• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure-induced phase transition of B-type Y2O3?

    2017-08-30 08:25:20QianZhang張倩XiangWu巫翔andShanQin秦善
    Chinese Physics B 2017年9期
    關(guān)鍵詞:張倩

    Qian Zhang(張倩),Xiang Wu(巫翔),and Shan Qin(秦善)

    1 Gemological Institute,China University of Geosciences,Wuhan 430074,China

    2 State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China

    3 Key Laboratory of Orogenic Belts and Crustal Evolution,Ministry of Educationamp;School of Earth and Space Sciences, Peking University,Beijing 100871,China

    Pressure-induced phase transition of B-type Y2O3?

    Qian Zhang(張倩)1,?,Xiang Wu(巫翔)2,and Shan Qin(秦善)3

    1 Gemological Institute,China University of Geosciences,Wuhan 430074,China

    2 State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China

    3 Key Laboratory of Orogenic Belts and Crustal Evolution,Ministry of Educationamp;School of Earth and Space Sciences, Peking University,Beijing 100871,China

    The synthesized monoclinic(B-type)phase of Y2O3has been investigated by in situ angle-dispersive x-ray diffraction in a diamond anvil cell up to 44 GPa at room temperature.A phase transition occurs from monoclinic(B-type)to hexagonal (A-type)phase at 23.5 GPa and these two phases coexist even at the highest pressure.Parameters of isothermal equation of state are V0=69.0(1)?A3,K0=159(3)GPa,=4(fixed)for the B-type phase and V0=67.8(2)?A3,K0=156(3)GPa,=4(fixed)for the A-type phase.The structural anisotropy increases with increasing pressure for both phases.

    Y2O3,x-ray diffraction,pressure-induced phase transition,equation of state

    1.Introduction

    Sesquioxides are very important materials which possess a wide range of physical and chemical properties and can be used for different technological applications.For example,they play a vital role in the grain growth inhibitor,[1]are used as additives of ceramics[2]and active catalysts for organic reactions,[3,4]and have potential use in nuclear engineering.[5,6]In addition,sesquioxides can adopt perovskite(Pv),post-perovskite(PPv),and post-PPv phases at extreme conditions,which has significant implications for the mantle of giant extrasolar silicate planets.For instance,Al2O3undergoes a series of pressure-induced phase transitions from corundum structure to Rh2O3(II)-type structure,then to the PPv-type structure,and finally to the post-PPv phase(U2S3-type,Pnma and Z=4)above 370 GPa.[7]Gd2S3-type(Pnma and Z=4)and Th2S3-type(Pnma and Z=4)structures, which have the same space group and cationic coordination numbers with the U2S3-type structure,have been observed in Sc2O3[8]and Ti2O3[9]at high pressure,respectively.

    The high-pressure behavior of rare-earth sesquioxides has been widely investigated.So far,five polymorphic forms have been identified in rare-earth sesquioxides.Hexagonal A (Pˉ3m1)in which cations are in seven-fold coordination,monoclinic B(C2/m)in which cations are mixed with six or sevenfold coordination,and cubic Cwith six-coordinated cations are commonly observed at room temperature and ambient pressure.[10]The two other phases denominated as H (hexagonal,P63/mmc)and X(cubic,)are formed at high temperature.[11]Cations in Gd2S3,Th2S3,and U2S3occupy seven and eight oxygen coordinations,which are higher than those in C,B,A,Pv,and PPv structures.

    Scandium and yttrium elements with the chemically similar lanthanide elements are often known to belong to the lanthanide family as the rare-earth metal elements.The optical properties of trivalent rare earth ion-doped nanocrystalline materials have been investigated extensively.Y2O3nanocrystals doped with trivalent rare earth ion have attracted considerable interest because of the high chemical durability and thermal stability.Eu-doped Y2O3is an important commercial luminescent material,it has been widely used in fluorescent lamps,projection television tubes,field emission displays,etc.[12]Y2O3crystallized into the C-type structure under ambient conditions.Lots of attempts have been made to understand its high-pressure behavior,but the high-pressure phase transition sequences show some inconsistencies.As for the pure Y2O3,the C→B,[13,14]C→B→A,[15–17]C→A,[18]and C→B→Gd2S3[19,20]phase sequences have been observed in experiments or theoretical calculations.The in situ highpressure luminescence spectra indicated that the C-type bulk Eu-doped Y2O3transformed into the B-type phase at 15 GPa, while 20 nm-sized nanocrystals did not.[21]

    As we all know,the experimental results are influenced by experimental conditions,such as non-hydrostaticity of pressure and regime of temperature treatment.In the static high pressure experiment at 2.5 GPa and 1273 K,the C-type Y2O3transformed to the B-type phase which was also found above 12 GPa in a shock-compression experiment,while the A-type phase was proposed to be the favorable stable high pressure phase.[14]In some quasi-hydrostatic compression experiments at room temperature,Y2O3followed the phase sequence of C→B→A.[15–17]A high-pressure Raman experiment reported two phase transitions,viz,C→B and B→Aat 12 GPa and 19 GPa respectively.[16]However,a high pressure x-ray experiment showed that pure Y2O3exhibited a direct transition to A structure at 12.1 GPa and room temperature,whereas the C→B→A transition was observed in Eu-doped Y2O3.[18]Considering the temperature effect,a sequence of structural phase transitions C→B→A observed in the room-temperature compression did not coincide with the phase transition sequence C→B→Gd2S3under high pressure and high temperature.[19]Moreover,there are some inconsistencies among the room-temperature data collected with different internal pressure standards under conditions close to hydrostatic environment by noble gases like He or Ne media and by solid or liquid media such as KBr and silicone oil.[22]The previous pressure-transmitting media in the experiments on Y2O3were silicone oil,[18]a mixture of methanol and ethanol,[23]or KBr powder.[16]

