• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure-induced phase transition of B-type Y2O3?

    2017-08-30 08:25:20QianZhang張倩XiangWu巫翔andShanQin秦善
    Chinese Physics B 2017年9期
    關(guān)鍵詞:張倩

    Qian Zhang(張倩),Xiang Wu(巫翔),and Shan Qin(秦善)

    1 Gemological Institute,China University of Geosciences,Wuhan 430074,China

    2 State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China

    3 Key Laboratory of Orogenic Belts and Crustal Evolution,Ministry of Educationamp;School of Earth and Space Sciences, Peking University,Beijing 100871,China

    Pressure-induced phase transition of B-type Y2O3?

    Qian Zhang(張倩)1,?,Xiang Wu(巫翔)2,and Shan Qin(秦善)3

    1 Gemological Institute,China University of Geosciences,Wuhan 430074,China

    2 State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China

    3 Key Laboratory of Orogenic Belts and Crustal Evolution,Ministry of Educationamp;School of Earth and Space Sciences, Peking University,Beijing 100871,China

    The synthesized monoclinic(B-type)phase of Y2O3has been investigated by in situ angle-dispersive x-ray diffraction in a diamond anvil cell up to 44 GPa at room temperature.A phase transition occurs from monoclinic(B-type)to hexagonal (A-type)phase at 23.5 GPa and these two phases coexist even at the highest pressure.Parameters of isothermal equation of state are V0=69.0(1)?A3,K0=159(3)GPa,=4(fixed)for the B-type phase and V0=67.8(2)?A3,K0=156(3)GPa,=4(fixed)for the A-type phase.The structural anisotropy increases with increasing pressure for both phases.

    Y2O3,x-ray diffraction,pressure-induced phase transition,equation of state

    1.Introduction

    Sesquioxides are very important materials which possess a wide range of physical and chemical properties and can be used for different technological applications.For example,they play a vital role in the grain growth inhibitor,[1]are used as additives of ceramics[2]and active catalysts for organic reactions,[3,4]and have potential use in nuclear engineering.[5,6]In addition,sesquioxides can adopt perovskite(Pv),post-perovskite(PPv),and post-PPv phases at extreme conditions,which has significant implications for the mantle of giant extrasolar silicate planets.For instance,Al2O3undergoes a series of pressure-induced phase transitions from corundum structure to Rh2O3(II)-type structure,then to the PPv-type structure,and finally to the post-PPv phase(U2S3-type,Pnma and Z=4)above 370 GPa.[7]Gd2S3-type(Pnma and Z=4)and Th2S3-type(Pnma and Z=4)structures, which have the same space group and cationic coordination numbers with the U2S3-type structure,have been observed in Sc2O3[8]and Ti2O3[9]at high pressure,respectively.

    The high-pressure behavior of rare-earth sesquioxides has been widely investigated.So far,five polymorphic forms have been identified in rare-earth sesquioxides.Hexagonal A (Pˉ3m1)in which cations are in seven-fold coordination,monoclinic B(C2/m)in which cations are mixed with six or sevenfold coordination,and cubic Cwith six-coordinated cations are commonly observed at room temperature and ambient pressure.[10]The two other phases denominated as H (hexagonal,P63/mmc)and X(cubic,)are formed at high temperature.[11]Cations in Gd2S3,Th2S3,and U2S3occupy seven and eight oxygen coordinations,which are higher than those in C,B,A,Pv,and PPv structures.

    Scandium and yttrium elements with the chemically similar lanthanide elements are often known to belong to the lanthanide family as the rare-earth metal elements.The optical properties of trivalent rare earth ion-doped nanocrystalline materials have been investigated extensively.Y2O3nanocrystals doped with trivalent rare earth ion have attracted considerable interest because of the high chemical durability and thermal stability.Eu-doped Y2O3is an important commercial luminescent material,it has been widely used in fluorescent lamps,projection television tubes,field emission displays,etc.[12]Y2O3crystallized into the C-type structure under ambient conditions.Lots of attempts have been made to understand its high-pressure behavior,but the high-pressure phase transition sequences show some inconsistencies.As for the pure Y2O3,the C→B,[13,14]C→B→A,[15–17]C→A,[18]and C→B→Gd2S3[19,20]phase sequences have been observed in experiments or theoretical calculations.The in situ highpressure luminescence spectra indicated that the C-type bulk Eu-doped Y2O3transformed into the B-type phase at 15 GPa, while 20 nm-sized nanocrystals did not.[21]

    As we all know,the experimental results are influenced by experimental conditions,such as non-hydrostaticity of pressure and regime of temperature treatment.In the static high pressure experiment at 2.5 GPa and 1273 K,the C-type Y2O3transformed to the B-type phase which was also found above 12 GPa in a shock-compression experiment,while the A-type phase was proposed to be the favorable stable high pressure phase.[14]In some quasi-hydrostatic compression experiments at room temperature,Y2O3followed the phase sequence of C→B→A.[15–17]A high-pressure Raman experiment reported two phase transitions,viz,C→B and B→Aat 12 GPa and 19 GPa respectively.[16]However,a high pressure x-ray experiment showed that pure Y2O3exhibited a direct transition to A structure at 12.1 GPa and room temperature,whereas the C→B→A transition was observed in Eu-doped Y2O3.[18]Considering the temperature effect,a sequence of structural phase transitions C→B→A observed in the room-temperature compression did not coincide with the phase transition sequence C→B→Gd2S3under high pressure and high temperature.[19]Moreover,there are some inconsistencies among the room-temperature data collected with different internal pressure standards under conditions close to hydrostatic environment by noble gases like He or Ne media and by solid or liquid media such as KBr and silicone oil.[22]The previous pressure-transmitting media in the experiments on Y2O3were silicone oil,[18]a mixture of methanol and ethanol,[23]or KBr powder.[16]

