• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating?

    2021-03-11 08:34:32ZhiLiWang王志立RuiChengZhou周瑞成LiMingZhao趙立明KunRen任坤WenXu徐文BoLiu劉波andHengChen陳恒
    Chinese Physics B 2021年2期
    關(guān)鍵詞:徐文劉波

    Zhi-Li Wang(王志立), Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(趙立明),Kun Ren(任坤), Wen Xu(徐文), Bo Liu(劉波), and Heng Chen(陳恒)

    School of Electronic Science&Applied Physics,Hefei University of Technology,Hefei 230009,China

    Keywords: x-ray imaging,phase contrast,grating interferometer,fringe visibility

    1. Introduction

    Over the last two decades, x-ray grating interferometry has attracted increasing attention from the scientific community.[1–13,15–18]As a multi-modal imaging technique,x-ray grating interferometry provides simultaneously three complementary signals,i.e.,attenuation,refraction,and darkfield,from the same set of experimental data.[1–4,11,18]Particularly,standard x-ray tubes are fully compatible with x-ray grating interferometers in the so-called Talbot–Lau geometry.[3,4]Consequently,x-ray grating interferometry has shown significant potential applications in diverse fields including, but not limited to,mammography,[19,20]materials science,[21,22]nondestructive testing,[23]and early detection of lung injury.[24]

    In x-ray grating interferometry,a phase grating is always employed to generate an interference pattern at the so-called fractional Talbot distances downstream.[1–4]With a sample placed close to the phase grating, the interference pattern is locally distorted. Analyzing the local distortion of the interference pattern allows one to retrieve the x-ray attenuation, refraction, and dark-field signals on a pixel-by-pixel basis.[1–4,11,17]In order to achieve a high sensitivity,the phase grating typically has a period of a few micrometers. The resulting interference fringes, with a pitch of several micrometers,cannot be directly resolved by common imaging detectors with a typical pixel size of several tens of micrometers. To utilize these detectors, one needs to use an absorbing grating,with its pitch matching that of the interference fringe, placed before the detector to convert the fringe distortion into intensity variations in a Moir′e approach.[1–4]However,the attenuating analyzer grating blocks more than half x-rays transmitting through the sample,which will significantly increase the dose deposition to the imaged sample.

    In recent years, dual phase grating x-ray interferometry has demonstrated its attractive advantages.[25–30]Two phase gratings are employed as beam splitters in a dual phase grating interferometer.The split beams transmitting through the phase gratings interfere with each other,creating distinct diffraction orders in the intensity fringe pattern.[27,28]The imaging detector just resolves the beat pattern of large periodicities, and makes other fine patterns a constant background. Compared to x-ray Talbot–Lau interferometers, the dual phase grating interferometers directly resolve intensity fringes without the need of an absorbing analyzer grating. This advantage will lead the radiation dose to substantially decrease in x-ray imaging exams. Moreover,unlike the case of the inverse geometry of Talbot–Lau interferometers,[5]the limitation to the field-ofview can be avoided in dual phase grating interferometers with the total system length kept compact.[25,26]

    In dual phase grating x-ray interferometers, spatially coherent illumination of the phase gratings is always necessary to attain a high fringe visibility.[25]However, it is challenging for standard x-ray tubes to provide sufficient spatial coherence and adequate flux simultaneously. Alternatively, inspired by the solution in Talbot–Lau interferometry, one may employ the combination of a large-focus x-ray source with an absorbing source grating.[29]The source grating creates an array of line sources, each of which illuminates the phase grating coherently.[3,4,10,29]In Talbot–Lau interferometry,with the period of the source grating satisfying the Lau condition, the fringes generated by all the line sources in the source grating are superimposed constructively to achieve a good fringe visibility.[3,4,10,31]Similarly,a new generalized Lau condition was derived for dual phase grating interferometer equipped with a source grating.[28]The theoretical results have been validated by simulations and experimental results.[29]However,experimentally measured fringe visibility was no greater than 6.5%, which was too low for potential practical applications.Therefore,it is of great importance to find how the spatial coherence of the x-ray beam affects the fringe visibility in dual phase grating x-ray interferometry. And that is the purpose of this work.

    The rest of this paper is organized as follows. In Section 2, we apply the partial coherence theory to dual phase grating interferometry equipped with a source grating. With the generalized Lau condition satisfied, we show that the spatial coherence effect is approximately determined by the source grating profile. In Section 3, we investigate the influence of the source grating profile,including its duty cycle and finite bar height,on the fringe visibility quantitatively. Finally,we conclude this work in Section 4.We hope that those results can be used as guidelines for designing and optimizing dual phase grating interferometers equipped with a source grating.