    To the best of our knowledge,starting Y2O3samples used in the former work were characterized by the C-type structure.The B-type polycrystalline Y2O3has been synthesized successfully using multi-anvil press in our previous work.[24]High-pressure x-ray diffraction experiments provide us information about high-pressure phase transitions and physical properties.[25–27]In this study,we carry out the high pressure experiment of B-type Y2O3as the starting material up to 44 GPa by in situ x-ray diffraction(XRD)in diamond anvil cell(DAC).

    2.Experiment

    The starting sample of the synthesized B-type Y2O3was described in detail in Ref.[24].In our XRD experiment, we generated high pressures by a symmetric type DAC with 300μm-diameter culets.A 150μm-diameter hole was drilled in the pre-indented to~30μm-thickness rhenium gasket.Pt was loaded in the chamber as pressure standard based on its well-known equation of state.[22]and Ne was used as the pressure medium.The in situ high-pressure XRD experiment at room temperature was conducted at 13IDD at Advanced Photon Source(APS).Diffraction patterns were collected using a MarCCD detector.The monochromatic x-ray which was focused to 5μm×5μm on the sample surface has a wavelength of 0.3344?A.Collection time for each pattern was 20 s. Diffraction images were integrated to one-dimensional spectra using the Fit2D program.[28]Lattice parameters were obtained using Unitcell.[29]Some x-ray diffraction patterns were fitted by the Le Bail method implemented in the GSAS+EXPGUI software.[30]

    3.Results and discussion

    The XRD pattern at ambient conditions gives lattice parameters a=13.892(7)?A,b=3.494(1)?A,c=8.614(4)?A, β=100.22(4),and V=411.4(2)?A3from a full profile model refinement.In situ high-pressure XRD data were collected up to 44 GPa at room temperature.Some selected XRD patterns are shown in Fig.1,where all peaks can be indexed into the B-type Y2O3and minor impurities up to 23.5 GPa.All peaks shifted to higher angles of 2θ with increasing pressure.As shown in Fig.1,the peaks began to change at 23.5 GPa,indicating the appearance of a new phase.According to the previous studies,[19]the new phase would be either A-or Gd2S3-type.By performing the x-ray profile fitting analyses and comparing the d values of the characteristic peaks with the previous experimental data,[19]we confirmed that the new phase adopted the A-type structureUpon compression,the B-type phase was found to obviously coexist throughout the transition process from the B-to A-type phase.The B-type phase still existed at the highest pressure,implying that the transition may be kinetically sluggish.In Sc2O3,the B to A transition at 77 GPa was predicted by abinitio calculation,[31]but the Gd2S3-type phase as the post-B phase was observed above 18 GPa atthe high temperature experiment.[8]Considering the similarity of Sc2O3and Y2O3,Sc2O3would also have the C→B→A phase transition sequence in the high-pressure experiment at room temperature.As previously mentioned,it is not a common phenomenon that the high-pressure structure sequence of Y2O3observed in the room temperature compression does not coincide with the phase transition sequence at high temperature.Generally speaking,the temperature effect is always considered in pressure-induced phase-transition experiments in order to obtain clear high-pressure structural information,because high temperature relaxes the differential stress and overcomes the potential kinetic effects on phase transition.Therefore,the laser heating usually promotes the phase transition to happen at lower pressure than that of the room temperature compression experiment.By analyzing the crystal structures of B-and A-type phases of Y2O3at high pressure,the B-type structure was found to be equivalent to the A-type structure.[19]This is a possible reason why the B to A transition was observed under compression at room temperature.In our synthesis experiment,we tried to synthesize the Gd2S3-type phase of Y2O3in a multi-anvil apparatus at HPHT conditions(20 GPa and 1800°C),but the B-type phase was reserved.[24]Ovsyannikov et al.tried to obtain the B-type Sc2O3at 14 GPa and 1600°C,but only the C-type phase was found in the recovered sample.[32]These results show that the HP-HT behaviors of Y2O3and Sc2O3are complex and further investigations of their P–T phase diagrams are needed.

    The B-and A-type unit-cell volumes showed a smooth decrease with the increasing pressure.The unit-cell volume data as a function of pressure is plotted in Fig.2 and analyzed by the second-order Birch–Murnaghan equation of state (B–M EoS).[33]The EoS parameters we obtained are listed in Table 1,which also includes the available experimental and theoretical data for comparison.The equilibrium volume V0obtained from the theoretical computation is underestimated compared with the experimental results,which is typical for the LDA computations.The isothermal bulk moduli of B-and A-type Y2O3compounds are approximate.Our result is consistent with the theoretical simulation data,[11]which shows that the difference between the bulk moduli of B-and A-type rare-earth sesquioxides is considerably small.

    Fig.1.(color online)X-ray diffraction profiles of the Y2 O3 sample under room temperature compression.The tick marks indicate the calculated positions of the diffraction peaks of B-and A-type phases with the LeBail method (GSAS).Solid line,symbols,and solid line at the bottom represent the calculated and the observed patterns and their differences at ambient conditions, respectively.Other solid lines represent the observed patterns at high pressure.

