• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment?

    2021-03-11 08:34:34ShangQuYan顏上取HanZhang張含BeiLiu劉備HaoTang湯昊andShengYouQian錢盛友
    Chinese Physics B 2021年2期
    關(guān)鍵詞:劉備

    Shang-Qu Yan(顏上取), Han Zhang(張含), Bei Liu(劉備), Hao Tang(湯昊), and Sheng-You Qian(錢盛友),?

    1School of Physics and Electronics,Hunan Normal University,Changsha 410081,China

    2College of Mathematics and Physics,Hunan University of Arts and Science,Changde 415000,China

    Keywords: compressed sensing,high intensity focused ultrasound(HIFU)echo signal,multi-scale fuzzy entropy,refined composite multi-scale fuzzy entropy

    1. Introduction

    High intensity focused ultrasound (HIFU) therapy is a non-invasive tumor treatment technology in clinical medicine.[1,2]It focused the ultrasonic energy on the irradiation region,which leads to cancer cell death in the target region without damage to the surrounding normal cell.[3,4]Therefore,it is essential to monitor the effect of HIFU treatment to ensure the safety and efficiency of HIFU treatment. At present,computed tomography(CT),magnetic resonance imaging(MRI),ultrasound images,and ultrasound signals are usually used for HIFU treatment monitoring.[5–8]However,the CT is based on x-ray technology,and the ionizing radiation of x-ray is harmful to the human body. The MRI scan takes a long time and is sensitive to the patient’s body movement, which is easy to produce artifacts. The ultrasound images are converted from the ultrasound signals, and part of the information will be lost during the conversion process, resulting in an inaccurate diagnosis.[9]The ultrasound signals have become the research hotspot field due to their good accuracy,real-time performance,low cost,and strong compatibility.[10]In this paper,the method proposed is directly based on HIFU echo signals and the nonlinear characteristics of HIFU echo signals.

    During HIFU treatment, the HIFU echo signals are polluted by noise because of the experimental environment and operations,so the signals should be denoised before any other processing. In recent years, many researchers have conducted denoising studies on nonlinear time series. Inspired by Donoho,[11]Chen et al.,[12]and Ramdas et al.,[13]the denoising method of HIFU echo signals based on compressed sensing (CS) is proposed. CS can transform the signal from the time domain to the sparse domain and then reconstruct the signal, which can retain the useful information of the signal and remove the noise.[14,15]

    The HIFU echo signal is nonlinear. When biological tissues are denatured,some characteristics of the HIFU echo signal change.Biological tissues exhibit different nonlinear characteristics due to denaturation.In order to extract the nonlinear characteristics of biological tissues, the researchers initially analyzed the sample entropy (SE) but encountered difficulty,because SE involved any two coarse-grained time series whose similar distance exceeds a fixed value for calculation, which may easily lead to instability of SE.[16]Other researchers proposed approximate entropy(AE)for analysis. However,when the data length of the signal is short,AE is lower than the expected value,and the correlation is poor.[17,18]In order to solve these shortcomings,fuzzy entropy(FE)is proposed. FE introduces an exponential function to determine the similarity between two arbitrary time series. However,FE still reflects the complexity and irregularity of the signal on a single scale,and it is difficult to reflect all the characteristics of the signal.[19,20]So a method called multi-scale fuzzy entropy (MFE) is proposed to solve this problem.[21–23]At the same time,with the scale factor increases, the length of the time series becomes shorter, resulting in a sudden change of MFE. In order to alleviate this drawback, inspired by Fadlallah et al.,[24]Wu et al.,[25,26]and Zheng et al.,[27]a new nonlinear analysis algorithm, called refined composite multi-scale fuzzy entropy(RCMFE),is proposed. RCMFE averages MFE to reduce the entropy fluctuation and the generation of uncertain entropy,thereby improving the stability and reliability of MFE.

    In this paper, it is proposed to use CS and RCMFE to identify denatured porcine tissues. Firstly, CS is used to denoise the HIFU echo signal. Then RCMFE is used to analyze the denoised HIFU echo signal to obtain the nonlinear difference between normal and denatured porcine tissues, to better monitor and evaluate HIFU treatment to ensure its safety and effectiveness, and in the clinical direction to provide certain help for the doctor.

    2. Theory

    2.1. Compressed sensing

    In 2006, Donoho proposed the compressed sensing(CS)theory, which suggested that if the signal is sparse or nearly sparse,it can be reconstructed by sampling points much lower than the requirements of the Nyquist sampling theorem.[11]CS theory mainly includes the following three parts:

    1) Sparse representation of signal: when a signal is not sparse in the time domain, the one-dimensional signal XN×1should be converted into a sparse domainΨ,which is K-sparse in the sparse domain Ψ (K ?N). The process is

    where f is the sparse representation of X in the sparse domain;Ψ is the sparse domain;X is the N×1 dimensional signal.