    2. Quantitative coherence analysis of dual phase grating interferometry

    Consider a dual phase grating x-ray interferometer as shown in Fig.1, where an absorbing source grating G0 and two phase gratings G1 and G2 are employed. Assuming a quasi-monochromatic illumination and following a quantitative theory of dual phase grating interferometry,[27]we find that the resolvable intensity fringes by the detector can be expressed as follows:where I0is the incident x-ray intensity at G1 plane; μindenotes the spatial coherence degree of the x-rays of wavelength λ incident on G1;[32]sinc(lpD/pfr) represents the pixel-averaging effect, with pDbeing the detector pixel size,and pfr=M5p2/[M1?(p2/p1)] the period of resolvable intensity fringes;anand bsdenote the Fourier coefficients of the grating G1 and G2,respectively; a?nis the complex conjugate of an; R1is the source-to-G1 distance; R2is the distance between G1 and G2;R4is the G2-to-detector distance; p1is the period of G1,and p2is the period of G2. Note that the relative transverse shift of the gratings G1 and G2 is set to be zero in Eq.(1). The magnification factors used in Eq.(1)are defined as follows:

    Fig.1. The schematic diagram of dual phase grating x-ray interferometer equipped with source grating.

    In order to employ x-ray sources of large focal spots, an absorbing source grating G0 is introduced into dual phase grating interferometers.[28,29]The source grating divides the tube’s focal spot into an array of virtual line sources. Each of the mutually incoherent line sources can provide spatially coherent illumination of the phase gratings. Since x-ray tubes always have a focal spot much larger than the size of virtual line sources, the effective source intensity distribution can be well approximated by the transmittance function of the source grating,[31]which can be expanded as a Fourier series

    where p0is the source grating period, and the Fourier coefficient cmis given by

    with γ0being the duty cycle of the source grating, and T the non-zero transmission through the grating bar. The transmission T is related to the finite bar height h by T =exp(?μt),with μ being the energy-dependent linear attenuation coefficient of the grating material. Under the approximation of Eq.(3),according to the Van Cittert–Zernike theorem,[32]we find that the spatial coherence degree in Eq.(1)is given by

    where δ(·) denotes the Dirac delta function. As shown in Eq.(1),the spatial coherence degreeμinrelating to the diffraction order l,represents the reduction of fringe modulation due to partial spatial coherence of x-ray illumination. Therefore,to achieve a high fringe visibility,the spatial coherence degree needs to be maximized. Equation (5) reveals that the spatial coherence degree achieves its maximum value if,and only if,the following geometry condition is fulfilled:

    Substituting Eq. (2) and pfr= M5p2/[M1?(p2/p1)] into Eq. (6), we obtain the condition of the source grating period below:

    Meanwhile, we note that polychromatic x-ray sources such as x-ray tubes prevail in medical imaging applications. With polychromatic x-rays, the phase grating’s phase shift varies linearly with the x-ray wavelength. Therefore,the fundamental mode (l =1) contributes to the intensity fringe formation for both π-shifting and π/2-shifting phase gratings. With these considerations,we obtain the following unique solution valid for all diffraction order m:

    which reproduces the generalized Lau condition for dual phase grating interferometers equipped with a source grating.[28]Note that if the mode is l =?1, the p0given by Eq. (8) just changes its sign,and the source grating configuration remains the same.

    With the generalized Lau condition in Eq. (8) satisfied,the spatial coherence degreeμincan be further simplified into the following expression:

    which shows that given that the generalized Lau condition is satisfied,the spatial coherence degree is solely determined by the Fourier coefficient of the source grating, i.e. the source grating profile. As shown in Eq. (4), the Fourier coefficient decreases with increasing diffraction order l,reflecting that the fringe modulation decreases with increasing diffraction orders.The higher the diffraction order, the larger the loss in fringe modulation. Substituting Eq. (9) into Eq. (1), we obtain the following expression for the resolvable intensity fringes:

    where

    3. Fringe visibility

    In x-ray grating-based interferometry, fringe visibility has been a common figure of merit to quantify its imaging performance.[1–4]It is defined as

    V =(Imax?Imin)/(Imax+Imin),

    with Imaxand Iminbeing the maximum and minimum intensity values,respectively. A high fringe visibility is always required to achieve a high signal-to-noise ratio (SNR) in x-ray grating-based interferometry.[17,18,33,34]As shown in Eq.(10),the visibility of those resolvable intensity fringes is dependent on the x-ray spectrum, the setup geometry, the Fourier coefficients of the source grating and dual phase gratings,and the ratio p1/p2. Since this work aims to investigate the effect of spatial coherence on the fringe visibility,a monochromatic illumination is assumed for further analysis. And the obtained results can be considered to be the upper limit of the achievable fringe visibility for dual phase grating interferometers using polychromatic x-ray sources.

