• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment?

    2021-03-11 08:34:34ShangQuYan顏上取HanZhang張含BeiLiu劉備HaoTang湯昊andShengYouQian錢盛友
    Chinese Physics B 2021年2期
    關(guān)鍵詞:劉備

    Shang-Qu Yan(顏上取), Han Zhang(張含), Bei Liu(劉備), Hao Tang(湯昊), and Sheng-You Qian(錢盛友),?

    1School of Physics and Electronics,Hunan Normal University,Changsha 410081,China

    2College of Mathematics and Physics,Hunan University of Arts and Science,Changde 415000,China

    Keywords: compressed sensing,high intensity focused ultrasound(HIFU)echo signal,multi-scale fuzzy entropy,refined composite multi-scale fuzzy entropy

    1. Introduction

    High intensity focused ultrasound (HIFU) therapy is a non-invasive tumor treatment technology in clinical medicine.[1,2]It focused the ultrasonic energy on the irradiation region,which leads to cancer cell death in the target region without damage to the surrounding normal cell.[3,4]Therefore,it is essential to monitor the effect of HIFU treatment to ensure the safety and efficiency of HIFU treatment. At present,computed tomography(CT),magnetic resonance imaging(MRI),ultrasound images,and ultrasound signals are usually used for HIFU treatment monitoring.[5–8]However,the CT is based on x-ray technology,and the ionizing radiation of x-ray is harmful to the human body. The MRI scan takes a long time and is sensitive to the patient’s body movement, which is easy to produce artifacts. The ultrasound images are converted from the ultrasound signals, and part of the information will be lost during the conversion process, resulting in an inaccurate diagnosis.[9]The ultrasound signals have become the research hotspot field due to their good accuracy,real-time performance,low cost,and strong compatibility.[10]In this paper,the method proposed is directly based on HIFU echo signals and the nonlinear characteristics of HIFU echo signals.

    During HIFU treatment, the HIFU echo signals are polluted by noise because of the experimental environment and operations,so the signals should be denoised before any other processing. In recent years, many researchers have conducted denoising studies on nonlinear time series. Inspired by Donoho,[11]Chen et al.,[12]and Ramdas et al.,[13]the denoising method of HIFU echo signals based on compressed sensing (CS) is proposed. CS can transform the signal from the time domain to the sparse domain and then reconstruct the signal, which can retain the useful information of the signal and remove the noise.[14,15]

    The HIFU echo signal is nonlinear. When biological tissues are denatured,some characteristics of the HIFU echo signal change.Biological tissues exhibit different nonlinear characteristics due to denaturation.In order to extract the nonlinear characteristics of biological tissues, the researchers initially analyzed the sample entropy (SE) but encountered difficulty,because SE involved any two coarse-grained time series whose similar distance exceeds a fixed value for calculation, which may easily lead to instability of SE.[16]Other researchers proposed approximate entropy(AE)for analysis. However,when the data length of the signal is short,AE is lower than the expected value,and the correlation is poor.[17,18]In order to solve these shortcomings,fuzzy entropy(FE)is proposed. FE introduces an exponential function to determine the similarity between two arbitrary time series. However,FE still reflects the complexity and irregularity of the signal on a single scale,and it is difficult to reflect all the characteristics of the signal.[19,20]So a method called multi-scale fuzzy entropy (MFE) is proposed to solve this problem.[21–23]At the same time,with the scale factor increases, the length of the time series becomes shorter, resulting in a sudden change of MFE. In order to alleviate this drawback, inspired by Fadlallah et al.,[24]Wu et al.,[25,26]and Zheng et al.,[27]a new nonlinear analysis algorithm, called refined composite multi-scale fuzzy entropy(RCMFE),is proposed. RCMFE averages MFE to reduce the entropy fluctuation and the generation of uncertain entropy,thereby improving the stability and reliability of MFE.

    In this paper, it is proposed to use CS and RCMFE to identify denatured porcine tissues. Firstly, CS is used to denoise the HIFU echo signal. Then RCMFE is used to analyze the denoised HIFU echo signal to obtain the nonlinear difference between normal and denatured porcine tissues, to better monitor and evaluate HIFU treatment to ensure its safety and effectiveness, and in the clinical direction to provide certain help for the doctor.

    2. Theory

    2.1. Compressed sensing

    In 2006, Donoho proposed the compressed sensing(CS)theory, which suggested that if the signal is sparse or nearly sparse,it can be reconstructed by sampling points much lower than the requirements of the Nyquist sampling theorem.[11]CS theory mainly includes the following three parts:

    1) Sparse representation of signal: when a signal is not sparse in the time domain, the one-dimensional signal XN×1should be converted into a sparse domainΨ,which is K-sparse in the sparse domain Ψ (K ?N). The process is

    where f is the sparse representation of X in the sparse domain;Ψ is the sparse domain;X is the N×1 dimensional signal.

