• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating?

    2021-03-11 08:34:32ZhiLiWang王志立RuiChengZhou周瑞成LiMingZhao趙立明KunRen任坤WenXu徐文BoLiu劉波andHengChen陳恒
    Chinese Physics B 2021年2期
    關(guān)鍵詞:徐文劉波

    Zhi-Li Wang(王志立), Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(趙立明),Kun Ren(任坤), Wen Xu(徐文), Bo Liu(劉波), and Heng Chen(陳恒)

    School of Electronic Science&Applied Physics,Hefei University of Technology,Hefei 230009,China

    Keywords: x-ray imaging,phase contrast,grating interferometer,fringe visibility

    1. Introduction

    Over the last two decades, x-ray grating interferometry has attracted increasing attention from the scientific community.[1–13,15–18]As a multi-modal imaging technique,x-ray grating interferometry provides simultaneously three complementary signals,i.e.,attenuation,refraction,and darkfield,from the same set of experimental data.[1–4,11,18]Particularly,standard x-ray tubes are fully compatible with x-ray grating interferometers in the so-called Talbot–Lau geometry.[3,4]Consequently,x-ray grating interferometry has shown significant potential applications in diverse fields including, but not limited to,mammography,[19,20]materials science,[21,22]nondestructive testing,[23]and early detection of lung injury.[24]

    In x-ray grating interferometry,a phase grating is always employed to generate an interference pattern at the so-called fractional Talbot distances downstream.[1–4]With a sample placed close to the phase grating, the interference pattern is locally distorted. Analyzing the local distortion of the interference pattern allows one to retrieve the x-ray attenuation, refraction, and dark-field signals on a pixel-by-pixel basis.[1–4,11,17]In order to achieve a high sensitivity,the phase grating typically has a period of a few micrometers. The resulting interference fringes, with a pitch of several micrometers,cannot be directly resolved by common imaging detectors with a typical pixel size of several tens of micrometers. To utilize these detectors, one needs to use an absorbing grating,with its pitch matching that of the interference fringe, placed before the detector to convert the fringe distortion into intensity variations in a Moir′e approach.[1–4]However,the attenuating analyzer grating blocks more than half x-rays transmitting through the sample,which will significantly increase the dose deposition to the imaged sample.

    In recent years, dual phase grating x-ray interferometry has demonstrated its attractive advantages.[25–30]Two phase gratings are employed as beam splitters in a dual phase grating interferometer.The split beams transmitting through the phase gratings interfere with each other,creating distinct diffraction orders in the intensity fringe pattern.[27,28]The imaging detector just resolves the beat pattern of large periodicities, and makes other fine patterns a constant background. Compared to x-ray Talbot–Lau interferometers, the dual phase grating interferometers directly resolve intensity fringes without the need of an absorbing analyzer grating. This advantage will lead the radiation dose to substantially decrease in x-ray imaging exams. Moreover,unlike the case of the inverse geometry of Talbot–Lau interferometers,[5]the limitation to the field-ofview can be avoided in dual phase grating interferometers with the total system length kept compact.[25,26]

    In dual phase grating x-ray interferometers, spatially coherent illumination of the phase gratings is always necessary to attain a high fringe visibility.[25]However, it is challenging for standard x-ray tubes to provide sufficient spatial coherence and adequate flux simultaneously. Alternatively, inspired by the solution in Talbot–Lau interferometry, one may employ the combination of a large-focus x-ray source with an absorbing source grating.[29]The source grating creates an array of line sources, each of which illuminates the phase grating coherently.[3,4,10,29]In Talbot–Lau interferometry,with the period of the source grating satisfying the Lau condition, the fringes generated by all the line sources in the source grating are superimposed constructively to achieve a good fringe visibility.[3,4,10,31]Similarly,a new generalized Lau condition was derived for dual phase grating interferometer equipped with a source grating.[28]The theoretical results have been validated by simulations and experimental results.[29]However,experimentally measured fringe visibility was no greater than 6.5%, which was too low for potential practical applications.Therefore,it is of great importance to find how the spatial coherence of the x-ray beam affects the fringe visibility in dual phase grating x-ray interferometry. And that is the purpose of this work.

    The rest of this paper is organized as follows. In Section 2, we apply the partial coherence theory to dual phase grating interferometry equipped with a source grating. With the generalized Lau condition satisfied, we show that the spatial coherence effect is approximately determined by the source grating profile. In Section 3, we investigate the influence of the source grating profile,including its duty cycle and finite bar height,on the fringe visibility quantitatively. Finally,we conclude this work in Section 4.We hope that those results can be used as guidelines for designing and optimizing dual phase grating interferometers equipped with a source grating.

