• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of cyclohexane catalytic degradation driven by N atoms from N2 discharges

    2023-03-06 01:49:24YuyingLI李鈺瑩JiachengXU徐家成ChunleZHANG張春樂ShuiliangYAO姚水良JingLI李晶ZuliangWU吳祖良ErhaoGAO高爾豪andJialiZHU朱佳麗
    Plasma Science and Technology 2023年2期
    關(guān)鍵詞:李晶佳麗徐家

    Yuying LI (李鈺瑩),Jiacheng XU (徐家成),Chunle ZHANG (張春樂),Shuiliang YAO (姚水良),Jing LI (李晶),Zuliang WU (吳祖良),Erhao GAO (高爾豪) and Jiali ZHU (朱佳麗)

    Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry,School of Environmental and Safety Engineering,Changzhou University,Changzhou 213164,People’s Republic of China

    Abstract The effect of N2 discharge products on cyclohexane degradation over a MnO2/γ-Al2O3 catalyst has been evaluated by feeding N2 discharge products to the catalyst using a specially designed dielectric barrier discharge reactor.At a reaction temperature of 100 °C,the cyclohexane conversion increased from 2.46%(without N2 discharge products)to 26.3%(with N2 discharge products).N- and O-containing by-product (3,4-dehydroproline) was found on the catalyst surface using gas chromatograph-mass spectrometry identification,in which C=N-C and C=NH bonds were also confirmed from x-ray photoelectron spectroscopy analysis results.Operando analysis results using diffuse reflectance infrared Fourier transform spectroscopy revealed that N atoms can react with surface H2O possibly to NH and OH reactive species that have reactivities to promote CO oxidation to CO2.The mechanism of N-atom-driven cyclohexane degradation to CO and CO2 is proposed.

    Keywords: N2 discharge,N atom,ion current,MnO2,cyclohexane degradation

    1.Introduction

    Volatile organic compounds (VOCs) in the atmosphere can cause great concern in air quality and human health [1,2].Non-thermal plasma (NTP) is a powerful technology for VOC degradation of low concentrations [3].Many studies reported that the combination of NTP and catalysis can improve the efficiency of VOC degradation and reduce the formation of by-products [4].Xuet aldeveloped a Camodified Ni/ZSM-5 catalyst for toluene oxidation using a plasma catalytic system[5].Guoet alused a mixed surface/packed-bed discharge plasma reactor of Ag-Ce/γ-Al2O3catalysts for the degradation of a mixture of benzene,toluene,and xylene at room temperature,and found the conversion,by-product emission,and CO2selectivity can be greatly improved by using the catalyst[6].Wuet alreported that the plasma catalysis technology can not only promote toluene conversion but also improve CO2selectivity and reduce by-product nanoparticles even at a temperature up to 250 °C [7].Xiaet alused a dielectric barrier discharge(DBD) reactor equipped with a CeO2catalyst to degrade n-undecane with a high energy efficiency [8].Liet alsuggested that toluene can be decomposed by short-lived and long-lived active substances,where short-lived active substances contribute toluene oxidation to COx.The CoMnOx/TiO2catalyst can effectively decompose O3to reactive oxygen species in and post the plasma spaces,those reactive species enhancing toluene oxidation to COx[9].Many studies have affirmed the role of transition metal oxides in VOC degradation,since oxygen vacancies on transition metal oxides have strong abilities to oxidize VOCs to CO2and H2O[10].MnO2is an efficient catalyst for VOC decomposition,and has been used for the plasma-catalytic or thermo-catalytic degradation of toluene [11],o-xylene [12],and benzene [13,14].

    As a typical VOC,cyclohexane mainly comes from the volatile waste gas when it is used as a solvent as well as the discharge during nylon manufacturing [20,21].A recent paper reported that the repeated inhalation of cyclohexane can produce steady hyperactivity and reduce ataxia,sedation,and seizures as the exposure to cyclohexane progressed [22,23].

    In this study,the effect of N2discharge products on cyclohexane degradation over the MnO2catalyst is investigated.An operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is used to monitor the changes in surface functional groups due to the effect of N2discharge products.Cyclohexane degradation by-products on the catalyst surfaces are analyzed using a gas chromatograph and mass spectrometry (GC-MS) and x-ray photoelectron spectroscopy (XPS).The promotion mechanism of N atoms on the degradation of cyclohexane is proposed.

    2.Experiments

    2.1.Experimental setup

    Figure 1(a) is the experimental system used for investigating the effect of N2discharge products on cyclohexane degradation.The system includes a simulated gas generation system,a plasma catalytic reaction system,and a product analysis system.The simulated gas generation system includes N2and O2pure gas cylinders,four mass flow meters(MFC1-4,D07,Sevenstars Beijing,China),a cyclohexane bubbler (100 ml),and a gas mixer.The plasma catalytic reaction system is mainly composed of a DBD reactor (DBD reactor 1),an electric furnace(KSL,Longkou Xianke,China),a pulse power supply (M10K-08,Suzhou Allftek,China),a voltage probe (P6015A,Tektronix,USA),a current probe(CP8030H,Cybertek,China),an ion current probe (CT-1,Tektronix,USA),and an oscilloscope (MDO3024,Tektronix,USA).

    Figure 1.(a) Schematic diagram of the experimental setup for cyclohexane gradation and (b) the operando DRIFTS system.