    We start with considering an interferometer consisting of two π-shifting phase gratings with a duty cycle of 0.5, to demonstrate how the source grating profile affects the fringe visibility. By use of the closed form expression for the coefficients,[27]we find that Cl=C?l=0 for all odd diffraction orders,and for even integer l,

    Substituting Eq. (11) into Eq. (10), we find that the coefficients related to the even integer l decrease rapidly with increasing diffraction orders. Thus, in the case of a 0.5 duty cycle, the lowest order (l=2) contributes dominantly to the intensity fringes. Then the expression for the intensity fringe is further simplified into

    which shows that the intensity fringe has a period of pfr/2 under monochromatic illumination. From Eq.(12),we find that the fringe visibility is given by

    which shows that the fringe visibility is influenced by the source grating profile through c1/c0, the pixel-averaging effect sinc(2pD/pfr),and the setup geometry.

    To provide a quantitative insight into the effect of the source grating profile on the fringe visibility, we conduct the following numerical calculations.The considered setup geometry resembles that used for experimental measurements,[29]where λ =4.96×10?11m, p0=24.00μm, p1=4.364μm,p2=4.640 μm, R1=52.79 cm, R2=10.89 cm, and R4=162.34 cm. It can be readily verified that the generalized Lau condition is fulfilled,and that

    which means that the fringe visibility is maximized in terms of setup geometry.

    Fig.2. Variations of fringe visibility with duty cycle of source grating for dual π-shifting phase gratings(a)(pfr/2)/pD=10 and(b)(pfr/2)/pD=4.

    Figure 2 shows the curves of fringe visibility versus duty cycle of the source grating for different values of transmission T and different pixel-averaging effects. The following trends in the fringe visibility can be observed. Firstly, in the ideal case of zero transmission,the fringe visibility decreases monotonically with increasing duty cycle. However, the behavior becomes quite different in the case of a non-zero transmission.As shown in Fig.2,the fringe visibility achieves its maximum,with a duty cycle being 0.25, in the case of 5%transmission.When the transmission increases to 10%,the fringe visibility is maximized,with a duty cycle being 0.3.With the transmission further increasing to 20%,the optimal duty cycle increases to 0.35 where the fringe visibility reaches its maximum. That is, there exists an optimal duty cycle to maximize the fringe visibility in the realistic case of a non-zero transmission.

    Secondly, increase in the transmission results in a significant decrease of the maximum achievable fringe visibility. With the transmission increasing from 5% to 10%, the maximum achievable fringe visibility decreases from 0.5928 to 0.4993,i.e.reduces about 16%. In the case of a 20%transmission, the fringe visibility further decreases to 0.3768, i.e.reduces almost 36%.Therefore,the transmission of the source grating bar should be minimized for a high fringe visibility.Taking into account the available x-ray flux that increases with increasing transmission and duty cycles, we can find an optimal duty cycle to maximize the image quality. This subject is left to be investigated in the future.

    Finally,a comparison between Fig.2(a)and Fig.2(b)reveals that the pixel-averaging effect has minor effect on the achievable maximum fringe visibility, as long as one fringe period is sampled at least by four detector pixels. This result can be explained by the fact that the term sinc[pD/(pfr/2)]is always greater than 0.9 in real experiments. Meanwhile, we note that the optimal duty cycle that maximizes the fringe visibility is independent of the pixel-averaging effect as revealed by Eq.(13).

    Furthermore,we consider an interferometer that consists of two π/2-shifting phase gratings. Again, using the expression for the coefficient Cl,[27]we obtain the following expression for odd diffraction order l:

    which suggests that the dominant diffraction order is l =1.Following a similar procedure to that of dual π-shifting phase gratings,we obtain the visibility of the resolvable fringes with a period of pfr,

    The analysis of Eqs. (13) and (15) and the results displayed in Fig.3 reveals that the effect of the source grating profile on the fringe visibility is independent of phase grating type,while the pixel-averaging effect shows some little differences due to the different fringe periods. Besides, as a result of the difference in fractional Talbot distances, the setup geometry that maximizes the fringe visibility is changed accordingly.

    Fig.3. Variations of fringe visibility with duty cycle of the source grating for dual π/2-shifting phase gratings(a) pfr/pD=20 and(b) pfr/pD=8.

    4. Discussion and conclusions

    The feasibility of dual phase grating interferometer equipped with a source grating is demonstrated by latest experimental results.[29]However,the measured fringe visibility is quite low compared to typical values of Talbot–Lau interferometry. Therefore, it is important to know how the source grating profile affects the fringe visibility. For this purpose,we apply the partial coherence theory to dual phase grating interferometry equipped with a source grating. The results show that with the generalized Lau condition satisfied, the fringe visibility is influenced by the duty cycle of the source grating and the transmission through the grating bar simultaneously.