    Discrete cosine transform (DCT) and fast Fourier transform(FFT)are commonly used to obtain the sparse expression of the original signal X in the sparse domain Ψ. In this paper,FFT is used to obtain the sparse expression f.

    2)Compression observation of signal: an appropriate observation matrix Φ is selected for observation,and the observation value y={y1,y2,...,yM}is obtained. The process is

    where Φ is the M×N dimension observation matrix; M is the data length of the original signal after down-sampled; Θ is the perception matrix. Both the observation matrix Φ and the perception matrix Θ need to satisfy the restricted isometry property(RIP).[28]

    Usually,the Gaussian random observation matrix can become the observation matrix Φ. However, in practical engineering applications, although the Gaussian random observation matrix has good uncorrelation, its unstructured nature causes problems that are difficult to implement and increase the computational complexity, which slows down the reconstruction process. Therefore, inspired by the structured principle, a sparse cyclic structured matrix with low complexity is constructed, which is easy to implement and has high uncorrelation.[29]The construction process is as follows:

    Step 1.Firstly, a 1×N dimensional zero-row vector O is constructed,and then a diagonal matrix E of N×N dimensional only containing±1 is constructed,where N is the data length of the original signal.

    Step 2.The K positions of the zero vector O are randomly selected,and 0 is changed to 1(K <N)to obtain a 0–1 sparse vector A,and then the right cyclic displacement of A is M bits to obtain a sparse matrix A1. Where each right cyclic displacement is saved as a row in A1, and the final size of A1is M×N. M is the data length of the original signal after the down-sampled.

    Step 3.The sparse matrix A1is multiplied by the random diagonal matrix E to obtain the observation matrix Φ.

    3) Reconstruction of signal: the observation value y and the reconstruction algorithm are used to obtain the reconstructed signal. In this paper, the reconstruction algorithm used regularized orthogonal matching pursuit(ROMP).Compared with orthogonal matching pursuit(OMP),the advantage of the ROMP algorithm is that K atoms can be selected in each iteration, and the atoms selected each time can be screened again through the regularization principle to remove atoms with lower energy and improve accuracy.[30,31]

    2.2. Multi-scale fuzzy entropy

    The concept of multi-scale is introduced based on fuzzy entropy,and it is used to describe the complexity of time series on different time scales. The calculation method is as follows:

    1)The original time series X ={x1,x2,...,xb,...,xN}is subject to coarse-grained conversion on the original time series to obtain a new sequence

    2) The embedding dimension m is determined, and the sequence is spatially reconstructed

    where μ =(x,r)is a fuzzy membership function in exponential form,r and 2 are the width and gradient of the boundary,respectively.

    5)Am(r)is a sub-function of the fuzzy function,which is defined as

    6) Similarly, the embedding dimension of the model is determined to be m+1,and repeat the steps 1)–step 5)to get Am+1(r).

    7)The multi-scale fuzzy entropy of the time series is defined as follows:

    2.3. Refined composite multi-scale fuzzy entropy

    As the scale factor τ increased,the length of the sequence decreased,and multi-scale entropy calculation of the short sequence may cause sudden changes. Therefore,Wu et al. proposed a new method called RCMSE to improve the accuracy of MSE.[26]In this paper,we introduced the concept of refined composite into MFE,then CMFE and RCMFE are proposed.The CMFE value is calculated by

    CMFE defines the average value of the logarithm in MFE.Compared with MFE, CMFE algorithm has higher estimation accuracy. However,in the process of CMFE calculation,the probability of generating uncertain entropy is relatively greater. Therefore,RCMFE is proposed to solve this problem.The algorithm is as follows:

    2.4. Intra-class distance and inter-class distance

    Inspired by Kira and Rendell, we used intra-class distance and inter-class distance as evaluation indicators.[32]The intra-class distance and the inter-class distance are widely used as indicators for feature selection of image recognition,biological information recognition,and gear wear signal recognition.[33,34]The compactness and separability of tissues status are better when the intra-class distance is smaller, and the inter-class distance is larger.

    The calculation formulas of the intra-class distance and the inter-class distance are as follows:[32]

    where{a(i)|i=1,2,...k}is the sample set for each mode in n-dimensional space, then m1kand m2kare the k-th components of two types of the sample sets.

