    The dynamic temperature distribution in the interrupter can be obtained by calculating the energy conservation equation through the coupling of multiple physical interfaces,as shown in equations (4)-(6).

    whereCpis the specific heat at constant pressure,J(kg·K)-1;kis the thermal conductivity,W (m·K)-1;Tis the plasma temperature,K.kBis Boltzmann’s constant; the variableqin lower case is the elementary charge,equal to 1.602 × 10-19C; σ is the electrical conductivity,S m-1.In order to obtain the further change of arc plasma temperature at low temperature,the minimum value of electrical conductivity is set in the physical parameters of the arc extinguishing medium.σminequals 0.02 S m-1,and the corresponding cutoff temperatureTcutoffis 4500 K.

    2.4.Boundary settings

    For the wall condition in the model,the no-slip condition is selected,with a no-slip wall where the fluid velocity relative to the wall velocity is zero [17].For a stationary wall that means that u = 0.The open boundary condition describes a boundary in contact with a large volume of fluid,and fluid can both enter and leave the domain on boundaries with this type of condition.

    3.Simulation research and analysis

    3.1.Simulation of dynamic voltage sharing under the same initial conditions

    In this section,under the same initial conditions,MHD modeling and simulation are carried out using the gas physical parameters of H2,N2and H2-N2(7:3 mixture ratio,represented by H7N3) in the plasma database under different gas pressures,and the simulation results of voltage distribution during the interruption process are obtained.In order to define the effect of dynamic voltage sharing in the process of breaking,a normalized voltage uniformity coefficientkis used in this work,as shown in equation (7).

    wherenis the number of arcing contacts,which is 3 in this paper;u i(t)is the arc voltage between theith contacts;(t)is the average voltage of all arcing contacts at the current time;is the static expected voltage sharing value.

    The simulation results for arc temperature under different pressures in the H2environment are shown in figure 3.The solid lines in the figure represent the arc current and the arc voltage at different positions(using three colors to distinguish the positions) under the 4 atm condition,the dashed lines indicate the arc current and the arc voltage at different positions under the 2 atm condition and the dot-dashed line indicates the arc current and the arc voltage at different positions under the 1 atm condition.

    According to the simulation results,H2has a good arc extinguishing effect,and the total arcing time is less than 1.22 ms at three pressure points.In particular,the arcing conditions at the maximum power point (Pmax) under each pressure point are marked in figures 3(a)-(c).The arc is elongated under the action of a magnetic field.When the arc voltage increases,the current gradually decreases,and the insulation performance of the gas medium is restored,which realizes the circuit breaking.In addition,when the gas pressure increases,the arc burning time will be decreased correspondingly,and the arc temperature atPmaxis decreased at the same time.

    Dynamic voltage sharing coefficients of multi-contact arcs under different gas pressures in the H2environment are shown in figure 4.Due to the short arcing time,the voltage of each contact is uneven during the breaking process,and the minimum value of the voltage uniformity coefficient is less than 70%.The overvoltage between some contacts is high,so the energy absorbing element should be considered properly.

    The simulation results for arc temperature atPmaxunder different pressures in the N2environment are shown in figure 5.Unlike in H2,the arcing time in N2increases significantly,ranging from 4.94 to 7.8 ms.The arc temperature at the maximum power point of the arc increases slightly with the arcing time.Similarly,the overvoltage between some contacts is also high,so the energy absorbing element should be considered properly.

    As shown in figure 6,dynamic voltage sharing coefficients of multi-contact arcs under different gas pressures in N2can also be maintained at about 85%.The effect of arc dynamic voltage sharing is obvious.

    In view of the high overvoltage problem of a single gas in the circuit breaking process,H7N3 is selected as the arc extinguishing medium to study the breaking characteristics and voltage sharing characteristics of a mixed gas.The simulation results for arc temperature atPmaxunder different pressures in an H7N3 environment are shown in figure 7.

    Compared with the single component gas,the arcing time of the mixed gas is closer to that of the H2environment,ranging from 1.87 to 3.79 ms.The arc temperature at the maximum power point of the arc is slightly lower,and the dynamic voltage sharing coefficients of the multi-contact arc under different gas pressures in H7N3 have been significantly improved,as shown in figure 8.The voltage uniformity coefficient is about 90%,and it is less affected by gas pressure.In the same way,the overvoltage of the mixed gas arc is obviously lower than that of the single gas arc.