    A stainless-steel foil (as the ground electrode) and stainless-steel tube (as the high voltage electrode) were installed in the DBD reactor 1.A catalyst bed was filled with catalyst balls downstream the stainless-steel tube.A stainlesssteel rod was set after the catalyst bed.When voltage pulses are applied to the stainless-steel foil and tube,pulsed corona discharges occur in the space between the stainless-steel foil and tube.The waveforms of the discharge voltage and current were measured using the voltage prob (P6015A) and current probe(CP8030H).N2gas with a flow rate ofF1was supplied to the inlet 2 and passed through the discharge space,then mixed with the gas mixture of O2with a flow rateF4,N2with a flow rateF3,and cyclohexane (bubbling using N2with a flow rate ofF2).The mixed gas mixture flowed through the catalyst bed and out from the outlet.A part of the DBD reactor 1 was placed in a tubular electric furnace to keep the reaction temperature.When N2passed through the discharge space,N2is ionized to some charged species(such as)and decomposed to N atoms.Charged species and N atoms flowed downstream to the catalyst bed resulting in N-atom driven reactions and to the stainless-steel rod resulting in ion currents,which were measured using the ion current probe(CT-1).

    The gas products in the gas mixture from the outlet of the DBD reactor 1 were online analyzed using a gas chromatograph (GC-2014,Shimadzu,Japan),where CO,CO2,and hydrocarbons with carbon number less than 5 were separated using a Porapak-N column and detected with a flame ion detector(FID).A methanizer was used between the column and FID to convert CO and CO2to CH4.Cyclohexane and hydrocarbon products with a carbon number higher than 5 were analyzed using a SE-30 capillary column and detected with another FID.The intermediates on the catalyst surface were washed off using ethanol and the wash liquids were analyzed using a GC-MS (GC-7890A,MS-5975C,Agilent,USA).

    2.2.Operando DRIFTS system

    Figure 1(b) shows a DRITTS (Nicolet IS50,Thermo Scientific,USA) and a reaction chamber (HVC-DRP-5,Harrick,USA) to monitor the intensity changes of surface functional groups during cyclohexane degradation.Catalyst powder (about 30 mg,100 mesh) from grinding 6wt.%MnO2/γ-Al2O3catalyst balls was loaded in a catalyst cell,where the reaction temperature of the catalyst cell was controlled using an electric heater.The catalyst powder was heated in Ar (20 ml min-1) at 300 °C for 1 h.After cooling the temperature of the catalyst powder to 25 °C,the background spectrum was collected in the Ar atmosphere.Then,a gas mixture containing CO (Ar balanced,20 ml min-1)and N2(with or without discharges)was introduced into the reaction chamber.DRIFTS spectra in the range of 800-4000 cm-1were then collected at 100 °C.

    Figure 2.Typical waveforms of voltage (a),current(b),and ion current(c)using the DBD reactor without a catalyst; typical waveforms of voltage (d),current (e),and ion current (f) using the DBD with 6wt.% MnO2/Al2O3 catalyst.Experimental condition: F1 = 70 ml min-1,F2 = 4 ml min-1, F3 = 70 ml min-1, F4 = 35 ml min-1,temperature 25 °C.

    Figure 3. Time delay while ion current can be found after voltage pulses for N2 discharges were applied as a function of N2 flow rate(F1).Experimental condition: F1 = 100-700 ml min-1,F2 = F3 = F4 = 0 ml min-1,temperature 25 °C.

    2.3.Calculations

    Cyclohexane conversion is calculated using equation (1).

    where,C0andCare the saturated cyclohexane concentration in the gas mixture from the outlet of the DBD reactor 1 without N2discharges and the cyclohexane concentration in the gas mixture from the outlet of the DBD reactor 1 with N2discharges,respectively.

    2.4.Preparation and characterization of MnO2/γ-Al2O3 catalysts

    MnO2/γ-Al2O3catalysts of different loadings were prepared using an equal volume impregnation method[12].Mn(NO3)2solution(AR,50wt.%in H2O,Shanghai Jiuzhou,China)was used as the precursor of MnO2.γ-Al2O3balls with a diameter of 1.5-2.0 mm (purity ≥99.7%,Shanghai Jiuzhou,China)were used as a carrier.The γ-Al2O3balls were pretreated with an ethanol liquid overnight,washed with deionized water several times,dried at 100 °C for 6 h,and then the γ-Al2O3balls were calcined at 500 °C in air for 3 h.An appropriate amount of Mn(NO3)2solution and deionized water were added to 5 g γ-Al2O3balls,placed in the dark overnight,dried at 100°C for 6 h,and calcined at 500°C for 3 h.The loadings of MnO2were 2wt.%,4wt.%,6wt.%,and 8wt.%,respectively,by changing the amount of Mn(NO3)2solution.The 6wt.% MnO2/γ-Al2O3catalyst was characterized using an x-ray diffractometer (XRD,Rigaku Ultima IV,Rigaku,Japan) and XPS (Thermo Scientific K-Alpha,Thermo Fisher Scientific,USA).The x-ray source with an energy of 1000-1500 eV was used to measure the photoelectron energy distribution,and semi-quantitatively analyze the content of Mn,O,and N elements on the catalyst surface and their corresponding valence states.

