• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures?

    2021-03-11 08:34:00GuoWuWang王國(guó)武ChunShengGuo郭春生LiangQiao喬亮TaoWang王濤andFaShenLi李發(fā)伸
    Chinese Physics B 2021年2期
    關(guān)鍵詞:王濤春生王國(guó)

    Guo-Wu Wang(王國(guó)武), Chun-Sheng Guo(郭春生), Liang Qiao(喬亮),Tao Wang(王濤),3,?, and Fa-Shen Li(李發(fā)伸)

    1Key Laboratory for Magnetism and Magnetic Materials of MOE,Lanzhou University,Lanzhou 730000,China

    2Guangzhou Newlife Magnet Electricity Co.,Ltd.,Guangzhou 511356,China

    3Key Laboratory of Special Function Materials and Structure Design(Ministry of Education),Lanzhou University,Lanzhou 730000,China

    Keywords: soft magnetic composite,high frequency magnetic property,power electronic,core loss

    1. Introduction

    Power electronic equipment(such as sensors,transformers, and motors) is widely used in the energy field, including the generation, transmission, and conversion of electrical energy. However, problems such as severe heating, low energy density, and large size and mass result in high energy loss and low energy conversion efficiency of power electronic devices.[1–5]For example, according to the International Energy Agency,if all industrial motors were driven by a new generation of power electronic devices,more than 300×106kWh of electricity would be saved globally by 2030.[1,6]Therefore,to reduce the electricity consumption throughout industrial society,the next-generation power electronics must meet the requirements of high energy density,high energy conversion efficiency, miniaturization, and lightness. According to power electronics,increasing the operating frequency can reduce the size of the devices’ inductance and capacitance while keeping the ripple voltage constant.[1]Therefore,developing highfrequency soft magnetic materials(SMMs)that can work efficiently at high frequencies is the key to producing energy electronic devices with high energy density. The development of wide bandgap (WBG) semiconductors (SiC and GaN) makes it possible for power electronic devices to work at higher frequencies with higher energy density and energy conversion efficiency.[7]However,the SMMs needed for power electronic devices remain lacking.

    At present, due to the advantages of high permeability,low core loss, and cheap price, soft ferrites, such as MnZn,NiZn, and NiZnCu ferrites, almost monopolize the SMMs in all power electronic devices.[8–16]However, these materials have an unsurmountable defect that their low saturation magnetization and operating frequency cannot meet the requirements of the next-generation power electronics. SMMs such as carbonyl iron,FeNi and FeSi have a natural resonance frequency up to GHz and can maintain a permeability that does not decrease with frequency.[17–23]Unfortunately, the permeability of traditional soft magnetic composites(SMCs)is very low (usually less than 10), which results in high core loss when used at high frequencies. Therefore, to fully unlock the potential of WBG semiconductors and meet the needs of the next-generation power electronics, SMMs must have high operating frequencies (over 100 MHz) and simultaneously have a permeability as high as possible.[1]However,due to the Snoek limit,traditional soft magnetic materials cannot simultaneously achieve a high natural resonance frequency and high magnetic permeability. The Snoek limit[24,25]can be expressed as follows:

    whereμiis the initial permeability, fris the natural resonance frequency, γ is the gyromagnetic ratio, and Msis the saturation magnetization.According to Eq.(1),in a certain material,its(μi?1)frvalue is constant,which means that high natural resonance frequency and high permeability cannot be satisfied simultaneously. This is the fundamental reason for restricting the use of SMMs at high frequencies. Therefore, to fully unlock the potential of WBG semiconductors and meet the needs of the next generation of power electronic devices,the Snoek limit must be exceeded. For easy-plane SMMs, the relationship between permeability and natural resonance frequency is as follows:[26]

    where Hθand H?are out-of-plane and in-plane anisotropic fields, respectively. Since Hθ?H?, the easy-plane material will have a higher (μi?1)frvalue and thus a higher permeability at higher frequencies.

    In this study, we prepare a kind of easy-plane-like carbonyl iron composite using high-aspect-ratio flaky carbonyl iron(HAR-FCI)particles. On the one hand, since Hθ?H?,this material can effectively break through the Snoek limit and achieve higher permeability at higher frequencies. On the other hand, HAR-FCI particles can effectively inhibit the skin effect and reduce eddy current loss. Combined with these two advantages, carbonyl iron composites with easy-planelike structure can be a good candidate material to fully unlock the potential of WBG semiconductors and meet the requirements of the next-generation power electronics.