    In the case of a non-zero transmission, the achievable maximum fringe visibility exhibits a significant decrease with increasing transmission in the source grating. Thus, the bar height of the source grating is required to be large in order to attain a high fringe visibility. On the other hand, for a given transmission, one can find an optimal duty cycle that maximizes the fringe visibility.A comparison between results from dual π-shifting phase gratings and dual π/2-shifting phase gratings shows that the optimal duty cycle is independent of the phase grating used and the pixel-averaging effect. Besides,since the transmission is dependent on the photon energy,special attenuation is required when using a polychromatic x-ray source. In the future work, the theoretical results for some design criteria of dual phase grating interferometers will be evaluated experimentally.

    In this work, we present a quantitative coherence analysis of dual phase grating x-ray interferometry equipped with a source grating. In order to attain a good fringe visibility,the geometry is required to satisfy the generalized Lau condition. Furthermore, we derive the fringe visibility formulas for both dual π-shifting phase gratings and dual π/2-shifting phase gratings. Especially,those general expressions given by Eqs. (13) and (15) are applicable to any setup geometry, not limited to the symmetrical one.[27]These results can be used as guidelines for designing the source grating and optimizing dual phase grating x-ray interferometers. Finally,we mention that the presented results can be generalized to the case of a multiline x-ray source.[6]