    To the best of our knowledge,starting Y2O3samples used in the former work were characterized by the C-type structure.The B-type polycrystalline Y2O3has been synthesized successfully using multi-anvil press in our previous work.[24]High-pressure x-ray diffraction experiments provide us information about high-pressure phase transitions and physical properties.[25–27]In this study,we carry out the high pressure experiment of B-type Y2O3as the starting material up to 44 GPa by in situ x-ray diffraction(XRD)in diamond anvil cell(DAC).

    2.Experiment

    The starting sample of the synthesized B-type Y2O3was described in detail in Ref.[24].In our XRD experiment, we generated high pressures by a symmetric type DAC with 300μm-diameter culets.A 150μm-diameter hole was drilled in the pre-indented to~30μm-thickness rhenium gasket.Pt was loaded in the chamber as pressure standard based on its well-known equation of state.[22]and Ne was used as the pressure medium.The in situ high-pressure XRD experiment at room temperature was conducted at 13IDD at Advanced Photon Source(APS).Diffraction patterns were collected using a MarCCD detector.The monochromatic x-ray which was focused to 5μm×5μm on the sample surface has a wavelength of 0.3344?A.Collection time for each pattern was 20 s. Diffraction images were integrated to one-dimensional spectra using the Fit2D program.[28]Lattice parameters were obtained using Unitcell.[29]Some x-ray diffraction patterns were fitted by the Le Bail method implemented in the GSAS+EXPGUI software.[30]

    3.Results and discussion

    The XRD pattern at ambient conditions gives lattice parameters a=13.892(7)?A,b=3.494(1)?A,c=8.614(4)?A, β=100.22(4),and V=411.4(2)?A3from a full profile model refinement.In situ high-pressure XRD data were collected up to 44 GPa at room temperature.Some selected XRD patterns are shown in Fig.1,where all peaks can be indexed into the B-type Y2O3and minor impurities up to 23.5 GPa.All peaks shifted to higher angles of 2θ with increasing pressure.As shown in Fig.1,the peaks began to change at 23.5 GPa,indicating the appearance of a new phase.According to the previous studies,[19]the new phase would be either A-or Gd2S3-type.By performing the x-ray profile fitting analyses and comparing the d values of the characteristic peaks with the previous experimental data,[19]we confirmed that the new phase adopted the A-type structureUpon compression,the B-type phase was found to obviously coexist throughout the transition process from the B-to A-type phase.The B-type phase still existed at the highest pressure,implying that the transition may be kinetically sluggish.In Sc2O3,the B to A transition at 77 GPa was predicted by abinitio calculation,[31]but the Gd2S3-type phase as the post-B phase was observed above 18 GPa atthe high temperature experiment.[8]Considering the similarity of Sc2O3and Y2O3,Sc2O3would also have the C→B→A phase transition sequence in the high-pressure experiment at room temperature.As previously mentioned,it is not a common phenomenon that the high-pressure structure sequence of Y2O3observed in the room temperature compression does not coincide with the phase transition sequence at high temperature.Generally speaking,the temperature effect is always considered in pressure-induced phase-transition experiments in order to obtain clear high-pressure structural information,because high temperature relaxes the differential stress and overcomes the potential kinetic effects on phase transition.Therefore,the laser heating usually promotes the phase transition to happen at lower pressure than that of the room temperature compression experiment.By analyzing the crystal structures of B-and A-type phases of Y2O3at high pressure,the B-type structure was found to be equivalent to the A-type structure.[19]This is a possible reason why the B to A transition was observed under compression at room temperature.In our synthesis experiment,we tried to synthesize the Gd2S3-type phase of Y2O3in a multi-anvil apparatus at HPHT conditions(20 GPa and 1800°C),but the B-type phase was reserved.[24]Ovsyannikov et al.tried to obtain the B-type Sc2O3at 14 GPa and 1600°C,but only the C-type phase was found in the recovered sample.[32]These results show that the HP-HT behaviors of Y2O3and Sc2O3are complex and further investigations of their P–T phase diagrams are needed.

    The B-and A-type unit-cell volumes showed a smooth decrease with the increasing pressure.The unit-cell volume data as a function of pressure is plotted in Fig.2 and analyzed by the second-order Birch–Murnaghan equation of state (B–M EoS).[33]The EoS parameters we obtained are listed in Table 1,which also includes the available experimental and theoretical data for comparison.The equilibrium volume V0obtained from the theoretical computation is underestimated compared with the experimental results,which is typical for the LDA computations.The isothermal bulk moduli of B-and A-type Y2O3compounds are approximate.Our result is consistent with the theoretical simulation data,[11]which shows that the difference between the bulk moduli of B-and A-type rare-earth sesquioxides is considerably small.

    Fig.1.(color online)X-ray diffraction profiles of the Y2 O3 sample under room temperature compression.The tick marks indicate the calculated positions of the diffraction peaks of B-and A-type phases with the LeBail method (GSAS).Solid line,symbols,and solid line at the bottom represent the calculated and the observed patterns and their differences at ambient conditions, respectively.Other solid lines represent the observed patterns at high pressure.