    Table 1.The arcing characteristics under the same initial conditions.

    Under the same initial conditions,table 1 summarizes the arcing characteristics of arc extinguishing media under different gas pressures,including the average temperature at the moment of maximum arc power and the arcing time.

    3.2.Equalizing breaking process regulated by structure

    In this section,research on the voltage equalizing breaking of structural regulation is carried out for an H7N3 arc extinguishing medium under 4 atm.Because of the mechanical dispersion of the opening process,the arc energy between different contacts is not average in the initial stage of arc ignition.

    In the simulation process,three structural regulation methods are designed to study the effect of voltage equalizing breaking.Different auxiliary switch breaking intervals are set as follows.Structural control I:100 μs and 200 μs;structural control II:50 μs and 100 μs;and structural control III: 30 μs and 60 μs.The initial temperature of the arc at different positions is set asT0_arc1=T0_arc2=T0_arc3= 13 000 K,and the magnetic induction is set asBz1=Bz2=Bz3= 50 mT.Based on the above simulation conditions,the simulation results for dynamic voltage sharing under structural control are shown in figure 9.

    According to figure 9,it can be seen that under the condition of the same arc blowing magnetic induction intensity,the first arc always bears a higher voltage during the dynamic breaking process; the contact breaking time sequence istB<tC<tD.The uneven arcing energy will lead to a difference in contact material ablation,which acts against improving the electrical life of the switchgear,and also limits the breaking capacity.The dynamic voltage sharing coefficients of multi-contact arcs under different structural control methods are shown in figure 10.

    According to the simulation results,three kinds of structural control method can affect the dynamic voltage sharing during the breaking process.However,there is a reasonable structural control range for making the voltage uniformity coefficient reach a higher level.When the contact breaking interval is set from 100 μs/200 μs to 50 μs/100 μs,the voltage uniformity coefficient increases from 44.5% to 76.5%.When the contact breaking interval is set from 50 μs/100 μs to 30 μs/60 μs,the voltage uniformity coefficient increases from 76.5% to 83.8%.

    4.Conclusions

    In this work,based on a proposed topology of a DC natural commutation contactor,the voltage sharing breaking simulation of series multi-contact asynchronous breaking is carried out using MHD theory.It can be concluded that:

    (1) Based on the MHD theory,a simulation model of three series multi-contact breaking processes is established.Using H2,N2,and H2-N2mixed gas as the arc extinguishing medium,the arc simulation studies under different gas pressure conditions are carried out and the arc characteristics under different gas types are obtained.

    (2) Under the same initial conditions,the arc dynamic voltage uniformity characteristics between different contacts under a series of gas parameters are obtained.Considering the uneven voltage distribution caused by series multi-contact asynchronous breaking,a structural control method is proposed,and a normalized dynamic voltage uniformity coefficient is used to obtain the dynamic voltage sharing effect after regulation.

    (3) In view of the mechanical dispersion of the opening process,there is a reasonable structural control range to make the voltage uniformity coefficient reach a higher level.The voltage uniformity coefficient is increased from 44.5% to 76.5% when the contact breaking interval is set from 100 μs/200 μs to 50 μs/100 μs,and correspondingly from 76.5% to 83.8% when the contact breaking interval is set from 50 μs/100 μs to 30 μs/60 μs.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China(No.51977002).This manuscript is recommended by the Third International Symposium on Insulation and Discharge Computation for Power Equipment (IDCOMPU2021).The physical parameters of the discharge gas were determined by GPLAS (www.plasma-data.net/index).