    3. Experimental methods and results

    3.1. Experimental system

    The HIFU experimental system is shown in Fig.1. Before the experiment, the experiment environment and fresh porcine muscle tissues should be prepared. The 95%ethanol was mixed with povidone at a ratio of 4:1, then the mixture was poured into a water tank and mixed with water at a ratio of 1:20 to remove oxygen,and waited an hour before the experiment to stabilize the mixture.The fresh porcine muscle tissues were fixed on an acoustic rubber plate and immersed in the mixture under the HIFU source(PRO2008,Shenzhen,China).The position change of the HIFU irradiation target region can be controlled by a 3D position system of the computer. At the top of the HIFU transducer,a channel allowed the passage of a hydrophone probe(FOPH2000,Leutenbach,DE).The temperature of porcine tissues was measured by the thermocouple(DT-3891G,Shenzhen,China)to estimate the degree of injury in the HIFU treatment target region. The HIFU echo signals were received by a hydrophone probe,and then they were amplified by a broadband signal amplifier and sent to a digital oscilloscope (MDO3032, Tektronix, USA) for observation and preservation. In this paper,the central frequency of the HIFU echo signal is 1.39 MHz, the second harmonic frequency is 2.78 MHz, and the number of data points is 10000. The 90 groups of HIFU echo signals are obtained from 10 groups of fresh porcine muscle tissues,and it consists of 45 normal status and 45 denatured status. The HIFU echo signals are polluted by noise due to the influence of measuring equipment and environmental factors,so these signals should be denoise first.

    Fig.1. Experimental system.

    3.2. HIFU echo signal denoising based on compressed sensing

    The sparsity of signal is one of the preconditions for using compressed sensing. However, the actual signal is not sparse in the time domain,so it is necessary to use Eq.(1)to convert the non-sparsity signal into the sparse signal. Figure 2(a) is the waveform and spectrum of HIFU echo signal in normal status. It can be seen that the signal waveform is not sparse and cannot be performed with compressed sensing.Therefore,FFT is used to transform the HIFU echo signal from the time domain to the spectrum. The central frequency and the second harmonic can be observed clearly from the spectrum. Although there are other noise frequencies,these amplitudes are small, and the condition of approximate sparsity can be met.Therefore, the spectrum is used as the sparse domain Ψ for compressed sensing. We take 20% of the original signal data for reconstruction. In order to show the superiority of the CS method,the wavelet denoising method and empirical mode decomposition (EMD) denoising method are used for comparison.In the wavelet denoising method,the’sym6’is selected as the wavelet basis for five-layer decomposition, and ‘rigorous SURE’is selected for threshold estimation.

    Fig.2. The waveform and spectrum of HIFU echo signal and its denoising signal. (a)the HIFU echo signal;(b)the CS denoising;(c)the wavelet denoising;(d)the EMD denoising.

    Figures 2(c) and 2(d) show the waveform and spectrum after wavelet denoising and EMD denoising,respectively,and it can be seen that noises still exist in the low-frequency part of these spectrums. Because of these low-frequency noises,their waveforms are different from Fig.2(b). The wavelet denoising effect is depended on the wavelet basis and decomposition layer number. There is an end-point effect in the EMD denoising method, which leads to a poor denoising effect near the center frequency and the second harmonic.

    As shown in Fig.2(b), the spectrum after CS denoising only keeps the main characteristic. Therefore, MFE and RCMFE of the HIFU echo signals after CS denoising are extracted for further research.

    3.3. Simulation analysis of MFE and RCMFE

    This section compares MFE with RCMFE for the white Gaussian noise of the 10000-point data. We selected the embedding dimension m=3, 4, 5, similar tolerance r =0.1×standard deviation of the time series,and delay time as 1. Figure 3 shows the difference between MFE and RCMFE of the simulated signals under various scale factors.

    Fig.3. MFE and RCMFE of white Gaussian noise under various scale factors. (a)m=3;(b)m=4;(c)m=5.

    Figures 3(a)–3(c) are the entropy values of the simulated signals with embedding dimension m = 3,4,5.When the scale factor increases,the entropy fluctuation range increases,and RCMFE reduces the entropy fluctuation relative to MFE,which makes it decline steadily and improves the stability and reliability. Table 1 shows the standard deviation of the three embedding dimensions, and it can be seen from the table that RCMFE has a smaller standard deviation than MFE.

    Table 1. Results of the standard deviation.

    3.4. Selection of appropriate embedding dimension

    To analyze the most appropriate embedding dimension m in the denoised HIFU echo signals, we used 18 groups of denoised HIFU signals (9 groups of denatured status and 9 groups of normal status) to compare the entropy with three embedding dimensions. Figure 4 compares MFE and RCMFE with three embedded dimensions under scale factor 1–20,and the embedded dimensions of each row are the same.As shown in Fig.4,when the embedded dimension m increases,the entropy fluctuation of MFE and RCMFE increases,but RCMFE reduces the fluctuation of entropy, which means that the improvement is effective. When the embedded dimension is 3,the entropy difference between denatured and normal tissues is greater than that of the other two embedding dimensions,and the variance is also smaller than the other two embedding dimensions. Therefore,in the follow-up study,the embedding dimension m takes 3 as the most appropriate embedding dimension.