    猜你喜歡
    徐文劉波
    汪安陽 劉波設(shè)計(jì)作品
    毛紡科技(2023年1期)2023-02-24 00:37:40
    劉波作品
    國(guó)畫家(2023年1期)2023-02-16 07:57:50
    晚霞
    赤水源(2018年6期)2018-12-06 08:38:08
    劉波:大海與我作伴
    商周刊(2017年16期)2017-10-10 01:32:47
    千萬別動(dòng)手
    永遠(yuǎn)解不開的梁子
    我到底在和誰比賽
    礙于面子擔(dān)保一個(gè)簽名賠萬元
    少年時(shí)光不言敗
    Experimental Investigation on Flow and Heat Transfer of Jet Impingement inside a Semi-Confined Smooth Channel*
    人妻久久中文字幕网| 一夜夜www| 51午夜福利影视在线观看| 亚洲av第一区精品v没综合| 亚洲av日韩精品久久久久久密| 丰满人妻一区二区三区视频av | 亚洲欧美日韩东京热| 日韩中文字幕欧美一区二区| 国内揄拍国产精品人妻在线| 日本免费a在线| 给我免费播放毛片高清在线观看| 99久久综合精品五月天人人| 日本熟妇午夜| 日韩精品免费视频一区二区三区| 男女之事视频高清在线观看| 91麻豆av在线| 精品福利观看| 免费av毛片视频| 免费人成视频x8x8入口观看| 国产精品久久电影中文字幕| 久久国产精品影院| 久久久久久久久久黄片| 国产欧美日韩一区二区精品| 麻豆一二三区av精品| 亚洲成人久久性| 国产成年人精品一区二区| 丝袜人妻中文字幕| 观看免费一级毛片| 999久久久精品免费观看国产| 他把我摸到了高潮在线观看| 亚洲五月婷婷丁香| 日韩大尺度精品在线看网址| 我的老师免费观看完整版| 久久精品国产清高在天天线| 69av精品久久久久久| 一本一本综合久久| 久久久精品国产亚洲av高清涩受| 99在线视频只有这里精品首页| 美女 人体艺术 gogo| 高清在线国产一区| √禁漫天堂资源中文www| 国产成人av激情在线播放| 一边摸一边做爽爽视频免费| 国产精品av视频在线免费观看| 露出奶头的视频| 久久久精品欧美日韩精品| 欧美黄色片欧美黄色片| 91成年电影在线观看| 久久中文字幕人妻熟女| 久久久久久大精品| 制服诱惑二区| 国产在线精品亚洲第一网站| 亚洲国产高清在线一区二区三| 国产精品久久久人人做人人爽| 夜夜爽天天搞| 男女那种视频在线观看| 一进一出抽搐gif免费好疼| 美女黄网站色视频| 九九热线精品视视频播放| 国产91精品成人一区二区三区| 99久久精品热视频| 又大又爽又粗| 国产99久久九九免费精品| 身体一侧抽搐| www.999成人在线观看| 香蕉国产在线看| 男女那种视频在线观看| 色哟哟哟哟哟哟| 久久精品影院6| 一级作爱视频免费观看| 中文资源天堂在线| 国产高清激情床上av| 亚洲国产欧美一区二区综合| 夜夜躁狠狠躁天天躁| 国产99白浆流出| 亚洲精品久久成人aⅴ小说| 亚洲精品美女久久av网站| 日韩三级视频一区二区三区| 久久99热这里只有精品18| 免费高清视频大片| 叶爱在线成人免费视频播放| 日日干狠狠操夜夜爽| 久久久国产精品麻豆| 午夜福利在线观看吧| 可以在线观看的亚洲视频| 成人18禁高潮啪啪吃奶动态图| 亚洲人成网站高清观看| 久久精品亚洲精品国产色婷小说| 国产伦在线观看视频一区| 欧美日韩精品网址| 女人高潮潮喷娇喘18禁视频| 丁香欧美五月| 久久这里只有精品中国| 国产亚洲av嫩草精品影院| 亚洲欧洲精品一区二区精品久久久| 国产视频一区二区在线看| 亚洲国产看品久久| 此物有八面人人有两片| 国产精品一区二区精品视频观看| 在线十欧美十亚洲十日本专区| 熟妇人妻久久中文字幕3abv| 成人高潮视频无遮挡免费网站| 精品欧美国产一区二区三| 很黄的视频免费| 色尼玛亚洲综合影院| 男女之事视频高清在线观看| 亚洲第一欧美日韩一区二区三区| 夜夜看夜夜爽夜夜摸| 一二三四社区在线视频社区8| 成年人黄色毛片网站| 亚洲精品av麻豆狂野| 国产精品久久久久久亚洲av鲁大| 大型av网站在线播放| 黄色丝袜av网址大全| 国产一级毛片七仙女欲春2| 亚洲熟妇熟女久久| 中出人妻视频一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | ponron亚洲| 国产三级黄色录像| 日本撒尿小便嘘嘘汇集6| 天天一区二区日本电影三级| 欧美黑人欧美精品刺激| 国产成人aa在线观看| 国产伦一二天堂av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 