    2. Experiment

    In experiment,HAR-FCI particles were obtained by planetary ball milling. ZnO ball grinding balls (d =5 mm) were used, and the ratio of ball to powder was 25:1. The rotation speed and time were 350 r/min and 8 h,respectively. We took 50 mL anhydrous ethanol used on each 4 g carbonyl iron powder during the ball milling process. Then 1 g of raw carbonyl iron(R-SCI)and 1 g of HAR-FCI were uniformly mixed with 0.13 g of polyurethane(PU)in an ultrasonic environment,respectively. Here,a certain amount of acetone was used to dissolve the PU.After completely mixing,the HAR-FCI mixture was rotated for 10 min at a magnetic field of 1 T to ensure that all HAR-FCI particles were aligned parallel to a certain plane.Both mixtures were kept at 60?C for 10 h to dry the excess acetone in the mixture. After complete drying,it was pressed at a pressure of 4 MPa to form a ring with an outer diameter of 15 mm,an inner diameter of 7 mm,and a thickness of 5 mm,which were respectively labeled as SCI/PU and FCI/PU.Figure 1 presents a schematic diagram of the composites.

    The morphology of the R-SCI and HAR-FCI particles was observed with a scanning electron microscope(SEM,Hitachi S-4800). The phase structure was characterized by powder x-ray diffraction(XRD,Philips X’Pert PRO)with Cu Kα radiation (λ = 0.15418 nm). The composites’ static magnetic properties were measured at room temperature using a vibrating sample magnetometer (VSM, Lake Shore 7304).The magnetic moment orientation of the as-milled composites was characterized by the room temperature transmission M¨ossbauer spectra. In the transmission geometry,the incident γ-ray was parallel to the axis of the oriented disk. The permeability of the composites at 1–100 MHz and 0.1–18 GHz was measured using an impedance analyzer (Agilent 4294A)and vector network analyzer(VNA,Agilent E8363B),respectively.The composite’s core loss was measured by a wideband power analyzer(Clarke–Hess Model 2335A).

    Fig.1. Schematic diagram of the prepared FCI/PU and SCI/PU composites.

    3. Results and discussion

    3.1. Morphology and phase structure analysis

    Figure 2 shows the morphology of R-SCI and HAR-FCI particles. Figures 2(a)–2(c) show that R-SCI particles were regular spheres in homogenous sizes, and the largest particle was approximately 5μm.The ball-milled particles had irregular flake shapes,as shown in Figs.2(d)and 2(e). Figures 2(f)–2(i)indicate that the diameter and thickness of the HAR-FCI particle were approximately 10μm and 0.5μm,respectively,so their aspect ratio was approximately 20.

    Fig.2. Morphologies of [(a)–(c)] R-SCI and [(d),(e)] HAR-FCI particles, [(f),(g)] diameter of a single HAR-FCI particle, and [(h),(i)]thickness of a single HAR-FCI particle.

    Figure 3 shows the XRD patterns of the R-SCI and HARFCI particles. The two sets of spectral lines were typical characteristic Fe spectra,in which the 44?,65?,and 82?diffraction peaks correspond to (110), (200), and (211) Fe cell crystal planes with BCC structures, respectively. There are no significant changes between the two sets of peaks except a slight reduction in the diffraction peak intensity of the FAR-FCI particles. This proves that there was no phase transition during the ball milling process. The reduction in the diffraction peak intensity was mainly caused by the defects and stresses introduced during the ball milling process,which decreased the particles’crystallinity.

    Fig.3. XRD patterns of the R-SCI and HAR-FCI particles.

    3.2. Static magnetic properties

    Figure 4 shows the hysteresis loops of the FCI/PU composite in the oriented plane and perpendicular to the oriented plane, and the corresponding static magnetic parameters are presented in Table 1. For convenience, we define the composite’s orientation plane as the x0y plane and the direction perpendicular to this plane as the z axis. Figure 4 demonstrates that the composite was easily magnetized to saturation in the x0y plane,and the corresponding magnetization saturation field was 5 kOe. In the z axis direction, however, when the external field strength reached 20 kOe, it still could not be magnetized to saturation. In addition, in the x0y plane,the composite’s coercive(Hc)and residual magnetization(Mr)were both significantly smaller than the z axis. This indicates that the composite’s magnetic moments were distributed isotropically along the oriented plane,and the composite was more easily magnetized to saturation within the oriented plane.

    Fig.4. Hysteresis loop of the FCI/PU composite in x0y plane and z direction.

    Table 1. Static magnetic parameters of the FCI/PU composite.

