• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and numerical investigation of a self-supplementing dual-cavity plasma synthetic jet actuator

    2023-03-06 01:49:26BoruiZHENG鄭博睿QianZHANG張倩TaifeiZHAO趙太飛GuozhengSONG宋國正andQuanlongCHEN陳全龍
    Plasma Science and Technology 2023年2期
    關鍵詞:張倩

    Borui ZHENG (鄭博睿),Qian ZHANG (張倩),Taifei ZHAO (趙太飛),Guozheng SONG (宋國正) and Quanlong CHEN (陳全龍)

    1 School of Automation and Information Engineering,Xi’an University of Technology,Xi’an 710048,People’s Republic of China

    2 Science and Technology on Plasma Dynamics Laboratory,Air Force Engineering University,Xi’an 710038,People’s Republic of China

    3 The Green Aerotechnics Research Institute of Chongqing Jiaotong University,Chongqing 401120,People’s Republic of China

    Abstract The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator (SD-PSJA) is designed,and the static properties of the SD-PSJA are investigated through experiments and numerical simulations.The pressure measurement shows that the SD-PSJA has two saturation frequencies (1200 Hz and 2100 Hz),and the experimental results show that both the saturation frequencies decrease as the volume of the bottom cavity of the SD-PSJA increases.As the size of the supplement hole increases,the first saturation frequency increases continuously,while the second saturation frequency shows a trend of first decreasing and then increasing.Numerical simulations show that the working process of the SD-PSJA is similar to that of the PSJA,but the volume of the cavity in the SD-PSJA is smaller than that of the PSJA;the SD-PSJA can supplement air to the top cavity through two holes,thus reducing the refresh time and effectively improving the jet intensity of the actuator at high frequencies.

    Keywords:plasma flow control,plasma synthetic jet actuator,pressure measurements,numerical simulations

    1.Introduction

    The plasma synthetic jet actuator (PSJA) was first proposed in 2003.The basic working principle of the PSJA is to use a pulsed arc to heat rapidly and pressurize the air inside a semi-enclosed cavity,which induces high-speed jet ejection [1].The working process of the PSJA in a cycle consists of three stages: energy deposition,jet expulsion/cavity pressurization,and refresh.Compared with dielectric barrier discharge plasma actuators(DBD-PAs),arc discharge plasma actuators (AD-PAs) and traditional piezoelectric/piston synthetic jet actuators,the PSJA actuator has a simple structure(several electrodes,one cavity,and a lid),a high jet velocity(>500 m s-1)and a high response speed(in microseconds) [2-4].Therefore,the PSJA immediately attracted widespread attention in the field of plasma flow control[4-9].

    When the total input power is constant,the frequency characteristics of the PSJA are mainly determined by its geometrical parameters.When the cavity volume increases,the Helmholtz natural oscillation frequency of the PSJA decreases,and the peak jet velocity declines due to the decrease in the nondimensional energy deposition [10,11].The energy converting efficiency of the PSJA decreases with an increase in the cavity volume because the temperature ratio can be reached after the energy deposition decreases and the temperature distribution in the cavity becomes more nonuniform [12,13].Although the PSJA can work at higher frequencies by reducing its cavity volume,insufficient mass flow in a single jet pulse will reduce the jet strength inevitably.

    As the throat length increases,the peak jet velocity and jet delay time show a slight increase,while the pulsed thrust remains almost constant [14].The saturation frequency and jet strength of the PSJA obviously decrease with the increase of throat length due to the increase of the throat gas inertial drag and viscous drag.Therefore,decreasing the throat length can improve the performance of the PSJA in the repetitive working stage.As the hole diameter increases,the jet duration time decreases due to a higher mass flow rate,whereas the saturation frequency increases [10,14].More substantial perturbation can be achieved by the PSJA with a more oversized hole diameter,enhancing its jet strength [15].Therefore,for the high-frequency performance of the PSJA,the hole diameter should be increased.

    Based on these reviews,to improve the limited working frequency of the PSJA,it is necessary to increase the refilling rate.The idea inspired us to add an extra reservoir to the conventional PSJA,which can store the pressurized air in the jet stage and supplement the cavity during the refresh stage.This novel design is a self-supplementing,dual-cavity,plasma synthetic jet actuator (SD-PSJA).In this work,we compare a PSJA and a SD-PSJA with the same cavity volume,and the effects of the bottom cavity volume and supplement hole diameter on the SD-PSJA have been investigated.A digital pressure transducer measures the total pressure of the PSJA and SD-PSJA,and numerical simulations are carried out to assist the analysis.The experimental setup and computational setup are introduced in section 2.The results and analyses are presented in section 3.

    2.Experimental setup

    2.1.Actuator and discharge characteristic measurement

    An SD-PSJA,including a lid,two cavities,and two electrodes,is designed as shown in figure 1.The electrodes are fixed in the electrode holders to ease the spacing adjustment.For the current study,the electrode gap is set to 2.5 mm.The actuator material is polyether ether ketone (PEEK),and the electrode material is tungsten needles (diameter = 1 mm).The top and bottom cavities of the SD-PSJA are cylindrical(diameter = 4.8 mm,height = 6.2 mm).The total volume of these two cavities is approximately227 mm.3 Both the jet hole and the supplement hole have a diameter of 1 mm.The throat lengths of the hole and supplement holes are 3 mm and 4 mm,respectively.