    Fig.2.(color online)The volume per formula of B-and A-type phases of Y2O3 as a function of pressure.The solid lines correspond to the second-order B–M EoS fitting to the experimental data.The volume collapse in the phase transition is about 2%at 23.5 GPa.The crystal structures are also shown. Red spheres are oxygen and dark green spheres at the center of polyhedra are yttrium.

    The phase transition from B-to A-type Y2O3is followed by a volume collapse of 2%at 23.5 GPa(Fig.2),which is at the same level as that of Sm2O3.[34]This transformation involves only a slight deformation.Compared to this B→A transition,the C→B first-order phase transition is accompanied by a more significant volume decrease(8%,[16]12.5%[15]).

    Table 1.Equation of state parameters for the B-and A-type polymorphs of Y2O3.V0,B0,andare the volume per formula unit,the bulk modulus,and its pressure derivative at zero pressure,respectively.

    Table 1.Equation of state parameters for the B-and A-type polymorphs of Y2O3.V0,B0,andare the volume per formula unit,the bulk modulus,and its pressure derivative at zero pressure,respectively.

    The coordination number of Yincreases from six or seven in B-type structure,to seven in the A-type one during the B→A transition.In addition,the B(C2/m)and Ahave a group-subgroup relationship.[35]Contrary to the C→B reconstructive transition,the B→A transition is inferred to be displacive,which is also suggested in other studies.[17,19]

    Theoretical analysis of pressure-induced B to A-type phase transitions shows a linear correlation between bulk modulus,transition pressures,and the ionic radius of the cation.[11]The suggested transition pressure and bulk modulus for Y2O3are at the same level as those of our experimental results. The difference is mainly due to the GGA exchange correlation energy,which gives a larger V0and a smaller B0.The first single-crystal study of Sc2O3exhibited that the denser B-type phase is a bit more compressible than the C-type one.[32]This result did not confirm the other experimental studies on powdery Sc2O3.[8]The previous studies on powders of lanthanide sesquioxides did not reveal a noticeable difference in the bulk moduli of C-,B-,and A-type phases,e.g.,Ho2O3and Sm2O3.[34,36]Whether there exist noticeable bulk modulus differences among the C-,B-,and A-type rare-earth sesquioxides requires more experimental and theoretical investigations.

    During the past few decades,the rare-earth sesquioxides have been studied by numerous researchers to investigate the phase relationships among the C,B,and A phases.Early in 1966,Hoekstra found that the effect of ionic radius is much greater than temperature or pressure in shifting the C?B equilibrium line.[37]Moreover,compression experiments and theoretical results exhibited that higher pressure would be needed to stabilize the A-type phase in rare-earth sesquioxides with smaller cationic radius.[11,34]However,this systematics of the C→B→A phase sequence may not be applicable to the rare-earth sesquioxides only according to their cationic radii.The comparative crystallography in rare-earth sesquioxides has been summarized in other study.[8]Sc2O3(Sc3+;0.745?A), In2O3(In3+;0.800?A),and Y2O3(Y3+;0.900?A),which adopt the C-type structure at ambient conditions,crystallize into the Gd2S3structure at high pressure after laser heating.[8,19,38]It is possible that the Gd2S3structure would be found as a post B-type structure in other rare-earth sesquioxides at high temperature.

    The pressure evolution of the lattice parameters of the B-and A-type phases is shown in Fig.3.Regarding the unit-cell compressibilities,the a axis is the most compressible and the b axis is the least compressible for the B-type phase.As for the A-type Y2O3,the c axis is more compressible than the a axis mainly because of the large intervals between the layers in the c axial orientation.It indicates that the axial compressiblities of B-and A-type phases are anisotropic.

    Fig.3.(color online)Pressure-induced variations in the lattice parameters of the B-type(a)and A-type(b)phases of Y2O3.The solid lines are linear fittings of the experimental data.

    4.Conclusion

    The structural properties of B-type Y2O3under compression have been investigated by synchrotron radiation x-ray diffraction experiment with neon as the pressure-transmitting medium at room temperature up to 44 GPa.We observed a sluggish phase transition from B-to A-type phase at 23.5 GPa. The isothermal P–V relationship of Y2O3was described by the second-order Birch–Murnaghan equation of state with B0= 159(3)GPa for the B-type phase,and 156(3)GPa for the A-type phase.Note that the high pressure behavior of rare-earth sesquioxides is apparently complex,and there are lots of unanswered questions in their condensed matter physics.Further studies will bring exciting results on their high-pressure properties.

    Acknowledgements

    The authors are deeply grateful to Sergey V.Ovsyannikov and Leonid S.Dubrovinsky for synthesizing the sample.High-pressure experiments were performed at GeoSoil Enviro CARS of the APS,ANL.GeoSoil EnviroCARS operations are supported by the National Science Foundation-Earth Sciences(EAR-1128799)and the Department of Energy Geosciences(DE-FG02-94ER14466).APS is supported by DOEBES,under Contract No.DE-AC02-06CH11357.