    3.5. MFE and RCMFE under various scale factor

    In this section, MFE and RCMFE of 90 groups of denoised HIFU echo signals are used for comparison and analysis,including 45 groups of denatured status and 45 groups of normal status.Where the embedding dimension m=3,similar tolerance r=0.1 standard deviation of the HIFU echo signal and delay time is 1. Figure 5 is the MFE and RCMFE of normal and denatured tissues under various scale factors. It can be seen that MFE or RCMFE parameters of normal and denatured tissues are distinguishable to some extent under various scale factors. In Fig.5(b), there are relatively few overlapping points of RCMFE for the two statuses,which proves that RCMFE has a stronger aggregation capacity and nonlinearity than MFE, and it is relatively compact. However, this is not sufficient to fully determine that RCMFE is better than MFE in distinguishing tissues status,so the intra-class distance and the inter-class distance are introduced to demonstrate the superiority of RCMFE.

    Fig.4. MFE and RCMFE with different embedding dimensions. (a)m=3;(b)m=4;(c)m=5.

    Fig.5. MFE and RCMFE of denoised HIFU echo signals from normal and denatured tissues under various scale factors. (a) MFE;(b)RCMFE.

    3.6. The intra-class distance and the inter-class distance of MFE and RCMFE

    Figures 6 and 7 show the intra-class distance and interclass distance of MFE and RCMFE under scale factor 1-20.The intra-class distance and the inter-class distance can reflect compactness and separability. If the intra-class distance is smaller and inter-class distance is larger,it proves that compactness and separability are better. It can be seen from Fig.6 that the intra-class distance of RCMFE is significantly smaller than that of MFE,and the intra-class distance of RCMFE is the smallest under a scale factor of 16. Figure 7 shows a comparison of inter-class distance. It can be seen that the inter-class distance of RCMFE is higher than that of MFE,and the value under a scale factor of 16 is the largest. Therefore, when the scale factor is 16, RCMFE’s intra-class distance is the smallest, and the inter-class distance is the largest, which can distinguish the denatured tissues from normal tissues.

    Fig.6. Intra-class distance between MFE and RCMFE under various scale factors.

    Fig.7. Inter-class distance between MFE and RCMFE under various scale factors.

    4. Conclusion

    A novel method based on CS and RCMFE is proposed to identify the denatured and normal porcine tissues during HIFU treatment in this paper. CS with an improved observation matrix is used to denoise the HIFU echo signal,which can obtain a better denoising effect comparing to wavelet and EMD methods. Considering the weakness of MFE,refined composite is introduced into MFE,and RCMFE is proposed as a characteristic parameter. The influences of embedding dimensions and scale factors on MFE and RCMFE are analyzed. Through the calculation of them for the simulated signals and the denoised HIFU echo signals, the results show that RCMFE overcomes the disadvantage of large fluctuation,and RCMFE has smaller intra-class distance and larger inter-class distance than MFE,which has better compactness and separability in identifying tissues status. In addition, when the embedding dimension is selected as 3,and the scale factor is selected as 16,the optimal identification effect can be obtained during HIFU treatment.The results of this study revealed the differences in RCMFE between normal and denatured porcine tissues during HIFU treatment,which helps doctors to evaluate the treatment effect more accurately.