    As shown in figure 2,the complete working cycle of the SD-PSJA consists of three stages: the energy deposition stage,the jet expulsion/cavity pressurization stage,and the refresh stage.During the energy deposition stage,the air in the cavity is heated rapidly by arc plasma,resulting in a sharp increase in the temperature and pressure in the top hole.Driven by the pressure differences,most of the gas in the entire cavity is expelled into the external environment,forming a high-speed jet.A small portion is simultaneously injected into the bottom cavity through the supplement hole,creating a high-pressure reservoir.After the jet expulsion/cavity pressurization terminates,the top cavity remains with a pressure lower than the gas pressure inside the lower cavity and the outside atmospheric pressure.Consequently,fresh gas is ingested into the top cavity from both the exit hole and supplement hole,requiring a much shorter refresh time to prepare for the next working cycle.

    The actuator is powered by a nanosecond-pulse plasma power supply (output voltage: 0-20 kV; width: 0-1 ms; and output frequency: 1 Hz-20 kHz).To measure the discharge waveform of the SD-PSJA,a high-voltage probe (Tektronix P6015A),a current probe (Pearson 7877),and a digital oscilloscope (DPO4104B) are deployed.

    Figure 3 shows a typical SD-PSJA discharge waveform measured at a rising/falling edge of 500 ns,a pulse width of 1000 ns,and an amplitude voltage of 8 kV.Since there is also a charging capacitor inside the nanosecond pulse power supply,the SD-PSJA has a reverse charging process under the nanosecond pulse so that the discharge current waveform will show bipolar characteristics [19].Before air breakdown(6.36 kV),the actuation voltage on the SD-PSJA increases nearly linearly over time.Once the threshold is exceeded,the actuation voltage shows a steep drop trend,and the current flowing through the actuator increases rapidly to the maximum of 10.6 A within 0.8 μs.The pulse width of the current waveform is about 1.6 μs.In addition,apparent oscillations with unphysical spikes are detected in the arc discharge process,which could be attributed to the inevitable electromagnetic interference.According to figure 3,the relationship between the discharge voltage and discharge current of SDPSJA under nanosecond pulse actuation can be obtained,and the energy of a single pulse discharge can be obtained by integrating the discharge voltage and discharge current through equations (1) and (2).

    Figure 1.Configuration of SD-PSJA.

    Figure 2. Three working stages of the SD-PSJA.

    Figure 3.Discharge voltage and current waveform of the SD-PSJA.

    Figure 4. Total pressure measurement system.

    Figure 5.Computational mesh.

    Once the SD-PSJA is working,the nanosecond pulse power supply is charged until the voltage across the capacitor reaches the breakdown voltage of the gas gap between the positive and negative electrodes of the actuator.At this time,the energy stored in the discharge capacitor reaches the maximum value.This part of the energy is named the capacitor energyEc,and it is the total energy consumed by the actuator during a single discharge; it is calculated by equation (1).

    In equation (1),Ecis single pulse discharge capacitor energy,Cis the discharge capacitor of the nanosecond pulse power supply,andVis the air breakdown voltage.A discharge arc is generated between the positive and negative electrodes in the actuator cavity,and the energy of the arc is named arc energy; its calculation equation is equation (2).

    In equation (2),EArepresents the arc energy,τrepresents the pulse discharge time,V(t) andI(t) are the discharge voltage and discharge current of SD-PSJA at timet,respectively.The calculated pulse energy is about 3 mJ.

    There is a large amount of plasma in the discharge arc.The positive and negative charged particles in the plasma are accelerated under the action of the electric field force,and a part of the electric energy is rapidly converted into the internal energy of the gas.On the macroscopic level,the temperature of the gas increases,and the pressure increases at the same time [23].

    2.2.Time-averaged total pressure measurement

    A pitot tube,with a pressure transducer,is used to measure the time-averaged total pressure at the jet exit,which to a certain extent reflects the mechanical energy issued by the actuator,as shown in figure 4.The digital pressure transducer used in the pressure measurement experiment is DPT6000(WIKA Germany),the measurement range is from -1 to +1 kPa,the measurement accuracy is 0.1% full-scale (F.S),and the diameter of the selected total pressure probe is 1 mm,which is sufficient for the present study.The distance from the probe tip to the jet exit is approximately 1 mm,the sampling frequency of the pressure sensor is 100 Hz,and the sampling time is 2 s.Three repeated measurement experiments were carried out to reduce the uncertainty in each experimental condition.

    2.3.Calculation model and grids

    In this section,Fluent software was used to perform a 2D dynamic simulation of the SD-PSJA working process (mainly including energy deposition and jet expulsion)[20-22].Firstly,the 2D model is selected,and the turbulence model is set as the classicalk-ω model.The mesh model has been scaled and checked,and the mesh number of cells is 2.1 × 105.Set air as default fluid,set boundary conditions to adiabatic wall and pressure outlet.The calculation grid is shown in figure 5.The time step size in Fluent is set to 10-50000 ns.The red circle in figure 5 represents the energy deposition area in the center of the cavity,which is 1 mm in diameter.Finally,the heat source term equation is added to the energy equation.The SD-PSJA energy deposition process was simulated.