    To further study the distribution of magnetic moments in the composites, we measured the M¨ossbauer spectra of the SCI/PU and FCI/PU.The γ-ray was perpendicular to the oriented plane(x0y plane). We characterized the orientation degree of the composites’magnetic moment by the ratio of peaks 2 and 5 to peaks 1 and 6:[27]

    where θ is the average angle between the γ-ray and magnetic moment,and f =sin(θ)represents the magnetic moment’s average orientation degree. In materials with magnetic moments completely distributed in the plane(θ =90?),the intensity ratio of the six-line spectrum should be 3:4:1:1:4:3, that is, the intensity of peaks 2 and 5 exceeds peaks 1 and 6. As shown in Fig.5(b),the ratio of the six-line spectrum was not the typical ratio corresponding to an orientation angle θ =90?. This was mainly because some low-aspect ratio carbonyl iron particles were not completely parallel to the oriented plane during the orientation process,resulting in partial magnetic moments that were randomly arranged in the three-dimensional direction.However, Fig.5(a) clearly shows that the intensity of peaks 2 and 5 exceeded the peaks 1 and 6. According to Eq. (3),we calculated that the orientation degrees of the two composites in the x0y plane were 0.72 and 0.8,respectively. Because the HAR-FCI particles were affected by a strong demagnetizing field,their magnetic moment was bound within the plane.Combined with the hysteresis loop in Fig.4,we can conclude that, in the FCI/PU composite, the particles rotated with the magnetic moment during the rotational orientation process and were arranged parallel to the oriented plane(except for a few carbonyl iron particles with a low aspect ratio). Due to the small anisotropic field of the HAR-FCI particles in the plane,the magnetic moment was easy to rotate in the plane, so the composite was more easily magnetized in the oriented plane,resulting in an easily magnetized plane.

    Fig.5. M¨ossbauer spectrum of(a)SCI/PU and(b)FCI/PU composites.

    3.3. High frequency magnetic properties

    Figures 6(a) and 6(b) shows the magnetic spectra of the SCI/PU and FCI/PU composites from 1 MHz to 18 GHz.Both the composites maintained a flat permeability under 100 MHz,and the relaxation of the magnetic spectrum appeared afterward. The differences between the two composites’ magnetic spectra were mainly as follows: (1) compared with the SCI/PU,the initial permeability of the FCI/PU increased by 3 times and (2) the imaginary part of the FCI/PU permeability appeared as two sets of resonance peaks. To further understand the composites’ magnetization process, we fit the measured magnetic spectra. The fitting formulas are[28]

    where χd0and χs0represent the susceptibility contributed by domainwall displacement and magnetic moment rotation,respectively; ωd0is the domainwall resonance angular frequency, ωs0is the natural resonance angular frequency, β is the damping of the domainwall displacement, and α is the damping of the magnetic moment rotation. It is noted that ωs0obtained by fitting here is the intrinsic resonance frequency without considering the damping effect, and the natural resonance angle frequency actually exhibited by the composite should be expressed as[28]

    Figures 6(c)–6(f) show the fitting results of magnetic spectra of the SCI/PU and FCI/PU composites. The corresponding fitting parameters are listed in Table 2.In the FCI/PU composite, a new resonance peak appeared at approximately 200 MHz. By fitting the magnetic spectra,we confirmed that this peak was derived from the domain wall resonance. This means that the SCI/PU composite was magnetized by a single magnetic moment rotation, and only natural resonance peaks existed in the magnetic spectra. During the dynamic magnetization process,however,the easy plane-like FCI/PU composite contained contributions of both the magnetic moment rotation and domain wall displacement.[29]In addition,compared with the SCI/PU,the composite’s permeability increased by 3 times(from 7.5 to 21.5)at 100 MHz and its natural resonance frequency(fr)shifted to higher frequencies by 1.7 GHz. The simultaneous increases of μiand frled to an obviously increased (μi?1)frvalue (5.1 times), which is important for the composite to break through the Snoek limit and to work efficiently at higher frequencies.

    Fig.6. [(a),(b)]Permeability of the SCI/PU and FCI/PU at 1 MHz–18 GHz,[(c),(d)]fitting permeability of the real and imaginary parts of the SCI/PU composite,and[(e),(f)]fitting permeability of the real and imaginary parts of the FCI/PU composite.

    Table 2. Relevant parameters corresponding to the fitting magnetic spectra of the SCI/PU and FCI/PU composites.

    3.4. Core loss

    The test of core loss is carried out at room temperature.When core loss is tested,the composite needs to be wound and a certain voltage(VRMS)is applied to ensure that the inner part of the composite reaches a desired Bm. According to Bm, the VRMScan be given as follows:

    where N is the number of coil turns, and Aeis effective sectional area:

    The effective volume(Ve)formula of the composite is as follows:

    where D and d are the outer diameter and inner diameter,and h is the thickness of the magnetic ring.