    Fig.2.(color online)The volume per formula of B-and A-type phases of Y2O3 as a function of pressure.The solid lines correspond to the second-order B–M EoS fitting to the experimental data.The volume collapse in the phase transition is about 2%at 23.5 GPa.The crystal structures are also shown. Red spheres are oxygen and dark green spheres at the center of polyhedra are yttrium.

    The phase transition from B-to A-type Y2O3is followed by a volume collapse of 2%at 23.5 GPa(Fig.2),which is at the same level as that of Sm2O3.[34]This transformation involves only a slight deformation.Compared to this B→A transition,the C→B first-order phase transition is accompanied by a more significant volume decrease(8%,[16]12.5%[15]).

    Table 1.Equation of state parameters for the B-and A-type polymorphs of Y2O3.V0,B0,andare the volume per formula unit,the bulk modulus,and its pressure derivative at zero pressure,respectively.

    Table 1.Equation of state parameters for the B-and A-type polymorphs of Y2O3.V0,B0,andare the volume per formula unit,the bulk modulus,and its pressure derivative at zero pressure,respectively.

    The coordination number of Yincreases from six or seven in B-type structure,to seven in the A-type one during the B→A transition.In addition,the B(C2/m)and Ahave a group-subgroup relationship.[35]Contrary to the C→B reconstructive transition,the B→A transition is inferred to be displacive,which is also suggested in other studies.[17,19]

    Theoretical analysis of pressure-induced B to A-type phase transitions shows a linear correlation between bulk modulus,transition pressures,and the ionic radius of the cation.[11]The suggested transition pressure and bulk modulus for Y2O3are at the same level as those of our experimental results. The difference is mainly due to the GGA exchange correlation energy,which gives a larger V0and a smaller B0.The first single-crystal study of Sc2O3exhibited that the denser B-type phase is a bit more compressible than the C-type one.[32]This result did not confirm the other experimental studies on powdery Sc2O3.[8]The previous studies on powders of lanthanide sesquioxides did not reveal a noticeable difference in the bulk moduli of C-,B-,and A-type phases,e.g.,Ho2O3and Sm2O3.[34,36]Whether there exist noticeable bulk modulus differences among the C-,B-,and A-type rare-earth sesquioxides requires more experimental and theoretical investigations.

    During the past few decades,the rare-earth sesquioxides have been studied by numerous researchers to investigate the phase relationships among the C,B,and A phases.Early in 1966,Hoekstra found that the effect of ionic radius is much greater than temperature or pressure in shifting the C?B equilibrium line.[37]Moreover,compression experiments and theoretical results exhibited that higher pressure would be needed to stabilize the A-type phase in rare-earth sesquioxides with smaller cationic radius.[11,34]However,this systematics of the C→B→A phase sequence may not be applicable to the rare-earth sesquioxides only according to their cationic radii.The comparative crystallography in rare-earth sesquioxides has been summarized in other study.[8]Sc2O3(Sc3+;0.745?A), In2O3(In3+;0.800?A),and Y2O3(Y3+;0.900?A),which adopt the C-type structure at ambient conditions,crystallize into the Gd2S3structure at high pressure after laser heating.[8,19,38]It is possible that the Gd2S3structure would be found as a post B-type structure in other rare-earth sesquioxides at high temperature.

    The pressure evolution of the lattice parameters of the B-and A-type phases is shown in Fig.3.Regarding the unit-cell compressibilities,the a axis is the most compressible and the b axis is the least compressible for the B-type phase.As for the A-type Y2O3,the c axis is more compressible than the a axis mainly because of the large intervals between the layers in the c axial orientation.It indicates that the axial compressiblities of B-and A-type phases are anisotropic.

    Fig.3.(color online)Pressure-induced variations in the lattice parameters of the B-type(a)and A-type(b)phases of Y2O3.The solid lines are linear fittings of the experimental data.

    4.Conclusion

    The structural properties of B-type Y2O3under compression have been investigated by synchrotron radiation x-ray diffraction experiment with neon as the pressure-transmitting medium at room temperature up to 44 GPa.We observed a sluggish phase transition from B-to A-type phase at 23.5 GPa. The isothermal P–V relationship of Y2O3was described by the second-order Birch–Murnaghan equation of state with B0= 159(3)GPa for the B-type phase,and 156(3)GPa for the A-type phase.Note that the high pressure behavior of rare-earth sesquioxides is apparently complex,and there are lots of unanswered questions in their condensed matter physics.Further studies will bring exciting results on their high-pressure properties.

    Acknowledgements

    The authors are deeply grateful to Sergey V.Ovsyannikov and Leonid S.Dubrovinsky for synthesizing the sample.High-pressure experiments were performed at GeoSoil Enviro CARS of the APS,ANL.GeoSoil EnviroCARS operations are supported by the National Science Foundation-Earth Sciences(EAR-1128799)and the Department of Energy Geosciences(DE-FG02-94ER14466).APS is supported by DOEBES,under Contract No.DE-AC02-06CH11357.