    In equation(3),η represents the energy conversion rate(set as 40% according to reference [16]);Q0is the single pulse energy(about 3 mJ);pτis the discharge duration;Vhis the total volume of the heating region.

    3.Results and analysis

    3.1.Total pressure measurement results

    The electrical parameters mentioned in section 2.1 are employed throughout the following study unless otherwise noted.Figure 6 compares the variations in the time-averaged total pressure with discharge frequency for both the PSJA and SD-PSJA.Note that the total cavity volumes of these two actuators are kept constant.As the discharge frequency increases,the time-averaged total pressure of the PSJA has a pressure peak,and the discharge frequency corresponding to this pressure peak is referred to as the saturation frequency[15].It is evident that there is a saturation frequency of 1300 Hz for the PSJA and that the peak values of the total pressure of the SD-PSJA and PSJA are equivalent.Compared with the PSJA,a second saturation frequency of 2100 Hz is observed at the SD-PSJA,and the first saturation frequency of the SD-PSJA is 1200 Hz,which is similar to the saturation frequency of the PSJA.When the discharge frequency is less than the first saturation frequency,the total pressure of the SD-PSJA is always higher than that of the PSJA.As the discharge frequency is between the first and second saturation frequencies of the SD-PSJA,the total pressure of the PSJA is higher.However,for high frequencies(higher than the second saturation frequency),the performance of the SD-PSJA is better than that of the PSJA.The author believes that the lower cavity can reduce the air supply capacity of the upper cavity under high-frequency discharge,resulting in the highfrequency characteristics of the dual-cavity exciter approaching the PSJA composed of a single upper cavity.In contrast,the saturation frequency of the small PSJA is high,so the high-frequency outlet pressure rises.Although a small volume of PSJA has a high outlet pressure at high frequencies,its flow rate is low,and its flow control capability is limited.Therefore,the frequency characteristics beyond the second saturation frequency are not discussed in this paper,which is explained.

    Figure 6.Comparison of the time-averaged total pressure between the SD-PSJA and the PSJA.

    Figure 7.Double spring-mass-damper system.

    In addition,a linear relation is exhibited between the total pressure and the discharge frequency atfd< 600 Hz,and the slope of this linear segment (k) is expressed mathematically,as shown in equation (4),wherePdenotes the time-averaged total pressure at the exit hole,Trepresents the discharge period,andPis the instantaneous jet total pressure at the exit hole.Physically,kreflects the contribution of a single jet to the time-averaged total pressure.Once this parameter is multiplied by the hole area (Ae),the actuator’s jet impulse (I)can be estimated,as shown in equation(5).Selecting figure 6 as an example,the jet impulses of PSJA and SD-PSJA are calculated to be 1.65 × 10-8and 1.85 × 10-8,respectively,reflecting that the jet strength of the SD-PSJA is higher than that of the PSJA.

    The working process of PSJA can be linked to the spring-mass damping system.The saturation frequency is mainly the natural oscillation frequency (fh),and also includes atmospheric parameters and geometric parameters.As shown in equation (6).KandMare the equivalent stiffness of the air inside the cavity,,and the effective mass of the air at the hole,M=ρ0lthAe,respectively [16].

    In equation (6),fhis the saturation frequency,γ is the specific heat ratio,Aeis the outlet pore area,ρ0is the air density,andlthrepresents the throat length [15,17].

    Structurally,the SD-PSJA is equivalent to two PSJAs connected in series.Thus,a dual spring-mass-damper system can be described in figure 7,which possesses two Helmholtz natural oscillation frequencies.Selecting the top and bottom cavities of the SD-PSJA as two independent spring-massdamper systems,their Helmholtz natural oscillation frequencies are determined to befh1andfh2,respectively,whereK1andK2are the equivalent stiffnesses of the air inside the bottom cavity and top cavity,respectively,andM1andM2represent the effective masses of the air at the supplement hole and jet hole,respectively.

    Furthermore,the effects of the bottom cavity volume and supplement hole diameter on the SD-PSJA are investigated in figure 8.All the bottom cavities with different volumes are cylinders with a diameter of 4.8 mm and heights are 4.2 mm,6.2 mm,and 8.2 mm.In addition,the two supplement holes have the same size of 4 mm and different diameters of 2 mm and 1 mm.Figure 8 shows that both the first and second saturation frequencies decrease with an increase in the bottom cavity volume and a decrease in the supplement hole diameter.The larger the first saturation frequency is,the greater the peak pressure of SD-PSJA.However,the more significant the second saturation frequency is,the smaller the force of the SD-PSJA at a high discharge frequency (higher than the second saturation frequency).Using the above calculation method,the variation in the two saturation frequencies with the bottom cavity volume and supplement hole diameter is consistent with the total pressure measurement.