99久久精品热视频| 欧美性长视频在线观看| 激情在线观看视频在线高清| 全区人妻精品视频| 18禁观看日本| 一区福利在线观看| 真人一进一出gif抽搐免费| 一级毛片高清免费大全| 色噜噜av男人的天堂激情| 久久精品成人免费网站| 看黄色毛片网站| av天堂在线播放| 99在线人妻在线中文字幕| 日韩av在线大香蕉| 成人av在线播放网站| 桃色一区二区三区在线观看| 国产激情欧美一区二区| avwww免费| 禁无遮挡网站| 国产成人精品久久二区二区免费| 欧美黑人精品巨大| 亚洲欧美日韩高清专用| 少妇熟女aⅴ在线视频| 国产免费av片在线观看野外av| 制服诱惑二区| 国产精品一区二区三区四区免费观看 | 亚洲aⅴ乱码一区二区在线播放 | 777久久人妻少妇嫩草av网站| 国产精品综合久久久久久久免费| 久久精品夜夜夜夜夜久久蜜豆 | 午夜精品一区二区三区免费看| 男人舔女人的私密视频| 性色av乱码一区二区三区2| 日本三级黄在线观看| 我的老师免费观看完整版| 精品国产乱码久久久久久男人| 国产久久久一区二区三区| 小说图片视频综合网站| 国产成人系列免费观看| 精品乱码久久久久久99久播| 欧美黑人欧美精品刺激| 大型av网站在线播放| 成人亚洲精品av一区二区| 欧美三级亚洲精品| 亚洲七黄色美女视频| 久久午夜综合久久蜜桃| 亚洲乱码一区二区免费版| 国产一区二区三区在线臀色熟女| 国产成人aa在线观看| 可以免费在线观看a视频的电影网站| 日本一本二区三区精品| 久久精品人妻少妇| 国产成人精品无人区| 欧美久久黑人一区二区| 99re在线观看精品视频| 美女 人体艺术 gogo| 婷婷亚洲欧美| 色综合站精品国产| 老司机福利观看| 日韩中文字幕欧美一区二区| 香蕉av资源在线| 亚洲欧美一区二区三区黑人| 男人的好看免费观看在线视频 | 国产精品1区2区在线观看.| 亚洲一区中文字幕在线| 久久这里只有精品中国| 欧美在线一区亚洲| 亚洲成a人片在线一区二区| 亚洲人成网站高清观看| 91在线观看av| 丁香欧美五月| 久久久精品国产亚洲av高清涩受| 国产精品一区二区精品视频观看| 99国产综合亚洲精品| 国产高清videossex| 又粗又爽又猛毛片免费看| 99国产精品一区二区蜜桃av| 亚洲国产欧美网| av欧美777| 国产精华一区二区三区| 国内精品久久久久精免费| 在线观看66精品国产| 日韩欧美国产一区二区入口| 精品国产美女av久久久久小说| 欧美日韩一级在线毛片| 亚洲专区国产一区二区| 欧美一区二区国产精品久久精品 | 日本一本二区三区精品| 国产精品香港三级国产av潘金莲| 久99久视频精品免费| 成人高潮视频无遮挡免费网站| 成人三级黄色视频| 国产黄色小视频在线观看| 好男人在线观看高清免费视频| 久久午夜综合久久蜜桃| 亚洲色图av天堂| 婷婷精品国产亚洲av在线| 啦啦啦免费观看视频1| 日韩欧美在线乱码| 国内少妇人妻偷人精品xxx网站 | www.精华液| 国产成人啪精品午夜网站| 亚洲午夜理论影院| 少妇粗大呻吟视频| 久久久久久久午夜电影| 观看免费一级毛片| 久久精品国产亚洲av香蕉五月| 欧美色视频一区免费| 国内精品一区二区在线观看| 亚洲九九香蕉| 看片在线看免费视频| 国产真人三级小视频在线观看| 真人一进一出gif抽搐免费| 激情在线观看视频在线高清| 少妇裸体淫交视频免费看高清 | 少妇人妻一区二区三区视频| 黄色片一级片一级黄色片| 麻豆成人av在线观看| 变态另类丝袜制服| 欧美3d第一页| 香蕉久久夜色| 午夜视频精品福利| 黄色视频不卡| 人妻久久中文字幕网| 91字幕亚洲| 十八禁人妻一区二区| 超碰成人久久| 琪琪午夜伦伦电影理论片6080| 国产久久久一区二区三区| 99国产极品粉嫩在线观看| 禁无遮挡网站| 日本成人三级电影网站| 亚洲精品色激情综合| 18禁黄网站禁片午夜丰满| 99精品在免费线老司机午夜| 国产精品98久久久久久宅男小说| av欧美777| 岛国在线免费视频观看| 国产单亲对白刺激| 天天一区二区日本电影三级| 五月玫瑰六月丁香| 伦理电影免费视频| 色在线成人网| 两人在一起打扑克的视频| 日本黄大片高清| 国产精品 国内视频| 91在线观看av| 91成年电影在线观看| 国产在线精品亚洲第一网站| 男人舔女人下体高潮全视频| 一本一本综合久久| 午夜精品一区二区三区免费看| 白带黄色成豆腐渣| 日韩成人在线观看一区二区三区| tocl精华| 动漫黄色视频在线观看| 中亚洲国语对白在线视频| 欧美乱码精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 欧美久久黑人一区二区| 精品国产美女av久久久久小说| 