    [1]Aktas B,Tekeli S and Kucuktuvek M 2014 Int.J.Mater.Res.105 208

    [2]Scott H 1975 J.Mater.Sci.10 1527

    [3]Hussein G A 1996 J.Anal.Appl.Pyrolysis 37 111

    [4]Dedov A,Loktev A,Moiseev I,Aboukais A,Lamonier J F and Filimonov I 2003 Applied Catalysis A:General 245 209

    [5]Shikama T,Toh K,Nagata S,Tsuchiya B,Yamauchi M,Nishitani T, Suzuki T,Okamoto K and Kubo N 2006 Nucl.Fusion 46 46

    [6]Weber W J,Ewing R C,Catlow C R A,de la Rubia T D,Hobbs L W, Kinoshita C,Matzke H,Motta A T,Nastasi M,Salje E K H,Vance E R and Zinkle S J 1998 J.Mater.Res.13 1434

    [7]Umemoto K and Wentzcovitch R M 2008 Proc.Natl.Acad.Sci.USA 105 6526

    [8]Yusa H,Tsuchiya T,Sata N and Ohishi Y 2009 Inorg.Chem.48 7537

    [9]Nishio-Hamane D,Katagiri M,Niwa K,Sano-Furukawa A,Okada T and Yagi T 2009 High Press.Res.29 379

    [10]Zinkevich M 2007 Prog.Mater.Sci.52 597

    [11]Wu B,Zinkevich M,Aldinger F,Wen D and Chen L 2007 J.Solid State Chem.180 3280

    [12]Wang H,Uehara M,Nakamura H,Miyazaki M and Maeda H 2005 Adv. Mater.17 2506

    [13]Hoekstra H R and Gingerich K A 1964 Science 146 1163

    [14]Atou T,Kusaba K,Fukuoka K,Kikuchi M and Syono Y 1990 J.Solid State Chem.89 378

    [15]Halevy I,Carmon R,Winterrose M L,Yeheskel O,Tiferet E and Ghose S 2010 J.Phys.Conf.Ser.215 012003

    [16]Husson E,Proust C,Gillet P and Itie J 1999 Mater.Res.Bull.34 2085

    [17]Bose P P,Gupta M,Mittal R,Rols S,Achary S,Tyagi A and Chaplot S 2011 Phys.Rev.B 84 094301

    [18]Wang L,Pan Y,Ding Y,Yang W,Mao W L,Sinogeikin S V,Meng Y, Shen G and Mao H 2009 Appl.Phys.Lett.94 061921

    [19]Yusa H,Tsuchiya T,Sata N and Ohishi Y 2010 Inorg.Chem.49 4478

    [20]Umemoto K and Wentzcovitch R M 2011 Phys.Chem.Miner.38 387

    [21]Bai X,Song H,Liu B,Hou Y,Pan G and Ren X 2008 J.Nanosci. Nanotechnol.8 1404

    [22]Fei Y,Ricolleau A,Frank M,Mibe K,Shen G and Prakapenka V 2007 Proc.Natl.Acad.Sci.USA 104 9182

    [23]Zhang J,Cui H,Zhu P,Ma C,Wu X,Zhu H,Ma Y and Cui Q 2014 J. Appl.Phys.115 023502

    [24]Zhang Q,Wu X,Ovsyannikov S V,Dong J,Qin S,Dubrovinsky L S and Chen D 2016 Chem.Res.Chin.Univ.32 545

    [25]Tang S X,Zhu H Y,Jiang J R,Wu X X,Dong Y X,Zhang J,Yang D P and Cui Q L 2015 Chin.Phys.B 24 096101

    [26]Li N N,Li Y,Li H,Tang R L,Zhao Y S,Han D D,Ma Y M,Cui Q L, Zhu P W and Wang X 2014 Chin.Phys.B 23 069101

    [27]Yang S W,Peng F,Li W T,Hu Q W,Yan X Z,Lei L,Li X D and He D W 2016 Chin.Phys.B 25 076101

    [28]Hammersley A,Svensson S,Hanfland M,Fitch A and Hausermann D 1996 High Press.Res.14 235

    [29]Holland T and Redfern S 1997 Mineral.Mag.61 65

    [30]Toby B H 2001 J.Appl.Crystallogr.34 210

    [31]Liu D,Lei W,Li Y,Ma Y,Hao J,Chen X,Jin Y,Yu S and Cui Q 2009 Inorg.Chem.48 8251

    [32]Ovsyannikov S V,Bykova E,Bykov M,Wenz M D,Pakhomova A S, Glazyrin K,Liermann H P and Dubrovinsky L 2015 J.Appl.Phys.118 165901

    [33]Birch F 1952 J.Geophys.Res.57 227

    [34]Jiang S,Liu J,Lin C,Li X and Li Y 2013 J.Appl.Phys.113 113502

    [35]Hahn T 2002 International Table for Crystallography,A(5th edn.) (Dordrecht:Kluwer)pp.540,541

    [36]Jiang S,Liu J,Li X,Bai L,Xiao W,Zhang Y,Lin C,Li Y and Tang L 2011 J.Appl.Phys.110 013526

    [37]Hoekstra H R 1966 Inorg.Chem.5 754

    [38]Yusa H,Tsuchiya T,Tsuchiya J,Sata N and Ohishi Y 2008 Phys.Rev. B 78 092107

    3 May 2017;revised manuscript

    15 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/090703

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.U1232204 and 41502029)and China Postdoctoral Science Foundation (Grant No.2015M580679).