    3.2.Numerical calculation results

    Numerical calculations are performed to study the working mechanism of the SD-PSJA.For a single cycle,the variations in the jet exit pressure at a distance of 1 mm from the holes are shown in figure 9(a),and the average pressure in the top cavity of the SD-PSJA and PSJA is compared in figure 9(b).Since the top cavity volume of the SD-PSJA is smaller than the cavity volume of the PSJA,the gas in the top cavity of the SD-PSJA is heated more uniformly,producing a relatively high-pressure peak compared with the PSJA.The pressure in the top cavity of the SD-PSJA decreases rapidly after the peak,similar to reducing the cavity of the PSJA.However,unlike the PSJA with a reduced cavity volume,the SD-PSJA can supplement air to the top cavity through the bottom cavity by itself,further enhancing the strength of the jet.The jet impulse of the actuator can be calculated by integrating the total pressure at the exit hole,as shown in equation (5).Through calculation,the jet impulses of t he PSJA and SD-PSJA are2.55 × 10-8and3.15 × 10-8,respectively.The jet impulse obtained by the numerical analysis is higher than that of the experimental result,which may be attributed to the measurement error caused by the consistency between the diameters of the total pressure probe and the hole,and an excessive energy conversion efficiency η in the numerical calculation.

    Figure 10 compares the jet velocity of the PSJA and the SD-PSJA with the same total cavity volume in a single cycle.After energy deposition,the PSJA and SD-PSJA produced jets with the same intensity,and some pressurized gas entered the bottom cavity.The PSJA quickly transfers to the refresh stage.However,since the top cavity is supplemented by gas from the bottom cavity,the jet velocity is more stronger at the hole of SDPSJA.Moreover,the SD-PSJA inhales air from the outside faster than the PSJA,ensuring that it continuously produces jets at higher discharge frequencies than the PSJA.Therefore,the SD-PSJA has better performance than the PSJA with the same cavity volume at high discharge frequencies.

    Figure 8.Impact of (a) bottom cavity volume and (b) supplement hole diameter on the time-averaged pressure of the SD-PSJA.

    Figure 9. Time evolution of the major performance parameters pertaining to the PSJA and SD-PSJA.(a) Exit pressure and (b) averaged cavity pressure.

    Figure 10.Comparison of the jet velocity contours produced by the PSJA and SD-PSJA with the same total cavity volume.

    4.Conclusion and discussion

    In this work,experimental investigations and numerical calculations were conducted to investigate the structure of a new actuator,the SD-PSJA.Furthermore,the effects of the bottom cavity volume and the supplement hole diameter on the SDPSJA are analyzed.The SD-PSJA has two saturation frequencies: the first saturation frequency (1200 Hz) is slightly smaller than the saturation frequency of the PSJA with the same cavity volume,and the second saturation frequency(2100 Hz)is much higher,about two times the first saturation frequency.When the discharge frequency is less than the first saturation frequency,because the energy conversion efficiency of the SDPSJA is higher than that of the PSJA,the total pressure of the SD-PSJA is consistently higher than that of the PSJA.As the discharge frequency is between the first and second saturation frequencies of the SD-PSJA,the total pressure of the PSJA is higher,which may be caused by gas entering the bottom cavity from the top cavity and affecting the regular operation of the SD-PSJA.However,for high frequencies (higher than the second saturation frequency),the performance of the SD-PSJA is better than that of the PSJA,supplemented by the bottom cavity.Furthermore,regarding the SD-PSJA as a dual spring-massdamper system,the two Helmholtz natural oscillation frequencies,similar to the first and second saturation frequencies,are presented in equations (4) and (5).The patterns of the first and second saturation frequencies,which change with the bottom cavity volume and the supplement hole diameter,have been obtained with these equations.With a larger bottom cavity,both the first saturation frequency and second saturation frequency decrease,but the high-frequency performance of the SD-PSJA is improved.As the supplement hole expands,the first saturation frequency increases,but the second saturation frequency initially decreases and then increases.In addition,the high-frequency performance of the SD-PSJA decreased with the volume of the supplementary holes.According to the numerical calculation results,the gas in the top cavity of the SD-PSJA is heated more uniformly,improving the average pressure peak.The pressure in the top cavity of the SD-PSJA decreases rapidly after the peak,which is similar to reducing the cavity of the PSJA.However,the SD-PSJA is different from the PSJA with the reduced cavity volume,and it can supplement air to the top cavity through the bottom cavity by itself,further enhancing the strength of the jet.With a larger cavity volume,more gas can be supplemented to the top cavity,which improves the high-frequency performance of the SD-PSJA.However,with a more giant supplement hole,too much gas in the bottom cavity of the SD-PSJA enters the top cavity.Nevertheless,the bottom cavity volume is unchanged,resulting in an insufficient amount of gas and the reduced highfrequency performance of the SD-PSJA.

    In conclusion,the SD-PSJA has a larger bandwidth than the PSJA with the same cavity volume and simple structure.The bottom cavity volume should be appropriately increased for better high-frequency performance,and the supplement hole should be reduced.When designing the SD-PSJA,we need to comprehensively consider its various geometric parameters and make reasonable choices to ensure that it has a large bandwidth and a good high-frequency working performance.

    Acknowledgments

    The present study is supported by National Natural Science Foundation of China (No.61971345) and the Foundation for Key Laboratories of National Defense Science and Technology of China (No.614220120030810).