    3.Results and discussion

    3.1.Evidence of ion current and ion adsorption on catalyst

    Figures 2(a)-(c) show typical waveforms of voltage,current,and ion current using the DBD reactor 1 without a catalyst in the catalyst bed.The voltage pulse has a peak value,rise time,and half width of 8.0 kV,40 μs,and 35 μs,respectively.The discharge current increased with the pulse voltage and peaked at 1.1 A.The ion current received using the stainless-steel rod rises to a peak value of 0.10 A with increasing pulse voltage.When the DBD reactor 1 was filled with 6wt.%MnO2/γ-Al2O3catalyst balls in the catalyst bed,the discharge current is slightly increased to 1.4 A (figure 2(e)),while the ion current is greatly decreased to 0.37 A(figure 2(f)).The remarkable decrease in ion current is obviously due to the presence of the catalyst balls in the catalyst bed as the catalyst has an ability to adsorb ions [3].When the voltage pulses were applied to the DBD reactor 1,N2molecules are ionized,resulting in the formation of ions(such as),those flowed downstream to the space around stainless steel rod,and get electrons from the stainless-steel rod,resulting the current related with ions.The ion current waveform was monitored using the ion current probe.Figure 3 shows the time delay while the ion current could be found after voltage pulses for N2discharges were applied.When the gas flow rate was 100 ml min-1,the time delay was 4.2 s,which is equal to that of the gas residence time when the gas passed through the space between discharge space and stainless-steel rod.The findings of ion currents and time delay strongly implied that ions are produced due to the N2discharges.

    Figure 4.Effect of MnO2 loadings on γ-Al2O3 on cyclohexane conversion at various reaction temperatures.Experimental conditions: F1 = 70 ml min-1, F2 = 4 ml min-1, F3 = 70 ml min-1,F4 = 35 ml min-1,and no N2 discharges.

    3.2.Effect of N-atom driven cyclohexane degradation

    The loading of MnO2on Al2O3can promote cyclohexane conversion,and 6wt.% MnO2/Al2O3has the best cyclohexane conversion in comparison with other catalysts (figure 4).The effect of N2discharge products on cyclohexane conversion on 6wt.% MnO2/Al2O3catalyst was then evaluated.Figure 5(a) indicates cyclohexane conversion on the Al2O3catalyst at various discharge voltages as a function of temperature.Cyclohexane conversion increased with increasing temperature.When temperature was fixed,cyclohexane conversion increased when increasing discharge voltage.Cyclohexane conversion at a peak voltage higher than 0 kV is higher than that at 0 kV.This fact implied that discharge produced active species promoted cyclohexane degradation.The maximum promotion effect on cyclohexane conversion is 10.7% at 200 °C,and the promotion effect generally decreased with increasing temperature.When 6wt.%MnO2/Al2O3catalyst was used,cyclohexane conversion at 100 °C increased from 2.46% at 0 kV to 26.3% at 12 kV.When the reaction temperature increased to 200 °C,cyclohexane conversion increased from 14.7%at 0 kV to 32.2%at 12 kV.The cyclohexane conversion at 200 °C is higher than the sum of that (14.7%) by thermal catalysis (figure 4) and that (10.7%) on Al2O3at 12 kV (figure 5(a)),indicating that there is a synergistic effect between N2discharge products and the MnO2catalyst.

    Figure 6 shows GC analysis results of the gas mixture from the outlet of the DBD reactor 1.Only CO,CO2,and C2H4were found as the products of cyclohexane degradation.CO2is the main product as it accounted for 75% of the total peak area,higher than that of CO(accounted 24%)and C2H4(accounted 1.6%).

    Figure 5. Cyclohexane conversion on (a) γ-Al2O3 and (b) 6wt.%MnO2/γ-Al2O3 at various peak voltages as a function of reaction temperature.Experimental conditions: F1 = 70 ml min-1,F2 = 4 ml min-1, F3 = 70 ml min-1, F4 = 35 ml min-1.

    3.3.Catalyst characterization

    The 6wt.% MnO2/γ-Al2O3catalyst used for cyclohexane degradation at 300 °C,12 kV,and 200 Hz for 150 min was washed with ethanol liquid and the washed ethanol liquid was analyzed using the GC-MS.A by-product (3,4-dehydroproline,C5H7NO2) was clearly found (figure 7).The by-product obviously contained N and O atoms in its molecule.This by-product is possibly generated via the ring open reaction by the O atom and cyclization reaction by NH and oxidation to carboxylic acid with the O atom.

    Figure 8 shows the XRD patterns of the fresh and used 6wt.% MnO2/γ-Al2O3catalyst.The peaks at 29°,43°,57°,59°,and 72°can be assigned to the β-MnO2crystals(JCPDS No.24-0735).The peaks at 37°,46°,and 67°can be indexed to both γ-Al2O3(JCPDF NO.29-0063)and β-MnO2crystals.The XRD patterns did not change after 150 min reaction at 300 °C,12 kV,and 200 Hz.

    Figure 6.GC analysis results during cyclohexane degradation on 6wt.% MnO2/γ-Al2O3.(a) Analysis result of the gas mixture using SE-30 capillary column after cyclohexane saturation at 25 °C.(b)Analysis result of the gas mixture using SE-30 capillary column during cyclohexane degradation at 100 °C with discharges (12 kV and 200 Hz).(c) Analysis result of the gas mixture using the Porapak-N column during cyclohexane degradation at 100 °C with discharges (12 kV and 200 Hz).Experimental condition:F1 = 70 ml min-1, F2 = 4 ml min-1, F3 = 70 ml min-1,and F4 = 35 ml min-1.

    Figure 7.GC-MS spectrum of the ethanol liquid after washing 6wt.% MnO2/γ-Al2O3 catalyst (300 °C,12 kV,and 200 Hz for 150 min).

    Figure 9 shows HRTEM and EDS mapping images of 6wt.% MnO2/γ-Al2O3catalyst.The lattice spacing of 0.22 and 0.24 nm is corresponding to(1 0 1)and(2 0 0)planes of the MnO2crystal.EDS mapping shows that fine MnO2particles were uniformly dispersed on the γ- Al2O3support.