    [1]Aktas B,Tekeli S and Kucuktuvek M 2014 Int.J.Mater.Res.105 208

    [2]Scott H 1975 J.Mater.Sci.10 1527

    [3]Hussein G A 1996 J.Anal.Appl.Pyrolysis 37 111

    [4]Dedov A,Loktev A,Moiseev I,Aboukais A,Lamonier J F and Filimonov I 2003 Applied Catalysis A:General 245 209

    [5]Shikama T,Toh K,Nagata S,Tsuchiya B,Yamauchi M,Nishitani T, Suzuki T,Okamoto K and Kubo N 2006 Nucl.Fusion 46 46

    [6]Weber W J,Ewing R C,Catlow C R A,de la Rubia T D,Hobbs L W, Kinoshita C,Matzke H,Motta A T,Nastasi M,Salje E K H,Vance E R and Zinkle S J 1998 J.Mater.Res.13 1434

    [7]Umemoto K and Wentzcovitch R M 2008 Proc.Natl.Acad.Sci.USA 105 6526

    [8]Yusa H,Tsuchiya T,Sata N and Ohishi Y 2009 Inorg.Chem.48 7537

    [9]Nishio-Hamane D,Katagiri M,Niwa K,Sano-Furukawa A,Okada T and Yagi T 2009 High Press.Res.29 379

    [10]Zinkevich M 2007 Prog.Mater.Sci.52 597

    [11]Wu B,Zinkevich M,Aldinger F,Wen D and Chen L 2007 J.Solid State Chem.180 3280

    [12]Wang H,Uehara M,Nakamura H,Miyazaki M and Maeda H 2005 Adv. Mater.17 2506

    [13]Hoekstra H R and Gingerich K A 1964 Science 146 1163

    [14]Atou T,Kusaba K,Fukuoka K,Kikuchi M and Syono Y 1990 J.Solid State Chem.89 378

    [15]Halevy I,Carmon R,Winterrose M L,Yeheskel O,Tiferet E and Ghose S 2010 J.Phys.Conf.Ser.215 012003

    [16]Husson E,Proust C,Gillet P and Itie J 1999 Mater.Res.Bull.34 2085

    [17]Bose P P,Gupta M,Mittal R,Rols S,Achary S,Tyagi A and Chaplot S 2011 Phys.Rev.B 84 094301

    [18]Wang L,Pan Y,Ding Y,Yang W,Mao W L,Sinogeikin S V,Meng Y, Shen G and Mao H 2009 Appl.Phys.Lett.94 061921

    [19]Yusa H,Tsuchiya T,Sata N and Ohishi Y 2010 Inorg.Chem.49 4478

    [20]Umemoto K and Wentzcovitch R M 2011 Phys.Chem.Miner.38 387

    [21]Bai X,Song H,Liu B,Hou Y,Pan G and Ren X 2008 J.Nanosci. Nanotechnol.8 1404

    [22]Fei Y,Ricolleau A,Frank M,Mibe K,Shen G and Prakapenka V 2007 Proc.Natl.Acad.Sci.USA 104 9182

    [23]Zhang J,Cui H,Zhu P,Ma C,Wu X,Zhu H,Ma Y and Cui Q 2014 J. Appl.Phys.115 023502

    [24]Zhang Q,Wu X,Ovsyannikov S V,Dong J,Qin S,Dubrovinsky L S and Chen D 2016 Chem.Res.Chin.Univ.32 545

    [25]Tang S X,Zhu H Y,Jiang J R,Wu X X,Dong Y X,Zhang J,Yang D P and Cui Q L 2015 Chin.Phys.B 24 096101

    [26]Li N N,Li Y,Li H,Tang R L,Zhao Y S,Han D D,Ma Y M,Cui Q L, Zhu P W and Wang X 2014 Chin.Phys.B 23 069101

    [27]Yang S W,Peng F,Li W T,Hu Q W,Yan X Z,Lei L,Li X D and He D W 2016 Chin.Phys.B 25 076101

    [28]Hammersley A,Svensson S,Hanfland M,Fitch A and Hausermann D 1996 High Press.Res.14 235

    [29]Holland T and Redfern S 1997 Mineral.Mag.61 65

    [30]Toby B H 2001 J.Appl.Crystallogr.34 210

    [31]Liu D,Lei W,Li Y,Ma Y,Hao J,Chen X,Jin Y,Yu S and Cui Q 2009 Inorg.Chem.48 8251

    [32]Ovsyannikov S V,Bykova E,Bykov M,Wenz M D,Pakhomova A S, Glazyrin K,Liermann H P and Dubrovinsky L 2015 J.Appl.Phys.118 165901

    [33]Birch F 1952 J.Geophys.Res.57 227

    [34]Jiang S,Liu J,Lin C,Li X and Li Y 2013 J.Appl.Phys.113 113502

    [35]Hahn T 2002 International Table for Crystallography,A(5th edn.) (Dordrecht:Kluwer)pp.540,541

    [36]Jiang S,Liu J,Li X,Bai L,Xiao W,Zhang Y,Lin C,Li Y and Tang L 2011 J.Appl.Phys.110 013526

    [37]Hoekstra H R 1966 Inorg.Chem.5 754

    [38]Yusa H,Tsuchiya T,Tsuchiya J,Sata N and Ohishi Y 2008 Phys.Rev. B 78 092107

    3 May 2017;revised manuscript

    15 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/090703

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.U1232204 and 41502029)and China Postdoctoral Science Foundation (Grant No.2015M580679).