    Figures 7(a) and 7(b) show the core loss of the SCI/PU and FCI/PU at 50–500 kHz for the magnetic fluxes of 10,20, and 30 mT, respectively. The composites’ core loss increased slowly with the frequency. Figure 7(a)shows that, at 500 kHz,the core losses at 10,20,and 30 mT for the SCI/PU were 191.7, 804.2, and 1912.6 mW/cm3, respectively, while the core losses of the FCI/PU under the same conditions were 80.0,355.3,and 810.7 mW/cm3,as demonstrated in Fig.7(b).

    Fig.7. The variation trend of coreloss with frequency for (a) SCI/PU and(b)FCI/PU under the magnetic fluxes of 10,20,and 30 mT.

    Fig.8. Histogram of coreloss comparison for SCI/PU and FCI/PU at 30 mT.

    Figure 8 shows a histogram of the core loss comparison of the SCI/PU and FCI/PU at 30 mT.The core loss of the FCI/PU significantly declined in comparison to the SCI/PU.Under the same conditions,the core loss of the FCI/PU decreased by approximately 60%.

    4. Conclusions

    To break through the Snoek limit and to obtain a higher permeability at higher frequencies, we have used HAR-FCI particles to prepare an FCI/PU composite with an easy planelike structure. The composite’s dynamic magnetization process and core loss are carefully studied,leading to the following conclusions:

    (1) Due to its easy-plane-like structure, the (μi?1)frvalue of the FCI/PU composite increases by 5.1 times compared with the SCI/PU. This effectively breaks through the Snoek limits, demonstrating that the composite can work efficiently at higher frequencies.

    (2) The FCI/PU composite has a domain wall resonance peak at 200 MHz, which shows that both the domain wall displacement and magnetic moment rotation occur simultaneously during the FCI/PU’s dynamic magnetization process.

    (3) Compared with the SCI/PU, the core loss of the FCI/PU under the same conditions decreases by nearly 60%.