    Discrete cosine transform (DCT) and fast Fourier transform(FFT)are commonly used to obtain the sparse expression of the original signal X in the sparse domain Ψ. In this paper,FFT is used to obtain the sparse expression f.

    2)Compression observation of signal: an appropriate observation matrix Φ is selected for observation,and the observation value y={y1,y2,...,yM}is obtained. The process is

    where Φ is the M×N dimension observation matrix; M is the data length of the original signal after down-sampled; Θ is the perception matrix. Both the observation matrix Φ and the perception matrix Θ need to satisfy the restricted isometry property(RIP).[28]

    Usually,the Gaussian random observation matrix can become the observation matrix Φ. However, in practical engineering applications, although the Gaussian random observation matrix has good uncorrelation, its unstructured nature causes problems that are difficult to implement and increase the computational complexity, which slows down the reconstruction process. Therefore, inspired by the structured principle, a sparse cyclic structured matrix with low complexity is constructed, which is easy to implement and has high uncorrelation.[29]The construction process is as follows:

    Step 1.Firstly, a 1×N dimensional zero-row vector O is constructed,and then a diagonal matrix E of N×N dimensional only containing±1 is constructed,where N is the data length of the original signal.

    Step 2.The K positions of the zero vector O are randomly selected,and 0 is changed to 1(K <N)to obtain a 0–1 sparse vector A,and then the right cyclic displacement of A is M bits to obtain a sparse matrix A1. Where each right cyclic displacement is saved as a row in A1, and the final size of A1is M×N. M is the data length of the original signal after the down-sampled.

    Step 3.The sparse matrix A1is multiplied by the random diagonal matrix E to obtain the observation matrix Φ.

    3) Reconstruction of signal: the observation value y and the reconstruction algorithm are used to obtain the reconstructed signal. In this paper, the reconstruction algorithm used regularized orthogonal matching pursuit(ROMP).Compared with orthogonal matching pursuit(OMP),the advantage of the ROMP algorithm is that K atoms can be selected in each iteration, and the atoms selected each time can be screened again through the regularization principle to remove atoms with lower energy and improve accuracy.[30,31]

    2.2. Multi-scale fuzzy entropy

    The concept of multi-scale is introduced based on fuzzy entropy,and it is used to describe the complexity of time series on different time scales. The calculation method is as follows:

    1)The original time series X ={x1,x2,...,xb,...,xN}is subject to coarse-grained conversion on the original time series to obtain a new sequence

    2) The embedding dimension m is determined, and the sequence is spatially reconstructed

    where μ =(x,r)is a fuzzy membership function in exponential form,r and 2 are the width and gradient of the boundary,respectively.

    5)Am(r)is a sub-function of the fuzzy function,which is defined as

    6) Similarly, the embedding dimension of the model is determined to be m+1,and repeat the steps 1)–step 5)to get Am+1(r).

    7)The multi-scale fuzzy entropy of the time series is defined as follows:

    2.3. Refined composite multi-scale fuzzy entropy

    As the scale factor τ increased,the length of the sequence decreased,and multi-scale entropy calculation of the short sequence may cause sudden changes. Therefore,Wu et al. proposed a new method called RCMSE to improve the accuracy of MSE.[26]In this paper,we introduced the concept of refined composite into MFE,then CMFE and RCMFE are proposed.The CMFE value is calculated by

    CMFE defines the average value of the logarithm in MFE.Compared with MFE, CMFE algorithm has higher estimation accuracy. However,in the process of CMFE calculation,the probability of generating uncertain entropy is relatively greater. Therefore,RCMFE is proposed to solve this problem.The algorithm is as follows:

    2.4. Intra-class distance and inter-class distance

    Inspired by Kira and Rendell, we used intra-class distance and inter-class distance as evaluation indicators.[32]The intra-class distance and the inter-class distance are widely used as indicators for feature selection of image recognition,biological information recognition,and gear wear signal recognition.[33,34]The compactness and separability of tissues status are better when the intra-class distance is smaller, and the inter-class distance is larger.

    The calculation formulas of the intra-class distance and the inter-class distance are as follows:[32]

    where{a(i)|i=1,2,...k}is the sample set for each mode in n-dimensional space, then m1kand m2kare the k-th components of two types of the sample sets.

    3. Experimental methods and results

    3.1. Experimental system

    The HIFU experimental system is shown in Fig.1. Before the experiment, the experiment environment and fresh porcine muscle tissues should be prepared. The 95%ethanol was mixed with povidone at a ratio of 4:1, then the mixture was poured into a water tank and mixed with water at a ratio of 1:20 to remove oxygen,and waited an hour before the experiment to stabilize the mixture.The fresh porcine muscle tissues were fixed on an acoustic rubber plate and immersed in the mixture under the HIFU source(PRO2008,Shenzhen,China).The position change of the HIFU irradiation target region can be controlled by a 3D position system of the computer. At the top of the HIFU transducer,a channel allowed the passage of a hydrophone probe(FOPH2000,Leutenbach,DE).The temperature of porcine tissues was measured by the thermocouple(DT-3891G,Shenzhen,China)to estimate the degree of injury in the HIFU treatment target region. The HIFU echo signals were received by a hydrophone probe,and then they were amplified by a broadband signal amplifier and sent to a digital oscilloscope (MDO3032, Tektronix, USA) for observation and preservation. In this paper,the central frequency of the HIFU echo signal is 1.39 MHz, the second harmonic frequency is 2.78 MHz, and the number of data points is 10000. The 90 groups of HIFU echo signals are obtained from 10 groups of fresh porcine muscle tissues,and it consists of 45 normal status and 45 denatured status. The HIFU echo signals are polluted by noise due to the influence of measuring equipment and environmental factors,so these signals should be denoise first.