    2. Quantitative coherence analysis of dual phase grating interferometry

    Consider a dual phase grating x-ray interferometer as shown in Fig.1, where an absorbing source grating G0 and two phase gratings G1 and G2 are employed. Assuming a quasi-monochromatic illumination and following a quantitative theory of dual phase grating interferometry,[27]we find that the resolvable intensity fringes by the detector can be expressed as follows:where I0is the incident x-ray intensity at G1 plane; μindenotes the spatial coherence degree of the x-rays of wavelength λ incident on G1;[32]sinc(lpD/pfr) represents the pixel-averaging effect, with pDbeing the detector pixel size,and pfr=M5p2/[M1?(p2/p1)] the period of resolvable intensity fringes;anand bsdenote the Fourier coefficients of the grating G1 and G2,respectively; a?nis the complex conjugate of an; R1is the source-to-G1 distance; R2is the distance between G1 and G2;R4is the G2-to-detector distance; p1is the period of G1,and p2is the period of G2. Note that the relative transverse shift of the gratings G1 and G2 is set to be zero in Eq.(1). The magnification factors used in Eq.(1)are defined as follows:

    Fig.1. The schematic diagram of dual phase grating x-ray interferometer equipped with source grating.

    In order to employ x-ray sources of large focal spots, an absorbing source grating G0 is introduced into dual phase grating interferometers.[28,29]The source grating divides the tube’s focal spot into an array of virtual line sources. Each of the mutually incoherent line sources can provide spatially coherent illumination of the phase gratings. Since x-ray tubes always have a focal spot much larger than the size of virtual line sources, the effective source intensity distribution can be well approximated by the transmittance function of the source grating,[31]which can be expanded as a Fourier series

    where p0is the source grating period, and the Fourier coefficient cmis given by

    with γ0being the duty cycle of the source grating, and T the non-zero transmission through the grating bar. The transmission T is related to the finite bar height h by T =exp(?μt),with μ being the energy-dependent linear attenuation coefficient of the grating material. Under the approximation of Eq.(3),according to the Van Cittert–Zernike theorem,[32]we find that the spatial coherence degree in Eq.(1)is given by

    where δ(·) denotes the Dirac delta function. As shown in Eq.(1),the spatial coherence degreeμinrelating to the diffraction order l,represents the reduction of fringe modulation due to partial spatial coherence of x-ray illumination. Therefore,to achieve a high fringe visibility,the spatial coherence degree needs to be maximized. Equation (5) reveals that the spatial coherence degree achieves its maximum value if,and only if,the following geometry condition is fulfilled:

    Substituting Eq. (2) and pfr= M5p2/[M1?(p2/p1)] into Eq. (6), we obtain the condition of the source grating period below:

    Meanwhile, we note that polychromatic x-ray sources such as x-ray tubes prevail in medical imaging applications. With polychromatic x-rays, the phase grating’s phase shift varies linearly with the x-ray wavelength. Therefore,the fundamental mode (l =1) contributes to the intensity fringe formation for both π-shifting and π/2-shifting phase gratings. With these considerations,we obtain the following unique solution valid for all diffraction order m:

    which reproduces the generalized Lau condition for dual phase grating interferometers equipped with a source grating.[28]Note that if the mode is l =?1, the p0given by Eq. (8) just changes its sign,and the source grating configuration remains the same.

    With the generalized Lau condition in Eq. (8) satisfied,the spatial coherence degreeμincan be further simplified into the following expression:

    which shows that given that the generalized Lau condition is satisfied,the spatial coherence degree is solely determined by the Fourier coefficient of the source grating, i.e. the source grating profile. As shown in Eq. (4), the Fourier coefficient decreases with increasing diffraction order l,reflecting that the fringe modulation decreases with increasing diffraction orders.The higher the diffraction order, the larger the loss in fringe modulation. Substituting Eq. (9) into Eq. (1), we obtain the following expression for the resolvable intensity fringes:

    where

    3. Fringe visibility

    In x-ray grating-based interferometry, fringe visibility has been a common figure of merit to quantify its imaging performance.[1–4]It is defined as

    V =(Imax?Imin)/(Imax+Imin),

    with Imaxand Iminbeing the maximum and minimum intensity values,respectively. A high fringe visibility is always required to achieve a high signal-to-noise ratio (SNR) in x-ray grating-based interferometry.[17,18,33,34]As shown in Eq.(10),the visibility of those resolvable intensity fringes is dependent on the x-ray spectrum, the setup geometry, the Fourier coefficients of the source grating and dual phase gratings,and the ratio p1/p2. Since this work aims to investigate the effect of spatial coherence on the fringe visibility,a monochromatic illumination is assumed for further analysis. And the obtained results can be considered to be the upper limit of the achievable fringe visibility for dual phase grating interferometers using polychromatic x-ray sources.