    猜你喜歡
    劉備
    修德箴言
    Investigation of the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing
    讀懂劉備
    海峽姐妹(2020年11期)2021-01-18 06:16:24
    三顧茅廬(中)
    劉備與徐州
    劉備托孤
    快樂語文(2017年12期)2017-05-09 22:07:40
    相面
    意林(2016年24期)2017-01-04 21:58:26
    徐庶以馬試劉備
    劉備的愛
    小說月刊(2014年2期)2014-04-18 14:06:43
    劉備別具特色的用人之道
    軍事歷史(1996年1期)1996-08-20 07:15:32
    窝窝影院91人妻| 此物有八面人人有两片| 亚洲国产欧洲综合997久久,| 色精品久久人妻99蜜桃| 男人狂女人下面高潮的视频| 熟妇人妻久久中文字幕3abv| 国产男靠女视频免费网站| 女生性感内裤真人,穿戴方法视频| 久久久久九九精品影院| 夜夜躁狠狠躁天天躁| 又紧又爽又黄一区二区| 91av网一区二区| 久久精品综合一区二区三区| 一级作爱视频免费观看| a级一级毛片免费在线观看| 午夜福利在线观看免费完整高清在 | 久久精品国产亚洲av香蕉五月| 免费大片18禁| 99久国产av精品| 好看av亚洲va欧美ⅴa在| 久久热精品热| 亚洲熟妇中文字幕五十中出| 成人av在线播放网站| 又黄又爽又刺激的免费视频.| 亚洲精品一卡2卡三卡4卡5卡| 欧美bdsm另类| а√天堂www在线а√下载| xxxwww97欧美| 免费av观看视频| 大型黄色视频在线免费观看| 欧美性猛交黑人性爽| 久99久视频精品免费| 中文字幕久久专区| 成年女人看的毛片在线观看| 十八禁网站免费在线| 一边摸一边抽搐一进一小说| 国产综合懂色| 国内精品美女久久久久久| 精品乱码久久久久久99久播| 99在线视频只有这里精品首页| 又黄又爽又刺激的免费视频.| 亚洲成人免费电影在线观看| АⅤ资源中文在线天堂| 简卡轻食公司| 国产在线男女| 日本五十路高清| 综合色av麻豆| 免费看日本二区| 日日摸夜夜添夜夜添av毛片 | 国产高清视频在线观看网站| 亚洲人成电影免费在线| 亚洲国产日韩欧美精品在线观看| 国产野战对白在线观看| 欧美zozozo另类| 成熟少妇高潮喷水视频| 小说图片视频综合网站| 欧美黑人欧美精品刺激| 亚洲五月婷婷丁香| 欧美色欧美亚洲另类二区| 国产v大片淫在线免费观看| 久久国产精品人妻蜜桃| ponron亚洲| 精品久久久久久久久av| 亚洲成a人片在线一区二区| 国产精品人妻久久久久久| 久久精品人妻少妇| 观看美女的网站| 首页视频小说图片口味搜索| 国产精品乱码一区二三区的特点| 国产精品影院久久| 久久精品国产清高在天天线| 黄色女人牲交| 波多野结衣巨乳人妻| 啦啦啦观看免费观看视频高清| 俺也久久电影网| 噜噜噜噜噜久久久久久91| 午夜精品在线福利| 最新在线观看一区二区三区| 色视频www国产| 91在线精品国自产拍蜜月| 久久久久久大精品| 色播亚洲综合网| 亚洲精品一卡2卡三卡4卡5卡| 高潮久久久久久久久久久不卡| 国产色婷婷99| 日本成人三级电影网站| 亚洲国产欧洲综合997久久,| 国产亚洲欧美98| 欧美乱色亚洲激情| 丰满的人妻完整版| 国产人妻一区二区三区在| 窝窝影院91人妻| 欧美+亚洲+日韩+国产| a级毛片a级免费在线| 国产视频内射| 婷婷精品国产亚洲av| 高清日韩中文字幕在线| 热99re8久久精品国产| 在线国产一区二区在线| 热99在线观看视频| 好男人在线观看高清免费视频| 国产精品野战在线观看| av国产免费在线观看| 日韩av在线大香蕉| 精品一区二区三区av网在线观看| 国产精品久久久久久亚洲av鲁大| 免费人成视频x8x8入口观看| 精品久久久久久久久久久久久| 熟女电影av网| 琪琪午夜伦伦电影理论片6080| 免费在线观看成人毛片| 国产黄片美女视频| 国产一区二区在线av高清观看| 少妇人妻精品综合一区二区 | 亚洲成人中文字幕在线播放| 两个人视频免费观看高清| 亚洲精品乱码久久久v下载方式| 小说图片视频综合网站| 一个人免费在线观看的高清视频| 亚洲av电影不卡..