    ?Corresponding author.E-mail:qianzhang@cug.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    張倩
    Dual-wavelength pumped latticed Fermi–Pasta–Ulam recurrences in nonlinear Schr¨odinger equation
    Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator
    繼妹聯(lián)手渣夫做局:那是父母偏愛的蝴蝶效應(yīng)
    Experimental and numerical investigation of a self-supplementing dual-cavity plasma synthetic jet actuator
    Electrical and aerodynamic characteristics of sliding discharge based on a microsecond pulsed plasma supply
    基于社會(huì)責(zé)任培養(yǎng)的“生物多樣性”教學(xué)設(shè)計(jì)
    竇晨珂、曲樹云、王逸文、張倩作品精選
    基于賦權(quán)增能的德育評價(jià)生態(tài)系統(tǒng)的構(gòu)建
    民族文匯(2022年9期)2022-04-13 00:33:06
    《愿為葵子》
    賈逵隔籬偷學(xué)
    国产精品二区激情视频| 亚洲视频免费观看视频| 老司机影院毛片| 交换朋友夫妻互换小说| 一区二区av电影网| 91老司机精品| 美女国产高潮福利片在线看| 久久精品国产a三级三级三级| 国产精品久久久久久精品古装| 久久精品国产综合久久久| 亚洲国产精品一区三区| 成人手机av| 亚洲精品美女久久久久99蜜臀| 亚洲午夜精品一区,二区,三区| 欧美人与性动交α欧美精品济南到| 午夜福利,免费看| 丝袜在线中文字幕| 亚洲av片天天在线观看| 成年女人毛片免费观看观看9 | 80岁老熟妇乱子伦牲交| 黑人巨大精品欧美一区二区mp4| 999精品在线视频| 在线观看www视频免费| av天堂在线播放| 男人添女人高潮全过程视频| 丝袜喷水一区| 青春草视频在线免费观看| 国产av一区二区精品久久| 国产xxxxx性猛交| 国产不卡av网站在线观看| 老汉色av国产亚洲站长工具| 午夜福利在线免费观看网站| 啪啪无遮挡十八禁网站| 这个男人来自地球电影免费观看| 亚洲欧美成人综合另类久久久| 日韩中文字幕视频在线看片| av片东京热男人的天堂| av片东京热男人的天堂| 久久久精品94久久精品| 91老司机精品| 日韩免费高清中文字幕av| 国产精品99久久99久久久不卡| 丝袜喷水一区| 亚洲国产欧美一区二区综合| 精品久久蜜臀av无| 九色亚洲精品在线播放| 人妻 亚洲 视频| 久久99一区二区三区| 亚洲精品乱久久久久久| 一本久久精品| 国产淫语在线视频| 啪啪无遮挡十八禁网站| 丰满迷人的少妇在线观看| 曰老女人黄片| 亚洲精品一区蜜桃| 日韩欧美国产一区二区入口| 精品福利永久在线观看| 两性夫妻黄色片| 亚洲天堂av无毛| 女人精品久久久久毛片| 青春草亚洲视频在线观看| 我要看黄色一级片免费的| 欧美亚洲日本最大视频资源| 999久久久精品免费观看国产| 日韩欧美国产一区二区入口| 日韩欧美一区视频在线观看| 建设人人有责人人尽责人人享有的| 各种免费的搞黄视频| 免费观看人在逋| 精品人妻在线不人妻| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品av麻豆狂野| 亚洲欧洲日产国产| 一级毛片女人18水好多| 欧美性长视频在线观看| 另类精品久久| 日本欧美视频一区| 国产欧美日韩精品亚洲av| 国产亚洲欧美在线一区二区| 久久精品国产亚洲av高清一级| 啪啪无遮挡十八禁网站| 热99re8久久精品国产| 各种免费的搞黄视频| 欧美另类一区| 91九色精品人成在线观看| a级毛片黄视频| 一边摸一边做爽爽视频免费| 伊人久久大香线蕉亚洲五| 欧美av亚洲av综合av国产av| 黄频高清免费视频| 国产男人的电影天堂91| 黑人巨大精品欧美一区二区mp4| 久久久欧美国产精品| 又大又爽又粗| 日日摸夜夜添夜夜添小说| 亚洲国产成人一精品久久久| 俄罗斯特黄特色一大片| 午夜老司机福利片| 制服人妻中文乱码| av在线老鸭窝| 亚洲五月色婷婷综合| 亚洲一区中文字幕在线| 亚洲精品成人av观看孕妇| 中文字幕制服av| 日韩 欧美 亚洲 中文字幕| 欧美激情极品国产一区二区三区| av网站免费在线观看视频| 极品人妻少妇av视频| 精品久久久精品久久久| 久久亚洲精品不卡| 免费观看a级毛片全部| 