    We start with considering an interferometer consisting of two π-shifting phase gratings with a duty cycle of 0.5, to demonstrate how the source grating profile affects the fringe visibility. By use of the closed form expression for the coefficients,[27]we find that Cl=C?l=0 for all odd diffraction orders,and for even integer l,

    Substituting Eq. (11) into Eq. (10), we find that the coefficients related to the even integer l decrease rapidly with increasing diffraction orders. Thus, in the case of a 0.5 duty cycle, the lowest order (l=2) contributes dominantly to the intensity fringes. Then the expression for the intensity fringe is further simplified into

    which shows that the intensity fringe has a period of pfr/2 under monochromatic illumination. From Eq.(12),we find that the fringe visibility is given by

    which shows that the fringe visibility is influenced by the source grating profile through c1/c0, the pixel-averaging effect sinc(2pD/pfr),and the setup geometry.

    To provide a quantitative insight into the effect of the source grating profile on the fringe visibility, we conduct the following numerical calculations.The considered setup geometry resembles that used for experimental measurements,[29]where λ =4.96×10?11m, p0=24.00μm, p1=4.364μm,p2=4.640 μm, R1=52.79 cm, R2=10.89 cm, and R4=162.34 cm. It can be readily verified that the generalized Lau condition is fulfilled,and that

    which means that the fringe visibility is maximized in terms of setup geometry.

    Fig.2. Variations of fringe visibility with duty cycle of source grating for dual π-shifting phase gratings(a)(pfr/2)/pD=10 and(b)(pfr/2)/pD=4.

    Figure 2 shows the curves of fringe visibility versus duty cycle of the source grating for different values of transmission T and different pixel-averaging effects. The following trends in the fringe visibility can be observed. Firstly, in the ideal case of zero transmission,the fringe visibility decreases monotonically with increasing duty cycle. However, the behavior becomes quite different in the case of a non-zero transmission.As shown in Fig.2,the fringe visibility achieves its maximum,with a duty cycle being 0.25, in the case of 5%transmission.When the transmission increases to 10%,the fringe visibility is maximized,with a duty cycle being 0.3.With the transmission further increasing to 20%,the optimal duty cycle increases to 0.35 where the fringe visibility reaches its maximum. That is, there exists an optimal duty cycle to maximize the fringe visibility in the realistic case of a non-zero transmission.

    Secondly, increase in the transmission results in a significant decrease of the maximum achievable fringe visibility. With the transmission increasing from 5% to 10%, the maximum achievable fringe visibility decreases from 0.5928 to 0.4993,i.e.reduces about 16%. In the case of a 20%transmission, the fringe visibility further decreases to 0.3768, i.e.reduces almost 36%.Therefore,the transmission of the source grating bar should be minimized for a high fringe visibility.Taking into account the available x-ray flux that increases with increasing transmission and duty cycles, we can find an optimal duty cycle to maximize the image quality. This subject is left to be investigated in the future.

    Finally,a comparison between Fig.2(a)and Fig.2(b)reveals that the pixel-averaging effect has minor effect on the achievable maximum fringe visibility, as long as one fringe period is sampled at least by four detector pixels. This result can be explained by the fact that the term sinc[pD/(pfr/2)]is always greater than 0.9 in real experiments. Meanwhile, we note that the optimal duty cycle that maximizes the fringe visibility is independent of the pixel-averaging effect as revealed by Eq.(13).

    Furthermore,we consider an interferometer that consists of two π/2-shifting phase gratings. Again, using the expression for the coefficient Cl,[27]we obtain the following expression for odd diffraction order l:

    which suggests that the dominant diffraction order is l =1.Following a similar procedure to that of dual π-shifting phase gratings,we obtain the visibility of the resolvable fringes with a period of pfr,

    The analysis of Eqs. (13) and (15) and the results displayed in Fig.3 reveals that the effect of the source grating profile on the fringe visibility is independent of phase grating type,while the pixel-averaging effect shows some little differences due to the different fringe periods. Besides, as a result of the difference in fractional Talbot distances, the setup geometry that maximizes the fringe visibility is changed accordingly.

    Fig.3. Variations of fringe visibility with duty cycle of the source grating for dual π/2-shifting phase gratings(a) pfr/pD=20 and(b) pfr/pD=8.

    4. Discussion and conclusions

    The feasibility of dual phase grating interferometer equipped with a source grating is demonstrated by latest experimental results.[29]However,the measured fringe visibility is quite low compared to typical values of Talbot–Lau interferometry. Therefore, it is important to know how the source grating profile affects the fringe visibility. For this purpose,we apply the partial coherence theory to dual phase grating interferometry equipped with a source grating. The results show that with the generalized Lau condition satisfied, the fringe visibility is influenced by the duty cycle of the source grating and the transmission through the grating bar simultaneously.