    猜你喜歡
    王濤春生王國(guó)
    綿師學(xué)人
    ——王濤
    Transition to chaos in lid–driven square cavity flow?
    地下王國(guó)
    逃離鼠王國(guó)
    曹春生作品
    建立新王國(guó)
    NBA特刊(2018年21期)2018-11-24 02:47:48
    王濤作品
    STABILITY OF VISCOUS SHOCK WAVES FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES E QUATIONS WITH DENSITY-DEPENDENT VISCOSITY?
    曹春生
    不認(rèn)賬
    雜文選刊(2014年12期)2014-11-17 03:53:48
    日韩一本色道免费dvd| 亚洲人成网站在线播| 王馨瑶露胸无遮挡在线观看| 日韩大片免费观看网站| 欧美xxⅹ黑人| 在线播放无遮挡| 国产精品蜜桃在线观看| 嫩草影院入口| 亚洲内射少妇av| 日本午夜av视频| 99re6热这里在线精品视频| 亚洲四区av| 汤姆久久久久久久影院中文字幕| av有码第一页| 又黄又爽又刺激的免费视频.| 曰老女人黄片| 高清不卡的av网站| 91久久精品国产一区二区三区| 少妇人妻久久综合中文| 九九在线视频观看精品| av专区在线播放| 人人澡人人妻人| 男人操女人黄网站| 99精国产麻豆久久婷婷| 18+在线观看网站| 成年av动漫网址| 曰老女人黄片| 国产高清有码在线观看视频| 亚洲一级一片aⅴ在线观看| 国产精品 国内视频| 不卡视频在线观看欧美| 国产色爽女视频免费观看| 免费黄色在线免费观看| 日韩免费高清中文字幕av| 狂野欧美激情性xxxx在线观看| 草草在线视频免费看| 日韩一本色道免费dvd| 国产精品久久久久久久电影| 欧美激情国产日韩精品一区| tube8黄色片| 久久久久久久大尺度免费视频| 亚洲国产色片| 国产高清有码在线观看视频| 国产国拍精品亚洲av在线观看| 日韩不卡一区二区三区视频在线| 亚洲精品自拍成人| 美女脱内裤让男人舔精品视频| 亚洲精华国产精华液的使用体验| 丰满饥渴人妻一区二区三| 亚洲欧美一区二区三区国产| 99九九在线精品视频| 欧美性感艳星| 国产男人的电影天堂91| 日韩中文字幕视频在线看片| 哪个播放器可以免费观看大片| 久久热精品热| 汤姆久久久久久久影院中文字幕| 亚洲av二区三区四区| 91精品三级在线观看| 18+在线观看网站| 国产日韩欧美亚洲二区| 五月天丁香电影| 国产成人免费无遮挡视频| 男女高潮啪啪啪动态图| 少妇人妻久久综合中文| 国产精品偷伦视频观看了| 久久精品人人爽人人爽视色| 伦精品一区二区三区| 国产淫语在线视频| 久久久久久久国产电影| 一级黄片播放器| 欧美日韩av久久| 精品少妇内射三级| 夫妻性生交免费视频一级片| 国产精品久久久久久精品电影小说| 久久影院123| 最近最新中文字幕免费大全7| 中文欧美无线码| 亚洲精品aⅴ在线观看| 欧美最新免费一区二区三区| 人人妻人人爽人人添夜夜欢视频| 尾随美女入室| 日韩视频在线欧美| 中文字幕免费在线视频6| 99热6这里只有精品| 午夜老司机福利剧场| 天堂8中文在线网| 精品少妇内射三级| 婷婷色综合www| 人妻少妇偷人精品九色| av女优亚洲男人天堂| 天堂俺去俺来也www色官网| 建设人人有责人人尽责人人享有的| 免费日韩欧美在线观看| 18禁在线无遮挡免费观看视频| 国产成人av激情在线播放 | 国产伦精品一区二区三区视频9| 亚洲精品自拍成人| 永久免费av网站大全| 人体艺术视频欧美日本| 看十八女毛片水多多多| 国产成人一区二区在线| 两个人免费观看高清视频| 国产成人精品一,二区| 久久久久久久久久久丰满| 99久久精品一区二区三区| 国产精品国产av在线观看| 丁香六月天网| 内地一区二区视频在线| 三级国产精品欧美在线观看| 97超碰精品成人国产| 久久狼人影院| 免费黄频网站在线观看国产| 蜜桃久久精品国产亚洲av| 超碰97精品在线观看| 亚洲五月色婷婷综合| 2021少妇久久久久久久久久久| 久久青草综合色| 成人18禁高潮啪啪吃奶动态图 | 久久人人爽人人爽人人片va| 国产成人91sexporn| 如日韩欧美国产精品一区二区三区 | 蜜桃在线观看..