    ORCID iDs

    猜你喜歡
    張倩
    Dual-wavelength pumped latticed Fermi–Pasta–Ulam recurrences in nonlinear Schr¨odinger equation
    Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator
    繼妹聯(lián)手渣夫做局:那是父母偏愛的蝴蝶效應
    Electrical and aerodynamic characteristics of sliding discharge based on a microsecond pulsed plasma supply
    基于社會責任培養(yǎng)的“生物多樣性”教學設計
    中學生物學(2022年3期)2022-05-13 14:00:04
    竇晨珂、曲樹云、王逸文、張倩作品精選
    基于賦權增能的德育評價生態(tài)系統(tǒng)的構建
    民族文匯(2022年9期)2022-04-13 00:33:06
    《愿為葵子》
    賈逵隔籬偷學
    Pressure-induced phase transition of B-type Y2O3?
    国产精品电影一区二区三区| 日韩精品青青久久久久久| 亚洲成av人片在线播放无| 欧美激情久久久久久爽电影| 成年女人看的毛片在线观看| 亚洲av中文av极速乱| 日产精品乱码卡一卡2卡三| 免费观看a级毛片全部| 婷婷色麻豆天堂久久 | 看黄色毛片网站| 91精品国产九色| av国产久精品久网站免费入址| 青青草视频在线视频观看| 蜜臀久久99精品久久宅男| 小蜜桃在线观看免费完整版高清| 超碰97精品在线观看| 插逼视频在线观看| 观看免费一级毛片| 免费搜索国产男女视频| 菩萨蛮人人尽说江南好唐韦庄 | 成年版毛片免费区| 国产v大片淫在线免费观看| 免费电影在线观看免费观看| 免费av不卡在线播放| av福利片在线观看| 久久久欧美国产精品| 乱码一卡2卡4卡精品| 特大巨黑吊av在线直播| 99在线视频只有这里精品首页| 亚洲最大成人手机在线| 免费黄色在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕人妻熟人妻熟丝袜美| 国产精品电影一区二区三区| 伊人久久精品亚洲午夜| 亚洲成人av在线免费| 91久久精品电影网| 日本午夜av视频| 亚洲自偷自拍三级| 欧美一区二区亚洲| 国产精品不卡视频一区二区| 免费无遮挡裸体视频| 日韩欧美 国产精品| 精华霜和精华液先用哪个| 久久精品影院6| 国产高清国产精品国产三级 | 最近2019中文字幕mv第一页| 日韩欧美国产在线观看| 亚洲最大成人中文| 亚洲av中文av极速乱| 长腿黑丝高跟| 久久午夜福利片| 日韩一区二区三区影片| 乱码一卡2卡4卡精品| 尾随美女入室| 亚洲精品乱码久久久久久按摩| 我的女老师完整版在线观看| 亚洲高清免费不卡视频| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久久成人| 在线天堂最新版资源| 五月伊人婷婷丁香| 久久久久久久午夜电影| 1024手机看黄色片| 国产色爽女视频免费观看| 免费无遮挡裸体视频| 婷婷色麻豆天堂久久 | 国产av一区在线观看免费| 最近最新中文字幕大全电影3| 国产欧美日韩精品一区二区| 一个人看的www免费观看视频| 纵有疾风起免费观看全集完整版 | 国产免费一级a男人的天堂| 91av网一区二区| 国产男人的电影天堂91| 免费观看人在逋| 成人av在线播放网站| 欧美极品一区二区三区四区| av专区在线播放| 大香蕉久久网| 日韩av不卡免费在线播放| 日韩人妻高清精品专区| 18禁在线播放成人免费| 18禁动态无遮挡网站| 亚洲色图av天堂| 精品一区二区免费观看| 午夜老司机福利剧场| 老师上课跳d突然被开到最大视频| 九九在线视频观看精品| 亚洲国产欧美人成| 国产视频内射| h日本视频在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 国产毛片a区久久久久| 成人国产麻豆网| 亚洲婷婷狠狠爱综合网| 国产探花在线观看一区二区| 2021天堂中文幕一二区在线观| 免费大片18禁| 成年av动漫网址| 人体艺术视频欧美日本| 精品午夜福利在线看| 人妻少妇偷人精品九色| 免费看光身美女| 国产一区二区在线观看日韩| 在现免费观看毛片| 尾随美女入室| 免费电影在线观看免费观看| a级毛色黄片| 特级一级黄色大片| 免费电影在线观看免费观看| 韩国av在线不卡| 国产伦一二天堂av在线观看| 亚洲av男天堂| 99热6这里只有精品| 色5月婷婷丁香| 97人妻精品一区二区三区麻豆| 99国产精品一区二区蜜桃av| 国产成人a区在线观看| 一区二区三区高清视频在线| 国产黄片视频在线免费观看| 国产精品麻豆人妻色哟哟久久 | 国产成人福利小说| 亚洲av电影不卡..