    In the case of a non-zero transmission, the achievable maximum fringe visibility exhibits a significant decrease with increasing transmission in the source grating. Thus, the bar height of the source grating is required to be large in order to attain a high fringe visibility. On the other hand, for a given transmission, one can find an optimal duty cycle that maximizes the fringe visibility.A comparison between results from dual π-shifting phase gratings and dual π/2-shifting phase gratings shows that the optimal duty cycle is independent of the phase grating used and the pixel-averaging effect. Besides,since the transmission is dependent on the photon energy,special attenuation is required when using a polychromatic x-ray source. In the future work, the theoretical results for some design criteria of dual phase grating interferometers will be evaluated experimentally.

    In this work, we present a quantitative coherence analysis of dual phase grating x-ray interferometry equipped with a source grating. In order to attain a good fringe visibility,the geometry is required to satisfy the generalized Lau condition. Furthermore, we derive the fringe visibility formulas for both dual π-shifting phase gratings and dual π/2-shifting phase gratings. Especially,those general expressions given by Eqs. (13) and (15) are applicable to any setup geometry, not limited to the symmetrical one.[27]These results can be used as guidelines for designing the source grating and optimizing dual phase grating x-ray interferometers. Finally,we mention that the presented results can be generalized to the case of a multiline x-ray source.[6]