    Fig.1. Experimental system.

    3.2. HIFU echo signal denoising based on compressed sensing

    The sparsity of signal is one of the preconditions for using compressed sensing. However, the actual signal is not sparse in the time domain,so it is necessary to use Eq.(1)to convert the non-sparsity signal into the sparse signal. Figure 2(a) is the waveform and spectrum of HIFU echo signal in normal status. It can be seen that the signal waveform is not sparse and cannot be performed with compressed sensing.Therefore,FFT is used to transform the HIFU echo signal from the time domain to the spectrum. The central frequency and the second harmonic can be observed clearly from the spectrum. Although there are other noise frequencies,these amplitudes are small, and the condition of approximate sparsity can be met.Therefore, the spectrum is used as the sparse domain Ψ for compressed sensing. We take 20% of the original signal data for reconstruction. In order to show the superiority of the CS method,the wavelet denoising method and empirical mode decomposition (EMD) denoising method are used for comparison.In the wavelet denoising method,the’sym6’is selected as the wavelet basis for five-layer decomposition, and ‘rigorous SURE’is selected for threshold estimation.

    Fig.2. The waveform and spectrum of HIFU echo signal and its denoising signal. (a)the HIFU echo signal;(b)the CS denoising;(c)the wavelet denoising;(d)the EMD denoising.

    Figures 2(c) and 2(d) show the waveform and spectrum after wavelet denoising and EMD denoising,respectively,and it can be seen that noises still exist in the low-frequency part of these spectrums. Because of these low-frequency noises,their waveforms are different from Fig.2(b). The wavelet denoising effect is depended on the wavelet basis and decomposition layer number. There is an end-point effect in the EMD denoising method, which leads to a poor denoising effect near the center frequency and the second harmonic.

    As shown in Fig.2(b), the spectrum after CS denoising only keeps the main characteristic. Therefore, MFE and RCMFE of the HIFU echo signals after CS denoising are extracted for further research.

    3.3. Simulation analysis of MFE and RCMFE

    This section compares MFE with RCMFE for the white Gaussian noise of the 10000-point data. We selected the embedding dimension m=3, 4, 5, similar tolerance r =0.1×standard deviation of the time series,and delay time as 1. Figure 3 shows the difference between MFE and RCMFE of the simulated signals under various scale factors.

    Fig.3. MFE and RCMFE of white Gaussian noise under various scale factors. (a)m=3;(b)m=4;(c)m=5.

    Figures 3(a)–3(c) are the entropy values of the simulated signals with embedding dimension m = 3,4,5.When the scale factor increases,the entropy fluctuation range increases,and RCMFE reduces the entropy fluctuation relative to MFE,which makes it decline steadily and improves the stability and reliability. Table 1 shows the standard deviation of the three embedding dimensions, and it can be seen from the table that RCMFE has a smaller standard deviation than MFE.

    Table 1. Results of the standard deviation.

    3.4. Selection of appropriate embedding dimension

    To analyze the most appropriate embedding dimension m in the denoised HIFU echo signals, we used 18 groups of denoised HIFU signals (9 groups of denatured status and 9 groups of normal status) to compare the entropy with three embedding dimensions. Figure 4 compares MFE and RCMFE with three embedded dimensions under scale factor 1–20,and the embedded dimensions of each row are the same.As shown in Fig.4,when the embedded dimension m increases,the entropy fluctuation of MFE and RCMFE increases,but RCMFE reduces the fluctuation of entropy, which means that the improvement is effective. When the embedded dimension is 3,the entropy difference between denatured and normal tissues is greater than that of the other two embedding dimensions,and the variance is also smaller than the other two embedding dimensions. Therefore,in the follow-up study,the embedding dimension m takes 3 as the most appropriate embedding dimension.

    3.5. MFE and RCMFE under various scale factor

    In this section, MFE and RCMFE of 90 groups of denoised HIFU echo signals are used for comparison and analysis,including 45 groups of denatured status and 45 groups of normal status.Where the embedding dimension m=3,similar tolerance r=0.1 standard deviation of the HIFU echo signal and delay time is 1. Figure 5 is the MFE and RCMFE of normal and denatured tissues under various scale factors. It can be seen that MFE or RCMFE parameters of normal and denatured tissues are distinguishable to some extent under various scale factors. In Fig.5(b), there are relatively few overlapping points of RCMFE for the two statuses,which proves that RCMFE has a stronger aggregation capacity and nonlinearity than MFE, and it is relatively compact. However, this is not sufficient to fully determine that RCMFE is better than MFE in distinguishing tissues status,so the intra-class distance and the inter-class distance are introduced to demonstrate the superiority of RCMFE.