    ?Corresponding author.E-mail:qianzhang@cug.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    張倩
    Dual-wavelength pumped latticed Fermi–Pasta–Ulam recurrences in nonlinear Schr¨odinger equation
    Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator
    繼妹聯(lián)手渣夫做局:那是父母偏愛的蝴蝶效應(yīng)
    Experimental and numerical investigation of a self-supplementing dual-cavity plasma synthetic jet actuator
    Electrical and aerodynamic characteristics of sliding discharge based on a microsecond pulsed plasma supply
    基于社會(huì)責(zé)任培養(yǎng)的“生物多樣性”教學(xué)設(shè)計(jì)
    竇晨珂、曲樹云、王逸文、張倩作品精選
    基于賦權(quán)增能的德育評價(jià)生態(tài)系統(tǒng)的構(gòu)建
    民族文匯(2022年9期)2022-04-13 00:33:06
    《愿為葵子》
    賈逵隔籬偷學(xué)
    午夜日韩欧美国产| 国产日韩一区二区三区精品不卡| 一二三四中文在线观看免费高清| 国产精品久久久久久精品古装| 美女视频免费永久观看网站| 80岁老熟妇乱子伦牲交| 国产极品天堂在线| 熟女少妇亚洲综合色aaa.| 91精品伊人久久大香线蕉| 超碰97精品在线观看| h视频一区二区三区| 香蕉丝袜av| 国产精品秋霞免费鲁丝片| 国产精品女同一区二区软件| 另类精品久久| 久久av网站| 日韩av不卡免费在线播放| 欧美精品国产亚洲| 欧美日韩精品网址| 美女午夜性视频免费| 熟女电影av网| 国产一区亚洲一区在线观看| 一本大道久久a久久精品| 99久久人妻综合| 国产成人精品福利久久| 国产极品粉嫩免费观看在线| 久久青草综合色| 青春草国产在线视频| 精品人妻在线不人妻| 国产福利在线免费观看视频| 午夜久久久在线观看| 国产精品熟女久久久久浪| 精品亚洲成a人片在线观看| 精品酒店卫生间| 亚洲人成电影观看| 久久热在线av| 中文字幕制服av| 深夜精品福利| 日本av免费视频播放| 丰满乱子伦码专区| 国产亚洲一区二区精品| 在线天堂中文资源库| 亚洲色图 男人天堂 中文字幕| 国产日韩一区二区三区精品不卡| 中文字幕亚洲精品专区| videosex国产| 各种免费的搞黄视频| 高清欧美精品videossex| 97在线人人人人妻| 亚洲欧美一区二区三区黑人 | 秋霞在线观看毛片| 在线精品无人区一区二区三| 日本wwww免费看| 亚洲精品av麻豆狂野| 蜜桃国产av成人99| 国产成人精品在线电影| 一本—道久久a久久精品蜜桃钙片| 久久精品久久久久久噜噜老黄| 久久人人爽av亚洲精品天堂| av电影中文网址| 超碰97精品在线观看| 九九爱精品视频在线观看| 精品一品国产午夜福利视频| 亚洲精华国产精华液的使用体验| 哪个播放器可以免费观看大片| 观看美女的网站| www日本在线高清视频| 亚洲国产毛片av蜜桃av| 天天躁夜夜躁狠狠久久av| 一级毛片 在线播放| 久久午夜福利片| 亚洲国产精品国产精品| 日韩熟女老妇一区二区性免费视频| 99香蕉大伊视频| 中文字幕av电影在线播放| 亚洲欧美一区二区三区国产| 99国产精品免费福利视频| 国产精品成人在线| 少妇猛男粗大的猛烈进出视频| 伊人久久大香线蕉亚洲五| 女性生殖器流出的白浆| 久久精品久久久久久噜噜老黄| 久久韩国三级中文字幕| 国产亚洲精品第一综合不卡| 国产成人精品在线电影| 高清av免费在线| 亚洲精品日本国产第一区| 精品国产一区二区三区四区第35| 久久免费观看电影| 人人澡人人妻人| 国产精品久久久久久精品古装| 精品人妻熟女毛片av久久网站| 欧美日韩视频精品一区| 久久99热这里只频精品6学生| 热re99久久精品国产66热6| 国产毛片在线视频| 精品一区二区三区四区五区乱码 | 亚洲综合色惰| 777久久人妻少妇嫩草av网站| 久久精品熟女亚洲av麻豆精品| 成人毛片a级毛片在线播放| 亚洲成国产人片在线观看| 国精品久久久久久国模美| 97人妻天天添夜夜摸| 乱人伦中国视频| 国产一区有黄有色的免费视频| 国产乱人偷精品视频| 午夜福利视频在线观看免费| 欧美97在线视频| 精品国产一区二区三区四区第35| 国产成人午夜福利电影在线观看| 