    Figure 8. XRD patterns of fresh and used 6wt.% MnO2/γ-Al2O3 catalysts (300 °C,12 kV,and 200 Hz for 150 min).

    Figure 9.HRTEM images(a)and EDS mapping of O(b),Al(c),and Mn (d) elements on the 6wt.% MnO2/γ-Al2O3 catalyst.

    Figure 10.XPS spectra of Mn(a)and O(b)on the fresh catalyst,and N(c)on the used catalyst(300°C,12 kV,and 200 Hz for 150 min).

    Figure 11.DRIFTS spectra when the 6wt.%MnO2/γ-Al2O3 catalyst fed with the gas mixture with or without N2 discharges.Experimental condition: cell temperature 100 °C,discharges at 12 kV and 200 Hz.

    XPS characterization results on the states of the surface elements Mn 2p,O 1 s,and N 1 s of the 6wt.%MnO2/γ-Al2O3catalyst are shown in figure 10.The peaks with binding energies around 641.5-641.9 eV and 653.3-653.7 eV are attributed from Mn4+and Mn3+(figure 10(a)),proving the existence of Mn3+and Mn4+at the catalyst surfaces.The XPS spectrum of O 1 s is shown in figure 10(b).The peak with binding energy near 530.5 eV is the characteristic peak of surface adsorbed oxygen (Oads),the peak with binding energy near 531.5 eV is the characteristic peak of lattice oxygen (Olatt),and the peak near 531.5 eV is the surface characteristic peak of hydroxyl oxygen (OH)ads.

    The element ratios of Mn3+/Mntotalat the fresh and used 6wt.% MnO2/γ-Al2O3catalyst surfaces are 51.90% and 53.08%,and those of Oads/Ototalare 59.11% and 61.27%,respectively.No obvious changes in element ratios of Mn3+/Mntotaland Oads/Ototalwere found between the fresh and used 6wt.%MnO2/γ-Al2O3catalysts,this finding means the cyclohexane degradation process did not change the catalyst.

    There is no N element on the fresh catalyst,while the N element was found on the used catalyst after cyclohexane degradation fed with N2discharge products (figure 10(c)).This finding proves that after plasma treatment,N2is decomposed to N,which reacts with cyclohexane or its oxidation intermediates to form N-containing species(3,4-dehydroproline,C5H7NO2as per figure 7) and remains on the catalyst surface,inferring that it has a bonding of C-N-H and C=N-C within the 3,4-dehydroproline molecule.

    3.4.Surface reaction observation using operando DRIFTS

    The promotion mechanism of N atoms on 6wt.%MnO2/γ-Al2O3catalyst was observed using the operando DRIFTS (figure 1(b)) with or without N2discharges.As shown in figure 11,CO peaks at 2180 and 2120 cm-1[24]surface CO2peaks 2360 and 2320 cm-1[25,26],and the water-related peaks at 3480 cm-1[27]could be observed.When there were no N2discharges,only CO peaks could be found.When there were N2discharges,the surface CO2peaks became positive,and water peaks negative.This finding implied that CO2was generated and surface water took part in the CO reaction.

    3.5.Mechanism of N2 discharge products on cyclohexane degradation

    The by-product 3,4-dehydroproline from cyclohexane degradation is the result of C-C bond cleavage in the cyclohexane molecule and the incorporation of N and O atoms into the cyclohexane molecule.The N atoms are obviously from the N2discharges.Together with the fact that ion currents were found in the gas steam downstream the N2discharge space,it is true that N2discharges produced charged species and N atoms,those charged species and N atoms flowed downstream to the catalyst bed,resulting in cyclohexane degradation driven by ions and N atoms.

    The N atoms can be used to generate O atoms from the reaction of O2with N atoms by the Zeldovich mechanism(equation (2)) [28].The reaction of N atoms and H2O has been suggested by Umemotoet al[29]and Homayoonet al[30],where NH and OH are the main products(equation(3));where N(2D)atoms exist in the N2discharge spaces[15].Our previous study found that during N2-O2pulsed discharge at atmospheric pressure and room temperature,emission spectrum lines of N2(C3Πu →B3Πg)have been clearly observed[31],N(2D) may be generated from N2(C3Πu) [32].The surface OH can react with CO to yield H and CO2(equation(4))[33,34].The H atoms may react with O2to OH(equations (5) and (6)) [33].

    O and OH are reactive,which can initiate the dehydrogenation of cyclohexane (C6H12) to produce cyclohexane free radicals(·C6H11)(equation(7)).·C6H11can react with O,OH,and O2completely to H2O and CO2(equation (8)).

    4.Conclusions

    The effect of N2discharge products on cyclohexane degradation has been investigated using a specially designed DBD reactor.N2discharges generate charged species and N atoms,and those can move to the catalyst bed and deposit on the catalyst surfaces.N atoms can promote the formation of O atoms by Zeldovich mechanism and the formation of surface OH via N + H2O = NH + OH reaction.N,O and OH contribute cyclohexane degradation to CO and CO2.

    Acknowledgments

    This research was supported by National Natural Science Foundation of China (No.12075037),the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_2873) and Research and Application Service Platform Project of API Manufacturing Environmental Protection and Safety Technology in China(No.2020-0107-3-1).