又爽又黄无遮挡网站| 99久久久亚洲精品蜜臀av| 欧美成人一区二区免费高清观看 | 97碰自拍视频| 国产熟女午夜一区二区三区| 日日夜夜操网爽| 好男人电影高清在线观看| 亚洲美女视频黄频| 欧美zozozo另类| 校园春色视频在线观看| 欧美精品啪啪一区二区三区| av国产免费在线观看| 中国美女看黄片| 亚洲精品av麻豆狂野| 精品国产美女av久久久久小说| 日本撒尿小便嘘嘘汇集6| 在线a可以看的网站| 欧美午夜高清在线| 欧美色视频一区免费| 一本综合久久免费| 免费在线观看完整版高清| a在线观看视频网站| 国产成人av激情在线播放| 一级黄色大片毛片| 草草在线视频免费看| 亚洲九九香蕉| 级片在线观看| 动漫黄色视频在线观看| 亚洲精品美女久久av网站| 性欧美人与动物交配| 国产爱豆传媒在线观看 | 日本黄大片高清| 俺也久久电影网| 777久久人妻少妇嫩草av网站| 亚洲欧美一区二区三区黑人| 黄色a级毛片大全视频| 妹子高潮喷水视频| 日韩三级视频一区二区三区| 麻豆成人午夜福利视频| av福利片在线观看| 国产精品久久视频播放| 国产精品亚洲一级av第二区| 又大又爽又粗| 日韩中文字幕欧美一区二区| 久久九九热精品免费| 久久香蕉精品热| 母亲3免费完整高清在线观看| 精品久久久久久久人妻蜜臀av| 亚洲成人中文字幕在线播放| 黄片大片在线免费观看| 真人做人爱边吃奶动态| 村上凉子中文字幕在线| 琪琪午夜伦伦电影理论片6080| 亚洲欧美激情综合另类| 日韩欧美 国产精品| 亚洲欧美日韩高清专用| 久久久久久人人人人人| 亚洲人成电影免费在线| 老汉色∧v一级毛片| 成年人黄色毛片网站| 女同久久另类99精品国产91| 日本精品一区二区三区蜜桃| 一级作爱视频免费观看| 欧美日韩国产亚洲二区| 亚洲,欧美精品.| 中文在线观看免费www的网站 | 成人三级做爰电影| 12—13女人毛片做爰片一| 成人午夜高清在线视频| 91老司机精品| 国产高清视频在线播放一区| 国产午夜精品久久久久久| 国产v大片淫在线免费观看| 波多野结衣高清无吗| 日韩有码中文字幕| 国产三级中文精品| 欧美丝袜亚洲另类 | 欧美日韩国产亚洲二区| 亚洲第一电影网av| 久久香蕉精品热| av有码第一页| 亚洲成av人片免费观看| av超薄肉色丝袜交足视频| 国产成人欧美在线观看| 欧美高清成人免费视频www| 19禁男女啪啪无遮挡网站| 91老司机精品| 女生性感内裤真人,穿戴方法视频| 国产成人欧美在线观看| 欧美三级亚洲精品| 日本a在线网址| 天堂影院成人在线观看| 午夜免费成人在线视频| 午夜福利视频1000在线观看| 成人精品一区二区免费| 一区福利在线观看| 中文字幕精品亚洲无线码一区| 老熟妇仑乱视频hdxx| 在线观看免费午夜福利视频| av中文乱码字幕在线| e午夜精品久久久久久久| 亚洲自拍偷在线| 老司机午夜福利在线观看视频| 18禁黄网站禁片免费观看直播| 中出人妻视频一区二区| 久久精品国产亚洲av香蕉五月| 国产av一区在线观看免费| 日韩精品免费视频一区二区三区| 三级毛片av免费| 老熟妇乱子伦视频在线观看| 欧美午夜高清在线| av福利片在线| 夜夜看夜夜爽夜夜摸| 亚洲五月天丁香| 国产伦一二天堂av在线观看| 国产91精品成人一区二区三区| 在线看三级毛片| 一级黄色大片毛片| 一夜夜www| 欧美精品啪啪一区二区三区| 免费看十八禁软件| 老汉色∧v一级毛片| 精品熟女少妇八av免费久了| 国产亚洲精品第一综合不卡| 久久久久性生活片| 不卡av一区二区三区| 久久久水蜜桃国产精品网| 成年女人毛片免费观看观看9| 久久精品人妻少妇| 欧美成人一区二区免费高清观看 | 精品久久久久久久人妻蜜臀av| 亚洲男人天堂网一区| 成人18禁高潮啪啪吃奶动态图| 天堂动漫精品| 男男h啪啪无遮挡| 免费看美女性在线毛片视频| 免费无遮挡裸体视频| 久久精品国产亚洲av高清一级| 欧美高清成人免费视频www| 久久婷婷人人爽人人干人人爱| 在线观看日韩欧美| 激情在线观看视频在线高清| 欧美性猛交╳xxx乱大交人| 成人永久免费在线观看视频| 国产精品 国内视频| 一区二区三区激情视频| 热99re8久久精品国产| 日韩欧美精品v在线| 校园春色视频在线观看| 岛国视频午夜一区免费看| 久久 成人 亚洲| 久久中文字幕一级| 中文资源天堂在线| videosex国产| 日本一本二区三区精品| av国产免费在线观看| 免费在线观看黄色视频的| 国语自产精品视频在线第100页| 国产精品爽爽va在线观看网站| 精品国内亚洲2022精品成人| 亚洲九九香蕉| 变态另类成人亚洲欧美熟女| 一级作爱视频免费观看| 日韩欧美精品v在线| 欧美中文综合在线视频| 亚洲精品美女久久久久99蜜臀| 国产精品野战在线观看| 