    猜你喜歡
    徐文劉波
    汪安陽 劉波設(shè)計(jì)作品
    毛紡科技(2023年1期)2023-02-24 00:37:40
    劉波作品
    國(guó)畫家(2023年1期)2023-02-16 07:57:50
    晚霞
    赤水源(2018年6期)2018-12-06 08:38:08
    劉波:大海與我作伴
    商周刊(2017年16期)2017-10-10 01:32:47
    千萬別動(dòng)手
    永遠(yuǎn)解不開的梁子
    我到底在和誰比賽
    礙于面子擔(dān)保一個(gè)簽名賠萬元
    少年時(shí)光不言敗
    Experimental Investigation on Flow and Heat Transfer of Jet Impingement inside a Semi-Confined Smooth Channel*
    在线永久观看黄色视频| 亚洲伊人色综图| 亚洲va日本ⅴa欧美va伊人久久| 久久影院123| 性少妇av在线| 精品免费久久久久久久清纯| 波多野结衣高清无吗| 久久婷婷成人综合色麻豆| 韩国av一区二区三区四区| 99精品在免费线老司机午夜| 女人被狂操c到高潮| 高清毛片免费观看视频网站 | 在线观看一区二区三区| 嫩草影视91久久| 久久国产精品影院| 免费在线观看视频国产中文字幕亚洲| 久久 成人 亚洲| 91精品国产国语对白视频| 欧美大码av| 女人被狂操c到高潮| 很黄的视频免费| 中亚洲国语对白在线视频| 99在线人妻在线中文字幕| av在线播放免费不卡| av天堂在线播放| 国产精品综合久久久久久久免费 | 国产亚洲欧美在线一区二区| 欧美一区二区精品小视频在线| 色婷婷久久久亚洲欧美| 久久人妻av系列| 1024视频免费在线观看| 国产av一区二区精品久久| 男人舔女人的私密视频| 12—13女人毛片做爰片一| 国产无遮挡羞羞视频在线观看| 一边摸一边抽搐一进一出视频| 丁香六月欧美| 麻豆一二三区av精品| 黄色怎么调成土黄色| 久久精品国产亚洲av香蕉五月| 纯流量卡能插随身wifi吗| 欧美日韩精品网址| 精品久久蜜臀av无| 亚洲人成电影免费在线| 亚洲自偷自拍图片 自拍| 日韩欧美免费精品| 不卡一级毛片| 日韩中文字幕欧美一区二区| 97人妻天天添夜夜摸| 一区二区三区激情视频| 亚洲精品中文字幕在线视频| 亚洲三区欧美一区| 亚洲精品国产区一区二| 97碰自拍视频| 黑人巨大精品欧美一区二区蜜桃| 韩国精品一区二区三区| 国产精品综合久久久久久久免费 | 日韩欧美在线二视频| 成年女人毛片免费观看观看9| 欧美成人免费av一区二区三区| aaaaa片日本免费| 欧美精品一区二区免费开放| 视频区图区小说| e午夜精品久久久久久久| av片东京热男人的天堂| 热99re8久久精品国产| 很黄的视频免费| 亚洲精品国产一区二区精华液| 日韩欧美在线二视频| 免费观看精品视频网站| 久久人人爽av亚洲精品天堂| 成人精品一区二区免费| 级片在线观看| 夫妻午夜视频| 十分钟在线观看高清视频www| 亚洲第一欧美日韩一区二区三区| 国产精品久久电影中文字幕| av天堂久久9| 精品久久久久久久久久免费视频 | 777久久人妻少妇嫩草av网站| 国产视频一区二区在线看| 欧美日韩黄片免| 日韩欧美国产一区二区入口| av中文乱码字幕在线| 亚洲欧美日韩另类电影网站| 99久久人妻综合| 婷婷六月久久综合丁香| 亚洲精品美女久久久久99蜜臀| 黄频高清免费视频| 99精品欧美一区二区三区四区| 色综合站精品国产| 18禁国产床啪视频网站| 欧美日本中文国产一区发布| 宅男免费午夜| 亚洲第一av免费看| 欧美黄色片欧美黄色片| 国产午夜精品久久久久久| av在线天堂中文字幕 | 亚洲色图 男人天堂 中文字幕| 欧美色视频一区免费| 夜夜夜夜夜久久久久| 久久久久国产一级毛片高清牌| 国产亚洲欧美精品永久| 国产av一区在线观看免费| 人人妻人人添人人爽欧美一区卜| 最近最新中文字幕大全电影3 | 亚洲成人免费av在线播放| 午夜免费观看网址| 黄片小视频在线播放| 男女床上黄色一级片免费看| 日韩免费av在线播放| 国产在线观看jvid| 精品国产美女av久久久久小说| 欧美日本中文国产一区发布| 天堂中文最新版在线下载| 国产色视频综合| 国产麻豆69| 欧美色视频一区免费| 色综合欧美亚洲国产小说| 黄色丝袜av网址大全| xxx96com| 免费观看精品视频网站| 国产精品国产高清国产av| 好男人电影高清在线观看| 色在线成人网| 88av欧美| 亚洲一码二码三码区别大吗| 在线观看日韩欧美| 国产激情久久老熟女| 午夜免费鲁丝| 精品国产国语对白av| 精品少妇一区二区三区视频日本电影| 久久久久久久久中文| 91九色精品人成在线观看| 