    猜你喜歡
    吳昊建文博文
    第一次掙錢
    冼建文
    南風(fēng)(2020年8期)2020-08-06 10:25:54
    Long-Time Dynamics of Solutions for a Class of Coupling Beam Equations with Nonlinear Boundary Conditions
    僑領(lǐng)吳昊:傳遞中俄世代友好的接棒者
    吳昊、呂十鎖國畫作品
    誰和誰好
    Review on Tang Wenzhi’s The Gist of Chinese Writing Gamut
    Measurement and analysis of Doppler shift for high-speed rail scenario①
    打電話2
    當(dāng)代書畫名家
    ——李建文
    老汉色∧v一级毛片| 亚洲人成电影观看| 少妇的丰满在线观看| 好男人视频免费观看在线| 久久精品久久久久久久性| 在线观看人妻少妇| 丝袜美腿诱惑在线| 日韩一卡2卡3卡4卡2021年| 最近中文字幕高清免费大全6| 777久久人妻少妇嫩草av网站| 国产精品久久久av美女十八| 在线天堂最新版资源| 亚洲美女视频黄频| 黄色毛片三级朝国网站| 97在线人人人人妻| 免费女性裸体啪啪无遮挡网站| 亚洲美女视频黄频| 高清欧美精品videossex| 亚洲伊人色综图| 国产在线免费精品| 少妇人妻久久综合中文| 人妻人人澡人人爽人人| 国产免费又黄又爽又色| 老鸭窝网址在线观看| 可以免费在线观看a视频的电影网站 | tube8黄色片| 亚洲成色77777| 操出白浆在线播放| 王馨瑶露胸无遮挡在线观看| 伊人久久国产一区二区| 男女之事视频高清在线观看 | av又黄又爽大尺度在线免费看| 亚洲色图综合在线观看| 在线亚洲精品国产二区图片欧美| 欧美黄色片欧美黄色片| 中文字幕人妻熟女乱码| 精品国产国语对白av| 男人舔女人的私密视频| 久久av网站| 99精国产麻豆久久婷婷| 如日韩欧美国产精品一区二区三区| 成人国产麻豆网| 国产极品天堂在线| 波多野结衣一区麻豆| 少妇人妻久久综合中文| 国产97色在线日韩免费| 午夜激情久久久久久久| 99九九在线精品视频| 一边摸一边做爽爽视频免费| 久久久久久久大尺度免费视频| 91成人精品电影| 国产色婷婷99| 亚洲成人国产一区在线观看 | 欧美日韩综合久久久久久| 满18在线观看网站| 国产一区二区三区av在线| 国产一区二区 视频在线| 黄网站色视频无遮挡免费观看| 亚洲欧美成人精品一区二区| 一区在线观看完整版| 中国国产av一级| 国产日韩欧美视频二区| 国产成人一区二区在线| 亚洲欧美成人综合另类久久久| 国产免费视频播放在线视频| 免费黄频网站在线观看国产| 天天躁夜夜躁狠狠久久av| √禁漫天堂资源中文www| a 毛片基地| 秋霞伦理黄片| 国产精品一国产av| 最近中文字幕高清免费大全6| 晚上一个人看的免费电影| 黄色视频不卡| 日韩大片免费观看网站| 狂野欧美激情性bbbbbb| 欧美日本中文国产一区发布| 色婷婷av一区二区三区视频| 一边摸一边抽搐一进一出视频| 亚洲国产看品久久| 国产精品偷伦视频观看了| 9色porny在线观看| 亚洲av在线观看美女高潮| 欧美日韩综合久久久久久| 一本—道久久a久久精品蜜桃钙片| 又黄又粗又硬又大视频| 日本欧美视频一区| 精品福利永久在线观看| 久久热在线av| 亚洲av成人不卡在线观看播放网 | 久久精品国产亚洲av涩爱| 日本av免费视频播放| 最近中文字幕高清免费大全6| 狠狠精品人妻久久久久久综合| 大香蕉久久网| 