    Fig.4. MFE and RCMFE with different embedding dimensions. (a)m=3;(b)m=4;(c)m=5.

    Fig.5. MFE and RCMFE of denoised HIFU echo signals from normal and denatured tissues under various scale factors. (a) MFE;(b)RCMFE.

    3.6. The intra-class distance and the inter-class distance of MFE and RCMFE

    Figures 6 and 7 show the intra-class distance and interclass distance of MFE and RCMFE under scale factor 1-20.The intra-class distance and the inter-class distance can reflect compactness and separability. If the intra-class distance is smaller and inter-class distance is larger,it proves that compactness and separability are better. It can be seen from Fig.6 that the intra-class distance of RCMFE is significantly smaller than that of MFE,and the intra-class distance of RCMFE is the smallest under a scale factor of 16. Figure 7 shows a comparison of inter-class distance. It can be seen that the inter-class distance of RCMFE is higher than that of MFE,and the value under a scale factor of 16 is the largest. Therefore, when the scale factor is 16, RCMFE’s intra-class distance is the smallest, and the inter-class distance is the largest, which can distinguish the denatured tissues from normal tissues.

    Fig.6. Intra-class distance between MFE and RCMFE under various scale factors.

    Fig.7. Inter-class distance between MFE and RCMFE under various scale factors.

    4. Conclusion

    A novel method based on CS and RCMFE is proposed to identify the denatured and normal porcine tissues during HIFU treatment in this paper. CS with an improved observation matrix is used to denoise the HIFU echo signal,which can obtain a better denoising effect comparing to wavelet and EMD methods. Considering the weakness of MFE,refined composite is introduced into MFE,and RCMFE is proposed as a characteristic parameter. The influences of embedding dimensions and scale factors on MFE and RCMFE are analyzed. Through the calculation of them for the simulated signals and the denoised HIFU echo signals, the results show that RCMFE overcomes the disadvantage of large fluctuation,and RCMFE has smaller intra-class distance and larger inter-class distance than MFE,which has better compactness and separability in identifying tissues status. In addition, when the embedding dimension is selected as 3,and the scale factor is selected as 16,the optimal identification effect can be obtained during HIFU treatment.The results of this study revealed the differences in RCMFE between normal and denatured porcine tissues during HIFU treatment,which helps doctors to evaluate the treatment effect more accurately.