    猜你喜歡
    李晶佳麗徐家
    徐家玨作品
    美術(shù)界(2022年4期)2022-04-26 11:07:00
    放假前VS放假后,快說是不是你
    STABILITY ANALYSIS OF CAUSAL INTEGRAL EVOLUTION IMPULSIVE SYSTEMS ON TIME SCALES?
    甲狀腺瘤瘤切除術(shù)后的臨床護理要點分析
    齊 家
    照相機(2021年2期)2021-04-06 16:28:01
    家長群VS 你的群,究竟區(qū)別何在
    中學生博覽(2021年3期)2021-03-08 02:25:51
    2021,我們一起走花路吧
    中學生博覽(2021年1期)2021-03-04 19:49:14
    The Hardest Language
    徐家柱 用愛喚醒沉睡12年的妻子
    婷婷色av中文字幕| 国产亚洲精品第一综合不卡| 美女高潮喷水抽搐中文字幕| 99香蕉大伊视频| 免费看十八禁软件| 成人三级做爰电影| 在线观看舔阴道视频| 在线 av 中文字幕| 国产精品香港三级国产av潘金莲| 一本一本久久a久久精品综合妖精| 亚洲精品久久成人aⅴ小说| 丝袜人妻中文字幕| 99精国产麻豆久久婷婷| 成年美女黄网站色视频大全免费| 久久99一区二区三区| 这个男人来自地球电影免费观看| 99国产精品一区二区蜜桃av | 免费日韩欧美在线观看| 老司机亚洲免费影院| 欧美成人午夜精品| 亚洲伊人色综图| 他把我摸到了高潮在线观看 | 高清视频免费观看一区二区| kizo精华| 中文字幕人妻丝袜一区二区| 人人妻人人澡人人爽人人夜夜| 久久女婷五月综合色啪小说| 美女脱内裤让男人舔精品视频| 午夜福利在线免费观看网站| 精品国产一区二区三区久久久樱花| av有码第一页| 一二三四社区在线视频社区8| 欧美黄色片欧美黄色片| 成年人免费黄色播放视频| 久久亚洲国产成人精品v| 十八禁网站网址无遮挡| 伊人亚洲综合成人网| 日韩人妻精品一区2区三区| 亚洲精华国产精华精| 欧美成狂野欧美在线观看| 免费在线观看黄色视频的| 99精品久久久久人妻精品| 中文字幕人妻熟女乱码| 99热网站在线观看| 老司机午夜福利在线观看视频 | 黄色视频,在线免费观看| 久久人妻福利社区极品人妻图片| 亚洲一码二码三码区别大吗| 亚洲av国产av综合av卡| 亚洲一卡2卡3卡4卡5卡精品中文| 三级毛片av免费| 色婷婷av一区二区三区视频| 亚洲av欧美aⅴ国产| 欧美日本中文国产一区发布| 中文精品一卡2卡3卡4更新| 久久久久久久久免费视频了| 九色亚洲精品在线播放| 涩涩av久久男人的天堂| 考比视频在线观看| 91av网站免费观看| 1024视频免费在线观看| 99久久精品国产亚洲精品| 青青草视频在线视频观看| 免费在线观看视频国产中文字幕亚洲 | 天天躁日日躁夜夜躁夜夜| 下体分泌物呈黄色| 亚洲欧美日韩另类电影网站| 欧美日韩亚洲高清精品| tube8黄色片| 亚洲第一青青草原| 美女脱内裤让男人舔精品视频| 青草久久国产| 99热网站在线观看| 国产高清videossex| 免费一级毛片在线播放高清视频 | 大片免费播放器 马上看| 下体分泌物呈黄色| 丁香六月天网| 亚洲av美国av| 99国产综合亚洲精品| 一级,二级,三级黄色视频| 69精品国产乱码久久久| 成年女人毛片免费观看观看9 | 国产xxxxx性猛交| 国产精品二区激情视频| 国产精品一区二区在线观看99| 美女大奶头黄色视频| 久久精品久久久久久噜噜老黄| svipshipincom国产片| 国产在视频线精品| 国产一级毛片在线| 国产精品国产av在线观看| 国产有黄有色有爽视频| 精品国产乱码久久久久久小说| 婷婷丁香在线五月| 亚洲精品成人av观看孕妇| 亚洲视频免费观看视频| 视频区图区小说| 中文字幕高清在线视频| 国产真人三级小视频在线观看| av网站免费在线观看视频| av一本久久久久| 在线观看www视频免费| 捣出白浆h1v1| 三级毛片av免费| 91九色精品人成在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲av日韩在线播放| 法律面前人人平等表现在哪些方面 | 日韩,欧美,国产一区二区三区| 99香蕉大伊视频| 久久精品国产综合久久久| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一区二区三区欧美精品| 免费一级毛片在线播放高清视频 | 大陆偷拍与自拍| 91麻豆av在线| 999久久久精品免费观看国产| 老汉色av国产亚洲站长工具| 热99re8久久精品国产| 国产男人的电影天堂91| 久久综合国产亚洲精品| 国产精品免费大片| 久久久久精品人妻al黑| 精品少妇黑人巨大在线播放| 