亚洲综合色网址| 亚洲国产精品成人久久小说| 一本一本久久a久久精品综合妖精| 波多野结衣一区麻豆| 卡戴珊不雅视频在线播放| av线在线观看网站| 交换朋友夫妻互换小说| 在线观看国产h片| 精品国产超薄肉色丝袜足j| 欧美老熟妇乱子伦牲交| 在线天堂中文资源库| 在线免费观看不下载黄p国产| 国产精品免费视频内射| 丁香六月天网| 亚洲第一青青草原| 交换朋友夫妻互换小说| 啦啦啦在线观看免费高清www| 精品亚洲乱码少妇综合久久| 亚洲第一av免费看| 女性生殖器流出的白浆| 日韩av不卡免费在线播放| 美女大奶头黄色视频| 日韩伦理黄色片| 男女边吃奶边做爰视频| 啦啦啦中文免费视频观看日本| 99久国产av精品国产电影| 飞空精品影院首页| 精品视频人人做人人爽| 久久久久久久久久久免费av| 男女边摸边吃奶| 18禁裸乳无遮挡动漫免费视频| 日韩成人av中文字幕在线观看| 免费黄色在线免费观看| 黄色一级大片看看| 高清av免费在线| 国产精品一二三区在线看| www.av在线官网国产| 别揉我奶头~嗯~啊~动态视频 | 少妇人妻久久综合中文| 国产日韩欧美视频二区| 香蕉丝袜av| 男女边吃奶边做爰视频| 国产深夜福利视频在线观看| 天天躁夜夜躁狠狠久久av| 两个人看的免费小视频| tube8黄色片| 日韩一本色道免费dvd| 91老司机精品| 欧美精品高潮呻吟av久久| 日韩人妻精品一区2区三区| 成人影院久久| 97在线人人人人妻| 街头女战士在线观看网站| 美女福利国产在线| 丁香六月天网| 久久99精品国语久久久| 校园人妻丝袜中文字幕| 亚洲欧美一区二区三区国产| 精品一品国产午夜福利视频| 99精品久久久久人妻精品| 欧美乱码精品一区二区三区| 午夜福利,免费看| 日韩不卡一区二区三区视频在线| 亚洲欧美精品综合一区二区三区| 久久精品人人爽人人爽视色| 久久久久精品国产欧美久久久 | 久久 成人 亚洲| 欧美av亚洲av综合av国产av | 韩国av在线不卡| 女人高潮潮喷娇喘18禁视频| 热re99久久国产66热| 精品少妇内射三级| 久久久久国产精品人妻一区二区| 97在线人人人人妻| 国产在线视频一区二区| 午夜日本视频在线| 性少妇av在线| 黄色毛片三级朝国网站| 性色av一级| 国产精品国产av在线观看| 欧美精品一区二区大全| 色婷婷av一区二区三区视频| 亚洲 欧美一区二区三区| 亚洲精品在线美女| 亚洲久久久国产精品| 91国产中文字幕| 两个人看的免费小视频| 香蕉国产在线看| 婷婷色综合大香蕉| 日本av手机在线免费观看| 国产精品一二三区在线看| 久久久久久久国产电影| 成人午夜精彩视频在线观看| 一级毛片黄色毛片免费观看视频| 操出白浆在线播放| 精品少妇久久久久久888优播| 欧美日韩av久久| 亚洲精品中文字幕在线视频| 亚洲欧美色中文字幕在线| 亚洲,欧美,日韩| 一级,二级,三级黄色视频| av又黄又爽大尺度在线免费看| 精品国产国语对白av| 中文字幕亚洲精品专区| 国产在线视频一区二区| 香蕉国产在线看| 制服人妻中文乱码| 亚洲精品第二区| 日韩电影二区| 黄频高清免费视频| 亚洲免费av在线视频| 最近手机中文字幕大全| 国产精品国产av在线观看| 亚洲欧美成人综合另类久久久| 水蜜桃什么品种好| 一级毛片黄色毛片免费观看视频| 亚洲精品av麻豆狂野| 精品视频人人做人人爽| 七月丁香在线播放| 妹子高潮喷水视频| 天天躁夜夜躁狠狠久久av| 亚洲成人手机| 国产成人午夜福利电影在线观看| 在线观看三级黄色| 国产爽快片一区二区三区| 欧美精品一区二区大全| 精品久久久精品久久久| 亚洲男人天堂网一区| 一本—道久久a久久精品蜜桃钙片| 亚洲精品在线美女| 亚洲精品自拍成人| 亚洲一区中文字幕在线| 