| 日日摸夜夜添夜夜添av毛片| 一级毛片aaaaaa免费看小| 亚洲国产毛片av蜜桃av| 高清毛片免费看| 国产亚洲精品第一综合不卡 | 婷婷成人精品国产| 国产无遮挡羞羞视频在线观看| 丰满饥渴人妻一区二区三| 韩国av在线不卡| 久久精品夜色国产| 日本欧美国产在线视频| 日韩欧美精品免费久久| 久久97久久精品| 啦啦啦视频在线资源免费观看| 欧美日韩视频高清一区二区三区二| 久久人人爽av亚洲精品天堂| 久久久国产一区二区| 中文精品一卡2卡3卡4更新| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩精品成人综合77777| 成人手机av| 免费播放大片免费观看视频在线观看| 国产熟女午夜一区二区三区 | 老司机亚洲免费影院| 能在线免费看毛片的网站| 日韩欧美精品免费久久| 成人二区视频| 成年av动漫网址| 在线观看一区二区三区激情| 考比视频在线观看| 欧美激情极品国产一区二区三区 | 日韩电影二区| 精品一区二区三卡| 男女无遮挡免费网站观看| 日韩欧美一区视频在线观看| 欧美变态另类bdsm刘玥| 精品一品国产午夜福利视频| 久热这里只有精品99| 精品人妻在线不人妻| 蜜桃在线观看..| 国产精品99久久久久久久久| 伦理电影大哥的女人| 老司机影院毛片| 国产av码专区亚洲av| 免费观看av网站的网址| 亚洲国产精品一区二区三区在线| 中文天堂在线官网| 这个男人来自地球电影免费观看 | 制服丝袜香蕉在线| 91午夜精品亚洲一区二区三区| 超色免费av| 看非洲黑人一级黄片| 精品久久蜜臀av无| 亚洲综合色网址| 多毛熟女@视频| 欧美少妇被猛烈插入视频| 18禁在线播放成人免费| 中文字幕av电影在线播放| 国产在视频线精品| 狂野欧美激情性bbbbbb| 丝袜在线中文字幕| 中文字幕免费在线视频6| 九九爱精品视频在线观看| 丁香六月天网| 一级毛片aaaaaa免费看小| 亚洲无线观看免费| 欧美日韩综合久久久久久| 波野结衣二区三区在线| av.在线天堂| 婷婷色综合大香蕉| 日本vs欧美在线观看视频| 97在线视频观看| 高清不卡的av网站| 麻豆精品久久久久久蜜桃| 欧美成人精品欧美一级黄| 国产乱人偷精品视频| 男女无遮挡免费网站观看| 插逼视频在线观看| 街头女战士在线观看网站| 久久久久精品久久久久真实原创| 桃花免费在线播放| 国产精品三级大全| 看免费成人av毛片| 岛国毛片在线播放| 国产精品久久久久久久电影| 久久久久久久久久久久大奶| 国产午夜精品久久久久久一区二区三区| 五月伊人婷婷丁香| 久久久久视频综合| 久久久久人妻精品一区果冻| 亚洲精品av麻豆狂野| 久久国内精品自在自线图片| 九色亚洲精品在线播放| 91精品国产九色| 一级爰片在线观看| 久热这里只有精品99| 久久久久国产网址| 国产熟女欧美一区二区| 日韩av在线免费看完整版不卡| 欧美日韩视频精品一区| 亚洲精品乱久久久久久| 久久影院123| 欧美日韩国产mv在线观看视频| av女优亚洲男人天堂| 999精品在线视频| 久久久a久久爽久久v久久| 国产又色又爽无遮挡免| 欧美激情极品国产一区二区三区 | 日韩精品免费视频一区二区三区 | 一本久久精品| 在线 av 中文字幕| 韩国av在线不卡| 久久精品国产鲁丝片午夜精品| 久热这里只有精品99| 久久精品人人爽人人爽视色| 久久热精品热| 国产一区二区在线观看av| 一边亲一边摸免费视频| 啦啦啦视频在线资源免费观看| 下体分泌物呈黄色| 亚洲精品国产av蜜桃| 久热这里只有精品99| 波野结衣二区三区在线| av播播在线观看一区| √禁漫天堂资源中文www| 成人无遮挡网站| 在线观看www视频免费| 天天影视国产精品| 一个人看视频在线观看www免费| 夜夜看夜夜爽夜夜摸| 国产熟女午夜一区二区三区 | 如何舔出高潮| h视频一区二区三区| 久久精品人人爽人人爽视色| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美在线一区| 日韩亚洲欧美综合| 在线亚洲精品国产二区图片欧美 | 精品一区二区免费观看| 国产黄片视频在线免费观看| 精品人妻熟女av久视频| 亚洲少妇的诱惑av| 欧美日本中文国产一区发布| 中文欧美无线码| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲网站| 伊人久久国产一区二区| 欧美+日韩+精品| 亚洲精品亚洲一区二区| 国产片内射在线| 春色校园在线视频观看| 日日啪夜夜爽| 国产精品.