亚洲色图av天堂| 一级黄色大片毛片| 午夜免费成人在线视频| 国产精品香港三级国产av潘金莲| 99热只有精品国产| 久久精品人人爽人人爽视色| 国产黄色免费在线视频| 亚洲成a人片在线一区二区| 欧美日韩亚洲国产一区二区在线观看| 黑人欧美特级aaaaaa片| 老司机深夜福利视频在线观看| av免费在线观看网站| 动漫黄色视频在线观看| 亚洲国产毛片av蜜桃av| 99在线人妻在线中文字幕| 免费女性裸体啪啪无遮挡网站| 在线观看午夜福利视频| 99久久国产精品久久久| 欧洲精品卡2卡3卡4卡5卡区| 制服人妻中文乱码| 免费在线观看日本一区| 一级a爱视频在线免费观看| 婷婷精品国产亚洲av在线| 男女下面进入的视频免费午夜 | 一级作爱视频免费观看| 一级片'在线观看视频| 中文字幕高清在线视频| 国产精品99久久99久久久不卡| 亚洲专区中文字幕在线| 一进一出好大好爽视频| 日韩视频一区二区在线观看| 国产黄色免费在线视频| 两人在一起打扑克的视频| 亚洲精品国产色婷婷电影| 搡老熟女国产l中国老女人| 动漫黄色视频在线观看| 亚洲自拍偷在线| 99在线人妻在线中文字幕| 亚洲一码二码三码区别大吗| 黄色片一级片一级黄色片| 老司机午夜福利在线观看视频| 精品国产乱子伦一区二区三区| 热99国产精品久久久久久7| 水蜜桃什么品种好| 乱人伦中国视频| 亚洲男人天堂网一区| 亚洲aⅴ乱码一区二区在线播放 | 午夜久久久在线观看| 在线国产一区二区在线| 亚洲精品成人av观看孕妇| 神马国产精品三级电影在线观看 | 亚洲久久久国产精品| 大型av网站在线播放| 国产精品秋霞免费鲁丝片| 精品一区二区三区av网在线观看| 欧美日韩av久久| 村上凉子中文字幕在线| 嫩草影院精品99| 日韩一卡2卡3卡4卡2021年| 日韩高清综合在线| 国产单亲对白刺激| 一级毛片高清免费大全| 老司机亚洲免费影院| 亚洲自拍偷在线| 俄罗斯特黄特色一大片| 69精品国产乱码久久久| 高潮久久久久久久久久久不卡| 亚洲欧美精品综合一区二区三区| av中文乱码字幕在线| 国产精品一区二区三区四区久久 | 国产精品永久免费网站| 咕卡用的链子| 国产无遮挡羞羞视频在线观看| 国产xxxxx性猛交| 香蕉丝袜av| 国产熟女午夜一区二区三区| 久久久国产一区二区| 成人永久免费在线观看视频| 丝袜在线中文字幕| 国产一卡二卡三卡精品| 国产精品久久久久久人妻精品电影| 女人被狂操c到高潮| 国产成人精品久久二区二区免费| 精品一区二区三区视频在线观看免费 | 人妻丰满熟妇av一区二区三区| 国产亚洲精品一区二区www| 亚洲全国av大片| 亚洲av成人av| 一边摸一边抽搐一进一小说| 日韩欧美在线二视频| 成人永久免费在线观看视频| 日韩欧美国产一区二区入口| 国产一区二区三区综合在线观看| 国产色视频综合| 久久人妻av系列| 一二三四在线观看免费中文在| 波多野结衣高清无吗| 女生性感内裤真人,穿戴方法视频| 高清毛片免费观看视频网站 | 国产免费男女视频| 久久欧美精品欧美久久欧美| 亚洲av美国av| 高清毛片免费观看视频网站 | 又黄又爽又免费观看的视频| 黄色a级毛片大全视频| 桃色一区二区三区在线观看| 中文字幕av电影在线播放| 国产亚洲av高清不卡| 在线观看一区二区三区| 国产成人精品在线电影| 99香蕉大伊视频| 男女高潮啪啪啪动态图| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产毛片av蜜桃av| 久久中文字幕人妻熟女| 极品人妻少妇av视频| 亚洲中文日韩欧美视频| 一进一出抽搐gif免费好疼 | 午夜久久久在线观看| 国产精品国产高清国产av| av在线播放免费不卡| 69av精品久久久久久| 亚洲第一欧美日韩一区二区三区| 欧美最黄视频在线播放免费 | 亚洲av美国av| 一区二区三区精品91| 成人影院久久| 亚洲成人免费电影在线观看| 18禁国产床啪视频网站| 国产成人影院久久av| 制服人妻中文乱码| 麻豆成人av在线观看| 一进一出好大好爽视频| 久久精品91无色码中文字幕| 亚洲精品国产一区二区精华液| 又黄又粗又硬又大视频| 亚洲成人免费av在线播放| 亚洲七黄色美女视频| 婷婷丁香在线五月| 免费日韩欧美在线观看| 国产xxxxx性猛交| 大型av网站在线播放| 精品午夜福利视频在线观看一区| 亚洲va日本ⅴa欧美va伊人久久| 精品国产一区二区三区四区第35| 狠狠狠狠99中文字幕| 国产亚洲欧美精品永久| 九色亚洲精品在线播放| 亚洲国产看品久久| 久久久久久久久久久久大奶| 欧美日韩亚洲国产一区二区在线观看| 老司机亚洲免费影院| 国产精品国产av在线观看| 久久精品成人免费网站| 黄色丝袜av网址大全| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区三| a在线观看视频网站| 