五月开心婷婷网| 国产成人精品在线电影| 少妇被粗大猛烈的视频| 国产人伦9x9x在线观看 | 熟女av电影| 在线天堂中文资源库| 亚洲男人天堂网一区| 国产熟女欧美一区二区| 国产熟女午夜一区二区三区| 青春草亚洲视频在线观看| 高清欧美精品videossex| 黄网站色视频无遮挡免费观看| 国产精品久久久久久精品电影小说| 美女视频免费永久观看网站| 久久精品aⅴ一区二区三区四区 | 亚洲国产欧美在线一区| 天美传媒精品一区二区| 美女xxoo啪啪120秒动态图| 美女福利国产在线| 亚洲三区欧美一区| 在线观看一区二区三区激情| 国产精品二区激情视频| 久久女婷五月综合色啪小说| 亚洲激情五月婷婷啪啪| 日韩大片免费观看网站| 日韩成人av中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 自线自在国产av| 中文字幕人妻丝袜一区二区 | 免费在线观看黄色视频的| 人人妻人人添人人爽欧美一区卜| 色婷婷久久久亚洲欧美| 久久婷婷青草| 久久亚洲国产成人精品v| 最近中文字幕2019免费版| av福利片在线| 成人国产av品久久久| 色网站视频免费| 日韩大片免费观看网站| 五月天丁香电影| 美女午夜性视频免费| 老鸭窝网址在线观看| xxx大片免费视频| 啦啦啦在线观看免费高清www| 久久久久视频综合| 亚洲,一卡二卡三卡| 人妻人人澡人人爽人人| 天天躁夜夜躁狠狠躁躁| 日韩,欧美,国产一区二区三区| 满18在线观看网站| 亚洲成国产人片在线观看| www.熟女人妻精品国产| 亚洲四区av| 乱人伦中国视频| h视频一区二区三区| 国产成人精品一,二区| 午夜福利网站1000一区二区三区| 纯流量卡能插随身wifi吗| 老女人水多毛片| 精品视频人人做人人爽| 丝袜人妻中文字幕| 午夜激情久久久久久久| 卡戴珊不雅视频在线播放| 久久午夜福利片| 亚洲少妇的诱惑av| 久久国产精品大桥未久av| 亚洲熟女精品中文字幕| 两个人免费观看高清视频| 亚洲第一av免费看| 国产精品二区激情视频| 超色免费av| 最黄视频免费看| 中文字幕av电影在线播放| 久久久久久人人人人人| 国产白丝娇喘喷水9色精品| 国产精品偷伦视频观看了| 有码 亚洲区| 最近的中文字幕免费完整| 亚洲国产看品久久| 午夜福利一区二区在线看| 欧美精品一区二区免费开放| 观看美女的网站| 亚洲国产精品成人久久小说| 十八禁高潮呻吟视频| 国产伦理片在线播放av一区| 国产精品秋霞免费鲁丝片| 久久 成人 亚洲| 飞空精品影院首页| 国产男女超爽视频在线观看| 久久久久国产一级毛片高清牌| 黄色视频在线播放观看不卡| 国产成人午夜福利电影在线观看| 五月伊人婷婷丁香| 咕卡用的链子| 成年动漫av网址| 日本av免费视频播放| 精品国产国语对白av| 男女无遮挡免费网站观看| 国产精品成人在线| 日日爽夜夜爽网站| 国产野战对白在线观看| 制服丝袜香蕉在线| 亚洲精品国产色婷婷电影| 美女视频免费永久观看网站| 美女脱内裤让男人舔精品视频| 欧美日韩亚洲国产一区二区在线观看 | 少妇精品久久久久久久| 日韩精品免费视频一区二区三区| 精品人妻在线不人妻| 国产高清不卡午夜福利| 视频区图区小说| 国产成人a∨麻豆精品| 久久精品国产鲁丝片午夜精品| 亚洲国产日韩一区二区| 国产熟女午夜一区二区三区| 一区二区三区四区激情视频| 五月天丁香电影| 亚洲av在线观看美女高潮| 人人妻人人爽人人添夜夜欢视频| 精品人妻偷拍中文字幕| 中文字幕人妻熟女乱码| 天美传媒精品一区二区| 侵犯人妻中文字幕一二三四区| 免费少妇av软件| 人成视频在线观看免费观看| 国产精品国产av在线观看| 午夜福利视频在线观看免费| 考比视频在线观看| 亚洲精品aⅴ在线观看| 一本色道久久久久久精品综合| 色视频在线一区二区三区| 最近的中文字幕免费完整| 尾随美女入室| 欧美日韩精品成人综合77777| 亚洲欧美清纯卡通| 国产一区有黄有色的免费视频| 免费高清在线观看日韩| 欧美精品国产亚洲| 狂野欧美激情性bbbbbb| 国产在线免费精品| 亚洲国产欧美在线一区| www日本在线高清视频| 午夜福利乱码中文字幕| 久久女婷五月综合色啪小说| 欧美日韩视频精品一区| 国产视频首页在线观看| 国产av国产精品国产| 亚洲美女视频黄频| 久久99热这里只频精品6学生| 国产精品国产三级国产专区5o| 久久久久久久亚洲中文字幕| 国产探花极品一区二区| av在线观看视频网站免费| 国产片内射在线| 国产亚洲午夜精品一区二区久久| 欧美精品亚洲一区二区| 一级爰片在线观看| 免费看不卡的av| 国产免费福利视频在线观看| 久久久久国产一级毛片高清牌| av在线观看视频网站免费| 天美传媒精品一区二区| 久久国产精品男人的天堂亚洲| 91国产中文字幕| 最近中文字幕高清免费大全6| 一个人免费看片子| 只有这里有精品99| 最近手机中文字幕大全| 日韩一区二区视频免费看| 