在线观看| 国产成人精品久久久久久| 日本猛色少妇xxxxx猛交久久| 欧美xxxx性猛交bbbb| av在线亚洲专区| 精品久久久久久久久亚洲| 午夜福利在线观看吧| 亚洲人成网站高清观看| 日本与韩国留学比较| 日韩av在线大香蕉| 联通29元200g的流量卡| 五月伊人婷婷丁香| 成人av在线播放网站| 色5月婷婷丁香| 亚洲欧美成人综合另类久久久 | 人人妻人人澡欧美一区二区| 卡戴珊不雅视频在线播放| videos熟女内射| 日韩欧美 国产精品| 美女xxoo啪啪120秒动态图| 18禁动态无遮挡网站| 亚洲经典国产精华液单| 综合色av麻豆| 99久久成人亚洲精品观看| 国产女主播在线喷水免费视频网站 | 久久精品夜夜夜夜夜久久蜜豆| videossex国产| 大又大粗又爽又黄少妇毛片口| 只有这里有精品99| 一边摸一边抽搐一进一小说| 中国美白少妇内射xxxbb| 欧美bdsm另类| 1024手机看黄色片| 精品酒店卫生间| 亚州av有码| 秋霞在线观看毛片| 成人高潮视频无遮挡免费网站| www.色视频.com| 精品一区二区三区视频在线| 岛国毛片在线播放| 亚洲内射少妇av| 久久精品久久久久久久性| 久久久国产成人精品二区| 国产成人一区二区在线| 亚洲伊人久久精品综合 | 人人妻人人澡人人爽人人夜夜 | 久久99热这里只频精品6学生 | 少妇被粗大猛烈的视频| 乱系列少妇在线播放| 伦精品一区二区三区| 九九久久精品国产亚洲av麻豆| 亚洲欧美中文字幕日韩二区| 国语自产精品视频在线第100页| 国产男人的电影天堂91| 中文字幕免费在线视频6| 日本免费在线观看一区| 搡老妇女老女人老熟妇| 国产精品野战在线观看| 色综合亚洲欧美另类图片| 亚洲欧美中文字幕日韩二区| 欧美最新免费一区二区三区| 欧美一区二区亚洲| 欧美另类亚洲清纯唯美| 男女啪啪激烈高潮av片| 插阴视频在线观看视频| 天天一区二区日本电影三级| 五月玫瑰六月丁香| 欧美成人午夜免费资源| av播播在线观看一区| 一区二区三区免费毛片| 伦精品一区二区三区| 亚洲精品乱久久久久久| 啦啦啦啦在线视频资源| 中文天堂在线官网| 一二三四中文在线观看免费高清| 精品国内亚洲2022精品成人| 草草在线视频免费看| 国产真实乱freesex| 黄色配什么色好看| 成人特级av手机在线观看| 18禁动态无遮挡网站| 1000部很黄的大片| 能在线免费看毛片的网站| 免费av观看视频| 九九久久精品国产亚洲av麻豆| 日韩 亚洲 欧美在线| 白带黄色成豆腐渣| 国产精品女同一区二区软件| 久久这里有精品视频免费| 久久精品久久久久久噜噜老黄 | av免费观看日本| 在现免费观看毛片| 欧美日韩综合久久久久久| 狂野欧美激情性xxxx在线观看| 蜜桃久久精品国产亚洲av| 欧美一区二区精品小视频在线| 两个人视频免费观看高清| 联通29元200g的流量卡| 亚洲国产精品专区欧美| 中文字幕亚洲精品专区| 日产精品乱码卡一卡2卡三| 亚洲va在线va天堂va国产| 国产伦一二天堂av在线观看| 久久精品综合一区二区三区| 日本一本二区三区精品| 久久这里只有精品中国| 久久精品国产亚洲网站| 欧美一区二区精品小视频在线| 少妇猛男粗大的猛烈进出视频 | 国产一区有黄有色的免费视频 | 亚洲精品色激情综合| 久久久国产成人精品二区| 国内精品美女久久久久久| 久久99热这里只频精品6学生 | 最近最新中文字幕免费大全7| 啦啦啦啦在线视频资源| 国产三级中文精品| 老司机影院成人| 伊人久久精品亚洲午夜| av在线天堂中文字幕| 老女人水多毛片| 日韩欧美精品v在线| 午夜精品在线福利| 中文亚洲av片在线观看爽| 免费看美女性在线毛片视频| 亚洲人成网站在线观看播放| 亚洲国产欧美在线一区| 久久人妻av系列| av国产免费在线观看| 亚洲欧美中文字幕日韩二区| 成年女人看的毛片在线观看| 能在线免费看毛片的网站| 国产精品99久久久久久久久| 亚洲精品国产成人久久av| 久久人妻av系列| eeuss影院久久| 非洲黑人性xxxx精品又粗又长| 欧美区成人在线视频| 免费看美女性在线毛片视频| 亚洲精华国产精华液的使用体验| 少妇的逼好多水| 高清在线视频一区二区三区 | 少妇人妻精品综合一区二区| 精品不卡国产一区二区三区| 六月丁香七月| 一个人看视频在线观看www免费| 亚洲av成人av| 久久人妻av系列| 在线观看一区二区三区| 嘟嘟电影网在线观看| 中文天堂在线官网| 中文乱码字字幕精品一区二区三区 | 亚洲中文字幕一区二区三区有码在线看| 一夜夜www| 亚洲av中文字字幕乱码综合| 又粗又硬又长又爽又黄的视频| 直男gayav资源| 