久久影院123| 丰满饥渴人妻一区二区三| 国产欧美日韩精品亚洲av| 视频区图区小说| 99国产精品99久久久久| 久久欧美精品欧美久久欧美| 视频区欧美日本亚洲| 亚洲成a人片在线一区二区| 色婷婷久久久亚洲欧美| 国产av一区二区精品久久| 中国美女看黄片| 免费观看精品视频网站| 91字幕亚洲| 亚洲狠狠婷婷综合久久图片| 国产区一区二久久| 色婷婷久久久亚洲欧美| 久久精品国产清高在天天线| 国产精品成人在线| 在线观看免费高清a一片| 国产亚洲精品第一综合不卡| 免费人成视频x8x8入口观看| 国产高清国产精品国产三级| 亚洲 欧美 日韩 在线 免费| 亚洲 国产 在线| 淫秽高清视频在线观看| 女人精品久久久久毛片| 欧美日韩瑟瑟在线播放| 国产不卡一卡二| 国产精品久久视频播放| 高潮久久久久久久久久久不卡| 欧美日韩亚洲高清精品| 日韩视频一区二区在线观看| 精品日产1卡2卡| 丰满饥渴人妻一区二区三| 天堂√8在线中文| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片高清免费大全| 久久久国产欧美日韩av| 一夜夜www| www.熟女人妻精品国产| 亚洲成人久久性| 中文字幕另类日韩欧美亚洲嫩草| 夫妻午夜视频| 12—13女人毛片做爰片一| 香蕉丝袜av| 夫妻午夜视频| 国产高清视频在线播放一区| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕最新亚洲高清| 免费在线观看影片大全网站| 亚洲九九香蕉| 高清av免费在线| 欧美亚洲日本最大视频资源| 国产精品爽爽va在线观看网站 | 一边摸一边做爽爽视频免费| 亚洲精品国产精品久久久不卡| 操美女的视频在线观看| 97人妻天天添夜夜摸| 国产黄a三级三级三级人| 97超级碰碰碰精品色视频在线观看| 欧美精品亚洲一区二区| 亚洲精品美女久久av网站| 国产精品亚洲av一区麻豆| 超碰97精品在线观看| av在线天堂中文字幕 | 少妇 在线观看| 天堂√8在线中文| 成熟少妇高潮喷水视频| 女同久久另类99精品国产91| 长腿黑丝高跟| 狂野欧美激情性xxxx| 日本黄色视频三级网站网址| 久久久精品欧美日韩精品| www.精华液| 男人舔女人的私密视频| av网站免费在线观看视频| 一级毛片女人18水好多| 亚洲成人免费av在线播放| 日韩高清综合在线| 精品国内亚洲2022精品成人| 天天影视国产精品| 久久中文字幕一级| 国产精品久久电影中文字幕| 黄色 视频免费看| 亚洲av第一区精品v没综合| 国产高清国产精品国产三级| 人人妻,人人澡人人爽秒播| 精品福利永久在线观看| 国产精品电影一区二区三区| 欧美日本亚洲视频在线播放| 丝袜人妻中文字幕| 午夜福利影视在线免费观看| 午夜福利欧美成人| 国产欧美日韩一区二区精品| 在线十欧美十亚洲十日本专区| 亚洲久久久国产精品| 成人亚洲精品av一区二区 | 免费看十八禁软件| 99国产精品99久久久久| 国产主播在线观看一区二区| 69精品国产乱码久久久| 曰老女人黄片| 国产精品一区二区三区四区久久 | 麻豆久久精品国产亚洲av | 国产精品久久久久成人av| 免费在线观看完整版高清| 女人精品久久久久毛片| 妹子高潮喷水视频| 日本免费a在线| 亚洲 欧美一区二区三区| 一级a爱片免费观看的视频| 后天国语完整版免费观看| 韩国av一区二区三区四区| a级片在线免费高清观看视频| 国产成人一区二区三区免费视频网站| 国产精品免费视频内射| 久久中文字幕人妻熟女| av天堂久久9| 色在线成人网| 一区在线观看完整版| 九色亚洲精品在线播放| 成人亚洲精品一区在线观看| www.熟女人妻精品国产| 久久久国产欧美日韩av| 欧美乱妇无乱码| 美女国产高潮福利片在线看| 美女高潮喷水抽搐中文字幕| 久久久国产一区二区| www.自偷自拍.com| 嫁个100分男人电影在线观看| 日韩国内少妇激情av| 国产亚洲欧美在线一区二区| 免费av中文字幕在线| 欧美+亚洲+日韩+国产| 交换朋友夫妻互换小说| 在线国产一区二区在线| 国产精品免费一区二区三区在线| 国产单亲对白刺激| www.