亚洲精品久久久久久婷婷小说| 亚洲,一卡二卡三卡| 少妇精品久久久久久久| 欧美亚洲 丝袜 人妻 在线| 99久久综合免费| 午夜免费观看性视频| 波多野结衣一区麻豆| 99九九在线精品视频| 国产又色又爽无遮挡免| 精品国产乱码久久久久久小说| 91精品伊人久久大香线蕉| 一个人免费看片子| 国产免费福利视频在线观看| 爱豆传媒免费全集在线观看| 欧美国产精品va在线观看不卡| 国产在线一区二区三区精| 黑人巨大精品欧美一区二区蜜桃| 日本黄色日本黄色录像| 成人国产麻豆网| 热99国产精品久久久久久7| 免费黄频网站在线观看国产| 欧美日韩综合久久久久久| 国产97色在线日韩免费| 美女大奶头黄色视频| av又黄又爽大尺度在线免费看| 精品国产国语对白av| 国产深夜福利视频在线观看| 黄色配什么色好看| av片东京热男人的天堂| 下体分泌物呈黄色| 成人午夜精彩视频在线观看| 成人毛片a级毛片在线播放| 国产精品亚洲av一区麻豆 | 亚洲综合色惰| 97精品久久久久久久久久精品| 亚洲男人天堂网一区| 久久久精品国产亚洲av高清涩受| av不卡在线播放| 亚洲欧美成人精品一区二区| 午夜av观看不卡| av片东京热男人的天堂| 国产免费视频播放在线视频| 黑人巨大精品欧美一区二区蜜桃| 日韩视频在线欧美| 在线观看免费日韩欧美大片| 一级毛片我不卡| 久久 成人 亚洲| 欧美日韩av久久| 国产一区有黄有色的免费视频| 两个人免费观看高清视频| 国产一区二区三区av在线| 精品久久久精品久久久| 老熟女久久久| 欧美最新免费一区二区三区| 国产熟女午夜一区二区三区| 一区二区三区四区激情视频| av在线app专区| 国产免费现黄频在线看| 精品午夜福利在线看| 亚洲国产欧美网| 91成人精品电影| 国产成人精品久久久久久| 亚洲内射少妇av| 老汉色∧v一级毛片| 亚洲人成网站在线观看播放| 久久99精品国语久久久| 人人妻人人添人人爽欧美一区卜| 免费观看无遮挡的男女| 免费黄网站久久成人精品| 天天躁夜夜躁狠狠久久av| 亚洲 欧美一区二区三区| 亚洲视频免费观看视频| 美女xxoo啪啪120秒动态图| 亚洲欧美成人精品一区二区| 久久久久久久久免费视频了| 久久久久精品人妻al黑| 国产成人免费无遮挡视频| 黄色配什么色好看| 嫩草影院入口| 一级毛片黄色毛片免费观看视频| 热99国产精品久久久久久7| 免费观看av网站的网址| 曰老女人黄片| 最近最新中文字幕大全免费视频 | 国产精品欧美亚洲77777| 日韩精品免费视频一区二区三区| 一级毛片电影观看| 欧美激情 高清一区二区三区| 中国国产av一级| 少妇被粗大的猛进出69影院| 激情五月婷婷亚洲| 亚洲男人天堂网一区| 久久久久久久久免费视频了| 久久精品国产亚洲av涩爱| 美女xxoo啪啪120秒动态图| 久久av网站| 国产综合精华液| 另类亚洲欧美激情| 国产精品欧美亚洲77777| 80岁老熟妇乱子伦牲交| 久久热在线av| 欧美激情极品国产一区二区三区| 亚洲国产欧美网| 99精国产麻豆久久婷婷| 老司机亚洲免费影院| 国产成人精品无人区| 一本大道久久a久久精品| 成年美女黄网站色视频大全免费| 国产精品久久久久成人av| 久久精品人人爽人人爽视色| 亚洲欧美清纯卡通| 成人毛片a级毛片在线播放| 777久久人妻少妇嫩草av网站| 日韩一本色道免费dvd| 97精品久久久久久久久久精品| 国产精品国产三级专区第一集| 韩国av在线不卡| 久久久亚洲精品成人影院| 秋霞在线观看毛片| 日本午夜av视频| 国产爽快片一区二区三区| 亚洲欧洲国产日韩| 女人高潮潮喷娇喘18禁视频| 亚洲综合色网址| 久久这里有精品视频免费| 国产亚洲午夜精品一区二区久久| 免费在线观看完整版高清| 校园人妻丝袜中文字幕| 五月开心婷婷网| 精品国产国语对白av| 中文字幕另类日韩欧美亚洲嫩草| 春色校园在线视频观看| 永久免费av网站大全| 亚洲欧美中文字幕日韩二区| 久久99精品国语久久久| 18禁观看日本| 99热网站在线观看| 成年动漫av网址| 成人影院久久| 岛国毛片在线播放| 精品久久久精品久久久| 在线看a的网站| 曰老女人黄片| 国产精品无大码| 在线免费观看不下载黄p国产| 在线天堂最新版资源| 亚洲一级一片aⅴ在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产精品国产三级国产专区5o| 日韩av不卡免费在线播放| 欧美人与性动交α欧美软件| 深夜精品福利| 男女国产视频网站| 久久久久久久大尺度免费视频| 免费观看av网站的网址| 99热国产这里只有精品6| av国产久精品久网站免费入址| 97在线人人人人妻| 中文字幕人妻熟女乱码| 久久人人爽人人片av| 精品国产乱码久久久久久男人| 多毛熟女@视频| 国产精品一二三区在线看| 男女免费视频国产| 日韩成人av中文字幕在线观看| 自线自在国产av| 两性夫妻黄色片| 