    猜你喜歡
    劉備
    修德箴言
    Investigation of the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing
    讀懂劉備
    海峽姐妹(2020年11期)2021-01-18 06:16:24
    三顧茅廬(中)
    劉備與徐州
    劉備托孤
    快樂語文(2017年12期)2017-05-09 22:07:40
    相面
    意林(2016年24期)2017-01-04 21:58:26
    徐庶以馬試劉備
    劉備的愛
    小說月刊(2014年2期)2014-04-18 14:06:43
    劉備別具特色的用人之道
    軍事歷史(1996年1期)1996-08-20 07:15:32
    亚洲国产精品合色在线| 宅男免费午夜| 久久精品国产亚洲av香蕉五月| 久久久久久久午夜电影| 免费观看的影片在线观看| 首页视频小说图片口味搜索| 国产伦一二天堂av在线观看| 每晚都被弄得嗷嗷叫到高潮| 九九久久精品国产亚洲av麻豆| 天堂√8在线中文| 在线观看午夜福利视频| 色av中文字幕| 又黄又爽又免费观看的视频| 精华霜和精华液先用哪个| 嫩草影院精品99| 亚洲成人久久爱视频| 天堂网av新在线| 国产亚洲精品久久久久久毛片| 搡老岳熟女国产| 深爱激情五月婷婷| 亚洲一区高清亚洲精品| 久久精品国产亚洲av涩爱 | 久久久久久九九精品二区国产| 国产精品一及| 给我免费播放毛片高清在线观看| 国内精品久久久久精免费| 精品不卡国产一区二区三区| 美女高潮喷水抽搐中文字幕| 在线观看日韩欧美| 天堂av国产一区二区熟女人妻| 国产一区二区三区视频了| avwww免费| 最近最新中文字幕大全免费视频| 日本三级黄在线观看| 欧美精品啪啪一区二区三区| eeuss影院久久| 亚洲av一区综合| 亚洲人与动物交配视频| 国内久久婷婷六月综合欲色啪| 无限看片的www在线观看| 午夜免费成人在线视频| 午夜亚洲福利在线播放| 成人亚洲精品av一区二区| 伊人久久精品亚洲午夜| 一级a爱片免费观看的视频| 免费观看人在逋| 美女高潮的动态| netflix在线观看网站| 日本免费一区二区三区高清不卡| a级毛片a级免费在线| 无人区码免费观看不卡| 国产亚洲精品av在线| 亚洲精品亚洲一区二区| 亚洲av一区综合| 欧美中文日本在线观看视频| 激情在线观看视频在线高清| 一a级毛片在线观看| 国产高清有码在线观看视频| 久久久久精品国产欧美久久久| 网址你懂的国产日韩在线| 国内揄拍国产精品人妻在线| 欧美成狂野欧美在线观看| 日本一本二区三区精品| 日本免费一区二区三区高清不卡| 久久久久久久午夜电影| 久久草成人影院| 日韩国内少妇激情av| 午夜福利18| 免费看美女性在线毛片视频| 亚洲欧美精品综合久久99| 岛国在线观看网站| 国内揄拍国产精品人妻在线| 久久午夜亚洲精品久久| 中文字幕高清在线视频| 亚洲精品日韩av片在线观看 | 免费在线观看日本一区| 日本五十路高清| av在线天堂中文字幕| 精品无人区乱码1区二区| 免费av观看视频| 人人妻人人澡欧美一区二区| 欧美日韩乱码在线| 婷婷丁香在线五月| 又紧又爽又黄一区二区| 亚洲熟妇熟女久久| 欧美丝袜亚洲另类 | 亚洲av成人精品一区久久| 老汉色∧v一级毛片| 久久香蕉国产精品| 非洲黑人性xxxx精品又粗又长| 成人精品一区二区免费| 91字幕亚洲| 色综合站精品国产| 欧美丝袜亚洲另类 | 少妇的逼水好多| 神马国产精品三级电影在线观看| 日日干狠狠操夜夜爽| 欧美日韩亚洲国产一区二区在线观看| 亚洲人成网站在线播放欧美日韩| 国产黄a三级三级三级人| 成人性生交大片免费视频hd| 国产成+人综合+亚洲专区| 搡老岳熟女国产| 亚洲av第一区精品v没综合| 很黄的视频免费| 女警被强在线播放| 国产精品,欧美在线| 99热只有精品国产| 午夜亚洲福利在线播放| 最后的刺客免费高清国语| 首页视频小说图片口味搜索| 小蜜桃在线观看免费完整版高清| 亚洲 欧美 日韩 在线 免费| 日韩中文字幕欧美一区二区| 国产视频一区二区在线看| 日韩精品中文字幕看吧| 亚洲av中文字字幕乱码综合| 99热这里只有精品一区| 黑人欧美特级aaaaaa片| 免费看光身美女| www日本在线高清视频| 少妇的逼水好多| 人妻夜夜爽99麻豆av| 欧美av亚洲av综合av国产av| 欧美日韩黄片免| 久久精品91蜜桃| 国产成人av激情在线播放| 亚洲va日本ⅴa欧美va伊人久久| 一个人看视频在线观看www免费 | 午夜亚洲福利在线播放| 亚洲av一区综合| 