叶爱在线成人免费视频播放| 久久精品久久精品一区二区三区| 另类亚洲欧美激情| 2018国产大陆天天弄谢| 午夜福利视频在线观看免费| 国产国语露脸激情在线看| 亚洲欧美精品综合一区二区三区| 国产免费福利视频在线观看| 99久久99久久久精品蜜桃| 亚洲精品一二三| 久久这里只有精品19| 青春草国产在线视频| 久久人妻熟女aⅴ| 黄色怎么调成土黄色| 国产xxxxx性猛交| 99香蕉大伊视频| 下体分泌物呈黄色| 51午夜福利影视在线观看| 久久青草综合色| 一区福利在线观看| 久久国产精品男人的天堂亚洲| 99香蕉大伊视频| 最近2019中文字幕mv第一页| 亚洲第一区二区三区不卡| 日日摸夜夜添夜夜爱| 欧美变态另类bdsm刘玥| 亚洲av福利一区| 自线自在国产av| 只有这里有精品99| 欧美精品亚洲一区二区| 久久99一区二区三区| 日日爽夜夜爽网站| kizo精华| 欧美日韩福利视频一区二区| 亚洲欧美清纯卡通| 人妻一区二区av| 日韩精品有码人妻一区| 亚洲四区av| 欧美变态另类bdsm刘玥| 超色免费av| 校园人妻丝袜中文字幕| 亚洲图色成人| 精品免费久久久久久久清纯 | 大陆偷拍与自拍| 中文精品一卡2卡3卡4更新| 最近2019中文字幕mv第一页| 欧美黄色片欧美黄色片| 99香蕉大伊视频| 欧美日韩国产mv在线观看视频| 国产精品久久久av美女十八| 色精品久久人妻99蜜桃| 免费观看性生交大片5| tube8黄色片| 国产极品粉嫩免费观看在线| 999精品在线视频| 男女边摸边吃奶| 免费在线观看视频国产中文字幕亚洲 | 丰满饥渴人妻一区二区三| 亚洲av日韩在线播放| 嫩草影院入口| 午夜福利免费观看在线| 卡戴珊不雅视频在线播放| 高清视频免费观看一区二区| av天堂久久9| 国产一区有黄有色的免费视频| 亚洲美女视频黄频| 九九爱精品视频在线观看| 欧美精品一区二区免费开放| 国产精品一区二区精品视频观看| 精品福利永久在线观看| a 毛片基地| 免费女性裸体啪啪无遮挡网站| 在线观看免费高清a一片| 一本一本久久a久久精品综合妖精| 国产精品欧美亚洲77777| 国产日韩欧美在线精品| 久久久久视频综合| av线在线观看网站| 国产一区二区在线观看av| 国产精品国产三级国产专区5o| 亚洲人成77777在线视频| 多毛熟女@视频| 免费看av在线观看网站| 国产成人精品在线电影| av又黄又爽大尺度在线免费看| 777久久人妻少妇嫩草av网站| 亚洲人成网站在线观看播放| 国产精品成人在线| 啦啦啦视频在线资源免费观看| 国产野战对白在线观看| 一级片免费观看大全| 一区二区三区四区激情视频| 少妇精品久久久久久久| 欧美亚洲 丝袜 人妻 在线| 丝袜美足系列| 成年动漫av网址| 日本午夜av视频| 不卡av一区二区三区| 欧美老熟妇乱子伦牲交| 久久这里只有精品19| 国产黄色视频一区二区在线观看| 九草在线视频观看| 国产av国产精品国产| 高清视频免费观看一区二区| 色视频在线一区二区三区| 免费看不卡的av| 国产成人啪精品午夜网站| 日韩视频在线欧美| 免费久久久久久久精品成人欧美视频| 久久精品aⅴ一区二区三区四区| 国产精品人妻久久久影院| 伊人久久国产一区二区| 色吧在线观看| 少妇精品久久久久久久| 色综合欧美亚洲国产小说| 午夜福利视频在线观看免费| 久久久久国产一级毛片高清牌| av在线app专区| 亚洲欧美成人综合另类久久久| 激情视频va一区二区三区| 你懂的网址亚洲精品在线观看| 伦理电影免费视频| 男人舔女人的私密视频| 在线天堂最新版资源| 制服人妻中文乱码| 老汉色∧v一级毛片| 国产成人精品久久久久久| 成人18禁高潮啪啪吃奶动态图| 国产深夜福利视频在线观看| 天天躁夜夜躁狠狠久久av| 