在线观看| 人妻夜夜爽99麻豆av| 色综合站精品国产| 亚洲美女搞黄在线观看 | 亚洲av五月六月丁香网| 九色成人免费人妻av| 99热6这里只有精品| 国产成+人综合+亚洲专区| 一区福利在线观看| 精品人妻熟女av久视频| 国产毛片a区久久久久| 免费av毛片视频| 久久久色成人| 熟妇人妻久久中文字幕3abv| 男女床上黄色一级片免费看| 欧美黄色淫秽网站| 全区人妻精品视频| 偷拍熟女少妇极品色| 夜夜夜夜夜久久久久| 九色国产91popny在线| 怎么达到女性高潮| 日韩欧美在线二视频| 高潮久久久久久久久久久不卡| 国产毛片a区久久久久| 精品人妻偷拍中文字幕| 国内揄拍国产精品人妻在线| 丝袜美腿在线中文| 可以在线观看毛片的网站| 欧美日本亚洲视频在线播放| 男插女下体视频免费在线播放| 国产在线精品亚洲第一网站| 无遮挡黄片免费观看| 最近最新免费中文字幕在线| 欧美高清成人免费视频www| 丁香欧美五月| 久久午夜亚洲精品久久| 少妇熟女aⅴ在线视频| 国产精品久久久久久精品电影| 久9热在线精品视频| 国产精品不卡视频一区二区 | 精品一区二区三区av网在线观看| 日韩欧美国产一区二区入口| 18美女黄网站色大片免费观看| 日韩大尺度精品在线看网址| av国产免费在线观看| 一本久久中文字幕| 内射极品少妇av片p| 丰满的人妻完整版| 首页视频小说图片口味搜索| 人妻夜夜爽99麻豆av| 俄罗斯特黄特色一大片| 亚洲av成人精品一区久久| 欧美又色又爽又黄视频| 国产亚洲av嫩草精品影院| 亚洲中文日韩欧美视频| 久久精品夜夜夜夜夜久久蜜豆| 成年人黄色毛片网站| netflix在线观看网站| 热99在线观看视频| 国产亚洲欧美98| 三级男女做爰猛烈吃奶摸视频| 国产黄a三级三级三级人| 国产v大片淫在线免费观看| 欧美三级亚洲精品| 欧美成人性av电影在线观看| 日日摸夜夜添夜夜添小说| 亚洲成人中文字幕在线播放| 99精品久久久久人妻精品| 国产免费男女视频| 成年女人永久免费观看视频| 国产又黄又爽又无遮挡在线| 婷婷精品国产亚洲av在线| 国产精品久久视频播放| 午夜免费男女啪啪视频观看 | 欧美日韩综合久久久久久 | 亚洲黑人精品在线| 人妻丰满熟妇av一区二区三区| 国产午夜精品久久久久久一区二区三区 | 午夜视频国产福利| 久久中文看片网| 两人在一起打扑克的视频| 欧美最新免费一区二区三区 | 亚洲av成人精品一区久久| 日本五十路高清| 欧美成人a在线观看| 欧美潮喷喷水| 国产私拍福利视频在线观看| 久久精品国产99精品国产亚洲性色| 亚洲电影在线观看av| 99国产综合亚洲精品| 日韩欧美国产在线观看| 五月伊人婷婷丁香| 麻豆国产av国片精品| 欧美绝顶高潮抽搐喷水| 国产亚洲欧美在线一区二区| 久久人妻av系列| 一区二区三区激情视频| 我要搜黄色片| 国产成人a区在线观看| 91av网一区二区| 最近在线观看免费完整版| 久久久久国产精品人妻aⅴ院| 深夜精品福利| 欧美国产日韩亚洲一区| 国产三级在线视频| 好男人在线观看高清免费视频| 亚洲最大成人中文| 一个人免费在线观看的高清视频| 夜夜躁狠狠躁天天躁| 国产一区二区在线观看日韩| 欧美色欧美亚洲另类二区| 一区二区三区激情视频| 亚洲五月天丁香| 9191精品国产免费久久| www.999成人在线观看| 特大巨黑吊av在线直播| 久久精品91蜜桃| 搡老妇女老女人老熟妇| 18+在线观看网站| 国产精品一及| 久久伊人香网站| 亚洲精品一区av在线观看| 青草久久国产| 女同久久另类99精品国产91| 超碰av人人做人人爽久久| 国产成人a区在线观看| 精品久久久久久久久亚洲 | 人人妻人人看人人澡| 久久精品国产清高在天天线| 欧美高清性xxxxhd video| 91久久精品电影网| 免费观看人在逋| 日日夜夜操网爽| www.色视频.com| 最新在线观看一区二区三区| 亚洲 国产 在线| 十八禁人妻一区二区| 欧美乱色亚洲激情| 乱人视频在线观看| 午夜免费男女啪啪视频观看 | 男女做爰动态图高潮gif福利片| 在线看三级毛片| 不卡一级毛片| 男插女下体视频免费在线播放| 日本熟妇午夜| 色综合站精品国产| 国产欧美日韩精品一区二区| 国产精品一区二区三区四区久久| 日韩欧美国产在线观看| 国产伦精品一区二区三区视频9| 两人在一起打扑克的视频| 免费在线观看影片大全网站| 久久性视频一级片| 麻豆成人av在线观看| 一夜夜www| 天堂av国产一区二区熟女人妻| 精品一区二区免费观看| 又爽又黄无遮挡网站| 国产乱人视频| 国产真实乱freesex| 国产精品亚洲一级av第二区| 啪啪无遮挡十八禁网站| 国产成+人综合+亚洲专区| 国产一区二区在线av高清观看| 精品人妻一区二区三区麻豆 | 看十八女毛片水多多多| 亚洲av熟女| 韩国av一区二区三区四区| 天堂动漫精品| 精品久久久久久久久久免费视频| 97超视频在线观看视频| 久久人妻av系列| 国内揄拍国产精品人妻在线| 欧美另类亚洲清纯唯美| 少妇被粗大猛烈的视频| 亚洲精品456在线播放app | 深爱激情五月婷婷| 