自偷自拍.com| 青草久久国产| 午夜日韩欧美国产| 岛国视频午夜一区免费看| 可以免费在线观看a视频的电影网站| 999久久久精品免费观看国产| 男女下面插进去视频免费观看| 日日爽夜夜爽网站| 国产免费男女视频| 成人三级黄色视频| 成人黄色视频免费在线看| 久久精品亚洲熟妇少妇任你| 日本黄色日本黄色录像| 久久伊人香网站| 波多野结衣av一区二区av| 91国产中文字幕| 九色亚洲精品在线播放| 亚洲av第一区精品v没综合| 热re99久久国产66热| 国产在线观看jvid| 黄色片一级片一级黄色片| 黄网站色视频无遮挡免费观看| 国产成人精品久久二区二区91| 国产成人免费无遮挡视频| 久久精品国产清高在天天线| 欧美一级毛片孕妇| 老熟妇仑乱视频hdxx| 一边摸一边抽搐一进一小说| 韩国av一区二区三区四区| 亚洲成av片中文字幕在线观看| svipshipincom国产片| 亚洲国产毛片av蜜桃av| 男人操女人黄网站| 又紧又爽又黄一区二区| 精品免费久久久久久久清纯| 亚洲av片天天在线观看| 久久精品影院6| 国产日韩一区二区三区精品不卡| 国产又色又爽无遮挡免费看| 久久久精品国产亚洲av高清涩受| 久久久久久免费高清国产稀缺| 麻豆av在线久日| 亚洲va日本ⅴa欧美va伊人久久| 国产午夜精品久久久久久| 丰满迷人的少妇在线观看| 久久精品aⅴ一区二区三区四区| 99久久精品国产亚洲精品| ponron亚洲| 成人黄色视频免费在线看| 亚洲熟女毛片儿| 亚洲国产欧美一区二区综合| 又黄又粗又硬又大视频| 精品久久久久久久毛片微露脸| 啦啦啦在线免费观看视频4| 亚洲第一青青草原| 精品欧美一区二区三区在线| 精品人妻1区二区| 99精品久久久久人妻精品| 亚洲三区欧美一区| 电影成人av| 免费日韩欧美在线观看| 国产精品av久久久久免费| 国产精品电影一区二区三区| 岛国视频午夜一区免费看| 正在播放国产对白刺激| 亚洲国产看品久久| 成人国语在线视频| 女人高潮潮喷娇喘18禁视频| 亚洲一卡2卡3卡4卡5卡精品中文| 超碰97精品在线观看| 久久精品亚洲av国产电影网| av免费在线观看网站| 欧美在线一区亚洲| 欧美精品啪啪一区二区三区| 日本免费a在线| 香蕉久久夜色| 嫩草影院精品99| 咕卡用的链子| 国产成人精品在线电影| 在线观看免费高清a一片| 欧美激情极品国产一区二区三区| 国产精品一区二区免费欧美| 免费av毛片视频| 色尼玛亚洲综合影院| 精品一区二区三卡| 精品久久久久久电影网| 日韩精品青青久久久久久| 18禁黄网站禁片午夜丰满| 欧美日韩黄片免| 91国产中文字幕| 日韩中文字幕欧美一区二区| 99riav亚洲国产免费| 亚洲欧美日韩另类电影网站| 电影成人av| 国产精品一区二区精品视频观看| 成年女人毛片免费观看观看9| 国产男靠女视频免费网站| 精品熟女少妇八av免费久了| 免费在线观看影片大全网站| 国产av又大| 欧美亚洲日本最大视频资源| 一区在线观看完整版| 国产99白浆流出| 两性夫妻黄色片| 亚洲精品中文字幕在线视频| 后天国语完整版免费观看| 久久婷婷成人综合色麻豆| 午夜精品在线福利| 色哟哟哟哟哟哟| 中文字幕人妻熟女乱码| 黄色 视频免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一区二区三区色噜噜 | 国产精品一区二区在线不卡| 亚洲成人国产一区在线观看| 欧美大码av| 国产成年人精品一区二区 | 欧美午夜高清在线| 在线播放国产精品三级| 欧美老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 免费在线观看完整版高清| 淫妇啪啪啪对白视频| 免费av毛片视频| 欧美日韩亚洲国产一区二区在线观看| 日本免费一区二区三区高清不卡 | 欧美激情 高清一区二区三区| 中文字幕人妻熟女乱码| 免费日韩欧美在线观看| 国产精品二区激情视频| 精品久久久久久电影网| 亚洲精品一卡2卡三卡4卡5卡| 琪琪午夜伦伦电影理论片6080| e午夜精品久久久久久久| 亚洲一区二区三区色噜噜 | 搡老乐熟女国产| 午夜免费观看网址| 人人澡人人妻人| 国产精品二区激情视频| av国产精品久久久久影院| 亚洲精品粉嫩美女一区| 国产成人免费无遮挡视频| 免费高清在线观看日韩| 国产精品久久久久成人av| а√天堂www在线а√下载| 岛国在线观看网站| 久久精品91无色码中文字幕| 欧美精品亚洲一区二区| 18美女黄网站色大片免费观看| 日韩中文字幕欧美一区二区| 99在线视频只有这里精品首页| 神马国产精品三级电影在线观看 | 91老司机精品| 国产午夜精品久久久久久| 精品卡一卡二卡四卡免费| 99精国产麻豆久久婷婷| 热99国产精品久久久久久7| 一级片免费观看大全| 国产亚洲精品久久久久久毛片| 香蕉国产在线看| 国产深夜福利视频在线观看| 国产成人欧美在线观看| 一区福利在线观看| 91大片在线观看| 亚洲熟妇熟女久久| 国产亚洲精品综合一区在线观看 | 日韩有码中文字幕| 女人高潮潮喷娇喘18禁视频| 欧美成人免费av一区二区三区| 亚洲精品久久成人aⅴ小说| 中文字幕最新亚洲高清| 在线天堂中文资源库| 韩国av一区二区三区四区| 亚洲国产精品一区二区三区在线| 国产精品免费视频内射| 久久性视频一级片| www.自偷自拍.com| 婷婷丁香在线五月| 久久精品国产清高在天天线| 99精品在免费线老司机午夜| 极品教师在线免费播放| 国产精品国产高清国产av| 午夜免费激情av| 午夜精品国产一区二区电影| 少妇的丰满在线观看|