精品人妻熟女毛片av久久网站| 久久亚洲国产成人精品v| 国产成人精品无人区| 一区在线观看完整版| 欧美另类亚洲清纯唯美| 国产99久久九九免费精品| 美女大奶头黄色视频| 亚洲人成77777在线视频| 国产成人精品在线电影| 亚洲国产欧美一区二区综合| 亚洲国产欧美一区二区综合| 麻豆乱淫一区二区| 亚洲午夜精品一区,二区,三区| 婷婷色av中文字幕| 国产欧美日韩精品亚洲av| 欧美日韩视频精品一区| 色视频在线一区二区三区| av在线播放精品| 建设人人有责人人尽责人人享有的| 极品少妇高潮喷水抽搐| 国产一区二区三区在线臀色熟女 | 久久性视频一级片| 国产极品粉嫩免费观看在线| 在线观看免费高清a一片| 热re99久久精品国产66热6| 高清视频免费观看一区二区| 亚洲熟女精品中文字幕| 91老司机精品| 侵犯人妻中文字幕一二三四区| 欧美精品高潮呻吟av久久| 午夜福利视频精品| 热re99久久精品国产66热6| 在线永久观看黄色视频| 亚洲av欧美aⅴ国产| 亚洲综合色网址| 亚洲中文日韩欧美视频| 好男人电影高清在线观看| 91麻豆精品激情在线观看国产 | 操出白浆在线播放| 久久 成人 亚洲| 天天躁夜夜躁狠狠躁躁| 老汉色av国产亚洲站长工具| 国产欧美日韩一区二区精品| 黄色毛片三级朝国网站| 久久人人97超碰香蕉20202| 国产xxxxx性猛交| 亚洲精品久久久久久婷婷小说| 人妻久久中文字幕网| av不卡在线播放| 精品亚洲成国产av| 国产91精品成人一区二区三区 | 性色av乱码一区二区三区2| 亚洲avbb在线观看| 色婷婷久久久亚洲欧美| 新久久久久国产一级毛片| 男人添女人高潮全过程视频| 亚洲人成77777在线视频| 成年女人毛片免费观看观看9 | 亚洲av日韩精品久久久久久密| 亚洲国产av新网站| 在线十欧美十亚洲十日本专区| 午夜免费观看性视频| 中文字幕人妻丝袜制服| 日韩大片免费观看网站| 亚洲精品一卡2卡三卡4卡5卡 | 99久久精品国产亚洲精品| 在线十欧美十亚洲十日本专区| 男女无遮挡免费网站观看| 满18在线观看网站| 久久ye,这里只有精品| 美国免费a级毛片| 国产精品久久久久久精品古装| 免费少妇av软件| 亚洲中文av在线| 后天国语完整版免费观看| 欧美精品av麻豆av| 下体分泌物呈黄色| 男女无遮挡免费网站观看| 亚洲黑人精品在线| 国产激情久久老熟女| www日本在线高清视频| 啦啦啦免费观看视频1| 成年美女黄网站色视频大全免费| 亚洲成国产人片在线观看| 国产在视频线精品| 国产精品久久久av美女十八| 天堂中文最新版在线下载| 久久久久国产一级毛片高清牌| 夜夜骑夜夜射夜夜干| 波多野结衣av一区二区av| 欧美激情高清一区二区三区| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美一区二区三区久久| 欧美av亚洲av综合av国产av| 免费看十八禁软件| 免费一级毛片在线播放高清视频 | 少妇粗大呻吟视频| 十八禁人妻一区二区| 丰满少妇做爰视频| 岛国毛片在线播放| 免费av中文字幕在线| 好男人电影高清在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲中文日韩欧美视频| www.999成人在线观看| 老司机午夜十八禁免费视频| 亚洲精品中文字幕在线视频| 久久久久国内视频| 欧美乱码精品一区二区三区| 国产欧美亚洲国产| 精品第一国产精品| 精品一品国产午夜福利视频| 欧美日韩一级在线毛片| 一级黄色大片毛片| 深夜精品福利| av福利片在线| 人妻 亚洲 视频| 叶爱在线成人免费视频播放| 国产区一区二久久| 91精品国产国语对白视频| 秋霞在线观看毛片| 亚洲成人国产一区在线观看| 香蕉国产在线看| 少妇猛男粗大的猛烈进出视频| 精品人妻一区二区三区麻豆| 中文字幕人妻丝袜制服| 熟女少妇亚洲综合色aaa.| 亚洲精品第二区| 午夜福利,免费看| 最黄视频免费看| 在线观看舔阴道视频| 在线观看一区二区三区激情| av网站免费在线观看视频| 久久午夜综合久久蜜桃| 黄色 视频免费看| 美女高潮到喷水免费观看| 日韩大片免费观看网站| 国产精品久久久久久精品电影小说| 国产又色又爽无遮挡免| 国产国语露脸激情在线看| 欧美 亚洲 国产 日韩一| 美女午夜性视频免费| 久久久国产成人免费| 九色亚洲精品在线播放| 人人妻人人澡人人爽人人夜夜| 久久久久国产一级毛片高清牌| 午夜免费鲁丝| 国产男人的电影天堂91| 夜夜骑夜夜射夜夜干| 成年动漫av网址| 男人操女人黄网站| 久久精品亚洲熟妇少妇任你| 人妻一区二区av| 日韩大片免费观看网站| 久久久精品区二区三区| 日韩熟女老妇一区二区性免费视频| 成年女人毛片免费观看观看9 | 国产亚洲午夜精品一区二区久久| 亚洲三区欧美一区| 成年人免费黄色播放视频| 首页视频小说图片口味搜索| a级毛片黄视频| 人人妻人人爽人人添夜夜欢视频| 女警被强在线播放| 大片免费播放器 马上看| 日韩视频在线欧美| 狠狠狠狠99中文字幕| 国产极品粉嫩免费观看在线| 亚洲va日本ⅴa欧美va伊人久久 | 中文字幕人妻丝袜一区二区| 99久久精品国产亚洲精品| 亚洲专区国产一区二区| 亚洲精品粉嫩美女一区| 99久久精品国产亚洲精品| 日韩一区二区三区影片| 亚洲精华国产精华精| 国产精品熟女久久久久浪| av有码第一页| 91精品国产国语对白视频| 蜜桃在线观看..