久久久| 91aial.com中文字幕在线观看| 日韩强制内射视频| av女优亚洲男人天堂| 国产深夜福利视频在线观看| 午夜视频国产福利| 老司机影院毛片| 亚洲美女黄色视频免费看| 日本猛色少妇xxxxx猛交久久| 卡戴珊不雅视频在线播放| 欧美xxxx性猛交bbbb| 十八禁高潮呻吟视频| 人人妻人人爽人人添夜夜欢视频| 日本-黄色视频高清免费观看| 亚洲色图 男人天堂 中文字幕 | 免费av不卡在线播放| 国产精品成人在线| 日韩中文字幕视频在线看片| 美女福利国产在线| 国产精品国产三级国产专区5o| 欧美精品高潮呻吟av久久| 国产在线视频一区二区| 一级,二级,三级黄色视频| 黑人高潮一二区| 一区二区三区免费毛片| 啦啦啦啦在线视频资源| 亚洲精品久久成人aⅴ小说 | 男女免费视频国产| 亚洲美女黄色视频免费看| 99久久中文字幕三级久久日本| av在线播放精品| 久久精品久久久久久久性| 精品一品国产午夜福利视频| 亚洲人成77777在线视频| 亚洲av男天堂| 欧美日韩国产mv在线观看视频| 亚洲国产毛片av蜜桃av| 亚洲av二区三区四区| 日本色播在线视频| 极品人妻少妇av视频| 99九九线精品视频在线观看视频| 国产精品久久久久久精品电影小说| 99热这里只有精品一区| 免费大片黄手机在线观看| 国产一区二区在线观看日韩| 久久97久久精品| 精品99又大又爽又粗少妇毛片| 免费大片黄手机在线观看| 精品久久久久久久久亚洲| 视频中文字幕在线观看| 中文乱码字字幕精品一区二区三区| 亚洲精品乱码久久久v下载方式| 国产精品99久久久久久久久| 亚洲精品乱码久久久久久按摩| 各种免费的搞黄视频| 好男人视频免费观看在线| 亚洲av不卡在线观看| 欧美激情 高清一区二区三区| 亚洲精品aⅴ在线观看| 日日撸夜夜添| av卡一久久| 亚洲精品乱码久久久v下载方式| 99re6热这里在线精品视频| 免费高清在线观看视频在线观看| √禁漫天堂资源中文www| 大香蕉97超碰在线| 涩涩av久久男人的天堂| 亚洲成色77777| 精品国产一区二区久久| 啦啦啦中文免费视频观看日本| 韩国高清视频一区二区三区| 赤兔流量卡办理| 大话2 男鬼变身卡| 久久久久视频综合| 欧美 亚洲 国产 日韩一| 久久久久久久久久久丰满| 亚洲中文av在线| 国产一区二区在线观看日韩| 久久久久久久精品精品| 天堂俺去俺来也www色官网| 另类亚洲欧美激情| 亚洲一区二区三区欧美精品| 欧美另类一区| 亚洲欧美一区二区三区国产| 久久婷婷青草| 亚洲精品乱码久久久久久按摩| 亚洲欧洲日产国产| av女优亚洲男人天堂| 欧美一级a爱片免费观看看| 99国产综合亚洲精品| 十分钟在线观看高清视频www| 性色avwww在线观看| 久久久a久久爽久久v久久| 人妻夜夜爽99麻豆av| 97在线视频观看| 午夜激情福利司机影院| 亚洲精品一二三| 91aial.com中文字幕在线观看| av在线播放精品| 亚洲少妇的诱惑av| 在线看a的网站| 国产片内射在线| 韩国高清视频一区二区三区| 色5月婷婷丁香| 99热国产这里只有精品6| 午夜91福利影院| 丝袜喷水一区| 男女免费视频国产| 国产亚洲欧美精品永久| 简卡轻食公司| 一级毛片aaaaaa免费看小| 日韩人妻高清精品专区| 欧美另类一区| 久久久精品区二区三区| 国产成人freesex在线| 精品国产乱码久久久久久小说| 热re99久久国产66热| 极品少妇高潮喷水抽搐| 成人毛片60女人毛片免费| 搡老乐熟女国产| 国产69精品久久久久777片| 国产在线免费精品| 国产精品秋霞免费鲁丝片| 最后的刺客免费高清国语| 国产日韩欧美在线精品| 永久网站在线| 亚洲欧洲精品一区二区精品久久久 | 尾随美女入室| 国产熟女午夜一区二区三区 | 亚洲无线观看免费| 又大又黄又爽视频免费| 国语对白做爰xxxⅹ性视频网站| 免费黄频网站在线观看国产| 美女大奶头黄色视频| 亚洲精品av麻豆狂野| 国产高清三级在线| 日本av免费视频播放| 久久午夜福利片| 大又大粗又爽又黄少妇毛片口| 日韩av不卡免费在线播放| 国产成人av激情在线播放 | 亚洲欧美成人精品一区二区| 男人操女人黄网站| 亚洲欧美日韩卡通动漫| 亚洲精品一区蜜桃| 满18在线观看网站| 亚洲国产精品一区三区| 亚洲精品国产av蜜桃| 亚洲人成77777在线视频| 亚洲av福利一区| 欧美xxxx性猛交bbbb| 高清视频免费观看一区二区| 一区二区av电影网| 久久久久网色| 国产毛片在线视频| 搡女人真爽免费视频火全软件| 大香蕉97超碰在线| 国产精品不卡视频一区二区| 亚洲欧洲国产日韩| 久久久久网色| 欧美激情国产日韩精品一区| 美女国产视频在线观看| 精品人妻熟女av久视频| 国产探花极品一区二区| 99热网站在线观看| 简卡轻食公司| 国产精品久久久久久久电影| 日韩成人av中文字幕在线观看| 91成人精品电影| 亚洲精品亚洲一区二区| 久久99热这里只频精品6学生| 国产日韩欧美亚洲二区| 日本vs欧美在线观看视频| 久久国内精品自在自线图片| 国产精品人妻久久久久久| 成人国产麻豆网| 美女国产高潮福利片在线看| 伦精品一区二区三区| 