免费大片18禁| 亚洲精品国产精品久久久不卡| 五月伊人婷婷丁香| 综合色av麻豆| 久久精品91无色码中文字幕| 最后的刺客免费高清国语| 久久久久九九精品影院| 真人一进一出gif抽搐免费| 色综合欧美亚洲国产小说| 国产精品野战在线观看| 久久精品91蜜桃| 99久久精品热视频| 国产高清有码在线观看视频| 性欧美人与动物交配| 人人妻人人看人人澡| 我的老师免费观看完整版| 国产精品免费一区二区三区在线| 色精品久久人妻99蜜桃| 欧美另类亚洲清纯唯美| 一个人看视频在线观看www免费 | 免费搜索国产男女视频| 亚洲人成电影免费在线| 蜜桃久久精品国产亚洲av| 亚洲在线自拍视频| 亚洲午夜理论影院| h日本视频在线播放| ponron亚洲| 美女免费视频网站| 免费电影在线观看免费观看| 极品教师在线免费播放| 啪啪无遮挡十八禁网站| 免费看十八禁软件| 久99久视频精品免费| 在线看三级毛片| 又爽又黄无遮挡网站| 国产亚洲精品av在线| 亚洲专区中文字幕在线| 亚洲狠狠婷婷综合久久图片| 精品人妻一区二区三区麻豆 | 色播亚洲综合网| 亚洲欧美日韩高清在线视频| 亚洲自拍偷在线| 亚洲五月天丁香| 国内精品久久久久精免费| 亚洲自拍偷在线| a在线观看视频网站| 麻豆一二三区av精品| 一级a爱片免费观看的视频| 成人无遮挡网站| 天堂av国产一区二区熟女人妻| 欧美在线黄色| 国产麻豆成人av免费视频| 在线十欧美十亚洲十日本专区| 亚洲激情在线av| 狂野欧美白嫩少妇大欣赏| 老司机深夜福利视频在线观看| 热99在线观看视频| 国产视频内射| 全区人妻精品视频| 亚洲狠狠婷婷综合久久图片| 国产成人av激情在线播放| 午夜福利18| 男人的好看免费观看在线视频| 午夜日韩欧美国产| 精品乱码久久久久久99久播| 亚洲av不卡在线观看| 精品国产亚洲在线| 国产高清有码在线观看视频| 人人妻人人看人人澡| 草草在线视频免费看| 午夜精品久久久久久毛片777| 久久精品国产亚洲av涩爱 | 最后的刺客免费高清国语| 欧美高清成人免费视频www| 黄色女人牲交| 久久久国产成人免费| 99国产精品一区二区三区| 国产精品,欧美在线| av片东京热男人的天堂| 身体一侧抽搐| 日韩av在线大香蕉| 亚洲午夜理论影院| 国产国拍精品亚洲av在线观看 | 国产三级在线视频| 午夜精品久久久久久毛片777| 亚洲国产精品合色在线| 欧美一区二区国产精品久久精品| 久久伊人香网站| 精品电影一区二区在线| 天堂动漫精品| 婷婷丁香在线五月| 91久久精品电影网| 老鸭窝网址在线观看| 少妇的逼水好多| 丰满的人妻完整版| 欧美极品一区二区三区四区| 午夜福利在线在线| 好男人在线观看高清免费视频| 内射极品少妇av片p| 天堂动漫精品| 亚洲天堂国产精品一区在线| avwww免费| 99热6这里只有精品| 黄色成人免费大全| 91在线精品国自产拍蜜月 | 国产精品av视频在线免费观看| 午夜免费观看网址| 免费人成视频x8x8入口观看| 日韩欧美在线二视频| 亚洲最大成人中文| 国产毛片a区久久久久| 日本黄大片高清| 变态另类成人亚洲欧美熟女| 国产精品久久久久久久电影 | 夜夜夜夜夜久久久久| 人妻久久中文字幕网| 亚洲人成网站高清观看| 夜夜躁狠狠躁天天躁| 国产伦精品一区二区三区四那| 欧美日韩瑟瑟在线播放| 国产毛片a区久久久久| 亚洲成人精品中文字幕电影| www.999成人在线观看| 制服丝袜大香蕉在线| 久久精品91无色码中文字幕| 国产日本99.免费观看| 久久久久久久亚洲中文字幕 | 久久精品91蜜桃| 人人妻人人澡欧美一区二区| 极品教师在线免费播放| 日韩欧美精品免费久久 | 99久久综合精品五月天人人| 久久精品国产自在天天线| 3wmmmm亚洲av在线观看| 18禁在线播放成人免费| 国产麻豆成人av免费视频| 亚洲欧美精品综合久久99| 免费av不卡在线播放| 国产伦精品一区二区三区视频9 | 啪啪无遮挡十八禁网站| 99riav亚洲国产免费| 亚洲人成电影免费在线| 精品久久久久久久久久久久久| 变态另类成人亚洲欧美熟女| 欧美午夜高清在线| 国产亚洲av嫩草精品影院| 国产单亲对白刺激| 露出奶头的视频| 久99久视频精品免费| 真人做人爱边吃奶动态| 国产午夜福利久久久久久| 中文字幕人妻丝袜一区二区| 国产亚洲精品久久久com| 久久久国产成人免费| 啦啦啦韩国在线观看视频| 小说图片视频综合网站| 国产真人三级小视频在线观看| 99国产综合亚洲精品| 国产97色在线日韩免费| 国产伦一二天堂av在线观看| eeuss影院久久| 天天躁日日操中文字幕| 国产综合懂色| 国产成人系列免费观看| 亚洲一区高清亚洲精品| 国产野战对白在线观看| 免费在线观看成人毛片| 在线观看av片永久免费下载| 久久九九热精品免费| 又黄又爽又免费观看的视频| 亚洲七黄色美女视频| 99久久99久久久精品蜜桃| 老汉色av国产亚洲站长工具| 久久久精品大字幕| 波多野结衣高清作品| 精品人妻一区二区三区麻豆 | 午夜激情福利司机影院| 少妇高潮的动态图| 他把我摸到了高潮在线观看| 夜夜爽天天搞| 精品午夜福利视频在线观看一区| 在线观看舔阴道视频| 97人妻精品一区二区三区麻豆| 欧美黑人巨大hd| www.