| 别揉我奶头~嗯~啊~动态视频 | 热99re8久久精品国产| 淫妇啪啪啪对白视频 | 国产精品二区激情视频| 午夜老司机福利片| 不卡av一区二区三区| 精品视频人人做人人爽| 91国产中文字幕| 亚洲中文日韩欧美视频| 男人添女人高潮全过程视频| 久久九九热精品免费| 天天躁日日躁夜夜躁夜夜| av视频免费观看在线观看| 亚洲熟女精品中文字幕| 欧美人与性动交α欧美软件| 久久av网站| av片东京热男人的天堂| 亚洲五月色婷婷综合| 国产精品九九99| 高清av免费在线| 美女视频免费永久观看网站| 久久国产精品大桥未久av| 多毛熟女@视频| 午夜两性在线视频| 十八禁人妻一区二区| 国产精品一区二区精品视频观看| cao死你这个sao货| 9热在线视频观看99| 狠狠狠狠99中文字幕| 亚洲专区字幕在线| 男女之事视频高清在线观看| av不卡在线播放| 肉色欧美久久久久久久蜜桃| 国产精品熟女久久久久浪| 中文字幕另类日韩欧美亚洲嫩草| 老司机深夜福利视频在线观看 | 久久久久国产精品人妻一区二区| 亚洲av欧美aⅴ国产| 欧美激情久久久久久爽电影 | 777米奇影视久久| 国产成人系列免费观看| 成人三级做爰电影| 欧美黑人精品巨大| 久久久精品94久久精品| 久久中文看片网| 男女国产视频网站| 日韩欧美一区二区三区在线观看 | 黄片大片在线免费观看| 亚洲精品在线美女| 国产熟女午夜一区二区三区| 中文字幕制服av| 别揉我奶头~嗯~啊~动态视频 | 久久久久国产一级毛片高清牌| 日本91视频免费播放| 亚洲免费av在线视频| 精品亚洲乱码少妇综合久久| 首页视频小说图片口味搜索| 美女午夜性视频免费| 国产男人的电影天堂91| 欧美黑人精品巨大| 91大片在线观看| 18禁国产床啪视频网站| 我的亚洲天堂| 女性生殖器流出的白浆| 91九色精品人成在线观看| 亚洲性夜色夜夜综合| 欧美日韩国产mv在线观看视频| 91成年电影在线观看| 美女福利国产在线| 久久中文字幕一级| 亚洲一区中文字幕在线| 免费看十八禁软件| 热re99久久精品国产66热6| 欧美成狂野欧美在线观看| 另类精品久久| 操出白浆在线播放| 女人高潮潮喷娇喘18禁视频| 国产精品亚洲av一区麻豆| 国产一区有黄有色的免费视频| 可以免费在线观看a视频的电影网站| 少妇精品久久久久久久| 午夜激情久久久久久久| 欧美av亚洲av综合av国产av| 大香蕉久久成人网| 久久人人爽av亚洲精品天堂| 高清在线国产一区| 成年人午夜在线观看视频| 十八禁网站免费在线| 可以免费在线观看a视频的电影网站| 亚洲中文字幕日韩| 天天添夜夜摸| 丰满人妻熟妇乱又伦精品不卡| 韩国精品一区二区三区| 亚洲精华国产精华精| 精品国产国语对白av| 午夜福利,免费看| av网站在线播放免费| 久久人人97超碰香蕉20202| 免费高清在线观看视频在线观看| 免费在线观看视频国产中文字幕亚洲 | 国产精品一区二区在线观看99| 精品欧美一区二区三区在线| 狠狠精品人妻久久久久久综合| 国产黄色免费在线视频| 一本久久精品| www.999成人在线观看| 国产精品欧美亚洲77777| 新久久久久国产一级毛片| 十分钟在线观看高清视频www| 国产一区有黄有色的免费视频| 国产亚洲欧美精品永久| 热99久久久久精品小说推荐| 亚洲精品久久午夜乱码| 午夜福利在线免费观看网站| 色婷婷久久久亚洲欧美| 日韩大码丰满熟妇| 老司机靠b影院| 欧美日韩福利视频一区二区| 国产亚洲精品第一综合不卡| 美女扒开内裤让男人捅视频| 国产伦理片在线播放av一区| 久久人人97超碰香蕉20202| 99精品久久久久人妻精品| 丝瓜视频免费看黄片| 在线av久久热| 一区二区日韩欧美中文字幕| cao死你这个sao货| 日韩中文字幕欧美一区二区| 99久久国产精品久久久| 久久久国产欧美日韩av| 丰满人妻熟妇乱又伦精品不卡| 99精品欧美一区二区三区四区| 日日夜夜操网爽| 国产av精品麻豆| 免费在线观看视频国产中文字幕亚洲 | 久久国产亚洲av麻豆专区| 99精国产麻豆久久婷婷| 老司机在亚洲福利影院| 大香蕉久久成人网| 老熟女久久久| 女人精品久久久久毛片| 91字幕亚洲| 别揉我奶头~嗯~啊~动态视频 | a级毛片黄视频| 久久人妻熟女aⅴ| 真人做人爱边吃奶动态| 欧美在线黄色| 