亚洲全国av大片| 国产精品久久视频播放| 两个人的视频大全免费| 久久久久久亚洲精品国产蜜桃av| 国内揄拍国产精品人妻在线| 精品国产乱子伦一区二区三区| 一个人免费在线观看的高清视频| 岛国在线观看网站| 欧美乱妇无乱码| 国产精品影院久久| 国产成人啪精品午夜网站| 欧美黑人欧美精品刺激| 欧美日本视频| 一个人免费在线观看的高清视频| 波多野结衣巨乳人妻| 欧美黑人欧美精品刺激| 成人18禁在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一区高清亚洲精品| 丰满的人妻完整版| 精品高清国产在线一区| 日韩av在线大香蕉| 麻豆久久精品国产亚洲av| 久99久视频精品免费| 午夜视频精品福利| 好男人在线观看高清免费视频| 亚洲成人免费电影在线观看| 成人午夜高清在线视频| 欧美乱色亚洲激情| 欧美性猛交黑人性爽| 丁香六月欧美| 久久中文字幕一级| 免费无遮挡裸体视频| 啪啪无遮挡十八禁网站| 成人永久免费在线观看视频| 国产一区二区三区在线臀色熟女| 一级毛片精品| 免费高清视频大片| 精品久久久久久久久久免费视频| 国产蜜桃级精品一区二区三区| 久久久国产成人精品二区| 午夜福利在线在线| x7x7x7水蜜桃| 国产精品av视频在线免费观看| 免费在线观看日本一区| 午夜亚洲福利在线播放| 熟女电影av网| 两人在一起打扑克的视频| 色综合亚洲欧美另类图片| 日日夜夜操网爽| 日本a在线网址| 精品一区二区三区视频在线观看免费| 很黄的视频免费| 两个人免费观看高清视频| 亚洲精品av麻豆狂野| 国产伦人伦偷精品视频| 国语自产精品视频在线第100页| 欧美黑人巨大hd| 亚洲一区中文字幕在线| 51午夜福利影视在线观看| 亚洲av中文字字幕乱码综合| 亚洲精品美女久久久久99蜜臀| 高潮久久久久久久久久久不卡| 欧美性猛交黑人性爽| 欧美日韩精品网址| 国产麻豆成人av免费视频| 亚洲片人在线观看| 精品久久久久久久人妻蜜臀av| 色播亚洲综合网| 老熟妇仑乱视频hdxx| 亚洲av电影不卡..在线观看| 国产av不卡久久| 久久久久久久久中文| 久久人妻福利社区极品人妻图片| 亚洲午夜理论影院| 嫩草影院精品99| 黑人操中国人逼视频| 欧美性猛交╳xxx乱大交人| 天堂av国产一区二区熟女人妻 | av免费在线观看网站| 日本五十路高清| 99久久国产精品久久久| 精品少妇一区二区三区视频日本电影| 欧美日韩精品网址| 久热爱精品视频在线9| cao死你这个sao货| 制服人妻中文乱码| 国产精品免费视频内射| 一级片免费观看大全| 黄色成人免费大全| 久久精品91无色码中文字幕| 老司机在亚洲福利影院| 这个男人来自地球电影免费观看| 在线观看免费视频日本深夜| 男人舔女人下体高潮全视频| 亚洲精品久久国产高清桃花| 国产午夜福利久久久久久| 欧美人与性动交α欧美精品济南到| 亚洲精品在线美女| 国产精品影院久久| 真人一进一出gif抽搐免费| 12—13女人毛片做爰片一| 无人区码免费观看不卡| 亚洲国产精品999在线| 日本一本二区三区精品| 最近最新中文字幕大全免费视频| 999精品在线视频| 欧美日韩亚洲国产一区二区在线观看| 色综合站精品国产| 国产视频一区二区在线看| 成人国语在线视频| 哪里可以看免费的av片| 色老头精品视频在线观看| 国产真实乱freesex| 草草在线视频免费看| 国产亚洲精品av在线| 午夜福利在线观看吧| 国产亚洲精品第一综合不卡| 午夜精品一区二区三区免费看| 欧美zozozo另类| 男人舔奶头视频| 久久国产精品人妻蜜桃| 最近最新中文字幕大全免费视频| 大型黄色视频在线免费观看| 伦理电影免费视频| 性色av乱码一区二区三区2| 一进一出抽搐gif免费好疼| 国内久久婷婷六月综合欲色啪| 亚洲av电影在线进入| 夜夜看夜夜爽夜夜摸| 特大巨黑吊av在线直播| 欧美性猛交黑人性爽| 亚洲人成网站在线播放欧美日韩| 成年女人毛片免费观看观看9| 19禁男女啪啪无遮挡网站| 变态另类成人亚洲欧美熟女| 国产精品亚洲av一区麻豆| 黄色视频不卡| 国产视频一区二区在线看| 精品欧美一区二区三区在线| 亚洲国产欧美人成| 中文亚洲av片在线观看爽| 精品午夜福利视频在线观看一区| 亚洲无线在线观看| 国产午夜福利久久久久久| 美女扒开内裤让男人捅视频| 黄色视频,在线免费观看| 人妻夜夜爽99麻豆av| 丰满人妻熟妇乱又伦精品不卡| 精品国产乱码久久久久久男人| 少妇粗大呻吟视频| 黄色丝袜av网址大全| 18禁美女被吸乳视频| 日本免费一区二区三区高清不卡| 中文在线观看免费www的网站 | 国产熟女xx| 国产真实乱freesex| 国产精品一及| 亚洲最大成人中文| x7x7x7水蜜桃| АⅤ资源中文在线天堂|