一级毛片精品| 巨乳人妻的诱惑在线观看| 亚洲欧美一区二区三区黑人| 中文字幕最新亚洲高清| 久久久久久人人人人人| 国产亚洲精品久久久久5区| 91麻豆av在线| 婷婷色av中文字幕| 欧美激情高清一区二区三区| 制服人妻中文乱码| 飞空精品影院首页| 性色av乱码一区二区三区2| av又黄又爽大尺度在线免费看| 男人爽女人下面视频在线观看| 一区二区日韩欧美中文字幕| 国产av又大| 亚洲色图综合在线观看| 精品人妻1区二区| 狠狠婷婷综合久久久久久88av| 亚洲第一欧美日韩一区二区三区 | 精品国产乱子伦一区二区三区 | e午夜精品久久久久久久| 国产成+人综合+亚洲专区| 欧美精品高潮呻吟av久久| 纵有疾风起免费观看全集完整版| 日本av手机在线免费观看| 伊人久久大香线蕉亚洲五| 最近中文字幕2019免费版| 国产成人欧美在线观看 | 亚洲精品av麻豆狂野| 亚洲伊人色综图| 天天添夜夜摸| 久久午夜综合久久蜜桃| 精品亚洲成a人片在线观看| 男女之事视频高清在线观看| 色综合欧美亚洲国产小说| 欧美乱码精品一区二区三区| 亚洲全国av大片| 日韩视频在线欧美| 国产一区二区激情短视频 | 欧美国产精品va在线观看不卡| 久久久精品区二区三区| 在线观看一区二区三区激情| 亚洲中文av在线| 青草久久国产| 国产成人啪精品午夜网站| 老司机影院成人| 日韩精品免费视频一区二区三区| 中文字幕人妻熟女乱码| netflix在线观看网站| 欧美精品高潮呻吟av久久| 午夜福利在线观看吧| 精品国产乱子伦一区二区三区 | 中文欧美无线码| 中文精品一卡2卡3卡4更新| 中文字幕最新亚洲高清| 亚洲午夜精品一区,二区,三区| 在线观看人妻少妇| 国产精品.久久久| 香蕉国产在线看| 国产成人a∨麻豆精品| 女人高潮潮喷娇喘18禁视频| 最近最新免费中文字幕在线| 99久久99久久久精品蜜桃| 精品一区二区三卡| 香蕉国产在线看| 在线观看舔阴道视频| 男女无遮挡免费网站观看| 1024视频免费在线观看| 亚洲中文日韩欧美视频| 久热这里只有精品99| 国产色视频综合| 亚洲av片天天在线观看| 久久亚洲国产成人精品v| 日本一区二区免费在线视频| 日韩 亚洲 欧美在线| 精品人妻熟女毛片av久久网站| 色婷婷av一区二区三区视频| 黄网站色视频无遮挡免费观看| 91成年电影在线观看| 777米奇影视久久| 日韩一区二区三区影片| 国产有黄有色有爽视频| 高潮久久久久久久久久久不卡| 成年av动漫网址| 女性生殖器流出的白浆| 精品少妇一区二区三区视频日本电影| 真人做人爱边吃奶动态| 亚洲自偷自拍图片 自拍| 老熟妇仑乱视频hdxx| 欧美黄色片欧美黄色片| 麻豆av在线久日| 国产精品免费大片| 国产精品久久久久久精品电影小说| 国产精品麻豆人妻色哟哟久久| 一级,二级,三级黄色视频| 免费在线观看日本一区| 亚洲精品久久成人aⅴ小说| 两性夫妻黄色片| 一本久久精品| 亚洲国产精品999| 精品久久久久久电影网| 建设人人有责人人尽责人人享有的| 90打野战视频偷拍视频| 久久热在线av| 久久国产精品男人的天堂亚洲| 18在线观看网站| 99国产精品99久久久久| 久久av网站| 成人国语在线视频| 久久久久久人人人人人| 国产黄色免费在线视频| 超碰成人久久| 欧美日韩中文字幕国产精品一区二区三区 | 岛国在线观看网站| 午夜福利免费观看在线| 欧美久久黑人一区二区| 啦啦啦免费观看视频1| 青草久久国产| 别揉我奶头~嗯~啊~动态视频 | 国产精品偷伦视频观看了| 精品国产国语对白av| 另类亚洲欧美激情| 日韩制服骚丝袜av| 老司机靠b影院| 日本a在线网址| 久久人人爽av亚洲精品天堂| 日韩视频在线欧美| av片东京热男人的天堂| 下体分泌物呈黄色| 日韩欧美免费精品| 国产人伦9x9x在线观看| 精品一区二区三卡| 国产成人免费观看mmmm| 女人被躁到高潮嗷嗷叫费观| 国产成人精品无人区| 亚洲欧美成人综合另类久久久| 看免费av毛片| 男女午夜视频在线观看| 午夜福利免费观看在线| 亚洲黑人精品在线| 午夜精品久久久久久毛片777| tocl精华| 久久久精品国产亚洲av高清涩受| 国产成人一区二区三区免费视频网站| 日本vs欧美在线观看视频| 精品欧美一区二区三区在线| 黑人猛操日本美女一级片| 高潮久久久久久久久久久不卡| 一本久久精品| 韩国高清视频一区二区三区| 亚洲精品国产精品久久久不卡| 午夜精品久久久久久毛片777| 一级毛片精品| 国产精品久久久av美女十八| 国产黄色免费在线视频| 久久 成人 亚洲| 男人舔女人的私密视频| 欧美xxⅹ黑人| 亚洲国产欧美网| 精品乱码久久久久久99久播| 欧美国产精品一级二级三级| 91成人精品电影| 亚洲熟女精品中文字幕| 丰满饥渴人妻一区二区三| cao死你这个sao货| 欧美国产精品va在线观看不卡| 国产精品.