午夜精品久久久久久毛片777| 色老头精品视频在线观看| 人成视频在线观看免费观看| 中文字幕精品免费在线观看视频| 精品国产乱码久久久久久男人| 人妻人人澡人人爽人人| 香蕉丝袜av| 亚洲国产欧美网| 国产免费现黄频在线看| 亚洲 欧美一区二区三区| 亚洲男人天堂网一区| svipshipincom国产片| 国产又爽黄色视频| 久久这里只有精品19| 亚洲国产欧美日韩在线播放| tocl精华| 久久久精品区二区三区| 久久精品亚洲av国产电影网| 侵犯人妻中文字幕一二三四区| 精品福利永久在线观看| 亚洲一区中文字幕在线| 亚洲精品中文字幕一二三四区 | 国产精品久久久久久精品电影小说| 日韩欧美免费精品| 国产1区2区3区精品| 99国产精品免费福利视频| 久久综合国产亚洲精品| 国产欧美日韩一区二区三 | 免费在线观看影片大全网站| 中文欧美无线码| 黄网站色视频无遮挡免费观看| 国产成人影院久久av| 国产亚洲一区二区精品| 久久精品成人免费网站| 水蜜桃什么品种好| 亚洲国产欧美一区二区综合| 精品福利观看| 亚洲国产精品一区二区三区在线| 丝袜美足系列| 精品久久久久久久毛片微露脸 | 新久久久久国产一级毛片| 三级毛片av免费| www.自偷自拍.com| 黄色片一级片一级黄色片| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩一级在线毛片| 欧美日韩亚洲高清精品| tocl精华| 每晚都被弄得嗷嗷叫到高潮| 中文字幕人妻熟女乱码| 亚洲国产成人一精品久久久| 后天国语完整版免费观看| 国产成人欧美| 亚洲人成电影免费在线| 亚洲 国产 在线| 99久久精品国产亚洲精品| 十八禁高潮呻吟视频| 久久精品久久久久久噜噜老黄| 久久久久久久大尺度免费视频| 欧美人与性动交α欧美精品济南到| 婷婷成人精品国产| 国产成人影院久久av| 国产精品一二三区在线看| 日韩人妻精品一区2区三区| 又紧又爽又黄一区二区| 这个男人来自地球电影免费观看| 精品少妇一区二区三区视频日本电影| 久久精品成人免费网站| 亚洲欧美日韩另类电影网站| 丝袜人妻中文字幕| 一区二区三区激情视频| 久久精品亚洲av国产电影网| 久久人人爽人人片av| av超薄肉色丝袜交足视频| 狂野欧美激情性bbbbbb| 麻豆av在线久日| 国产日韩欧美视频二区| 国产色视频综合| 午夜视频精品福利| 一区二区av电影网| 国产在线一区二区三区精| 亚洲国产av影院在线观看| 女人高潮潮喷娇喘18禁视频| 国产成人免费观看mmmm| tube8黄色片| 亚洲精品国产一区二区精华液| 考比视频在线观看| 久久影院123| 亚洲久久久国产精品| 久久久久久久精品精品| 国产欧美日韩精品亚洲av| 欧美国产精品一级二级三级| avwww免费| 成人影院久久| 美女高潮喷水抽搐中文字幕| 两个人看的免费小视频| 亚洲成av片中文字幕在线观看| 亚洲精品久久午夜乱码| 欧美日韩中文字幕国产精品一区二区三区 | 精品国产一区二区三区四区第35| 中文精品一卡2卡3卡4更新| 久久亚洲精品不卡| 成人影院久久| www.999成人在线观看| 少妇猛男粗大的猛烈进出视频| 成年人免费黄色播放视频| 男男h啪啪无遮挡| 久久人妻福利社区极品人妻图片| 一边摸一边抽搐一进一出视频| 男女边摸边吃奶| 久久人人爽人人片av| 别揉我奶头~嗯~啊~动态视频 | 视频区图区小说| 无遮挡黄片免费观看| av网站在线播放免费| 18禁国产床啪视频网站| 国产av国产精品国产| 精品国产乱码久久久久久男人| 色老头精品视频在线观看| 国产成人影院久久av| 亚洲专区中文字幕在线| 亚洲免费av在线视频| 欧美黑人精品巨大| 人人妻人人添人人爽欧美一区卜| 大香蕉久久网| 中文字幕精品免费在线观看视频| 美女大奶头黄色视频| 热re99久久精品国产66热6| 黄色片一级片一级黄色片| av在线老鸭窝| 夫妻午夜视频| 一二三四社区在线视频社区8| 咕卡用的链子| av网站免费在线观看视频| 动漫黄色视频在线观看| 99久久国产精品久久久| 日本91视频免费播放| 久久久久精品国产欧美久久久 | 日韩制服骚丝袜av| 日韩电影二区| 国产精品一区二区免费欧美 | 国精品久久久久久国模美| 国内毛片毛片毛片毛片毛片| 狂野欧美激情性bbbbbb| 亚洲天堂av无毛| 国产亚洲精品第一综合不卡| 国产精品亚洲av一区麻豆| 考比视频在线观看| 啦啦啦中文免费视频观看日本| 少妇裸体淫交视频免费看高清 | 亚洲成人手机| 男女下面插进去视频免费观看| 建设人人有责人人尽责人人享有的| 两性夫妻黄色片| 女人高潮潮喷娇喘18禁视频| 免费久久久久久久精品成人欧美视频| 午夜福利,免费看| 欧美日韩国产mv在线观看视频| 最近最新中文字幕大全免费视频| 久久精品91蜜桃| 免费在线观看成人毛片| 黄色女人牲交| 国产激情偷乱视频一区二区|