熟女人妻精品国产| 色哟哟哟哟哟哟| 麻豆国产97在线/欧美| 欧美3d第一页| 99国产精品一区二区三区| 久久久成人免费电影| 一本一本综合久久| 波多野结衣巨乳人妻| 色在线成人网| 免费搜索国产男女视频| 国产成人av激情在线播放| 亚洲精品在线观看二区| 亚洲aⅴ乱码一区二区在线播放| 一本精品99久久精品77| 好男人电影高清在线观看| av视频在线观看入口| 久久久色成人| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产国拍精品亚洲av在线观看 | 女警被强在线播放| netflix在线观看网站| 男女下面进入的视频免费午夜| 母亲3免费完整高清在线观看| 国产又黄又爽又无遮挡在线| 老汉色∧v一级毛片| eeuss影院久久| 99久久无色码亚洲精品果冻| 国产成人啪精品午夜网站| 人妻夜夜爽99麻豆av| 综合色av麻豆| 男人舔奶头视频| 人妻夜夜爽99麻豆av| 在线免费观看不下载黄p国产 | 日韩人妻高清精品专区| 色噜噜av男人的天堂激情| 久久久国产精品麻豆| 亚洲最大成人手机在线| 亚洲在线观看片| 久久精品91蜜桃| 91久久精品电影网| 国产精品一区二区三区四区久久| 青草久久国产| 精品99又大又爽又粗少妇毛片 | 天天添夜夜摸| 亚洲欧美激情综合另类| 小蜜桃在线观看免费完整版高清| 一进一出抽搐gif免费好疼| 国产精品,欧美在线| 成人无遮挡网站| 人妻久久中文字幕网| 91在线观看av| 日韩欧美国产一区二区入口| 老汉色av国产亚洲站长工具| 女警被强在线播放| 天堂av国产一区二区熟女人妻| 日本黄大片高清| 88av欧美| 国产精品美女特级片免费视频播放器| 精品人妻一区二区三区麻豆 | 国模一区二区三区四区视频| 99热这里只有精品一区| 韩国av一区二区三区四区| 亚洲美女黄片视频| 一个人免费在线观看电影| 国产成人欧美在线观看| 天天一区二区日本电影三级| 女人高潮潮喷娇喘18禁视频| 国产伦人伦偷精品视频| 国产成人啪精品午夜网站| 国产伦精品一区二区三区视频9 | 国内毛片毛片毛片毛片毛片| 美女高潮的动态| 麻豆一二三区av精品| 精品人妻1区二区| 天美传媒精品一区二区| 一级黄片播放器| 国产成+人综合+亚洲专区| 欧美av亚洲av综合av国产av| 国产伦人伦偷精品视频| 99久久综合精品五月天人人| 欧美日韩瑟瑟在线播放| 热99在线观看视频| 免费搜索国产男女视频| 精品人妻一区二区三区麻豆 | 最后的刺客免费高清国语| 99热6这里只有精品| 伊人久久精品亚洲午夜| 村上凉子中文字幕在线| 久久久国产精品麻豆| 在线看三级毛片| 欧美乱码精品一区二区三区| 国产男靠女视频免费网站| 久久亚洲真实| 最新美女视频免费是黄的| 一级黄色大片毛片| 日本精品一区二区三区蜜桃| 国内精品久久久久久久电影| 欧美+日韩+精品| 男人舔女人下体高潮全视频| 欧美xxxx黑人xx丫x性爽| 熟女少妇亚洲综合色aaa.| 一个人看的www免费观看视频| avwww免费| 男人和女人高潮做爰伦理| 亚洲国产欧美网| www日本黄色视频网| 欧美xxxx黑人xx丫x性爽| 精品一区二区三区av网在线观看| 国产高清视频在线播放一区| 国产精品日韩av在线免费观看| 国产成人aa在线观看| 欧美日韩瑟瑟在线播放| 亚洲av美国av| 在线看三级毛片| 国产精品1区2区在线观看.| 色噜噜av男人的天堂激情| 女人十人毛片免费观看3o分钟| 国产aⅴ精品一区二区三区波| 日韩欧美国产一区二区入口| 久久久久久久久大av| 一本一本综合久久| 少妇的逼水好多| 五月伊人婷婷丁香| 十八禁人妻一区二区| 国产亚洲精品综合一区在线观看| 欧美bdsm另类| 可以在线观看的亚洲视频| 亚洲最大成人中文| 亚洲熟妇中文字幕五十中出| e午夜精品久久久久久久| 亚洲一区二区三区不卡视频| 97超视频在线观看视频| 免费在线观看成人毛片| 亚洲欧美日韩东京热| 国产真人三级小视频在线观看| 免费观看的影片在线观看| 少妇人妻精品综合一区二区 | 99热这里只有精品一区| 在线观看免费视频日本深夜| 在线免费观看的www视频| 