久久久| 9色porny在线观看| 亚洲成人国产一区在线观看| 成人三级做爰电影| 亚洲欧美色中文字幕在线| 国产极品粉嫩免费观看在线| 老司机靠b影院| 免费看十八禁软件| 老熟妇乱子伦视频在线观看 | 免费在线观看日本一区| 高清视频免费观看一区二区| 成人18禁高潮啪啪吃奶动态图| 国产一区有黄有色的免费视频| 国产熟女午夜一区二区三区| 999久久久精品免费观看国产| 高清黄色对白视频在线免费看| 国产成人精品久久二区二区免费| 亚洲精品国产精品久久久不卡| 丰满迷人的少妇在线观看| 日韩精品免费视频一区二区三区| 少妇人妻久久综合中文| 嫩草影视91久久| 国产欧美日韩一区二区精品| 久久久久久免费高清国产稀缺| 亚洲黑人精品在线| 亚洲午夜精品一区,二区,三区| 叶爱在线成人免费视频播放| 丰满少妇做爰视频| 人人妻人人澡人人爽人人夜夜| 色视频在线一区二区三区| 日韩视频在线欧美| 老司机福利观看| 精品人妻1区二区| 操出白浆在线播放| 久久久久久久国产电影| 波多野结衣一区麻豆| 黑人巨大精品欧美一区二区mp4| 亚洲一码二码三码区别大吗| 91九色精品人成在线观看| 国产三级黄色录像| 精品国内亚洲2022精品成人 | 老汉色∧v一级毛片| 1024视频免费在线观看| 男人爽女人下面视频在线观看| 丝袜美腿诱惑在线| 日日摸夜夜添夜夜添小说| 99精品欧美一区二区三区四区| 黑人猛操日本美女一级片| 美女午夜性视频免费| 桃花免费在线播放| 国产野战对白在线观看| 操美女的视频在线观看| 男女午夜视频在线观看| 成人国语在线视频| 国产在线观看jvid| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| 人人妻人人澡人人看| 老汉色∧v一级毛片| 免费看十八禁软件| 日韩一区二区三区影片| 丝袜人妻中文字幕| 亚洲精品成人av观看孕妇| av网站免费在线观看视频| 色婷婷久久久亚洲欧美| 狠狠狠狠99中文字幕| 亚洲专区字幕在线| 国产伦人伦偷精品视频| 国产精品久久久久成人av| 国产免费现黄频在线看| 精品国内亚洲2022精品成人 | 乱人伦中国视频| 欧美一级毛片孕妇| 欧美另类一区| 亚洲精品国产av成人精品| 97精品久久久久久久久久精品| 十八禁高潮呻吟视频| avwww免费| 国产精品av久久久久免费| 一区二区三区精品91| 一级片'在线观看视频| 大片免费播放器 马上看| 搡老熟女国产l中国老女人| 岛国在线观看网站| 亚洲精品中文字幕在线视频| 国产真人三级小视频在线观看| a级毛片在线看网站| 欧美大码av| 97人妻天天添夜夜摸| 亚洲,欧美精品.| 国产一区二区三区av在线| 欧美中文综合在线视频| 飞空精品影院首页| 亚洲欧美精品自产自拍| 亚洲欧美日韩高清在线视频 | 欧美精品亚洲一区二区| 久久天堂一区二区三区四区| 汤姆久久久久久久影院中文字幕| 久久精品国产综合久久久| 日韩欧美一区二区三区在线观看 | 国产老妇伦熟女老妇高清| 欧美激情 高清一区二区三区| 日本vs欧美在线观看视频| 黑人巨大精品欧美一区二区mp4| 亚洲性夜色夜夜综合| 亚洲国产精品一区三区| 女人高潮潮喷娇喘18禁视频| 又大又爽又粗| 美女国产高潮福利片在线看| 天天添夜夜摸| 夫妻午夜视频| 天天躁夜夜躁狠狠躁躁| 免费观看人在逋| 久久久精品94久久精品| 美女视频免费永久观看网站| 99国产综合亚洲精品| 夫妻午夜视频| 亚洲精品国产区一区二| 亚洲欧美精品自产自拍| 窝窝影院91人妻| 精品人妻在线不人妻| 日本一区二区免费在线视频| av线在线观看网站| 亚洲精品乱久久久久久| h视频一区二区三区| 亚洲欧洲日产国产| 精品乱码久久久久久99久播| 啦啦啦中文免费视频观看日本| 19禁男女啪啪无遮挡网站| 啦啦啦视频在线资源免费观看| 国产亚洲欧美在线一区二区| 亚洲av成人一区二区三| 国产不卡av网站在线观看| 两人在一起打扑克的视频| a级毛片黄视频| 亚洲午夜精品一区,二区,三区| 97人妻天天添夜夜摸| 黑丝袜美女国产一区| 老司机福利观看| 91字幕亚洲| a在线观看视频网站| 又黄又粗又硬又大视频| 中文字幕人妻丝袜一区二区| 夜夜夜夜夜久久久久| 悠悠久久av| 嫁个100分男人电影在线观看| 亚洲专区国产一区二区| 69av精品久久久久久 | 人人澡人人妻人| 另类亚洲欧美激情| 777米奇影视久久| 十八禁高潮呻吟视频| 人人妻人人澡人人看| 老熟妇仑乱视频hdxx| 麻豆国产av国片精品| 久久久久久免费高清国产稀缺| 亚洲人成电影观看| 亚洲欧美日韩另类电影网站| 久久免费观看电影| 在线 av 中文字幕| 日本a在线网址| 国产av国产精品国产| 国产91精品成人一区二区三区 | 91精品国产国语对白视频| 欧美黑人欧美精品刺激| 久久久精品94久久精品| 在线观看人妻少妇| 精品一区二区三区四区五区乱码| 亚洲全国av大片| 久久香蕉激情| 久久久久久久大尺度免费视频| 欧美成狂野欧美在线观看| 免费在线观看视频国产中文字幕亚洲 | 久久久久精品人妻al黑| 久久ye,这里只有精品| 日韩精品免费视频一区二区三区| 日本vs欧美在线观看视频| 国产精品影院久久| 女警被强在线播放| 18禁观看日本| 操出白浆在线播放| 三上悠亚av全集在线观看| 亚洲人成电影观看| 国产精品一区二区精品视频观看| 大型av网站在线播放| 国产日韩欧美亚洲二区| av不卡在线播放| 老汉色av国产亚洲站长工具| 高潮久久久久久久久久久不卡| 宅男免费午夜| 2018国产大陆天天弄谢| 午夜福利视频在线观看免费| 一区二区av电影网| 成年av动漫网址| 操出白浆在线播放| 在线亚洲精品国产二区图片欧美| 嫁个100分男人电影在线观看| 一级黄色大片毛片| av网站免费在线观看视频| 免费在线观看视频国产中文字幕亚洲 | 69av精品久久久久久 | 欧美激情久久久久久爽电影 | kizo精华| 欧美国产精品一级二级三级| 午夜免费成人在线视频| 最黄视频免费看| 热re99久久精品国产66热6| 男女下面插进去视频免费观看| 超碰成人久久| 国产有黄有色有爽视频| 亚洲欧美一区二区三区久久| 午夜福利,免费看| 国产人伦9x9x在线观看| 午夜福利乱码中文字幕| 欧美另类亚洲清纯唯美| 日本欧美视频一区| 成人国产av品久久久| 九色亚洲精品在线播放| 亚洲黑人精品在线| 亚洲国产精品成人久久小说| 日本a在线网址| 不卡av一区二区三区| 国产精品av久久久久免费| 亚洲色图综合在线观看| 国产不卡av网站在线观看| 男女高潮啪啪啪动态图| 日韩精品免费视频一区二区三区| 国产男女内射视频| 搡老岳熟女国产| 一本—道久久a久久精品蜜桃钙片| 激情视频va一区二区三区| 欧美在线一区亚洲| 下体分泌物呈黄色| 啪啪无遮挡十八禁网站| 亚洲午夜精品一区,二区,三区| 黄色视频,在线免费观看| 在线观看免费高清a一片| 欧美日本中文国产一区发布| 亚洲精品久久午夜乱码| 99re6热这里在线精品视频| av一本久久久久| 亚洲成人免费av在线播放| 夜夜夜夜夜久久久久| 精品亚洲成国产av| 国产一区二区激情短视频 | 国产福利在线免费观看视频| 999精品在线视频| 一本—道久久a久久精品蜜桃钙片| kizo精华| 91九色精品人成在线观看| 中国美女看黄片| 久久久久久人人人人人| 欧美另类亚洲清纯唯美| 久久久水蜜桃国产精品网| 亚洲欧美清纯卡通| 亚洲一区二区三区欧美精品| 欧美+亚洲+日韩+国产| 午夜久久久在线观看| 在线永久观看黄色视频| 国产人伦9x9x在线观看| 一本一本久久a久久精品综合妖精| 9色porny在线观看| 日韩三级视频一区二区三区| 丝袜美足系列| 肉色欧美久久久久久久蜜桃| 岛国在线观看网站| 男女边摸边吃奶| 午夜两性在线视频| 男人操女人黄网站| 嫩草影视91久久| 亚洲免费av在线视频| 亚洲国产毛片av蜜桃av| 色综合欧美亚洲国产小说| h视频一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 人妻 亚洲 视频| 国产片内射在线| 深夜精品福利| 久久国产亚洲av麻豆专区| 国产男女超爽视频在线观看| 亚洲自偷自拍图片 自拍| 高清黄色对白视频在线免费看| 黄色视频在线播放观看不卡| 亚洲精品日韩在线中文字幕| 国产一级毛片在线| 国产一区二区在线观看av| 乱人伦中国视频| 亚洲成国产人片在线观看| 久久国产精品男人的天堂亚洲| 午夜成年电影在线免费观看| 一本一本久久a久久精品综合妖精| 国精品久久久久久国模美| 最近中文字幕2019免费版| 成年人午夜在线观看视频| 1024视频免费在线观看| 老汉色∧v一级毛片| 亚洲国产av新网站| 巨乳人妻的诱惑在线观看| 国产高清videossex| 亚洲精品美女久久久久99蜜臀| 大片免费播放器 马上看| 久久精品国产亚洲av高清一级| 97精品久久久久久久久久精品| 如日韩欧美国产精品一区二区三区| 精品人妻一区二区三区麻豆| 国产精品一区二区免费欧美 | 亚洲成人免费电影在线观看| 可以免费在线观看a视频的电影网站| 欧美日本中文国产一区发布| 日韩 亚洲 欧美在线| av片东京热男人的天堂| 精品少妇黑人巨大在线播放| 丝袜脚勾引网站| 精品一区二区三区四区五区乱码| 国产伦理片在线播放av一区| 91九色精品人成在线观看| 如日韩欧美国产精品一区二区三区| 美女中出高潮动态图| 亚洲av片天天在线观看| 久久九九热精品免费| 久久精品熟女亚洲av麻豆精品| 亚洲av片天天在线观看| 欧美精品一区二区免费开放| avwww免费| 丰满少妇做爰视频| 亚洲熟女精品中文字幕| 久久精品国产亚洲av香蕉五月 | 黄色怎么调成土黄色| 高清黄色对白视频在线免费看| 日韩欧美国产一区二区入口| 久久人人爽av亚洲精品天堂| 国产精品久久久久久人妻精品电影 | 亚洲国产毛片av蜜桃av| 日日摸夜夜添夜夜添小说| a在线观看视频网站| 欧美97在线视频| 在线观看舔阴道视频|