人人妻人人看人人澡| 国产av不卡久久| 九色国产91popny在线| 久久亚洲精品不卡| 精品久久久久久成人av| 男人舔女人下体高潮全视频| 亚洲av不卡在线观看| 国产男靠女视频免费网站| 欧美日韩福利视频一区二区| 12—13女人毛片做爰片一| 天天躁日日操中文字幕| 午夜精品一区二区三区免费看| 亚洲乱码一区二区免费版| 午夜福利免费观看在线| 国产精品美女特级片免费视频播放器| 在线国产一区二区在线| 亚洲 国产 在线| 两个人视频免费观看高清| 尤物成人国产欧美一区二区三区| 1000部很黄的大片| 制服丝袜大香蕉在线| 久久人妻av系列| 嫩草影视91久久| 欧美激情在线99| 精品一区二区三区av网在线观看| 婷婷精品国产亚洲av在线| 两个人视频免费观看高清| 一本精品99久久精品77| 国产乱人视频| 男女之事视频高清在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费av毛片视频| 成人性生交大片免费视频hd| 国产亚洲精品综合一区在线观看| 国产高清激情床上av| 国产麻豆成人av免费视频| 国内精品一区二区在线观看| 天堂动漫精品| 午夜福利成人在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 国内精品一区二区在线观看| 欧美三级亚洲精品| 亚洲国产精品成人综合色| 日韩 亚洲 欧美在线| 久久国产精品影院| 91麻豆精品激情在线观看国产| 久9热在线精品视频| 在线十欧美十亚洲十日本专区| 精品一区二区免费观看| 麻豆成人午夜福利视频| 国产精品乱码一区二三区的特点| 亚洲精品色激情综合| 成人鲁丝片一二三区免费| 成人国产一区最新在线观看| 99久久精品国产亚洲精品| 国产精品久久久久久亚洲av鲁大| 成年免费大片在线观看| 美女免费视频网站| 亚洲美女搞黄在线观看 | 熟女电影av网| 久久久色成人| 精品人妻偷拍中文字幕| 久久久久性生活片| 国产真实伦视频高清在线观看 | 国产伦一二天堂av在线观看| 69人妻影院| 欧美精品啪啪一区二区三区| 欧美激情在线99| 国产毛片a区久久久久| 亚洲av熟女| 国产精品国产高清国产av| 91久久精品国产一区二区成人| 婷婷亚洲欧美| www.www免费av| 一区福利在线观看| 高清在线国产一区| 美女黄网站色视频| 国产成人a区在线观看| 亚洲自偷自拍三级| 美女被艹到高潮喷水动态| 精品久久久久久久久av| 色综合婷婷激情| 久久久精品欧美日韩精品| 午夜日韩欧美国产| 美女xxoo啪啪120秒动态图 | 美女cb高潮喷水在线观看| 九九在线视频观看精品| 亚洲av免费高清在线观看| 三级国产精品欧美在线观看| 久久久国产成人免费| ponron亚洲| 一本一本综合久久| 久久热精品热| 国产69精品久久久久777片| 无遮挡黄片免费观看| 中出人妻视频一区二区| 99久久精品热视频| 精品一区二区三区av网在线观看| 麻豆国产97在线/欧美| av专区在线播放| 欧美日韩中文字幕国产精品一区二区三区| 99久久99久久久精品蜜桃| 欧美一区二区亚洲| 欧美日韩瑟瑟在线播放| 欧美成人一区二区免费高清观看| 国产一级毛片七仙女欲春2| 亚洲欧美日韩高清专用| 男人舔奶头视频| 国产日本99.免费观看| 亚洲真实伦在线观看| 女人被狂操c到高潮| 欧美在线黄色| av黄色大香蕉| 五月玫瑰六月丁香| 在线国产一区二区在线| 免费大片18禁| 免费无遮挡裸体视频| 嫩草影院入口| 不卡一级毛片| 免费在线观看亚洲国产| 97人妻精品一区二区三区麻豆| 成年免费大片在线观看| 国产三级中文精品| 1024手机看黄色片| 波野结衣二区三区在线| 亚洲国产欧美人成| 亚洲精品粉嫩美女一区| 国产av一区在线观看免费| ponron亚洲| 亚洲最大成人手机在线| 亚洲av二区三区四区| av在线天堂中文字幕| 99热这里只有是精品50| 久久婷婷人人爽人人干人人爱| 国产v大片淫在线免费观看| av天堂在线播放| 熟女人妻精品中文字幕| 小说图片视频综合网站| 亚洲七黄色美女视频| 91久久精品国产一区二区成人| 国产亚洲精品综合一区在线观看| 长腿黑丝高跟| 亚洲人成网站高清观看| 丰满人妻一区二区三区视频av| 非洲黑人性xxxx精品又粗又长| 每晚都被弄得嗷嗷叫到高潮| 嫁个100分男人电影在线观看| 精品不卡国产一区二区三区| 国产黄a三级三级三级人| 淫妇啪啪啪对白视频| 88av欧美| 最近最新中文字幕大全电影3| 美女黄网站色视频| 又黄又爽又刺激的免费视频.