亚洲人成伊人成综合网2020| 国产毛片a区久久久久| 国产私拍福利视频在线观看| 欧美乱妇无乱码| 久久精品国产综合久久久| 欧美bdsm另类| 久久久久九九精品影院| 一区二区三区国产精品乱码| 成人三级黄色视频| 免费搜索国产男女视频| 亚洲不卡免费看| 国内精品美女久久久久久| 国产精品精品国产色婷婷| 婷婷丁香在线五月| 精品一区二区三区视频在线观看免费| 长腿黑丝高跟| 又爽又黄无遮挡网站| 国内精品美女久久久久久| 免费av毛片视频| 91在线精品国自产拍蜜月 | 亚洲va日本ⅴa欧美va伊人久久| 男女下面进入的视频免费午夜| 亚洲人成电影免费在线| 激情在线观看视频在线高清| 日韩欧美三级三区| 熟女人妻精品中文字幕| 欧美日韩精品网址| 老汉色av国产亚洲站长工具| 精品午夜福利视频在线观看一区| 国产精品久久久久久久电影 | 亚洲久久久久久中文字幕| 亚洲精品在线美女| 精品国产三级普通话版| 亚洲欧美日韩卡通动漫| 国产又黄又爽又无遮挡在线| 亚洲自拍偷在线| 亚洲av免费高清在线观看| 白带黄色成豆腐渣| 十八禁网站免费在线| 欧美大码av| 男女午夜视频在线观看| 亚洲最大成人手机在线| 日本熟妇午夜| 亚洲av美国av| 99久国产av精品| 熟女人妻精品中文字幕| 9191精品国产免费久久| 男女做爰动态图高潮gif福利片| x7x7x7水蜜桃| 国产高清视频在线播放一区| 久久性视频一级片| 国产伦在线观看视频一区| 他把我摸到了高潮在线观看| 亚洲成a人片在线一区二区| 一进一出抽搐gif免费好疼| 午夜福利在线观看吧| 中文资源天堂在线| 长腿黑丝高跟| 男女那种视频在线观看| 欧美日本亚洲视频在线播放| 国产美女午夜福利| 国产精品久久久久久久电影 | 国产欧美日韩精品一区二区| 亚洲熟妇中文字幕五十中出| av黄色大香蕉| 日韩 欧美 亚洲 中文字幕| 精品熟女少妇八av免费久了| 黄色成人免费大全| 偷拍熟女少妇极品色| 国产精品野战在线观看| 97超视频在线观看视频| 成人18禁在线播放| 国产真实伦视频高清在线观看 | 欧美精品啪啪一区二区三区| 最近最新中文字幕大全免费视频| 精品不卡国产一区二区三区| 精品一区二区三区视频在线 | 久久天躁狠狠躁夜夜2o2o| 国产毛片a区久久久久| 午夜亚洲福利在线播放| 亚洲中文日韩欧美视频| 亚洲熟妇熟女久久| 欧美另类亚洲清纯唯美| 国产精品久久久久久亚洲av鲁大| 久久久久国内视频| 国语自产精品视频在线第100页| 一个人免费在线观看电影| 韩国av一区二区三区四区| 午夜福利免费观看在线| 精品久久久久久久久久免费视频| 色噜噜av男人的天堂激情| 亚洲第一欧美日韩一区二区三区| 国产真实伦视频高清在线观看 | 日本黄色视频三级网站网址| 久久久久久久精品吃奶| 国产伦一二天堂av在线观看| 19禁男女啪啪无遮挡网站| 99久久精品一区二区三区| 亚洲av成人av| 啦啦啦观看免费观看视频高清| 免费电影在线观看免费观看| 国内久久婷婷六月综合欲色啪| 草草在线视频免费看| 精品99又大又爽又粗少妇毛片 | 一进一出抽搐动态| 又粗又爽又猛毛片免费看| 亚洲国产色片| 三级国产精品欧美在线观看| 男人和女人高潮做爰伦理| 日本黄大片高清| 欧美乱妇无乱码| 精品一区二区三区视频在线观看免费| 性色avwww在线观看| 小说图片视频综合网站| 天天躁日日操中文字幕| 国内精品一区二区在线观看| 亚洲七黄色美女视频| 久久精品亚洲精品国产色婷小说| 一个人免费在线观看的高清视频| 日日摸夜夜添夜夜添小说| 成年女人永久免费观看视频| 看黄色毛片网站| 成人特级av手机在线观看| 精品久久久久久久人妻蜜臀av| 久久久国产精品麻豆| 日韩欧美在线乱码| 乱人视频在线观看| 99久久99久久久精品蜜桃| 18禁在线播放成人免费| 欧美绝顶高潮抽搐喷水| 男女之事视频高清在线观看| 少妇熟女aⅴ在线视频| 色播亚洲综合网| 亚洲av二区三区四区| 夜夜爽天天搞| av福利片在线观看| 午夜福利在线观看吧| av福利片在线观看| 久久精品91无色码中文字幕| 变态另类成人亚洲欧美熟女| 亚洲精品久久国产高清桃花| 三级男女做爰猛烈吃奶摸视频| 亚洲精品影视一区二区三区av| 一区二区三区激情视频| 国产精品嫩草影院av在线观看 | 久久亚洲精品不卡| 日本在线视频免费播放| 黄色女人牲交| 天堂影院成人在线观看| 美女黄网站色视频| 免费人成在线观看视频色| 琪琪午夜伦伦电影理论片6080| 看黄色毛片网站| 深爱激情五月婷婷| 国产成+人综合+亚洲专区| 狠狠狠狠99中文字幕| 久久久久国产精品人妻aⅴ院| av视频在线观看入口| 欧美不卡视频在线免费观看| 久久天躁狠狠躁夜夜2o2o|