午夜福利视频精品| 在线观看免费视频网站a站| 亚洲一卡2卡3卡4卡5卡精品中文| 热99国产精品久久久久久7| 99国产精品免费福利视频| 久久久久国产一级毛片高清牌| 999精品在线视频| 久久99一区二区三区| 啦啦啦视频在线资源免费观看| 精品一品国产午夜福利视频| 日本午夜av视频| 97精品久久久久久久久久精品| 午夜福利在线免费观看网站| 精品国产国语对白av| 亚洲成人av在线免费| 色播在线永久视频| 肉色欧美久久久久久久蜜桃| 国产精品熟女久久久久浪| 国产成人精品久久久久久| 国产精品嫩草影院av在线观看| 久久女婷五月综合色啪小说| 国产精品女同一区二区软件| 午夜91福利影院| 97精品久久久久久久久久精品| 美女高潮到喷水免费观看| 欧美少妇被猛烈插入视频| 久久人人97超碰香蕉20202| 这个男人来自地球电影免费观看 | 热99久久久久精品小说推荐| 国产成人91sexporn| 久久精品久久久久久久性| 成年美女黄网站色视频大全免费| 日本av手机在线免费观看| 男女无遮挡免费网站观看| 亚洲欧美成人综合另类久久久| 亚洲欧美日韩另类电影网站| 大陆偷拍与自拍| 人人澡人人妻人| 欧美在线黄色| 久久久精品国产亚洲av高清涩受| 欧美成人午夜精品| 精品免费久久久久久久清纯 | 久久这里只有精品19| 免费黄色在线免费观看| 国产有黄有色有爽视频| 欧美 亚洲 国产 日韩一| 热99久久久久精品小说推荐| 成人国产av品久久久| 国产日韩欧美在线精品| 99香蕉大伊视频| 亚洲欧美日韩另类电影网站| 大陆偷拍与自拍| 日本av手机在线免费观看| 久久精品aⅴ一区二区三区四区| 日本vs欧美在线观看视频| 国产无遮挡羞羞视频在线观看| 欧美xxⅹ黑人| 午夜福利视频精品| 国产毛片在线视频| 国产亚洲欧美精品永久| 亚洲av成人不卡在线观看播放网 | 久久久精品免费免费高清| 各种免费的搞黄视频| 婷婷成人精品国产| 国产精品久久久久久人妻精品电影 | 综合色丁香网| 久热这里只有精品99| 亚洲av男天堂| 亚洲国产成人一精品久久久| 亚洲av中文av极速乱| 婷婷色综合www| 午夜福利免费观看在线| 午夜免费鲁丝| h视频一区二区三区| 爱豆传媒免费全集在线观看| 亚洲国产成人一精品久久久| 电影成人av| 婷婷色综合www| 女人久久www免费人成看片| 久久热在线av| 两个人免费观看高清视频| 久久久久视频综合| 亚洲图色成人| 99香蕉大伊视频| 日韩中文字幕欧美一区二区 | 国产 一区精品| 精品少妇一区二区三区视频日本电影 | 亚洲一码二码三码区别大吗| 91精品伊人久久大香线蕉| 国产精品二区激情视频| 男女国产视频网站| 日本欧美视频一区| 亚洲av男天堂| 自线自在国产av| 一区在线观看完整版| 精品国产一区二区三区久久久樱花| 多毛熟女@视频| 日韩电影二区| 在线观看三级黄色| 亚洲成人免费av在线播放| 日韩伦理黄色片| 黄色 视频免费看| 国产黄频视频在线观看| 亚洲欧美日韩另类电影网站| 国产女主播在线喷水免费视频网站| 一本久久精品| 国产男女超爽视频在线观看| 啦啦啦在线免费观看视频4| 午夜福利,免费看| 久久久久人妻精品一区果冻| 久久久精品免费免费高清| av网站在线播放免费| 丝袜喷水一区| 亚洲国产av影院在线观看| 久久久久久久国产电影| 欧美日韩视频精品一区| 秋霞在线观看毛片| 一级,二级,三级黄色视频| 国产精品久久久久久精品电影小说| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕高清在线视频| 看十八女毛片水多多多| 看免费av毛片| 十八禁网站网址无遮挡| 国产成人av激情在线播放| kizo精华| av天堂久久9| 