91av网一区二区| 51国产日韩欧美| 欧美区成人在线视频| 岛国在线免费视频观看| 内射极品少妇av片p| 国产亚洲午夜精品一区二区久久 | 精品久久久久久成人av| 亚洲国产精品sss在线观看| 51国产日韩欧美| 国产午夜福利久久久久久| 丝袜美腿在线中文| 少妇熟女aⅴ在线视频| or卡值多少钱| 美女被艹到高潮喷水动态| 久久久久久伊人网av| 老司机福利观看| 2021天堂中文幕一二区在线观| 成人性生交大片免费视频hd| 国产午夜福利久久久久久| 精品久久久久久久末码| 日韩,欧美,国产一区二区三区 | 女人久久www免费人成看片 | 中文天堂在线官网| 99久国产av精品国产电影| 网址你懂的国产日韩在线| 校园人妻丝袜中文字幕| 欧美激情国产日韩精品一区| 观看美女的网站| 久久久欧美国产精品| 国产av不卡久久| av黄色大香蕉| 久久婷婷人人爽人人干人人爱| 成人鲁丝片一二三区免费| 久久欧美精品欧美久久欧美| 国产真实乱freesex| 天堂中文最新版在线下载 | 国产成年人精品一区二区| 高清毛片免费看| 国产一区二区在线观看日韩| 干丝袜人妻中文字幕| 亚洲精品自拍成人| 久久午夜福利片| 成人高潮视频无遮挡免费网站| 美女xxoo啪啪120秒动态图| 久久久久久久久中文| 99久久中文字幕三级久久日本| 国产亚洲一区二区精品| 色网站视频免费| 国产亚洲最大av| 中文字幕亚洲精品专区| 男人舔女人下体高潮全视频| 欧美丝袜亚洲另类| 亚洲国产高清在线一区二区三| 九九热线精品视视频播放| 欧美另类亚洲清纯唯美| 成人毛片60女人毛片免费| 国产免费视频播放在线视频 | 欧美又色又爽又黄视频| 日韩一区二区三区影片| av播播在线观看一区| 久久久久性生活片| 村上凉子中文字幕在线| 国产v大片淫在线免费观看| 亚洲欧美精品专区久久| 成人鲁丝片一二三区免费| 国产三级在线视频| 婷婷色av中文字幕| 成人三级黄色视频| 午夜精品国产一区二区电影 | 一个人看的www免费观看视频| 日本爱情动作片www.在线观看| 国产成人一区二区在线| 久久精品久久精品一区二区三区| 99久久精品一区二区三区| 亚洲内射少妇av| 国产淫语在线视频| 成人特级av手机在线观看| 午夜视频国产福利| 综合色av麻豆| 麻豆成人av视频| 舔av片在线| 欧美日本视频| 少妇裸体淫交视频免费看高清| 日日摸夜夜添夜夜添av毛片| 美女xxoo啪啪120秒动态图| 亚洲国产日韩欧美精品在线观看| 国产黄色小视频在线观看| 久久久久久久久久成人| 欧美zozozo另类| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品久久精品一区二区三区| 亚洲色图av天堂| 天天躁日日操中文字幕| 国产精品一区二区在线观看99 | 在线免费十八禁| 永久免费av网站大全| 精品一区二区三区视频在线| 日韩av在线免费看完整版不卡| 亚洲欧美一区二区三区国产| 只有这里有精品99| 晚上一个人看的免费电影| 精品久久久久久久久亚洲| 午夜福利成人在线免费观看| www.色视频.com| 国产在视频线在精品| 亚洲伊人久久精品综合 | 男人舔女人下体高潮全视频| 尤物成人国产欧美一区二区三区| 久久久久久久久久黄片| av专区在线播放| 91久久精品国产一区二区三区| 国产又色又爽无遮挡免| 免费看美女性在线毛片视频| 精品酒店卫生间| 亚洲五月天丁香| av天堂中文字幕网| 久久国内精品自在自线图片| 边亲边吃奶的免费视频| 三级国产精品片| 国产精品福利在线免费观看| 亚洲av电影不卡..在线观看| 亚洲av.av天堂| 又黄又爽又刺激的免费视频.| 亚洲国产欧洲综合997久久,| 欧美变态另类bdsm刘玥| 深爱激情五月婷婷| 黄色配什么色好看| 一本久久精品| 22中文网久久字幕| 秋霞在线观看毛片| 日韩中字成人| 老女人水多毛片| 久久精品影院6| 国产在线男女| 在线观看美女被高潮喷水网站| 搞女人的毛片| 午夜福利在线观看吧| 成年女人看的毛片在线观看| 热99re8久久精品国产| 人人妻人人澡欧美一区二区| 欧美另类亚洲清纯唯美| 亚洲精品乱久久久久久| 欧美变态另类bdsm刘玥| 嫩草影院新地址| 亚洲经典国产精华液单| 精品欧美国产一区二区三| 日韩人妻高清精品专区| 国产精品伦人一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 日本wwww免费看| 国产色爽女视频免费观看| 少妇的逼好多水| 亚洲成av人片在线播放无| 一夜夜www| .