国产精品免费视频内射| 精品国产露脸久久av麻豆| 国产免费视频播放在线视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品三级大全| 国产免费一区二区三区四区乱码| 国产精品国产av在线观看| 一本色道久久久久久精品综合| 国产精品久久久久久精品古装| 男女免费视频国产| 9191精品国产免费久久| 成年人免费黄色播放视频| 国产一区二区 视频在线| 国产淫语在线视频| 国产精品人妻久久久影院| a 毛片基地| 你懂的网址亚洲精品在线观看| 91久久精品国产一区二区三区| 波多野结衣av一区二区av| 国产一区二区在线观看av| 丝袜在线中文字幕| 在线观看免费日韩欧美大片| 免费黄色在线免费观看| 精品国产乱码久久久久久男人| 大片免费播放器 马上看| 国产在线免费精品| 日本av手机在线免费观看| 国产成人午夜福利电影在线观看| 国产男人的电影天堂91| 高清在线视频一区二区三区| 欧美日韩精品成人综合77777| 亚洲av综合色区一区| 久久精品亚洲av国产电影网| 黄色视频在线播放观看不卡| 国产免费福利视频在线观看| 最近手机中文字幕大全| 大陆偷拍与自拍| 亚洲婷婷狠狠爱综合网| 久久久久久久久久久免费av| 看免费av毛片| 伦精品一区二区三区| 国产精品 欧美亚洲| 久久久国产欧美日韩av| 菩萨蛮人人尽说江南好唐韦庄| 老汉色∧v一级毛片| 日产精品乱码卡一卡2卡三| 亚洲精品日本国产第一区| 日本免费在线观看一区| 王馨瑶露胸无遮挡在线观看| 亚洲精品美女久久av网站| 日本爱情动作片www.在线观看| 国产成人一区二区在线| 成人国语在线视频| 韩国精品一区二区三区| 最黄视频免费看| 飞空精品影院首页| 亚洲美女黄色视频免费看| 少妇人妻精品综合一区二区| 成人毛片a级毛片在线播放| 高清欧美精品videossex| 欧美日韩综合久久久久久| 久久青草综合色| 99国产精品免费福利视频| 欧美精品av麻豆av| 久久婷婷青草| 日韩av免费高清视频| 欧美97在线视频| 777米奇影视久久| 波多野结衣av一区二区av| √禁漫天堂资源中文www| 九草在线视频观看| 2021少妇久久久久久久久久久| 亚洲精品,欧美精品| av在线app专区| 成人影院久久| 国产av精品麻豆| 九色亚洲精品在线播放| 日本午夜av视频| 久久国产精品男人的天堂亚洲| 国产成人av激情在线播放| 免费在线观看完整版高清| 一本久久精品| 中文欧美无线码| 欧美av亚洲av综合av国产av | 水蜜桃什么品种好| 亚洲欧美成人综合另类久久久| 日韩视频在线欧美| 一区二区三区四区激情视频| 永久免费av网站大全| 亚洲国产成人一精品久久久| 亚洲av福利一区| 国产在线视频一区二区| 亚洲国产色片| 免费在线观看黄色视频的| h视频一区二区三区| 国产成人免费无遮挡视频| 老鸭窝网址在线观看| 久久人人97超碰香蕉20202| 国产精品 欧美亚洲| 色94色欧美一区二区| 一级a爱视频在线免费观看| 国产极品粉嫩免费观看在线| 考比视频在线观看| 99九九在线精品视频| 超色免费av| 一个人免费看片子| 人人妻人人添人人爽欧美一区卜| 亚洲av日韩在线播放| 久久久久久人人人人人| 欧美国产精品一级二级三级| 国产高清不卡午夜福利| 天堂俺去俺来也www色官网| 日韩一卡2卡3卡4卡2021年| 成人午夜精彩视频在线观看| videossex国产| 大香蕉久久成人网| 亚洲第一av免费看| 亚洲,一卡二卡三卡| 电影成人av| 熟妇人妻不卡中文字幕| 国产亚洲最大av| 在线天堂最新版资源| 成人二区视频| 精品午夜福利在线看| 黄色配什么色好看| 久久精品夜色国产| 99久久中文字幕三级久久日本| 欧美人与善性xxx| 在线 av 中文字幕| 99香蕉大伊视频| 考比视频在线观看| 人妻人人澡人人爽人人| 亚洲熟女精品中文字幕| 精品一品国产午夜福利视频| 久久午夜福利片| 成人手机av| 欧美精品高潮呻吟av久久| 啦啦啦在线免费观看视频4| 亚洲激情五月婷婷啪啪| 久久久国产欧美日韩av| 免费观看性生交大片5| 国产精品 国内视频| 精品亚洲成a人片在线观看| 日本av手机在线免费观看| 美女大奶头黄色视频| 新久久久久国产一级毛片| 国产精品女同一区二区软件| 国产女主播在线喷水免费视频网站| 欧美成人午夜免费资源| 亚洲欧洲精品一区二区精品久久久 | 欧美变态另类bdsm刘玥| 一区二区三区乱码不卡18| 香蕉国产在线看| 午夜免费观看性视频| 国语对白做爰xxxⅹ性视频网站| 黄片无遮挡物在线观看| 精品一品国产午夜福利视频| 丝袜美足系列| 亚洲一区二区三区欧美精品| 久久久久久久亚洲中文字幕| 卡戴珊不雅视频在线播放| 在线观看免费日韩欧美大片| 青春草视频在线免费观看| 久久精品国产综合久久久| 黄片无遮挡物在线观看| 日韩一区二区视频免费看| 亚洲欧美清纯卡通| 最新中文字幕久久久久|