久久久欧美国产精品| 亚洲国产中文字幕在线视频| 国产色婷婷99| 自拍欧美九色日韩亚洲蝌蚪91| 飞空精品影院首页| 国产精品无大码| 天堂俺去俺来也www色官网| 亚洲精品自拍成人| 一级a爱视频在线免费观看| 久久久久久久久久久久大奶| 亚洲精品日本国产第一区| 肉色欧美久久久久久久蜜桃| 亚洲精品国产av成人精品| 99国产综合亚洲精品| av天堂久久9| av视频免费观看在线观看| svipshipincom国产片| 午夜福利乱码中文字幕| 美女扒开内裤让男人捅视频| 国产淫语在线视频| 午夜激情久久久久久久| 精品视频人人做人人爽| 日韩av免费高清视频| 亚洲欧美色中文字幕在线| 成人国语在线视频| 少妇精品久久久久久久| 成年女人毛片免费观看观看9 | 人人妻人人添人人爽欧美一区卜| 国产精品久久久人人做人人爽| www.精华液| 久久精品熟女亚洲av麻豆精品| 啦啦啦在线观看免费高清www| 国产成人系列免费观看| 一本—道久久a久久精品蜜桃钙片| 久久久国产欧美日韩av| 爱豆传媒免费全集在线观看| 搡老岳熟女国产| 一级片'在线观看视频| 国产淫语在线视频| 男女边吃奶边做爰视频| 国产精品久久久人人做人人爽| 中文字幕最新亚洲高清| 尾随美女入室| 久久影院123| 久久av网站| 校园人妻丝袜中文字幕| 久久精品国产亚洲av涩爱| 久久青草综合色| 国产精品.久久久| 99久久99久久久精品蜜桃| 99精国产麻豆久久婷婷| 午夜福利影视在线免费观看| 欧美xxⅹ黑人| a 毛片基地| 欧美日韩成人在线一区二区| 婷婷色av中文字幕| 午夜av观看不卡| 天天躁夜夜躁狠狠躁躁| 性少妇av在线| 一个人免费看片子| 欧美日韩亚洲国产一区二区在线观看 | 国产精品一国产av| 亚洲专区中文字幕在线 | 精品亚洲成a人片在线观看| 久久久久视频综合| 日韩精品免费视频一区二区三区| 欧美精品av麻豆av| 高清视频免费观看一区二区| 天天躁日日躁夜夜躁夜夜| 两个人看的免费小视频| 肉色欧美久久久久久久蜜桃| 欧美亚洲日本最大视频资源| 啦啦啦在线观看免费高清www| 国产欧美亚洲国产| a 毛片基地| 久久这里只有精品19| 18禁国产床啪视频网站| 欧美人与性动交α欧美软件| 观看av在线不卡| 欧美黑人精品巨大| 久久精品国产综合久久久| 婷婷色麻豆天堂久久| 国产日韩欧美亚洲二区| 久久热在线av| 亚洲国产精品一区二区三区在线| 亚洲精品国产av蜜桃| 男女国产视频网站| 叶爱在线成人免费视频播放| 亚洲精品中文字幕在线视频| 熟女少妇亚洲综合色aaa.| 色94色欧美一区二区| 国产乱来视频区| 日韩中文字幕视频在线看片| 日本黄色日本黄色录像| 黄色视频在线播放观看不卡| 精品一区二区三区四区五区乱码 | 国产av精品麻豆| 精品国产超薄肉色丝袜足j| 亚洲av福利一区| 精品酒店卫生间| 麻豆乱淫一区二区| 精品午夜福利在线看| 成人免费观看视频高清| 国产乱来视频区| 自拍欧美九色日韩亚洲蝌蚪91| 看十八女毛片水多多多| 天堂俺去俺来也www色官网| 色综合欧美亚洲国产小说| 久久久国产精品麻豆| 天堂俺去俺来也www色官网| 又粗又硬又长又爽又黄的视频| 成人亚洲精品一区在线观看| 麻豆精品久久久久久蜜桃| xxx大片免费视频| 成人亚洲精品一区在线观看| 久久精品久久久久久久性| 免费久久久久久久精品成人欧美视频| 老司机影院毛片| 999精品在线视频| 丰满乱子伦码专区| 亚洲第一区二区三区不卡| 成年av动漫网址| 中国国产av一级| 国产女主播在线喷水免费视频网站| 亚洲伊人色综图| 最近中文字幕高清免费大全6| 男女边摸边吃奶| 日本欧美视频一区| 好男人视频免费观看在线| 国产 一区精品| 午夜免费男女啪啪视频观看|