国产精品久久| 99久久精品国产国产毛片| 男的添女的下面高潮视频| 国产乱来视频区| 精品久久久久久久久亚洲| 精品久久久久久久久久久久久| av又黄又爽大尺度在线免费看 | 国产精品一区二区三区四区久久| 日韩欧美在线乱码| av视频在线观看入口| 欧美最新免费一区二区三区| 国产片特级美女逼逼视频| 日韩精品青青久久久久久| 男人狂女人下面高潮的视频| 禁无遮挡网站| 91久久精品电影网| 又爽又黄无遮挡网站| 国产不卡一卡二| 精品久久久久久久久久久久久| 国产成人精品婷婷| 在线播放无遮挡| 日日摸夜夜添夜夜爱| 亚洲中文字幕日韩| 中文字幕精品亚洲无线码一区| 国产精品无大码| 国产精品久久电影中文字幕| 欧美精品国产亚洲| 亚洲,欧美,日韩| 好男人视频免费观看在线| 国产免费福利视频在线观看| 国产精品一二三区在线看| 久久精品久久久久久噜噜老黄 | 乱人视频在线观看| 亚洲av二区三区四区| 亚洲av免费高清在线观看| 日韩av不卡免费在线播放| 嘟嘟电影网在线观看| 久久久久久伊人网av| 秋霞伦理黄片| 久久精品久久精品一区二区三区| 日本免费在线观看一区| 日韩一区二区三区影片| 亚洲怡红院男人天堂| 大又大粗又爽又黄少妇毛片口| 一级二级三级毛片免费看| h日本视频在线播放| 精品欧美国产一区二区三| 日本五十路高清| 国产精品久久电影中文字幕| 99在线人妻在线中文字幕| 麻豆成人av视频| 国模一区二区三区四区视频| 亚洲激情五月婷婷啪啪| 欧美极品一区二区三区四区| 长腿黑丝高跟| 日本熟妇午夜| 男人的好看免费观看在线视频| 久久久久久九九精品二区国产| 亚洲精品456在线播放app| 色吧在线观看| 欧美日本视频| 成人无遮挡网站| 亚洲激情五月婷婷啪啪| 亚洲精品乱码久久久v下载方式| 天堂√8在线中文| 亚洲性久久影院| 亚洲av熟女| 插逼视频在线观看| 三级国产精品片| 精品一区二区免费观看| 小蜜桃在线观看免费完整版高清| 久久韩国三级中文字幕| 国产爱豆传媒在线观看| 亚洲人成网站在线播| 一边亲一边摸免费视频| 岛国毛片在线播放| 国产老妇伦熟女老妇高清| 国产精品福利在线免费观看| 老女人水多毛片| 听说在线观看完整版免费高清| 三级经典国产精品| 简卡轻食公司| 最新中文字幕久久久久| 亚洲丝袜综合中文字幕| 一区二区三区四区激情视频| 纵有疾风起免费观看全集完整版 | 亚洲在线观看片| 久久综合国产亚洲精品| 亚洲电影在线观看av| 99热这里只有是精品在线观看| 热99在线观看视频| 精品久久久久久久人妻蜜臀av| 国产免费视频播放在线视频 | 国产精品爽爽va在线观看网站| 亚洲成色77777| 久久精品夜色国产| 亚洲伊人久久精品综合 | 一边亲一边摸免费视频| 大香蕉久久网| 日韩 亚洲 欧美在线| av免费观看日本| 天堂影院成人在线观看| 黑人高潮一二区| 国产精品电影一区二区三区| 青春草亚洲视频在线观看| 美女脱内裤让男人舔精品视频| 人妻系列 视频| 最近最新中文字幕免费大全7| av在线亚洲专区| 国产亚洲av嫩草精品影院| 国产精品福利在线免费观看| 国产成人a区在线观看| 日本爱情动作片www.在线观看| 国产精品一区二区性色av| 亚洲国产成人一精品久久久| 亚洲欧洲日产国产| av天堂中文字幕网| 桃色一区二区三区在线观看| 亚洲精品乱久久久久久| 不卡视频在线观看欧美| 国产淫片久久久久久久久| 久久久久精品久久久久真实原创| 精品久久久久久久人妻蜜臀av| 18禁在线无遮挡免费观看视频| 日日啪夜夜撸| 男女那种视频在线观看| 日日干狠狠操夜夜爽| 久久久久久九九精品二区国产| 欧美成人午夜免费资源| 嫩草影院精品99| 久久精品91蜜桃| 免费看日本二区| 精品久久久久久久久av| 网址你懂的国产日韩在线| 秋霞在线观看毛片| 爱豆传媒免费全集在线观看| 日韩,欧美,国产一区二区三区 | 日韩中字成人| 国产在线男女| 最近手机中文字幕大全| 日本午夜av视频| 精品久久久久久久人妻蜜臀av| 一边摸一边抽搐一进一小说| 日韩欧美精品v在线| 久久精品熟女亚洲av麻豆精品 | 久99久视频精品免费| 亚洲伊人久久精品综合 | 久久久精品94久久精品| 九九在线视频观看精品| 国产精品久久久久久久久免| 国产亚洲午夜精品一区二区久久 | 亚洲国产精品合色在线| 久久精品夜色国产| 免费不卡的大黄色大毛片视频在线观看 | 久久久久国产网址| 能在线免费观看的黄片| 国产精品一及| 天天一区二区日本电影三级| 欧美xxxx性猛交bbbb| 在线免费观看的www视频| 人妻制服诱惑在线中文字幕| 在线免费观看不下载黄p国产| 七月丁香在线播放| 成人高潮视频无遮挡免费网站| 51国产日韩欧美| 亚洲精品乱久久久久久| 国产精品一区二区三区四区免费观看| 久久人人爽人人片av| 亚洲精品乱久久久久久| 白带黄色成豆腐渣| 国产亚洲一区二区精品| 国产成人福利小说| 国产熟女欧美一区二区| 亚洲av电影不卡..在线观看| 国产高清国产精品国产三级 | 极品教师在线视频| 久久久久久大精品| 寂寞人妻少妇视频99o| 直男gayav资源| 日本爱情动作片www.在线观看| 亚洲精品自拍成人|