| 久久精品国产亚洲av香蕉五月| 婷婷丁香在线五月| 亚洲欧美日韩无卡精品| 免费在线观看亚洲国产| 国内少妇人妻偷人精品xxx网站| 最后的刺客免费高清国语| 人人妻人人看人人澡| АⅤ资源中文在线天堂| 国产aⅴ精品一区二区三区波| 人妻制服诱惑在线中文字幕| 成人特级黄色片久久久久久久| 国产精品久久视频播放| av天堂中文字幕网| 在线观看午夜福利视频| 麻豆成人av在线观看| 天天躁日日操中文字幕| 精品福利观看| 狠狠狠狠99中文字幕| 熟妇人妻久久中文字幕3abv| 精品免费久久久久久久清纯| 成人国产综合亚洲| 啪啪无遮挡十八禁网站| 老熟妇乱子伦视频在线观看| 色播亚洲综合网| 免费av不卡在线播放| 男女视频在线观看网站免费| 高潮久久久久久久久久久不卡| 99热只有精品国产| 国内久久婷婷六月综合欲色啪| 少妇被粗大猛烈的视频| 一级av片app| 村上凉子中文字幕在线| 午夜激情欧美在线| 在线观看av片永久免费下载| 国产精品嫩草影院av在线观看 | 日韩欧美在线二视频| 色噜噜av男人的天堂激情| 蜜桃亚洲精品一区二区三区| 亚洲美女黄片视频| 热99re8久久精品国产| 日韩精品青青久久久久久| bbb黄色大片| 成人国产一区最新在线观看| 国产麻豆成人av免费视频| 亚洲 国产 在线| 狂野欧美白嫩少妇大欣赏| 国产三级中文精品| 午夜激情欧美在线| 成人毛片a级毛片在线播放| 可以在线观看的亚洲视频| 一进一出抽搐gif免费好疼| 欧美日韩福利视频一区二区| 日韩免费av在线播放| 国产亚洲精品久久久com| 中文亚洲av片在线观看爽| 男女视频在线观看网站免费| 国产成人a区在线观看| 国产午夜福利久久久久久| 一个人免费在线观看电影| 亚洲va日本ⅴa欧美va伊人久久| 性色av乱码一区二区三区2| 成人永久免费在线观看视频| 国产黄色小视频在线观看| 国产精品国产高清国产av| 欧美成人一区二区免费高清观看| 亚洲国产高清在线一区二区三| 久久精品影院6| 亚洲欧美日韩高清在线视频| 色吧在线观看| 国产综合懂色| 热99在线观看视频| 99热这里只有是精品50| 色综合站精品国产| 两性午夜刺激爽爽歪歪视频在线观看| 啪啪无遮挡十八禁网站| 精品福利观看| 免费观看的影片在线观看| 不卡一级毛片| 简卡轻食公司| 欧美一区二区精品小视频在线| 日韩有码中文字幕| 日本五十路高清| 老司机午夜福利在线观看视频| 男人舔女人下体高潮全视频| 国产 一区 欧美 日韩| 久久中文看片网| 午夜久久久久精精品| 国产高清视频在线观看网站| 色综合欧美亚洲国产小说| 精品一区二区免费观看| 99热精品在线国产| 国产一区二区亚洲精品在线观看| 99精品在免费线老司机午夜| 精品久久久久久久久av| 窝窝影院91人妻| 国产黄a三级三级三级人| 成人一区二区视频在线观看| 亚洲国产欧洲综合997久久,| 小蜜桃在线观看免费完整版高清| 18禁黄网站禁片免费观看直播| 亚洲天堂国产精品一区在线| 色哟哟·www| 免费人成在线观看视频色| 亚洲无线在线观看| 亚洲国产精品合色在线| 久久亚洲真实| 欧美日韩黄片免| 色视频www国产| 日本 av在线| 99久久成人亚洲精品观看| 88av欧美| 真人做人爱边吃奶动态| 国产黄色小视频在线观看| 亚洲人成网站在线播放欧美日韩| 可以在线观看的亚洲视频| 日韩欧美精品v在线| 亚洲久久久久久中文字幕| 亚洲av美国av| 真人做人爱边吃奶动态| 免费看美女性在线毛片视频| 欧美不卡视频在线免费观看| 一边摸一边抽搐一进一小说| 精品一区二区三区人妻视频| 很黄的视频免费| 色噜噜av男人的天堂激情| 午夜久久久久精精品| www.999成人在线观看| 在线国产一区二区在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲第一区二区三区不卡| 免费在线观看亚洲国产| 91av网一区二区| 国产高清三级在线| 黄色视频,在线免费观看| 成人国产综合亚洲| 禁无遮挡网站| 国产精品久久久久久亚洲av鲁大| 亚洲久久久久久中文字幕| 国产国拍精品亚洲av在线观看| 丁香六月欧美| 国产精品女同一区二区软件 | 窝窝影院91人妻| 性色av乱码一区二区三区2| 久久精品91蜜桃| 国产亚洲欧美98| 午夜a级毛片| 精品国内亚洲2022精品成人| 丰满乱子伦码专区| 看十八女毛片水多多多| 国产真实乱freesex| 2021天堂中文幕一二区在线观| 极品教师在线视频| 国产精品免费一区二区三区在线| 亚洲av成人精品一区久久| 丰满乱子伦码专区| 国产伦一二天堂av在线观看| 性插视频无遮挡在线免费观看| 全区人妻精品视频| 国产精品美女特级片免费视频播放器| 国产一区二区在线观看日韩| 99精品在免费线老司机午夜| 女人十人毛片免费观看3o分钟| 国产午夜福利久久久久久| 欧美色欧美亚洲另类二区| 色噜噜av男人的天堂激情|