色吧在线观看| 99热全是精品| 久久久国产精品麻豆| 少妇的逼好多水| 免费黄频网站在线观看国产| 肉色欧美久久久久久久蜜桃| 国产精品一区二区在线不卡| 久久精品国产亚洲av天美| 国产女主播在线喷水免费视频网站| 9色porny在线观看| 国产在线一区二区三区精| 一级,二级,三级黄色视频| 91精品国产国语对白视频| 成年女人在线观看亚洲视频| 亚洲精品日韩av片在线观看| 久久国内精品自在自线图片| 一个人看视频在线观看www免费| 一本—道久久a久久精品蜜桃钙片| 99热6这里只有精品| 免费高清在线观看日韩| 久久久精品94久久精品| 亚洲不卡免费看| 日韩av不卡免费在线播放| 美女福利国产在线| av专区在线播放| 又大又黄又爽视频免费| 国产精品一二三区在线看| 国产av码专区亚洲av| 99九九线精品视频在线观看视频| 新久久久久国产一级毛片| 亚洲av国产av综合av卡| 热re99久久国产66热| 国产不卡av网站在线观看| 久久久久视频综合| 飞空精品影院首页| 边亲边吃奶的免费视频| 精品少妇内射三级| 国产又色又爽无遮挡免| 日日撸夜夜添| 热re99久久精品国产66热6| 亚洲成人av在线免费| 亚洲国产精品一区三区| 国产高清三级在线| 哪个播放器可以免费观看大片| 男人爽女人下面视频在线观看| 国产一区二区三区综合在线观看 | 69精品国产乱码久久久| 精品人妻熟女av久视频| 大陆偷拍与自拍| 日本av手机在线免费观看| 午夜免费观看性视频| 亚洲伊人久久精品综合| 青春草国产在线视频| 永久网站在线| 亚洲成人手机| 麻豆成人av视频| 一边亲一边摸免费视频| 久久精品国产a三级三级三级| 免费人妻精品一区二区三区视频| 美女cb高潮喷水在线观看| 免费看光身美女| 丰满乱子伦码专区| 一个人免费看片子| 欧美bdsm另类| 欧美丝袜亚洲另类| 91午夜精品亚洲一区二区三区| 一本久久精品| 国产在线免费精品| 青春草亚洲视频在线观看| 国产色婷婷99| 国产一区二区在线观看av| 蜜桃国产av成人99| 亚洲精品亚洲一区二区| 免费观看的影片在线观看| 五月开心婷婷网| 9色porny在线观看| 久热这里只有精品99| 国产精品欧美亚洲77777| 日韩一区二区视频免费看| 国国产精品蜜臀av免费| 欧美变态另类bdsm刘玥| 国产精品免费大片| 国产色婷婷99| 国产成人免费观看mmmm| 久久久久久人妻| 欧美人与性动交α欧美精品济南到 | 国精品久久久久久国模美| 国产精品不卡视频一区二区| 国产精品三级大全| 国产免费又黄又爽又色| 亚州av有码| 久久久a久久爽久久v久久| 久久精品久久久久久噜噜老黄| 建设人人有责人人尽责人人享有的| 中文天堂在线官网| 在线 av 中文字幕| 精品熟女少妇av免费看| videossex国产| 国产探花极品一区二区| 激情五月婷婷亚洲| 国产成人精品一,二区| 一本—道久久a久久精品蜜桃钙片| 国产欧美日韩一区二区三区在线 | 高清欧美精品videossex| 99视频精品全部免费 在线| 美女内射精品一级片tv| 免费高清在线观看日韩| 亚洲成人手机| 女人久久www免费人成看片| 久久久久久久精品精品| 蜜桃在线观看..| av一本久久久久| 精品人妻在线不人妻| 啦啦啦在线观看免费高清www| 久久久久久久亚洲中文字幕| 我的女老师完整版在线观看| 涩涩av久久男人的天堂| 亚洲av.av天堂| 高清毛片免费看| 精品国产乱码久久久久久小说| 91精品国产九色| 国产午夜精品久久久久久一区二区三区| 免费黄色在线免费观看| 欧美精品人与动牲交sv欧美| 老司机亚洲免费影院| 国产有黄有色有爽视频| 一级毛片我不卡| 人体艺术视频欧美日本| 好男人视频免费观看在线| 国产白丝娇喘喷水9色精品| 久久精品久久精品一区二区三区| 国产欧美亚洲国产| 亚洲欧美日韩卡通动漫| 亚洲,欧美,日韩| 9色porny在线观看| 日日摸夜夜添夜夜添av毛片| 狂野欧美激情性xxxx在线观看| 精品人妻在线不人妻| 日韩强制内射视频| 人人妻人人爽人人添夜夜欢视频| 一级毛片电影观看| 日韩成人伦理影院| 9色porny在线观看| 亚洲国产日韩一区二区| 精品卡一卡二卡四卡免费| 欧美xxⅹ黑人| 欧美精品亚洲一区二区| 母亲3免费完整高清在线观看 | 国产亚洲av片在线观看秒播厂| 久久精品国产自在天天线| 纯流量卡能插随身wifi吗| 菩萨蛮人人尽说江南好唐韦庄| av在线app专区| 我的女老师完整版在线观看| 欧美精品高潮呻吟av久久| 黑人高潮一二区| 国产一区有黄有色的免费视频| 免费不卡的大黄色大毛片视频在线观看| 精品亚洲成a人片在线观看| 18禁裸乳无遮挡动漫免费视频| 国产精品麻豆人妻色哟哟久久|